Automatic Generation
of Mechanical Assembly Sequences

L.S. Homem de Mello and A.C. Sanderson”

CMU-RI-TR-88-19

- The Robotics Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

December 1988

© 1988 Camegie Mellon University

“Current Address: Electrical, Computer and Systems Engineering Department, Rensselaer Polytechnic Instimte, Troy, NY
12180-3590. .

Table of Contents

1. Introduction
2. Background
2.1. Modeling assemblies
2.2. Representation of assembly sequences
2.3. Generation of assembly plans
3. A Relational Model for Assemblies
3.1. Subassemblies
4. Decompositions of a Relational Model of an Assembly
5. The Algorithm for Generating All Assembly Sequences
6. Analysis of the Algorithm
6.1. The correctness of algorithm GET-FEASIBLE-DECOMPOSITIONS
6.2. The completeness of algorithm GET-FEASIBLE-DECOMPOSITIONS
6.3. The correctness of algorithm GENERATE-AND-OR-GRAPH
6.4. The completeness of algorithm GENERATE-AND-OR-GRAPH
6.5. Complexity
7. Conclusion
1. Reasoning about the Feasibility of Local Translations for Robotic Assembly of a Part
Constrained by Planar Contacts
L1. Introduction
1.2. Background N
L3. Representation of Local Constraints ‘
L4. Search Procedure for Feasible Local Translations
omputation of the Directions of Feasible Translations

UNIVERSITY L1BRARIE
CARNEGIC-MELLON UNIVERS
PITTSBURGH, FERNSYLVANIA 15213

BRRNRRRNEE A E B nwewwnm

8LRURLY

List of Figures

: The directed graph of assembly states of a three-part assembly
: The AND/OR graph for a three-part assembly

A simple product in exploded view
The relational model graph for the product show in figure 3
The graph of connections for the product shown in Figure 3
An assembly that illustrates the mechanical feasibility predicate
An assembly that illustrates the stability predicate
The relational model of the assembly shown in figure 6
Assembly example
Relational model for the assembly example show in figure 9
Procedure FEASIBILITY-TEST -
Procedure GET-FEASIBLE-DECOMPOSITIONS
The cut-sets of the graph of connections for the assembly shown in Figure 3
Procedure GENERATE-AND-OR-GRAPH
The AND/OR graph for the assembly shown in figure 3

: Part P can move but the logical formula (1) yields 0

A polyhedral convex cone which is the intersection of five halfspaces
The computer representations of cones

: The procedure SOLVE

StatedmgramforpmeechxreSOLVE
Part of procedure INTER
Two parts that have seven planar contacts

Table 1:
Table 2:

Table 3:

Table 4:

List of Tables
Attribute Functions for the Contact Entities in Figure 4
The number of decompositions that must be analysed for each type of resulting
AND/OR graph, as a function of the number of parts, for weakly connected
assemblies.
The number of decompositions that must be analysed for each type of resulting
AND/OR graph, as a function of the number of parts, for strongly connected
assemblies.
The possible shapes of polyhedral convex cones in three dimensional space

=

Abstract

This paper presents an algorithm for the generation of mechanical assembly sequences and a proof of its correctness
and completeness. The algorithm employs a relational model of assemblies. In addition to the geometry of the
assembly, this model includes a representation of the attachments that bind one part to another. The problem of
generating the assembly sequences is transformed into the problem of generating disassembly sequences in which
the disassembly tasks are the inverse of feasible assembly tasks. This transformation leads to a decomposition
approach in which the problem of disassembling one assembly is decomposed into distinct subproblems, each being
to disassemble one subassembly. It is assumed that exactly two parts or subassemblies are joined at each time, and
that whenever parts are joined forming a subassembly all contacts between the parts in that subassembly are
established. The algorithm returns the AND/OR graph representation of assembly sequences. The correctness of the
algorithm is based on the assumption that it is always possible to decide correctly whether two subassemblies can be
joined, based on geometrical and physical criteria. This paper presents an approach to compute this decision. An
experimental implementation for the class of products made up of polyhedral and cylindrical parts having planar or
cylindrical contacts among themselves is described. Bounds for the amount of computation involved are presented.

The correctness of the algorithm is based on the assumption that it is always possible to decide correctly whether
two subassemblies can be joined, based on geometrical and physical criteria. This paper presents an approach to
compute this decision. An experimental implementation for the class of products made up of polyhedral and
cylindrical parts having planar or cylindrical contacts among themselves is described.

The amount of computation involved in generating the AND/OR graph representation of assembly plans depends
on the number of parts that make up the product, on how those parts are interconnected, and also on the resulting
AND/OR graph. Bounds for the amount of computation involved are presented.

2. Background

The algorithm presented in this paper takes as input a representation of the product, and generates the set of all
feasible assembly sequences which is represented as an AND/OR graph. This section reviews previous work on
modeling assemblies, on representing assembly sequences, and on generating assembly sequences.

2.1. Modeling assemblies

The research on high level languages for robotic assembly has explored the use of assembly models. That
research aimed at the automatic generation of the actions that a robot should perform in order to assemble a product.
Typically the sequence in which parts should be put together was given.

One of the earliest works on robot programming was the RAPT [1] system in which bodies were described in
terms of their featnres such as planar faces, shafts, and holes. The spatial relationships between parts were described
by triples {type—of-spatial-relation , feature.l , feature.2). For example, (fits, S; . H;) describes the spatial
relationshipbetweenmcshaftsiandmeholeHj. The set of spatial relations between parts was input to an inference
engine, and the relative positions of parts or their degrees of freedom were determined. Later extensions to
RAPT [28, 29] allowed the user to describe assemblies not only by the spatial relationships between the parts but also
by the actions required to bring those parts together.

Taylor [37] developed a representation of assemblies based on aztribute graphs. The nodes in these graphs
correspond to either objects, or features of objects. Entities that have volume such as assemblies and parts are
objects, whereas entities that do not have volume such as surfaces and edges are features. Each link in the graph
associates one node either to another node or to a link. Forw:ampk,ambputlmkmaymapm,wimhmm
obpamde,manamembly,wmwwamfhuobmmdmmda minal-transformation li i
feature node containing a 4x4 homogeneous inate transform mmxmasutmmmk_ The information
dwcribmgtheshapeofmobyectrsmﬂmedmmmm ing to that object, if the shape is simple,
or in the nodes corresponding to its subparts, if the shape is complex. In the latter case, which is the case of
assemblies, the composition of the subpart’s shapes may be described either by homogeneous transform feature
m&sawcdmdmmmwmﬁnnmby"offwmofmmmmmmngmm&ﬂmmm
. between those features. Taylor allows redundancy of shape description and both types of descriptions for the
'Hofshapesmaycocnst.

In the AUTOPASS system [39], the representation of assemblies was based on a graph structure in which each node
represented a volumetric entity, either a part, or a sub-part, or an assembly, and the edges were directed and labeled
to indicate four kinds of relationships: part-of, attachment, constraint, and assembly-component. The nodes had
attributes which included the volumetric description and the location of the corresponding object. The part-of
relationship induced a tree structure on the assembly model.

™= .

L/

1. Introduction

The choice of the sequence in which parts or subassemblies are put together in the mechanical assembly of a
product can drastically affect the efficiency of the assembly process. For example, one sequence may require less
fixturing, less changing of tools, and include simpler and more reliable operations than others. The choice of the
assembly sequence is usually made by a human expert. In the case of manufacturing, the choice is typically made
by an industrial engineer. In the case of repair, the choice is made by the maintenance personnel. No clear
systematic procedure seems to be followed in either case. Humans seem to use common sense and past experience
blended in a fuzzy, sometimes inconsistent, and not well understood way.

There is a growing need to systematize and to computerize the generation of assembly sequences for several
reasons:

e Although many experienced industrial engineers have a knack for devising efficient ways to assemble a
given product, systematic procedures are needed to guarantee that no good assembly sequence has been
overlooked. For complex products, the number of feasible assembly sequences may be so large that
even skillful engineers may fail to notice many possibilities. The availability of a systematic procedure
that is proven correct and complete will guarantee that all feasible sequences and only the feasible
sequences will be generated.

e The planning and programming chores in manufacturing are time consuming and error-prone. For
small batches of production, the cost of planning and programming can weigh heavily in the total
production cost. Moreover, the time spent in planning and programming may excessively delay the
actual production. The automation of these chores will expedite their execution, reduce their cost, and
improve their quality. Systematic procedures are needed in order to facilitate the automation of
planning and programming of assembly systems.

e In simultaneous engineering environments, the automation of sequence planning will help the designer
to assess the assembly process requirements of different design solutions for a given product. For some
products, small changes in the design can have a large impact on the assembly alternatives.

¢ Autonomous systems for applications such as space or deep sea exploration will need the ability to
generate assembly or disassembly sequences that fit the particular situation they encounter. It is
virtnally impossible to preprogram all possible situations those systems might face, particularly if
execution errors can occur and the systems are expected to recover autonomously.

¢ In less structured, more dynamic manufacturing systems or facilities there is a need to adapt the
assembly process to different machines. The need to produce different products in the same shop may
lead to the choice of an assembly sequence for a product that may not be the most efficient but uses the
idle equipment in the shop. Knowledge of all assembly sequence options of each product is needed in
order to optimize the overall use of machines and tools. Similarly, when the same product is assembled
in different shops, the knowledge of all assembly sequences is needed in the selection of the sequence
more suitable to the equipment available in each shop.

This paper presents an algorithm for the generation of mechanical assembly sequences and a proof of its
correctness and completeness. The algorithm takes a description of the product and returns the corresponding
AND/OR graph representation of assembly sequences [17]. It is assumed that exactly two parts or subassemblies are
joined at each time, and that after parts have been put together they remain together. It is also assumed that
whenever parts are joined forming a subassembly, all contacts between the parts in that subassembly are established.
These assumptions are consistent with the trend towards product designs that are suitable for automatic
assembly (2, 5].

Unlike the work described above, which aimed at high level languages for robotic assembly, the work of
Bourjault [6] aimed at modeling the assembly process. Towards that goal he used two types of graphs to represent
products. The graph of contacts ("graphe de liaisons mécaniques” [6]) contains one node for each part in the
assembly, and one edge for each contact between two parts. Since the same pair of parts may have more than one
contact, the graph of contacts is not necessarily simple. From the graph of contacts, Bourjault defined the graph of
connections ("graphe de liaisons fonctionelles” [6]) which has one node for each part in the assembly, and one edge
for each pair of parts that have at least one contact. By definition, the graph of connections is always a simple
graph.

The model of assemblies presented in section 3 is similar to the attributed graph used previously [37, 39] but
extended to incorporate the attachment of contacts. This extension is needed to make possible the reasoning about
the feasibility of assembly tasks.

2.2. Representation of assembly sequences

One assembly sequence can be represented by an ordered list of tasks; therefore it is possible to represent the set
of all assembly sequences by a set of lists, each corresponding to a different assembly sequence. Since many
assembly sequences share common subsequences, attempts have been made to create more compact representations.

One early attempt was the use of a set of tasks and a set of precedence constraints relating two tasks [15]. But as
discussed elsewhere [17], there are products for which standard precedence constraints cannot encompass all
sequences.

Directed graphs of assembly states can explicitly encompass the set of all assembly sequences. The nodes in
thesegmphsmaybeeitheraﬁarﬁxion of the set of parts [18], or a subset of connections of pairs of parts [6, 11].
Figure 1 shows a directed graph of assembly states for a three part product. The nodes in figure 1 are labeled by the
partitions of the set of parts containing the subsets of parts of each subassembly already assembled at each state of
the assembly process. Lower and upper bounds for the size of these graphs as a function of the number of parts in
the product are presented elsewhere [18].

AND/OR [17] graphs of subassemblies can also encompass the set of all assembly sequences. The nodes in these
AND/OR graphs correspond to subassemblies and the hyperarcs comrespond to assembly tasks in which two
subassemblies are joined to yield a larger more complex subassembly. The hyperarcs point from the node
corresponding to the larger subassembly to the nodes corresponding to the smaller subassemblies. Figure 2 shows
mwmmhofmbmbhwfmawpmm Ibenodesmﬁgmethbeledbymesetofpmsdm
make up their corresponding subasse:

Although for three-part assemblies the AND/OR graph has more nodes than the directed graph of assembly states,
for assemblies with large number of parts the AND/OR graph has substantiaily fewer nodes than the directed graph of
assembly states. Moreover, the AND/OR graph of subassemblies shows explicitly the possibility of parallel execution
of assembly tasks. Lower and upper bounds for the size of these AND/OR graphs as a function of the number of parts
in the product are presented elsewhere [18].

Bourjault [6] showed that a set of logical expressions can be used to encode the directed graph of assembly states.
For a product that has L connections between pairs of parts, Bourjault represented each state in the directed graph of
assembly states by a binary vector e=[A,;,A,, - - - ,A;] in which the i** component is true or falsc respectively if the
i connection is established in that state or not. Let S; be the set of states from which the /% connection can be
established without precluding the completion of the assembly. Clearly, if S; has K elements, each element satisfies

({AB}(C))

{ (A} (B}{C} } {{AC}{B}} {{ABC}}

{{A}(BC}}

Figure 1: The directed graph of assembly states of a three-part assembly

{ABC}

{AB) ' {AC) {BC}

(A} B} | (c

Figure 2: The AND/OR graph for a three-part assembly

K L

LT
where both the sum and the product are logical operations, and 7, is cither the symbol 2, if the X element in §;
corresponds to 2 state in which the /* connection has been established, or the symbol A, if the K element in S;
corresponds 10 a state in which the / connection has not been established. Bourjault calls the left side of the
equation above the establishment condition for the {® connection ("conditions de réalisabilité” [6]) and he represents
xtbyCi. kmcfﬁmpos@kmmphfydwexp;mmofc using the rules of boolean algebra. For some products,

iplified expressions are very short. By knowing the establishment conditions for all connections of a product,
as well as the product’s graph of connections, one can reconstruct the directed graph of assembly states.

2.3. Generation of assembly plans

Planning has been an important research topic in artificial intelligence, and the Al approach has dominated much
of the research in robot task planning using domain-independent methods. mm:deaofdomammdepmf“
planning is to have one general purpose inference engine which can be used for any domain by describing the initial
state, the goal, and the operators in a logic formalism. But domain-independent planners have serious limitations
that preclude their use in generating assembly sequences based on a description of the product. Chapman [10]
reviews the literature on domain-independent planning and discusses their main limitations.

Bourjault [6] has explored ways to obtain the establishment conditions C; without enumerating all the states in the
directed graph of assembly states. For example, he noticed that an affirmative answer to the question

o Is it true that the i™® connection cannot be established if the j® connection has already been established?
means that no C will contain expressions including A A;, and that C; will not contain expressions including A
unless the i and the /& connections can be established simultaneously. Bourjault’s method uses a cleverly chosen
sequence of questions that can in many cases expedite the obtainment of the establishment conditions for all
connections.

De Fazio and Whitney [11] proposed a set of questions smaller than that used by Bourjault. The user of their
method must first draw the graph of connections corresponding to the assembly, and then answer a pair of questions
for each connection. For the it connection, the questions are:

1. what connections must be done prior to doing the i connection?

2. what connections must be left to be done after doing the i connection?
The answers to these questions should be expressed in the form of precedence relationships between connections or
between logical combinations of connections. For example, the answers to the two questions for the i connection
C; could be:

1. (Cj or (Cpand C,)) = C;

2.C; » (C;or (C, and C)))
The symbol "—)"rwdsmustprecede;andcj,Ck.Cm C,. C,, and C, are other connections between parts of the
assembly. Once the precedence relationships have been generated, a computer program can generate the assembly
sequences. Lui [25] describes a program that generates the assembly sequences based on the precedence
relationships and on the graph of connections.

Both of these approaches [6, 11] lend themselves to intéractive systems in which a computer program generates
the questions, a human expert supplies the answers, and the program then generates the precedence relationships
between connections or between logical combinations of connections. For simple cases, these approaches have the
advantage that they exploit the engineer’s intuitive understanding of parts relations and feasibility of operations. For
complex cases, it may be very difficult for a human expert to answer the questions and to guarantee the correctness
of the answers. And even assuming that the questions are answered comrectly, proofs of correctness and
completeness of the algorithms are needed to guarantee that the resulting precedence relations are satisfied by all the
feasible assembly sequences and only by the feasible assembly sequences. Neither Bourjault nor De Fazio and
Whitney have formally proven the correctness and completeness of their algorithms.

Furthermore, it seems very difficult to develop computer programs that will answer the questions in either method
Mﬁmad&xﬂpﬁmd&cmﬂmmymm‘mmmﬂmmm“mm
supply the answers. In the cases in which precedence relationships, together with the assembly’s graph of
connections provide a useful representation of assembly sequences, an alternative to have the questions answered by
a human expert is to have them answered by a program that takes as input the set of assembly sequences generated

& 3. A Relaﬁmal Model for Assemblies

A mechanical assembly is a composition of parts interconnected forming a stable unit. Each part is a solid object.
Parts are interconnected whenever they have one or more surfaces in contact. Surface contacts between parts reduce
the degrees of freedom for relative motion. A cylindrical contact, for example, prevents any relative motion that is
not a translation along the axis or a rotation around the axis. Attachments may act on surface contacts and eliminate

all degrees of freedom for relative motion. For example, if a cylindrical contact has a pressurc-ﬁt attachment, then
no relative motion between the parts is possible.

The representations of products developed for high level robot programming languages emphasized the geometric
aspects such as the shape of the parts and the contacts between parts. That emphasis is consistent with the goal of
generating a sequence of robot actions that will join two subassemblies, given the sequence in which parts or
subassemblies should be put together. However for the generation of the assembly sequences, a purely geometric
description of the product is not sufficient. There are sequences that would be feasible from a geometric point of
view, but are unfeasible in practice due to forces resulting from fasteners. Therefore, a model of assemblies to be
used in generating assembly sequences must represent explicitly the fastenings that bind one part to another.

The representation of assemblies used by the algorithms described in sections 4 and 5 is a relational model that
includes three types of entities: parts, contacts, and attachments. It also includes a set of relationships between
entities. Both entities and relationships can have attributes. Formally, the relational model of an assembly is a
S-tuple (P ,C ,A , R, a—functions) in which .

¢ P is a set of symbols, each of which corresponds to one part in the assembly. No two elements of P
correspond to the same part.

* C is a set of symbols, each of which corresponds to a contact between surfaces of two parts of the -
assembly. No two elements of C correspond to the same contact. The two surfaces must be compatible.
An example of a pair of compatible surfaces are a cylindrical shaft and a cylindrical hole. The same

* pair of parts may have more than one contact. And the same surface of one part may be in contact with
surfaces of two or more other parts.

¢ A is a set of symbols, each of which corresponds to an attachment that acts on a set of contacts. No two
elements of A comrespond to the same attachment. An attachment always has an agent, which can be
either the attached contact, or another contact, or a part. The access to an attachment may be blocked
by one or more parts.

*R is a set of symbols, each of which corresponds to a relationship between pairs of elements of
PuCuUA. No two elements of R correspond to the same relationship.

* a—functions is a set of attribute functions? whose domains are subsets of PUCUAUR. These
functions associate entities or relationships to their characteristics such as the type of attachment, the
entities related by a relationship, and the shape of a part.

mmm&ammWWdMMhMmemmamm
of assemblies. mmdfmmbeaﬂzgedmmdudeaﬂﬂwmfmnonmamghtbemym
UEnCES hpmnmaybcmnvmmtmmmaﬁwchssofasmbhmremm&n

-Thmmbmmmvolvcmcofthcfolbmgpmmofcompanblem
« planar surface and another planar surface,
* cylindrical shaft and cylindrical hole,
* polyhedral shaft and polyhedral hole,
« threaded cylindrical shaft and threaded cylindrical hole.

2A function is defined as a subset of the cartesian product of two sets (the domain and the range) that has no two pairs whose first elements are
the same, and such that every element in the domain appears in one pair.

o The types of attachments are:
* glue attachment,
« pressure fit attachment,
« clip attachment,
» screw attachment. .
e The attribute functions are the following:
* The function that associates a part to a description of its shape:
shape:P — §
where S is the set of all shape descriptions.
» The function that associates a part to a description of its location:
location:P > T
where T is the set of all 4 x4 homogeneous transformation matrices. The matrix T; associated to
part p;, corresponds to the position and orientation of a reference frame attached to part p; with
respect to a global frame of reference for the whole assembly. The choice of this global frame of
reference is arbitrary, but the same global reference must be used for all parts.
« The function that associates a contact to its type:
type—of—contact: C — contact—types
where contact—types= (planar , cylindrical , slot, threaded-cylindrical }.
« The function that associates a planar contact to the coordinates, with respect to the assembly’s
global frame of reference, of a vector normal to the contact plane
normal: {c| [c € C1 A [type—of-contact(c)=planar]} — R>
* The function that associates a planar contact to the part-relationship that relates the contact to the
part that is back of the contact:
back:{c|[c € C] A [type—of—contact(c)=planar]} — R
This function must be consistent with the function normal.
« The function that associates a planar contact to the part-relationship that relates the contact to the
part that is forward of the contact:
forward: {c| [c € C] A [type—of—contact(c)=planar]} — R
This function must be consistent with the function rormal.
-mf@ﬁmﬂmmawMMumcyﬁMmmtmmemﬂmm,
with respect to the assembly’s global frame of reference, of the line of the axis of both the hole
and the shaft.
axis:{c|[ce ClAa : : o
[type—of-contact(c) € { cylindrical, slot, threaded-cylindrical }]} —R? x R?
« The function that associates an attachment to its type:
; type—of—attackment: A — attachment—types
' 'where attachment—types= { clip , pressure , screw , glue}.
"= The function that associates a relationship to its type:
type—of-relationship: R — relationship—types
where relationship—types = { part-contact, target-attachment, agent-attachment, blocking-part-
attachment }

» The function that associates a part or a contact to its part-contact relationships:
part—contact—relationships: P UC — II(R)
where IT(R) is the set of all subsets of R.
« The function that associates a part-contact relationship to its part:
part:{r|[r € R] A [type—of-relationship (r)=part-contact]} — P
« The function that associates a part-contact relationship to its contact:
contact: {r|[r € R] A [type~of-relationship (r)=part-contact]} — C
« The function that associates an attachment or a contact to its target-attachment relationships:
target—attachment-relationships: CUA — TI(R)
+The function that associates an attachment, a contact or a part to its agent-attachment
agent—attachment-relationships: POCUA — II(R)
« The function that associates a target-attachment relationship to its contact
target: { r|{r € R] A [type—of-relationship (r)=target-attachment]} — C
» The function that associates an agent-attachment relationship to its agent
agent: {r|[r € R] A [type—of-relationship (r)=agent-attachment] } —» PuUC
« The fanction that associates a blocking-part-attachment relationship to its blocking-part
blocking—part:{r|i[re R]1 A
A [type~of-relationship (r) =blocking-part-attachment] } — P
*The function that associates a target-attachment, a blocking-part-attachment, or an agent-
attachment relationship to its attachment
attachment: {r|[r € R A [type—of-relationship(r) € B1} — A
with B={ target-attachment, blocking-part-attachment, agent-attachment }.

The relational model of an assembly must be consistent. For example, if part(r,)=p, and contact(r,)=c, then
ry € part-contact-relationships(p,) and r, € part-contact-relationships(p,) must hold. Furthermore, the
relational model of an assembly must satisfy some syntactic constraints, the most important of which are:

* every contact mast have exactly two part-contact relationships;

 every part must have at least one part-contact relationship, except in the case the assembly has only one
part;

e every attachment must have at least one target-attachment relationship, and at least one agent-

The relational model of an assembly can be represented by a graph plus the associated attribute functions. Figure
3 shows a simple product, and figure 4 shows its corresponding relational model graph.

The nodes in figure 4 correspond to the entities. Nodes corresponding to part entities are rectangles, nodes
corresponding to contact entities are circles, and nodes corresponding to attachment entities are triangles. All nodes
contain labels indicating their corresponding entities. The attribute functions associated with the contact entities are
shown in Table 1. i

The labeled lines connecting two nodes in figure 4 correspond to the relationships. Except for RS, RS, Ri3, and
R14, all relationships are part-contact. Relationships R5 and R13 are target-attachment; they indicate that the
contacts C2 and CS, respectively, are attached. Relationships R6 and R14 are agent-attachment; they indicate that the
agents of the attachments are the target contacts themselves. Next section (see figures 9 and 10) shows an example

CAP STICK RECEPTACLE HANDLE

Figure 3: A simple product in exploded view

R10

R13| | R4

Figure 4: The relational model graph for the product show in figure 3

of an attachment whose agent is not the contact itself.

Given the relational model of a product (P ,C , A, R, afunctions), a number of other useful representations
may be generated. For example, the graph of connections of the assembly, as defined by Bourjault [6] (see section
2), is the simple graph (V,E) in which

V=P
E={ (Pi,Pj)I[PiE Pla [ij PlAa
A3c¢3ry3r; [[c € ClA[{r,r,}=part—contact-relationships (c)] A

L A [p;=part(r;)] A [Pj=Pa”(’2)] 1}
Figure 5 shows the graph of connections for the simple product shown in figure 3.

Table 1: Attribute Functions for the Contact Entities in Figure 4

C1 C2 Cc3 C4 C5
type-of-contact | planar | threaded- cylindrical planar threaded-
cylindrical - cylindrical
normal 010) nil nil 010 nil
back cap nil nil stick nil
forward stick | nil nil handle nil
axis nil |((000)©010))|((000)(©010)) nil [(©00)(010))
part-contact | (R1 R2) (R3R4) (R7R8) | (R9 R10) (R11 R12)
relationships |]
target-attachments | nil (Rs) nil nil | (R13)
relationships , 1 '
agent-astachment nil | (Re) nil | mil (R14)
relationships .

C=cap S=stick R=receptacle H =handle

Figure 5: The graph of connections for the product shown in Figure 3

3.1. Subassemblies

A subassembly is a nonempty subset of parts that either has only one element (i.e. only one part), or is such that
every part has at least one surface contact with another part in the subset. Although there are cases in which it is
possible 10 join the same pair of parts in more than one way, a unique assembly geometry will be assumed for each
pair of parts. This geometry corresponds to their relative location in the whole assembly. A subassembly is said to
be stable if its parts maintain their relative position and do not break contact spontaneously. All one-part

Given the relational model of a product (P ,C, A, R, a—functions), the relational model of a subassembly of

that product is a relational model (P , Cg , Ag , Ry , a~functionsg) in which P ¢ P,Cs € C,Ag € A, Rg gk,?{,;_

mﬂmyfmmma—ﬁmmms,masuhmofﬂwmmpmmngfmnmmaﬁnmm In addi e
syntactic constraints mentioned above that every relational model of an assembly must satisfy, the relational model
ﬂPsprAs,RWa-ﬁﬂmﬁamg)aﬂmblyof(P C,A R, a—functions) must also satisfy the constraint:

10

VcVr Vr, [Lc€ ClAL[{ry,r,}=part-contact—relationships (c)1 A

A [part(r;) e Pgla [part_(rz) € Pgl] = [ce Cl
This constraint corresponds to the assumption that whenever parts are joined forming a subassembly all contacts
between the parts in that subassembly are established. It requires that those contacts in the model of the assembly
whose two part-contact relationships involve parts in the subassembly must also be in the model of the subassembly.
For example, for the product shown in figure 3, there is no subassembly relational model in which Pg={ CAP,
RECEPTACLE, STICK }, and Cg={ C2, C3 }. If both the cap and the stick are in Pg, then contact C1 must also be in
Cs. This constraint allow the characterization of any subassembly (P, Cg , Ag , Rg , a—functionsg) of a product
(P,C,A, R, afunctions) by its set of parts Pg only. This feature will be used in the algorithm for the generation
of mechanical assembly sequences described in the subsequent sections. In that algorithm, the intermediate
subassemblies will be characterized by their sets of parts. Given a subset of parts Pg, there is a corresponding
subgraph (V,Eg) of the assembly’s graph of connections (V,E). In this subgraph, the set of nodes Vy includes all
the elements of V that correspond to the parts in V. And the set of edges Eg includes all the elements of E that have
both end points in V. A subset of parts Pg characterize a subassembly if and only if the corresponding subgraph
(Vg,Eg) is connected (i.e. has only one component). A predicate that is satisfied only by the subsets of parts that
correspond to subassemblies can be defined as follows:
Definition 1: The subassembly predicate associated to subassemblies of assembly
¥=(P,C,A,R,afunctions)is the predicate
say: II(P) — {true,false}
with say, (0)=true if the subgraph (V,Eg) in which

E={ (P;,Pj) | [p; € Pgla fpj.E Pgla

A3dc3r;3ry[[c € C]1A[{ry,r,}=part—contact-relationships(c)] A
A lp;=part(r)l A [pj=part(r)11}

is connected.
4. Decompositions of a Relational Model of an Assembly

The problem of generating the assembly sequences for a product can be transformed into the problem of
generating the disassembly sequences for the same product. Since assembly tasks are not necessarily reversible, the
equivalence of the two problems will hold only if each task used in disassembly is the reverse of a feasible assembly
task, regardless of whether this reverse task itself is feasible or not. The expression disassembly task, therefore,
refers to the reverse of a feasible assembly task.

Asmemonedmthemuodwmn,uwasassumedmﬂmﬂymmormbmbhmmpamdmwhm

Iso assumed that whenever parts are joined forming a subassembly, all contacts between the parts in that

ly are established. In the disassembly problem, each task splits one subassembly into two smaller
ies, maintaining all contacts between the parts in either of the smaller subassemblies.

A decomposition approach can be used to solve the disassembly problem. In this approach the problem of
disassembling one assembly is decomposed into two distinct subproblems, each being to disassemble one
subassembly. Every decomposition must correspond to a disassembly task. If solutions for both subproblems that
result from the decompositions are found, a solution for the original problem can then be obtained by combining the

1

AR
(St

solutions to the two subproblems and the task corresponding to the decomposition. For subassemblies that contain
one part only, a trivial solution containing no assembly task always exists. This decomposition approach lends itself
to an AND/OR graph representation of assembly sequences [17]. The correspondence between the AND/OR graph and
the directed graph representations of assembly sequences is discussed elsewhere [18].

From now on, references to products, to assemblies, or to subassemblies are references to their relational models,
which are always assumed to be consistent and to satisfy the syntactic constraints of a relational model of an
assembly. A real product will be referred to as a physical product, a real assembly as a physical assembly, and a real
subassembly as a physical subassembly.

A decomposition of an assembly (P,C,A,R,afunctions) is a pair of its subassemblies
(Psy , Cgy » Agy » Rgy , afunctionsg;) and (Pg, ,Cgy , As, » Rgy , a-functionss,) such that Pg UPs, =P and
P NPg =@. The set Cg_=C—(C5 UCy,) is referred to as the contacts of the decomposition; they are the
contacts that belong to C and do not belong to either Cg, or Cg,. The contacts of a decomposition of an assembly
define a cut-set in that assembly’s graph of connections. Conversely, a cut-set in the graph of connections of an
assembly define a decomposition of that assembly.

A decomposition of an assembly is said to be feasible if it satisfies three predicates: GEOMETRIC-FEASIBILITY,
MECHANICAL-FEASIBILITY, and STABILITY. These predicates reflect the feasibility of joining the physical
subassemblies to produce the physical assembly.

The GEOMETRIC-FEASIBILITY predicate is true if there is a collision-free path to bring the two subassemblies
into contact from a situation in which they are sufficiently far apart. For the assembly shown in figure 3, for
example, there is no collision-free path that will bring the stick into contact with the subassembly made up of the
cap, the receptacle, and the handle. Joining the stick to the subassembly made up of the three other parts is said to
be geometrically unfeasible. Joining the stick to the subassembly made up of the cap and the receptacle, however, is
geometrically feasible since there is a collision-free path to bring the two subassemblies into contact.

The MECHANICAL-FEASIBILITY predicate is true if it is feasible to establish the attachments that act on the
contacts of the decomposition. Figure 6 shows a three-part assembly in which the part in the center (part B) is
attached to the part in the right (part C) through two built-in bolts. Although it is geometrically feasible to join the
part in the right (part C) to the subassembly made up of the two other parts, it is impossible to establish the
attachments because the access to the bolts is blocked by the part in the left (part A). Joining the part in the right
(part C) to the subassembly made up of the two other parts is said to be mechanically unfeasible.

The STABILITY predicate is true if the parts in either physical subassembly maintain their relative position and do
not break contact spontaneously. For the assembly shown in figure 7, the subassembly made up of the parts B and C
is not stable since the two parts will break contact spontaneously due to gravity, regardless of their orientation in

space.

In practice, the feasibility of joining two subassemblies depends on the availability of adequate resources such as
machines, tools, and fixtures. For the general analysis presented here, it is assumed that all such resources are

sed in section 3, the subassemblies of a given assembly W=(P,C,A,R , afunctions) cas

*Alihough contacts like that between parts B and C in figure 7 are not handled by our experimental implementation, they illustrate very clearly
the stability or unsubility of subassemblies.

1z

L&

Figure 6: An assembly that illustrates the mechanical feasibility predicate

C

A
C
D
Figure7: An assembly that illustrates the stability predicate

characterized by their sets of parts. Therefore, the three predicates described above can be defined as follows:
Definition 2: The geometric-feasibility predicate associated to subassemblies of assembly
¥=(P,C,A,R,afunctions), in which P={p,,p,, - - - ,py}, is the predicate
gfg:M(P) X II(P) — {true,false}
with gfy(0,,6,)=true if and only if 8, "6,= Qandtherersaodhmou—ﬁeepmhmkmgﬁwtwo
phyacﬂmhmsmbh&cf?chmmedhyﬁlmdezmmma&unammwmmcym
sufficiently far apart. .
Definition 3: The mechanical-feasibility predicate associated to subass
¥Y=(P,C,A,R, afunctions), mwhxdz?:{pl,pz,-- »Py }. is the predicate
mf: I1(P) X II(P) —> {true, false}
with gfg (8, ,6,)=true if and only if 8; "6,=0, and it is feasible to establish the attachments
the set of contacts between parts in 6, and parts in 6,. (
Definition 4: The stability predicate associated to subassemblies
'w~<r C.,A,R,afunctions), in which P={p,,p,, - -+ ,py}, is the predicate
" stg:TI(P) — {true,false}
muuy(e) =true if and only if the parts in 6 maintain their relative position and do not break contact

emblies of assembly

The GEOMETRIC-FEASIBILITY predicate can be computed using path planning algorithms [13, 20, 38] to
generate a collision-free path to bring the two subassemblies into contact, or, equivalently, a collision-free path o
separate the two subassemblies. These algorithms typically involve large amounts of computation and more
efficient approaches 1o general path feasibility tests are needed. For many industrial assemblies, the computation of

metric feasibility can be significantly reduced by performing a simple local analysis which can indicate that a

13

collision-free path does not exist. For a given decomposition, this local analysis looks at the assembled assembly
and checks whether there exists an incremental translation of one of the two subassemblies that is not blocked by
any of the contacts between one of its parts and one of the parts in the other subassembly.

For many types of contacts there are very few feasible motions between the parts. For example, the only direction
along which a pin in a hole can translate is the direction of the axis. Whenever the part or subassembly has such a
constraining contact, the local analysis can be performed by checking the compatibility of the most restrictive
contact with all other contacts. In the case of the pin in the hole, the local analysis consists of checking whether a
translation of the pin along its axis is not blocked by any of the other contacts between the pin and the other part or
subassembly.

nbly wbedzsmanbledlsoonsn'amedbyplanar
; ined directions al wmchtmnslauonls

towards the outside of the blocking part.

In order to decide whether a set of planar contacts does not completely constrain one part or subassembly, one
must find whether there is a nonzero solution to the system of linear inequalities

3
z n;; x}-ZO i=1,2,--- ,N
=1

where n;=[n;; m;, n;;] is the normal to the surface of the /% contact. This system of linear inequalities definesa

pwlyhem'alcomcxome. It has been shown [16] that such a polyhedral convex cone can be built up from its
mensional face and its (d + 1)-dimensional faces (if any), where d=3—rank (M), and M is the matrix

oefficients n;;. If d is greater than zero, then the polyhedral convex cone has a face of dimension greater

thanzemmdmmeﬁorcthesymmofmethmhuamm solution. If d is equal to zero, then the system of

hmsawmomwmoniyﬁ‘mepolymmzl nvex cone has at least one one-dimensionz ’
ne-dir ‘facecmbede&xmmdbychechmmﬂ\f{ﬁ—n airwise intersecti

planes corresponding to the inequalities. Each intersection of two distinct planes is a line. ﬂ’meef(hetwomly

mtm-tmmmmdmmmemmmmm
-w,u,v.ﬂicnmw-ﬁmde&wdbyﬂmm(tu—t)ma one-~-dimensional

cOonvex cone.

ualities bm mcﬁmdes the compmamn of the polyhcckai convex cone of ﬁl

Figure 8: The relational model of the assembly shown in figure 6

assembly. In our current implementation, a procedure MECHANICAL-FEASIBILITY checks whether the
attachments acting on the contacts of the decomposition are not blocked in the resulting assembly, and are not
present in either one of the subassemblies. Two examples will illustrate this computation.

Figure 8 shows the relational model of the assembly shown in figure 6. Relationships R10 and R13 are agent-
attachment, relationships R11 and R14 are target-attachment, and relationships R9 and Ri2 are blocking-part-
attachment; all other relationships are part-contact. The relationships RS and R12 indicate that part A blocks the
access to attachment A2 and to attachment A4. One of the disassembly tasks whose mechanical feasibility must be
computed is the separation of part C from the subassembly made up of parts A and B. The mechanical unfeasibility
of this task can be detected by inspection of the relational model which indicates that the attachments acting on the
contacts of the decomposition are blocked by part A. After part A is removed, those attachments will no longer be
blocked and part C can be separated from part B.

Figure 9 shows an assembly that has three parts: a box, a cover, and a clip that attaches the cover to the box.
Figure 10 shows this assembly’s relational model. Relationships R7, R8, and Re in figure 10 are target-attachment;
ﬂwyindicatethmthemreeoonmm C2, and C3 are attached by attachment A1. Relationship R10 is agent-
attachment; it shows that the agent of attachment A1 is the clip. One of disassembly tasks whose mechanical
fwm"bﬂnymnstbecomptmd:smesepamofmmﬁommentmb&ymadeupofﬂwboxandmechp
The mechanical unfeasibility of this task can be detected by inspection of the relational model which shows that the
contacts cannot be detached while the agent of the attachment is present. The separation of the clip from the
subassembly made up of the box and the cover, however, is feasible because the agent of the attachments is being

The computation of the STABILITY predicate will depend on additional assumptions about the assembly process.
Rremmpie,nmaybeasmedﬂmtaﬂsubassantﬂmcmbcmadcmhhmmughﬂwmofpgsmdﬁxms. In
our current implementation we made this assumption and we do not compute the STABILITY predicate. In previous
work aimed at selecting an assembly sequence [17], we assessed the stability of a subassembly by the degrees of
freedom for relative motion between parts. Similarly, one can establish a threshold on the degrees of freedom for
relative motion above which a subassembly would be considered unstable.

15

CAl

1TTC

R

COVER

BOX

50X ——"——@)———%——{cover]
mL R7 RS

Figure 10: Relational model for the assembly example show in figure 9

An altemnative approach for the computation of the STABILITY predicate is to check whether there is an
mmmmnoﬂhesubassemblyswhmatmmmnordanvemononbetweenpmsductogmvuy As a first
pproximation, friction can be ignored since it typically helps the stability. Boneschanscher et al. [4] have taken this
Wm&meaddmomlassmpuonthatrhembamblymtsmambh They used a convex hull algorithm to
find candidate orientations in which the subassembly can sit on a table, and for these orientations they checked the

For the discussion in the next section, which presents the algorithm for generating the assembly sequences, it is
combined into the procedure FEASIBILITY-TEST shown in figure 11.

1%

procedure FEASIBILITY-TEST(decomposition, assembly)
return AND (GEOMETRIC-FEASIBILITY(decomposition, assembly),

STABILITY(decomposition),
MECHANICAL-FEASIBILITY(decomposition, assembly))

end procedure
Figure 11: Procedure FEASIBILITY-TEST

5. The Algorithm for Generating All Assembly Sequences

As discussed in the previous section, this research takes a decomposition approach to the problem of generating
assembly sequences. The basic idea underlying the approach is to enumerate the decompositions of the assembly
and to select those decompositions that are feasible. The decompositions are enumerated by enumerating the
cut-sets of the assembly’s graph of connections. Knowledge of the feasible decompositions allows the construction
of the AND/OR graph representation of assembly plans. Each feasible decomposition corresponds to a hyperarc in
the AND/OR graph connecting the node corresponding to the assembly to the two nodes corresponding to the two
subassemblies. The same process is repeated for the subassemblies and subsubassemblies until only single parts are
left.

It has been shown [12, 21] that the set of all cut-sets of a graph (V,E) is a subspace of of the vector space over
the Galois field modulo 2 associated with the graph. The vectors in this vector space are the elements of IT(E), the
set of all subsets of E. It has also been shown that the fundamental system of cut-sets relative to a spanning tree is a
basis of the cut-set subspace. Therefore, the cut-sets of a graph can be enumerated by constructing a spanning tree
of the graph, finding the fundamental system of cut-sets relative to that spanning tree, and computing all the
combinations of fundamental cut-sets. In our current implementation, the cut-sets are enumerated using a more
efficient approach. We first look at all connected subgraphs having the cardinality of their set of nodes smaller than
or equal to half of the cardinality of the set of nodes in the whole graph. For each of these subgraphs, the set of
edges of the whole graph that have only one end in the subgraph defines a cut-set if their removal leaves the whole

graph with exactly two components.

Figure 12 shows the procedure GET-FEASIBLE-DECOMPOSITIONS which takes as input the relational model of
an assembly and returns all feasible decompositions of that assembly. The procedure first generates the graph of
ections mmcmpmassemblymdomthcan-smoftmsgr@h_ Each cut-set corresponds to a
deoompommn. The procedure GET-DECOMPOSITIONS is used to find the decomposition that corresponds to a
cut-set, and the procedure FEASIBILITY-TEST discussed in the previous section is used to check whether that
decomposition is feasible or not. The feasible decompositions are stored in the list feasible-decompositions which
was empty at the beginning. After all cut-sets have been processed, the procedure returns the list
feasible-decompositions.

n example will illustrate the computation of the feasible decompositions of an assembly. When passed the
mlmxmai model of the assembly in figure 3, procedure GET-FEASIBLE-DECOMPOSITIONS will compute the
graph of connections shown in figure S, and all its cut-sets, which are indicated in figure 13. The analysis of those
cut-sets will indicate the feasible decompositions. The first cut-set yields a feasible decomposition since it is
feasible to join the cap and the subassembly made up of the three other parts. The second cut-set also yields a
feasible decomposition because it is feasible to join the subassembly consisting of the cap plus the receptacle, and
the subassembly consisting of the stick plus the handle. The third cut-set, however, does not yield a feasible

17

SR

procedure GET-FEASIBLE-DECOMPOSITIONS(assembly)
feasible-decompositions « NIL

graph « GET-GRAPH-OF-CONNECTIONS(assembly)
cut-sets «— GET-CUT-SETS(graph)

while cuz-sets is not empty do

begin loopl

next-cut-set < FIRST(cut-sets)

cut-sets «— TAIL(cut-sets)

next-decomposition < GET- DECOMPOSIHON(ncxt—au—sct)

if FEASIBILITY-TEST(next-decomposition)
then feasible-decompositions < UAHON(fea.ublc—decompomaom IJSKM—&mmposmon))

end loop!

return feasible-decompositions
end procedure

Figure 12: Procedure GET-FEASIBLE-DECOMPOSITIONS

Figure 13: The cut-sets of the graph of connections for the assembly shown in Figure 3

ecCompositi mnmmmsmbkmpmmesmkandthcmbmblymadeupoftheﬂneemlmm
SmMiyﬁmedﬂwm&mwmmkdwompommswhmmeﬁﬁhmmwm Therefore,
GET-FEASIBLE-DECOMPOSITIONS will return a list containing the four decompositions that
cmspmdmmcﬁst.mond,fomm.andsixthcm-m

WMW%WWWWRWHWMWMWWOf&W“
mmmmmmwaummmqummummmw The nodes in the
‘n\‘wune.\ L i

PmdeENMMM—GRAPHmﬂmhmdamdmdapmmsmmepmmtoﬂwmimmﬂ
models of the subassemblies whose de sitions into smaller subassemblies respectively have and have not been

18

procedure GENERATE-AND-OR-GRAPH(assembly)
open « LIST(GET-POINTERS(LIST(assembly)))
closed « NIL '

hyperarcs « NIL

while open is not empty do

begin loopl

next-subassembly « FIRST(open)

open « TAIL(open)

closed < UNION(closed, LIST(next-subassembly))

decompositions-of-next-subassembly « GET-FEASELE—DECOMPOSIHONS(nexz-subassemny)
while decompositions-of- -.wbasm:bly is not empty do -

begin loop2
next-decomposition « FM&W&M next-subassembly)

subassembly « TAIL(decompositions-of-next-subassembly)
subassemblies < GET-POINTERS(next-decomposition)
hyperarcs «— UNION(hyperarcs, LIST(LIST(next-subassembly, subassemblies)))
while subassemblies is not empty do

if next-subassembly is not in open or in closed, add it to open; otherwise ignore it
end loop3

end loapZ
end loopl

remn LIST(closed, hyperarcs)
end procedure

18

generated.

The procedure takes one element of open at a time, moves it to closed, and uses procedure
GET-FEASIBLE-DECOMPOSITIONS to generate all decompositions of the relational model pointed by that
element. For each decomposition, procedure GENERATE-AND-OR-GRAPH uses the procedure GET-POINTERS to
get the pointers to the relational models of the subassemblies. Procedure GET-POINTERS checks whether each
resulting subassembly has appeared before or not. If the subassembly has appeared before, its pointer is used,
otherwise a new pointer is created. The new pointers are inserted into open. Each decomposition yields one
hyperarc of the AND/OR graph.

Figure 15 shows the resulting AND/OR graph for the product shown in figure 3.

A more efficient implementation of the method for the generation of assembly sequences presented above will
include additional tests aimed at avoiding computation®. One such test is to check whether the
feasibility of a decomposition follows from the feasibility of other decompositions. For example, the feasibility of
the decomposition to hyperarc 10 in figure 15 follows from the feasibility of the decompositions
corresponding to hyperarcs 4 and 5. If it was geometrically and mechanically feasible to disassemble the handle
from the whole assembly (hyperarc 4), then it is geometrically and mechanically feasible to disassemble the handle
from a subassembly. And since the subassembly made up of the stick and the receptacle is stable (hyperarc 5), it
follows that the decomposition corresponding to hyperarc 10 is feasible. This test indicates that if the
decompositions corresponding to hyperarcs 4 and 5 have already been analysed and found to be feasible, then it is
mwywpmwmmmmgwmmmmmmmmmofm

decomposition that corresponds to hyperarc 10. Similarly, moﬁaaddmamltcstwmﬂdcheckwhetherﬂw
unfmsibmtyofadccomposxmnfoﬂows&ommcmﬁmibﬂnyofomer eCOmMpOSitiol

6. Analysis of the Algorithm

This section presents an analysis of the algorithm for the generation of all assembly sequences. First, a proof of
the correctness and completeness of the algorithm GET-FEASIBLE-DECOMPOSITIONS is presented. These results
are then used to prove the correctness and completeness of the algorithm GENERATE-AND-OR-GRAPH. At the
end, an assessment of the computation involved in executing GENERATE-AND-OR-GRAPH is presented.

6.1. The correctness of algorithm GET-FEASIBLE-DECOMPOSITIONS

The partial correctness of the algorithm GET-FEASIBLE-DECOMPOSITTONS is immediate. The lList cuts is
initially empty. Only feasible decompositions are added to the list cws. Therefore, the list returned by
GETJEASIBZE&ECOMPOMTONSWMWMWMMBMaWWWMM
assembly input.

MMWmmmmmm%mammMm-mmam The list
m—mmmmwdmmdm sponding to the assembly input. At
ewhdl wu ed mmmcm-m Therefore, after a finite number of

“Our curvent implementation consists of the basic algorithms presented in the text and does pot yet inclade these additional tests.

20

{/m =

Figure 15: The AND/OR graph for the assembly shown in figure 3

21

CAl

nTT
':ZaS

in the previous section, the enumeration of the cut-sets of a graph is studied in graph theory; for example, Deo [12]
and Liu [21] discuss that problem.

This proof also assumes that it is possible to decide correctly whether a decomposition is feasible or not, based on
geometrical and physical criteria, as discussed in the section 4.

6.2. The completeness of algorithm GET-FEASIBLE-DECOMPOSITIONS
There is a one-to-one correspondence between cut-sets in the graph of connections of an assembly, and the
decompositions of that assembly. Therefore, since algorithm GET-FEASIBLE-DECOMPOSITIONS goes over all

- cut-sets of the graph of connections, all feasible decompositions will be generated.

As in the proof of correctness above, this proof of completeness assumes the use of a correct and complete
algorithm for the generation of all cut-sets of a graph, and a comect algorithm for deciding the feasibility of a

6.3. The correctness of algorithm GENERATE-AND-OR-GRAPH

List closed is updated at only one point, and it only gets elements that were previously in the open list. The open
list contains initially a pointer to the relational model of the assembly input, which is a node of the AND/OR graph.
List open is updated inside loop3 where it gets pointers to the relational models of the subassemblies that are part of
a feasible decomposition, and therefore, are nodes of the AND/OR graph. Therefore, the elements in the open list,
and consequently the elements in the closed list, are always pointers to relational models either of the original
assembly, or of subassemblies that take part of a feasible decomposition.

The hyperarcs list is initially empty. It is updated only inside lbopz where it gets the hyperarc corresponding to a
feasible decomposition. Therefore, algorithm GET-FEASIBLE-DECOMPOSITIONS can only return a set of nodes
and a set of hyperarcs of the AND/OR graph. This establishes the partial correctness of the algorithm.

List open gets only subassemblies and no subassembly is inserted more than once. Since there is a finite number
of subassemblies, the algorithm terminates. This establishes the total correctness of the algorithm.

6.4. The completeness of algorithm GENERATE-AND-OR-GRAPH

Since algorithm GET-FEASIBLE-DECOMPOSITIONS is complete, all possible decompositions of all
subassemblies that are inserted into the list open yield a hyperarc. Furthermore, all subassemblies that result from a
decomposition are inserted into list open, and later are moved to list closed. Therefore, the first list returned
contains all subassemblies that resulted from some decomposition, and the second list retuned contains one
hyperarc for each decomposition of each subassembly.

6.5. Complexity
The amount of computation involved in the generation of the AND/OR graph for a given assembly depends on the
pumber N of parts that make up the assembly, on how interconnected those parts are, and also on the resulting

AND/OR graph.

The number of prospective decompositions (i.e. cut-sets of the graphs of functional connections) that must be
analysed will be used in this section as a measure of the amount of computation involved in the generation of all

assembly sequences®. Two models for how the parts in the assembly are interconnected are considered in order to
provide bounds in the estimate of computational complexity:

1. a strongly connected assembly in which every part is connected to every other part;' and

2. a weakly connected assembly in which there are N-1 connections between the N parts, with the i
connection being between part the i, and the (i+1)® parts.

And three possibilities for the resulting AND/OR graph are considered:

1.2 balanced tree AND/OR graph in which there is at most one hyperarc leaving each node and this
hyperarc points to two nodes whose corresponding subassemblies either have the same number of
parts, or their number of parts differ by one;

2. one-part-at-a-time tree AND-OR graph in which there is at most one hyperarc leaving each node, and
this hyperarc points to two nodes one of which corresponds to a one-part subassembly; and

3. a network AND/OR graph in which there are as many hypearcs leaving each node as there are cut-sets in
the graph of functional connections of the node’s corresponding subassembly.

The resulting total number D of decompositions that must be analysed as a function of the number N of parts that
make up the assembly for each possible combination of how the parts are interconnected and the type of the
resulting AND/OR graph is:

1. Weakly connected assemblies:)
a. Balanced tree AND/OR graph: the number of prospective decompositions that must be analysed
is N-1 for the initial assembly, N—2 for all subassemblies, N—4 for all subsubassemblies, and so
on. Therefore®,
int(log, N)
D=(N-1)+(N=2)+(N—-4)+ --- +(N-2" 8"y _
int (logy N)

= ; (N=2) = N-[int(logy N) +1] — 2" oo+

b. One-part-at-a-time tree AND/OR graph: the number of prospective decompositions that must be
analysed is N—1 for the initial assembly, N-2 for the (N—2) part subassembly, N-3 for the
(N-2)-part subassembly, and so on. Therefore,

N-1
D=(N-1)+(N=2)+(N=3)+ --- +2+1 = 2 (N-i) = ”_("2’“_12
=

c. Network AND/OR graph: the number of prospective decompositions that must be analysed is
N-1 for the N-part subassembly, N-2 for each of the two (NV—1)-part subassemblies, N-3 for
each of the three (V—2)-part subassemblies, and so on. Therefore,

D=1-(N-1)+2-(N-2)+3-(N-3)+ --- +(N-1)-1 =

N-1
= 2 i-(N-i) = (N+1).Z.(N_1)

%MM&WGENERA@MD@RGRAPHM&hommempznmhvdvedhgmuingxhc
cut-sets of the graph of functional connections.

SWe use the notation int (x) to represent the largest integer that is less than or equal to x. For example, int (3)=3 and int (3.5)=3.

2. Strongly connected assemblies:
a. Balanced tree AND/OR graph: the number of prospective decompositions that must be analysed

& (’”3

N-1 int .
is (2 —1) for the initial assembly, (2 2 -1) + 2 "~1) for all subassemblies,

m D m®3 (”) ine %)

2 4-1) + 2 4 -1 + 4°-1) + (2 4 -1) for all

subsubassemblies, and so on. Thmefore,
int (logg N) iy il

b= 3 ;[2—2‘_-—1]

b. One-part-at-a-time tree AND/OR graph: the number of prospective decompositions that must be
analysed is (2N—1 — 1) for the N-part subassembly, (2}"2-1) for the (N—1)-part subassembly,
(2N—3—-l)forﬂw(N—Z)-panmbassembly,andsoon. Therefore, -

D=2 =142 —1)+(@ =1yt +(2-1)=2 ~N—1

¢. Network AND/OR graph: the number of prospective decompositions that must be analysed is
N-1 N-2
(2 -1) for the N-part subassembly, (2 —1) for each of the (qu) (N-1)-part

mbassunbhes, (2 —1) for each of the (Mz) (N—2)-part subassemblies, and so on.

Therefore,

D:(x)-(zN'l—U + (N’_VI)-(zH-l) + oo (’;’)-(2—1) =

N ooy Wiy N
For each of the three possibilities of the resulting AND/OR graph, table 2 shows the number of decompositions that
must be analysed for weakly connected assemblies and table 3 shows the number of decompositions that must be
analysed for strongly connected assemblies, as a function of the number of parts that make up the product. The
figures in table 3 are given as a reference since it is very unlikely that there would be a twenty-part assembly in
which every part is connected to every other part.

The results above take into account the fact that the type of the resulting AND/OR graph is not known a priori. For
example, for the weakly connected assembly whose AND/OR graph is a balanced tree, all the N-1 cut-sets of the
whole assembly were included in the number of decompositions that are tested, although there is only one cut-set
that yields two subassemblies that have the same number of parts.

As discussed in the end of section 5, a more efficient implementation of the method for the generation of
assembly sequences presented in this paper will include additional tests aimed at avoiding unnecessary computation.
Omsnchtwtxstocheckwhedmmefwsiblhtyofaacmnposxmnfoliowsﬁomthefmibxhtyofother

mpositions. In the case of strongly connected assemblies in which all decompositions of all subassemblies are
ﬁeasiblc ﬁwmpwmoﬂcmbemgmﬁmmlyreducedddnswstxspafonmdbeforeanalysmgmhmoomposmon
Since all decompositions of the whole assembly are feasible, all decompositions of all subassemblies should also be

24

Table 2: The number of decompositions that must be analysed for each type of
resulting AND/OR graph, as a function of the number of parts, for

weakly connected assemblies.

Number of Parts Balanced-tree One-part-at-a-time network
N AND/OR graph AND/OR graph AND/OR graph
2 1 1 1
3 3 3 4
4 5 6 10
5 8 10 20
6 11 15 35
7 14 21 56

8 17 28 84

9 21 36 120
10 25 45 165
15 45 105 560
20 69 190 1,330
25 94 300 2,600
30 119 435 4,495

Table 3: The number of decompositions that must be analysed for each type of
resulting AND/OR graph, as a function of the number of parts, for

strongly connected assemblies.
Number of Parts Balanced-tree One-part-at-a-time network
N AND/OR graph ANDI/OR graph AND/OR graph
2 1 1 1
3 4 4 6
4 9 11 25
5 20 26 90
6 39 57 301
7 76 120 966
8 145 247 3,025
9 284 502 9,330
10 551 1,013 28,501
15 16,604 32,752 7,141,686
20 525,389 1,048,555 1,742,343,625
25 16,783,550 33,554,406 423 610,750,290
30 536,904,119 1,073,741,793 102,944,492,305,501

feasible. Therefore, Wlbt]h a sxmple additional test, the total number of decompositions that must be analysed is
reduced&om’"” @ -1

7. Conclusion

A correct and complete algorithm for the generation of all mechanical assembly sequences was presented. To the
authors’ knowledge, no previous algorithm for the generation of all mechanical assembly sequences has been proven
correct and complete.

The problem of generating assembly sequences was transformed into the equivalent problem of generating
disassembly sequences. The algorithm operation consists in looking at all the decompositions of the assembly, i.e.
all the ways the assembly can be split into two subassemblies. This is done by generating all cut-sets of the
assembly’s graph of connections, and checking which cut-sets comespond to feasible decompositions. A
decomposition is feasible if it possible to obtain the assembly by joining the two subassemblies. The same process
is repeated for the subassemblies, for the subsubassemblies, and so on, until only single parts are left. At the end,
the AND/OR graph representation of assembly sequences is returned.

The algorithm also lends itself to an interactive implementation in which a computer program generates questions
that are answered by a human expert. Each question addresses the feasibility of a decomposition. But unlike
previous methods [6, 11], it is possible to have a computer program, instead of a human, to answer the questions
directly from a description of the assembly. Our current implementation, which has the restrictions on the types of
assemblies discussed in section 3, includes programs that answer the questions.

An approach to compute the answer to the question of whether it is feasible to obtain a given assembly by joining
two subassemblies was presented. This approach is based on the use of a relational model description of the
assembly. The model includes three types of entities: parts, contacts, and attachments; it also includes a set of
relationships between entities. Both entities and relationships can have attributes. To’ decide whether a given
decomposition is feasible, three predicates must be computed, using the data in the relational model:

o The GEOMETRIC-FEASIBILITY predicate which is true if there exists a collision-free path to bring the
two physical subassemblies into contact from a situation in which they are sufficiently far apart.

o The MECHANICAL-FEASIBILITY predicate which is true if it is feasible to establish the attachments
that act on the contacts of the decomposition.

O'IheSTABIUIYpredncatcwmchlsuucﬂthcparrsmmhsubawcmblymammmthcn'relanveposmon

and do not break contact spontaneously.

The key assumption in proving the correctness of the algorithm was that it is always possible to decide correctly,
based on geometrical and physical criteria (i.e. using the three predicates above), whether it is feasible to obtain a
given assembly by joining two subassemblies.

The amount of computation involved in generating all mechanical assembly sequences was assessed by
determining the number of decompositions that must be analysed. That amount depends not only on the number of
parts and on how they are interconnected, but on the solution AND/IOR graph as well. The least amount of
computation occurs for weakly connected assemblies in which each subassembly has only one feasible
decomposition and that decomposition yields two subassemblies whose number of parts are either equal or differ by
one. The maximum amount of computation occurs for strongly connected assemblies in which all decompositions
of all subassemblies are feasible. This worst case, however, is very unlikely to occur in practice. Furthermore,

addil:ionél simple tests discussed in section 5 can reduce the amount of computation.

In practice, an evaluation of the alternative assembly sequences generated by the algorithm presented in this paper
is needed in order to choose the sequence that will be actually used in the assembly process. Different evaluation
funtions have been explored including a function based on parts entropy [32, 33], and a function based on the
complexity of assembly tasks and the stability of subassemblies [17].

It is also possible to implement an interactive system in which a computer program generates the alternative
sequences, as described in this paper, and a human expert then selects the best one. Still another possibility would
be to use an evaluation function for a preselection of "good” alternative sequences and then have a human expert to

Whenever the amount of computation exceeds the available computational resources, at least two strategies may
be followed:
1. The number of parts can be artificially reduced by treating subassemblies as single parts. An analysis
of the graph of connections may indicate the clusterings of parts that yield bigger reductions in the
amount of computation. '
2. The algorithm generates fewer, hopefully the best, sequences using some heuristics to guide the
of assembly sequence. Such heuristics should be compatible with the evaluation function
used to choose among the alternative assembly sequences.
In both strategies, the computation will be reduced at the expense of the completeness, since not all possible
sequences will be generated. The devolpment of a procedure to cluster parts into subassemblies to obtain a
hierarchical model of the assembly, and the development of good heuristics to guide the generation of assembly

Acknowledgements

Randy Brost read part of this paper and gave us several constructive comments. We thank him for that. The
responsibility for the paper, of course, remains with the authors.

Cientifico ¢ Tecnol6gico (Brazil), the

Jet

27

Appendix

I. Reasoning about the Feasibility of Local Translations for Robotic Assembly of a Part
Constrained by Planar Contacts

L1. Introduction

The high level of planning the assembly of a product can be viewed as a path search in the state-space of possible
configurations of the set of parts that comprises the product [17]. The initial state corresponds to the configuration
in which all parts are disconnected from each other. The goal state corresponds to the configuration in which the
parts are properly joined. The moves correspond to the assembly operations, since they change one state into
another.

A complete description of the product is available for planning purposes. This description includes the shape of
the parts, their relative positions, and the spatial and mechanical relations between parts.

The search can be conducted backwards from the goal state to the initial state. The moves in the backward search
correspond to disassembly tasks which are defined to be the reverse of feasible assembly tasks. The preconditions
for a disassembly task [34] include:

1. release of attachments.

2. stability of subassemblies..

3. separability of subassemblies:
a. local analysis - test incremental motion;
b. global analysis - find global trajectory.

The local analysis consists of checking whether there exists an incremental motion of one part or subassembly

thatisnotblocmdbyanyomofitscmmctswmmthupam. For many types of contacts there are very few feasible

motions between the parts. anamyﬂz,acylmdmalpmmahdcmnmhaumsmemmedlmumohhcams,m

rotate around the axis. Whenever the part or subassembly under consideration has such a constraining contact, the

local analysis can be performed by checking whether at least one of the few motions that are compatible with the
most restrictive contact is also compatible with all other contacts.

The local analysis is more difficult when the part (or subassembly) to be disassembled is constrained by planar
contacts only. Each planar contact leaves an infinite number of unconstrained directions along which translation is
possible. In this case, the intersection of the sets of translations that are not blocked by each contact cannot be found
by discrete search over a finite set of directions.

This appendix presents an efficient procedure to obtain explicitly the set of directions along which an object that
is constrained by several planar contacts can translate. MMwaaingﬁaequwﬁmofwhethuﬁmisa
direction along which translation is feasible, the procedure also produces a representation of the set of all those
Jirecti

L2. Background

Shoham [35] and Mani [26] analyzed the freedom of two dimensional objects when in contact with other objects.
Although both studies include translational and rotational freedom, they are restricted to two dimensional objects,
and neither one indicates how the analysis can be scaled up to three dimensions.

Jain and Donath [19] analyzed the translational and rotational freedom of parts in an assembly but with the
constraint that the existing contacts between parts cannot be broken. They do not show how their approach can be
extended to deal with the case of breaking of contacts.

Ejiri et al. [14] proposed the use of restraint vectors to decide whether a part constrained by planar contacts could
translate. The restraint vector of a part P was defined to be
uP=(x» B x @ +y? —y' yz» z)
where

a.=J 1 if P isrestrained along direction r
r 0 if P is notrestrained along direction r

and the logical possibility of disassembling part P was decided by the logical formula

a_a_ .a,= 1, when possible '6))
GyyGy - 0, when 1mpossible.
'Ihactfmmulacmespondstomereqmremcntthatxhcpm'tbefreemtheupper(pomhvez)dlrecnonandbotbxandy

are free in either the positive or the negative direction. Although the above logical formula is a sufficient condition,
it is not necessary. Itlsalsonotdlfficnlttothmkofaslmaummwhlchdlmssanbhngapanlsfwsiblcandthc
logical formula yields 0. Figure16sh0ws0nesuchs1manon.

u}’=(lv 1101 1:0’ 1)

Figure 16: Part P can move but the logical formula (1) yields O

Within the work in kinematics, Asada and By [3] introduced the concept of Automatically Reconfigured Fixturing
which is a fixturing system that can be adapted to hold different workparts. It consists of a number of fixture
elements that can be placed on a flat horizontal table to conform to the geometry of the workpart to be fixtured. The
table has magnetic chucking capability which can be activated to secure the fixturing elements in place. When
completely fixtured, the workpart will be in contact with a number of fixturing elements that will constrain its
movements completely. The process of fixturing one workpart starts with a positioning phase in which the workpart
is brought into contact with a subset of the fixturing elements which, in this paper, will be referred to as guiding
elements. Once positioning is achieved, additional elements are placed on the table to constrain the workpart
completely.

Asada and By carried out a kinematic analysis aimed at answering the following questions:
1. Is the location of the workpart that achieves contact with all guiding elements unique?
2. Is this location that achieves contact with the guiding elements accessible/detachable?
3. Do the additional elements (together with the guiding elements) constrain the workpart completely?

The last two questions are similar to the problem addressed in this paper. In the second question, they are
interested in guaranteeing that there are feasible local motions for the workpart, so it can be brought into contact
with all guiding elements. In the third question, they are interested in guaranteeing that there are no feasible local
motions (i.e. that the workpart is constrained completely).

Asada and By modeled the contacts between the workpart and the fixturing elements as point contacts, and
derived conditions for the feasibility of local motions, including both translations and rotations. Those constraints
were used to check whether the configuration of the fixturing elements would constrain the workpart completely.
They did not address how to determine the set of incremental motions that satisfy the derived conditions.

More recent research on robotic planning [22,23] has aimed at enabling robots to execute tasks specified in
task-level commands such as
move <part-id> to <location-specificatior>
in which the second term within angle brackets specifies a configuration (a position and an orientation) either as a

homogeneous transform matrix or as a set of spatial relationships among objects. The translation of a task-level
command into robot-level commands involves selecting fixtures, grasping points, gross motions, fine motions, etc.

It is clear that procedures that are able to comstruct a path for a part from an initial configuration to a final
mnﬁgmaﬂmcmabobemedmmswwhc&aﬂmnmmadne@mmwhchbmlkmﬂamnofMpMmtm
] nfiguration is feasible. If there is a path, there is a direction in which local translation is feasible.
Mmm]mmmmmmammmmmmmemmﬁm
literature on that subject. The procedures to construct a path, however, involve extensive computation, and therefore
their use in the high level of planning will weaken the planner efficiency. One of the major advantages of
hierarchical planning [31] is the possibility of abstracting the details at the high level.

tation of Local Constraints

In most cases of two parts or subassemblies in contact, a pure rotation of one with respect to the other will not
separate them. In these cases the motion must include a nonzero translational component in order to separate parts
in contact. Therefore, to decide whether two parts in contact can separate from each other, the local analysis can

31

focus on translational motions only”.

Let P and Q be two parts that have one planar contact. Let n be a vector perpendicular to the contact plane, and
pointing towards part P. Part Q blocks translations of part P that have negative projections over n. Therefore, to
decide whether part P can translate by a vector ¢, it is necessary to check whether ¢ e n (the scalar product of ¢
and n) is greater than or equal to zero.

In general, a part P has N planar contacts with other parts: let n; be a vector perpendicular to the plane of the ith
planar contact, pointing towards part P. Then, ¢ must satisfy
£.£i20 i=1,2,"‘,N . (2)
in order to be a feasible translation for part P.

The set of inequalities (2) is a necessary but not sufficient condition for the global translation t of part P, since
other parts that are not directly in contact with P may also constrain its movements. For local analysis, distant
objects do not interfere, and system (2) becomes a sufficient condition. Moreover, if ¢ o Satisfies system (2), so do
all vectors y ¢, for any scalar y greater than zero; and it is always possible to pick y sufficiently small to guarantee
that a translation by Yz, of part P is feasible. Therefore, to answer whether part P can translate locally, it is
sufficient to answer whether system (2) has a nonzero solution. -

Each inequality in system (2) divides the space R? into two halfspaces. The set of vectors satisfying the system of
inequalities (2), which is the intersection of finitely many halfspaces, is a polyhedral convex cone. Polyhedral
convex cones may have several different shapes and enumeration of these shapes will be useful for the search
procedure. Figure 17 shows one example of a polyhedral convex cone which is the intersection of five halfspaces,
each one defined by a plane that goes through the origin and that is perpendicular to a vector n;. Therefore, the cone
can be characterized as the set of vectors that have greater than or equal to zero projection over vectors
n,,Rn,,n4,0,,ns, which are perpendicular to the five faces of the cone, and have the appropriate (i.e. towards
the inside) orientations. Alternatively, the same polyhedral convex cone can be characterized as the set of positive
}mwcombmanomsofvectomel,e2,e3,e4,e5,whxchhavedn'ecumsalongtheﬁveedmofﬂweone,andthc

Mﬂmﬁwm@mdmmhwmmvammmmmybe&ﬁmdasfm
Definition 5: Given a polyhedral convex cone C, any set of vectors V={v,,v,, ---, v, } with the
property that any vector x € C has positive projection over all vectors y;€ V (ie. x ey,20 for
i=1,2,: .- ,J), is called a tangential representation of C.
* Definition 6: Given a polyhedral convex cone C, any set of vectors E={e;,e,,- -, e} such that
any positive linear combination of the ¢, , ¢, , - - , & yields a vector in C and, conversely, any vector
;ﬁ‘cmbemdasaposiﬁveunwcombmaﬁmofg,.gz,.-~,g, (e z= Yo, 0;¢; with
«;20i=1,2,--- J ifandonlyif X€ C)iswlhdapointrepresentaﬁonofc.

qu s~reprwentatmms
Definition 8: A tangential representation of a polyhedral convex cone is said to be a minimal
tangential representation if it has no equivalent tangential representation with fewer vectors.

"There are cases where two parts in contact can only separate from each other if one undergoes a pure rotation followed by a translation. These
cases correspond to more complex contacts, and therefore require the use of more complex models. In products designed for assemby [2, 5],

Figure 17: Aﬁolyhedmlconvexconewhichistbeintemecﬁmofﬁvehalfspaow

Deﬁmiﬁan9:Apointrepmsemaﬁmofapolyhedmlcomvexconeissaidwbeaminhnal point
representation if it has no equivalent point representation with fewer vectors.

mmmmawym&ﬂmmhwmmmmammof
motion because one can readily check if the set of feasible nonzero translations is empty by checking whether the
point representation has a nonzero vector. It is also useful as a basis for the global analysis because it allows the
enumeration of the feasible translations.

In the next section, a syntax for a computer representation of polyhedral convex cones in R? is developed based
on the formulation described above. A procedure is defined which finds the computer representation from a
angential representation. The procedure provides the basis for testing the feasibility of disassembly operations.

L4. Search Procedure for Feasible Local Translations

mmmmdmembasedmofmempmMmfaﬂwshapeefamlwanmm

3 dimensional space R3. These are listed in table 4. A syntax for a computer representation of polyhedral

cwmwm.wlmhmcmpommexplmnwﬂmrshapwrsshownmﬁgmm This representation is compact, yet
captures all the information needed in the procedure to find the solutions of the system of inequalities (2).

Figure 19 shows procedure SOLVE which takes as input a tangential representation of a polyhedral convex cone,
T={n;,n,,---,ny } which need not be minimal, and returns its computer representation, in the syntax shown
in figure 18.

Table 4: The possible shapes of polyhedral convex cones in three dimensional space

through the origin.

' MmMﬂmmwmem

points that lie on a pm jane that gc
mmmwmmdam

shape definition comments
SPACE All points in R3, This is a degenerate case in which N in the
system of inequalities (2) (i.e. the number of
planes) is zero.
HALFSPACE | All the points on one side of a plane and the Typically, this is the case in which N in system
points on the plane. (2) is one, but it is also the case in which all
vectors ny,,, -+ , ny are parallel and have
QUADRANT |The points within the intersection of two | Typically, this is the case in which N is two, and
halfspaces whose defining planes are not | the two vectors n, and n, are not parallel.
POLYGONAL | The points within the intersection of three or | This is the shape of the cone in figure 17.
‘ more halfspaces when no plane exists that
contains all points in the cone.
Allthcpommheonaplmethatgow This is the two dimensional correspondent of

| SPACE. Typicaﬂy,thisisthecascinwhichNis‘
| two, and the two vectors are parallel and have

Aﬂtﬁcmmmaphneﬁmm
through the origin, and also to one side of two

~Mmmmmm@ﬂm@m

Typmﬂy MEmemem which

Ommpieofthstsmemmwmwm‘

ﬂnecmdﬂ:entuecvecm}aemap&anqm

.

+

<cone> = (SPACE) | (HALFSPACE <vector>) |
(QUADRANT (<vector> <vector>)) |
(POLYGONAL (<min-tangent-repr> <min-point-repr>)) |
(PLANE <vector>) | (HALFPLANE (<vector> <vector>)) |
(SECTOR <min-point-repr>) | (LINE <vector>) |
(HALFLINE <vectoxr>) | (POINT) }

<min-tangent-repr> = (<vector-sequence>)
<min-point-repr> = (<vector-sequence>)

<vector-sequence> = <vector> | <vector> <vector-sequence>

Figure 18: The computer representations of cones

procedure SOLVE(tanrep)
solution « (SPACE)
while FIRST(solution) # POINT and tanrep is not empty do
begin
n « FIRST(tanrep)
tanrep < TAIL(tanrep)
solution « INTER(solution n)
end

return solution
end SOLVE

Figure 19: The procedure SOLVE

The solution procedure consists of finding, successively, a computer representation for the sequence of cones
C.Cy.C,, -+ - ,Cy. The polyhedral convex cone C,, is the whole space R3, and the polyhedral convex cones
C,.Cy,---,Cy have the sets T,,T,,---,Ty, respectively, as (not necessarily minimal) tangential
representations, where 7;=(n, ,n,, - - - n;}.

The computer representation of C;,, is generated by procedure INTER using the fact that
Cin=Cinixlxen,, 20} €)

ie., cone C;,; contains the vectors that are in both cone C; and in the halfspace defined by the plane perpendicular

n;,, and going through the origin. Procedure SOLVE terminates as soon as a cone of shape POINT is found
in the sequence Cy,C,,C,, - - - ,C),, since all the remaining cones in the sequence would also be of shape POINT.

to vector n

Incorporating the shapes into the representations of the cones simplifies the reasoning needed to compute their
intersection with a halfspace because for each shape of the cone, there are only a few possibilities for the shape of
the intersection. Figure 20 shows a state diagram in which the nodes (ie the states) correspond to the shapes of
polyhedral convex cones in R3, and the arcs (i.e. the transitions) correspond to the possibilities for the shape of their
intersection with a halfspace. The iterations performed by procedure SOLVE can be seen as a sequence of
transitions in that state diagram. The initial state is the shape SPACE which is the shape of cone C,,. Each iteration
in procedure SOLVE causes a transition in the state diagram, and the final state is the shape of the solution. The
actual transition is computed by procedure INTER which also computes the necessary parameters to completely
characterize the cone in the syntax of figure 18.

The inputs to procedure INTER are the computer representation of a cone C, and a vector v . The output of
INTER is the computer representation of cone C’=C N {x|xev 20}. The computation performed by INTER
depends on the shape of the cone input. Figure 21 showsﬂwcasesinwhichﬂwshapcofﬂ:ccmeinputisSPACEor
HALFSPACE. The other cases, although more extensive, are not difficult to infer.

LS. Example of the Computation of the Directions of Feasible Translations

Figure 22 shows an assembly that has two parts with seven planar contacts between them. The vectors
perpendicular to the contacts and pointing towards the upper part are:

=100 n,=0001) n=(021 7,=021 ng=©11) ng=©0-11) n,=(001)

For this example, procedure SOLVE does seven iterations to find out the set of directions along which the upper
part can translate. The first iteration produces the intersection of the whole space with the halfspace defined by the
plane perpendicular to n ,; the intersection is the halfspace itself, whose representation is (HALFSPACE (1 0 0)).

The second iteration produces the intersection of the halfspace obtained in the first iteration with the halfspace
defined by the plane perpendicular to n,; because n, and n, are not parallel, the intersection has shape quadrant,
and its representation is (QUADRANT (100) (00 1)).

The third iteration produces the intersection of this quadrant-shape cone with the halfspace defined by the plane
perpendicular to n5; because n,,n,, and n, are linearly independent, the intersection is a polygonal (triangular)
cone whose representation is (POLYGONAL ((100)(001)(021))((010)(100)(0-12))).

The fourth iteration produces the intersection of the polygonal-shape cone obtained in the third iteration with the
halfspace defined by the plane perpendicular to n,; because the projections over n 4, are less than zero for the first
edge, zero for the second edge, and greater than zero for the third edge, the representation of the intersection is
(POLYGONAL ((100) (0-21)(021))((012)(100)(0-12))).

The fifth, the sixth, and the seventh iterations do not change the polyhedral convex cone produced in the fourth
iteration, which happens to lie entirely within the halfspace defined by the plane perpendicular to 1 ., the halfspace
defined by the plane perpendicular to ng, and the halfspace defined by the plane perpendicular to r,. This
conclusion can be made by observing that the three edges (0 1 2), (1 0 0), and (0 -1 2) have greater than or equal to
2er0 projection over i, i g, and n ;.

?

HALF
SPACE

PLANE

37

procedure INTER(cone y)
case

(1) FIRST(cone) = SPACE return (HALFSPACE v)
(2) FIRST(cone) = HALFSPACE do

begin
n < SECOND(cone)
if n and y are parallel do

begin

if n and y have the same orientation return (HALFSPACE y)
return (PLANE v)

end

return (QUADRANT (v n))
end

Figure 21: Part of procedure INTER

The final solution rerned by the algorithm is the polyhedral convex cone whose computer representation is
(POLYGONAL ((100) (0-21)(021))((012) (100)(0-12))); this means that any positive linear combination
of the vectors (0 1 2), (1 00), and (0 -1 2) is a feasible translation for the upper part in figure 22. For this example,
the result can be verified by inspection. Thesetofaﬂdalongwhnchu'anshmomsfmiblembemmd
systematically by letting

d=a-(012)+5-(100)+¢-(0-12)

0<as1l

0<b<Vi-a2
c=Y1-a*-p?

Wﬂm@cm&mmmmmdmn&mmmmmmmm

g 3 § anical [form; membothasabunthepm
m«mwmwmmm MWMM@MM(MWM}
ualities Brooks us j nipulation system to decide whether the system has a solution and to
dmmmmm That constraint manipulation system, however, does not
M~Mmctmhﬁwmdmm Moreover, the conclusions drawn from that system tend

Figure 22: Twopartsmathavésevenplanarcomacts

to be conservative; they are safe to be used in robot planning bat they may lead to the elimination of plans that are
reliable.

Systems of linear inequalities have been studied within linear programmming [36], where the extremal points of
linear functions are sought in multidimensional spaces. Goldman and Tucker [16] present important theoretical
results that have been used as basis for the formulation presented in this paper. Those results alone have been used
by Ohwovoriole and Roth [27], in the context of mechanical assembly, to solve a system of inequalities in a five

dimensional space. By restricting the dimension of the space to three, as we have done, more efficient procedures
- could be constructed.

In addition to being less efficient (although more general), the linear programming approach to solving systems of
linear inequalities has problems in degenerate cases which are common in assembly planning. One degeneracy is
the fact that the set of solutions is unbounded in all cases, except when no solution exists. Another degeneracy
occurs whenever the feasible solutions lic on a plane (i.e. the set of solutions has volume zero); and this happens
whenever parts have parallel faces which are in contact with other parts.

The intersection of halfspaces has been studied within computational geometry [30]. Brown [9] showed how the
problem of finding the intersection of N halfspaces can be converted to the problem of finding the convex hull of N
points; that leads to an algorithm that takes O (N log N) time.

Although more general, the algorithms in computational geometry have been designed for the case in which the
solution set is bounded. Like the linear programming approach, these algorithms have problems in degenerate cases
which are very common in assembly planning. The procedure presented in this paper, has been designed for the
assembly planning problem. It is less general than those in computational geometry but is more efficient since it
finds the solution in at most N steps, and it can handle the degenerate cases.

As mentioned in section 1.2, the work of Asada and By [3] has some relation with the results presented in this
paper. Although Asada and By modeled the contacts between the workpart and the fixturing elements as point
contacts, for local translations, point contacts and planar contacts yield the same constraints. The conditions that
Asada and By derive for local translations are the same conditions as equation 2 in this paper. (The reader is warned
that there is an error in equation 20 of Asada and By paper; it should read Gf-Aq 2> (0.) But Asada and By do not
address how to determine the set of solutions to equation 2, which is their equation 208,

L7. Conclusion

The problem of finding the directions of feasible local translations for a part constrained by planar contacts has
been formulated mathematically as that of finding the set of solutions to a system of inequalities. The system of
inequalities is represented by a polyhedral convex cone, and the solution procedure exploits the fact that in the three
dimensional space R3 there are only 10 possibilities for the shape of a polyhedral convex cone.

A syntax for the computer representation of polyhedral convex cones in R3, which incorporates explicitly their
shapes, is presented along with an implemented algorithm that uses that representation to produce the set of
solutions. The algorithm can handle all possible cases and produces the solution in at most N (the number of planar
contacts) steps. It may take less than N steps when the only solution to the system of inequalities is the zero vector.

In addition to providing the basis for testing the feasibility of assembly operations, the computer representation
generated by the procedure is usefnl later in the assembly planning process to guide the search for a path, since it
allows a systematic scan of all directions along which local translation is feasible.

$Since the formulation presented by Asada and By inclndes rotations, the resulting system of equations invelves six variables. Therefore,
solving that system would be more complex than solving a system of three variables as that of equation 2 in this paper.

[15] B.R.Foxand K. G. Kempf.
rtunistic Scheduling for Robotics Assembly.
In 1985 IEEE International Conference on Robotics and Automation, pages 880-889. IEEE Computer

Society, 1985.

[16] A.J. Goldman and A. W. Tucker.
Polyhedral Convex Cones.
In Kuhn, H-W. and Tucker, A.W. (editors), Linear Inequalities and Related Systems, pages 19-40. Princeton

University Press, 1956.

[17] L.S. Homem de Mello and A. C. Sanderson.
AND/OR Graph Representation of Assembly Plans.
In AAAI-86 Proceedings of the Fifth National Conference on Artificial Intelligence, pages 1113-1119.
American Association for Artificial Intelligence, Morgan Kaufmann Publishers, 1986.

[18] L.S.Homem de Mello and A. C. Sanderson.
Task Sequence Planning for Assembly.
In IMACS World Congress '88 on Scientific Computation. Paris, July, 1988.

[19] A.Jain and M. Donath.
Knowledge Representation for Robot Based Assembly Planning.
In Proceedings of the 1987 American Control Conference, pages 181-187. American Automatic Control
Council, IEEE, Piscataway NJ 08854, June, 1987.

[20] A. Koutsou.
Planning Motion in Contact wAchzevc Parm' Matmg

[21] C.L.Liu

(22]

InM.Bmd;yctaL(ednors) Robot Motion: Planning and Control, pages 473-498. The Massachusetts
nstitate of Technology, 1982.

231 T. Lomno—Pélu.

Programming.
Proceedings of the IEEE 71(7):821-841, July, 1983.

[24] 1. 1.0Zano-rerez
A Simple Motion Planning Algorithm for General Robot Manipulators.
InAAAI-86Proceedlngs of tkchﬁhNauomal Cowy'mceanmaailmdlzgmce,pagw&&ﬁm
American Association for Artificial I lig Morgan K ¢
[25] M. M. Lui.
Generation and Evaluation of Mechanical Assembly Sequences U
Mamr’smws,Massachswxs Institut ofTwMow W‘,l%

[28] R.]J. Popplestone et al.
The Industrial Robot 5(3):131-137, September, 1978.

42

(1

[2

31

(4]

[5]

(6]

[10]

(11}

(12]

(13}

(14]

References

A. P. Ambler and R. J. Popplestone.
Inferring the Positions of Bodies from Specified Spatial Relationships.
Artificial Intelligence 6:157-174, 1975.

M. M. Andreasen et al.
Design for Assembly.
Springer Verlag, 1983.

H. Asada and A. B. By.

Kinematic Analysis of Workpart Fixturing for Flexible Assembly with Automatically Reconfigurable
Fixtures.

IEEE Journal of Robotics and Automation RA-1(2):86-94, June, 1985.

N. Boneschanscher et al.

Subassembly Stability.

In Proceedings of AAAI-88, pages 780-785. American Association for Artificial Intelligence, Morgan
Kaufman, August, 1988.

G. Boothroyd et al.
Automatic Assembly.
Marcel Dekker, Inc., New York, 1982.

Al

Contribution a une Approche Méthodologique de L’ Assemblage Automatisé: Elaboration Automatique des
Séquences Opératoires.

These d’Ftat, Université de Besangon Franche-Comté, November, 1984.

R. A. Brooks.
Symbolic Reasoning Among 3-D Models and 2-D Images.
Artificial Intelligence 17:285-348, 1981.

R. A. Brooks.

Symbolic Exror Analysis and Robot
International Journal of Robotics Research 1(4):29-68, 1982.

K. Q. Brown.

Fast Intersection of Half Spaces.

Technical Report CMU-CS-78-129, Department of Computer Science - Carnegie Mellon University, June,
1978.

D.
Planning for Conjunctive Goals
Artificial Intelligence 32(3):333-377, July, 1987.

T. L. De Fazio and D. E. Whitney.
Simplified Generation of All Mechanical Assembly Sequences.
IEEE Journal of Robotics and Automation RA-3(6):640-658, December, 1987.

N. Deo.

Graph Theory with Applications to Engineering and Computer Science.
Prentice-Hall, 1974.

B. R. Donald.

A Search Algorithm for Motion Planning with Six Degrees of Freedom.
Artificial Intelligence 31:295-353, 1987.

M. Ejiri et al.

A Prototype Intelligent Robot that Assembles Objects from Plan Drawings.
IEEE Transactions on Computers C-21(2):161-170, February, 1972.

41

v AL

[29]

(30]

(311

[32]

[33]

34

351

R.J. Popplestone et al.
An Interpreter for a Language for Describing Assemblies.
Artificial Intelligence 14:79-107, 1980.

F. P. Preparata and M. 1. Shamos.
Computational Geometry.
Springer-Verlag, 1985.

E. D. Sacerdoti.
A Structure for Plans and Behavior.
Elsevier North-Holland, 1977.

A. C. Sanderson.

Parts Entropy Methods for Robotic Assembly System Design. 7

In IEEE 1984 International Conference on Robotics and Automation, pages 600-608. IEEE Computer
Society Press, 1984.

A. C. Sanderson and L. S. Homem de Mello.

Planning Assembly/Disassembly Operations for Space Telerobotics.

In W. C. Chiou (editor), Space Station Automation III, pages 109-115. SPIE - The International Society for
Optical Engineering, November, 1987.

Proceedings of SPIE - Volume 851.

A. C. Sanderson and L. S. Homem de Mello.

Task Planning and Control Synthesis for Flexible Assembly Systems.

In Wong, Andrew K. C. and Pugh, Alan (editors), Machine Intelligence and Knowledge Engineering for
Robotic Applications, pages 331-353. Springer-Verlag Berlin Heidelberg, 1987.

NATO Advanced Science Institutes Series, Vol. F33.

In Pmmdzngx of the Ninth International Joint Conference on Artificial Intelligence, pages 436-442.
International Joint Conferences on Artificial Intelligence, Inc., August, 1985.

R. H. Taylor.
A Synthesis of Manipulator Control Programs From Task-Level Specification.
Memo AIM 282, Stanford Artificial Intelligence Laboratory, July, 1976.

J. M. Valade.

Geometric Reasoning and Auntomatic Synthesis of Assembly Trajectory.

In Proceedings of the 85 International Conference on Advanced Robotics, pages 43-50. Japan Industrial
Robot Association, IFS Publications Limited and North Holland Elsevier Scientific Publishers, 1985.

M. A. Wesley et al.
A Geometric Modeling System for Automated Mechanical Assembly.
IBM J. Res. Develop. 24(1):64-74, January, 1980.

