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Abstract

This paper presents an algorithm for the generation of mechanical assembly sequences and a proof of its correctness
and completeness. The algorithm employs a relational model of assemblies. In addition to the geometry of the
assembly, this model includes a representation of the attachments that bind one part to another. The problem of
generating the assembly sequences is transformed into the problem of generating disassembly sequences in which
the disassembly tasks are the inverse of feasible assembly tasks. This transformation leads to a decomposition
approach in which the problem of disassembling one assembly is decomposed into distinct subpioblems, each being
to disassemble one subassembly. It is assumed that exactly two parts or subassemblies are joined at each time, and
that whenever parts are joined forming a subassembly all contacts between the parts in that subassembly are
established. The algorithm retums the AND/OR graph representation of assembly sequences. The correctness of the
algorithm is based on the assumption that it is always possible to decide correctly whether two subassemblies can be
joined, based on geometrical and physical criteria. This paper presents an approach to compute this decision. An
experimental implementation for the class of products made up of polyhedral and cylindrical parts having planar or
cylindrical contacts among themselves is described. Bounds for the amount of computation involved are presented



The correctness of the algorithm is based on the assumption that it is always possible to decide correctly whether
two subassemblies can be joined, based on geometrical and physical criteria. This paper presents an approach to
compute this decision. An experimental implementation for the class of products made up of polyhedral and
cylindrical parts having planar or cylindrical contacts among themselves is described.

The amount of computation involved in generating the AND/OR graph representation of assembly plans depends
on the number of parts that make up the product, on how those parts are interconnected, and also on the resulting
AND/OR graph. Bounds for the amount of computation involved are presented.

2. Background

The algorithm presented in this paper takes as input a representation of the product, and generates the set of all
feasible assembly sequences which is represented as an AND/OR graph. This section reviews previous work on
modeling assemblies, on representing assembly sequences, and on generating assembly sequences,

2.1. Modeling assemblies

The research on high level languages for robotic assembly has explored the use of assembly models. That
research aimed at the automatic generation of the actions that a robot should perform in order to assemble a product.
Typically the sequence in which parts should be put together was given.

One of die earliest works on robot programming was the RAPT [1] system in which bodies woe described in
termsof their features such as planar faces, shafts, and holes. The spatial relationships between parts were described
by triples (type-of-spatial-relation , feature.1 9featureJ2). For example, (fits ,£;,/*.} describes the spatial
relationship between the shaft 5f and the hole Hj. The set of spatial relations between parts was input loan infeirace
engine, aid the relative positions of parts or their degrees of freedom were determined. Later extensions to
RAPT [28,29] allowed the user to describe assemblies not only by the spatial relationships between the parts tat also
by the actions required to bring those parts together.

Taylor [37] developed a representation of assemblies based on attribute graphs. The nodes in these graphs
correspond to either objects, or features of objects. Entities that have volume such as assemblies and parts me
objects, whereas entities that do not have volume such as surfaces and edges are features. Each Ink m the graph
associates one node either to another node or to a link. For example, a subpan link may associate a part, which is an
object node, to an assembly, which is another object node; and a nominal-transformation link may associate a
feature node containing a 4x4 homogeneous coordinate transform matrix to a sob-pan link. The Monnation
describing the shape of an object is contained either in the node corresponding to ihai object, if tm shape, is simple.
or in the nodes corresponding to its subpans, if the shape w complex. la the latter case, which is the case of
assemblies, the composition of the suhpart's shapes may be described either by homogeneous transform feature
nodes associated to the subpart links, or by associations of features of siibparts cenespondL-g to spatial relationships
between those features, Taylor allows redundancy of shape description and bob types of descriptions for the
compositions of shapes may coexisL

III tie AUTCPASS system [39], the representation of assembles was based en a gtapb structure in winch each node
represented a volumetric entity, either a part, or a sub-pan, or an assembly* aid the edges woe directed and labeled
to indicate four kiwis of relationships: part-oL attachment, constnuot. Ad assembly^omponenL The nodes had
^tributes which included the tohmestxic desaiptioti and the foatkni erf the CGfTCspondtftg object The part-of

ip induced, a free structure on the assembly model.



1. Introduction

The choice of the sequence in which parts or subassemblies are put together in the mechanical assembly of a
product can drastically affect the efficiency of the assembly process. For example, one sequence may require less
fixturing, less changing of tools, and include simpler and more reliable operations than others. The choice of the
assembly sequence is usually made by a human expert In the case of manufacturing, the choice is typically made
by an industrial engineer. In the case of repair, the choice is made by the maintenance personnel. No clear
systematic procedure seems to be foEowed in either case. Humans seem to use common sense and past experience
blended in a fuzzy, sometimes inconsistent, and not well understood way.

There is a growing need to systematize and to computerize the generation of assembly sequences for several
reasons:

• Although many experienced industrial engineers have a knack for devising efficient ways to assemble a
given product, systematic procedures are needed to guarantee that no good assembly sequence has been
overlooked. For complex products, the number of feasible assembly sequences may be so large that
even skillful engineers may fail to notice many possibilities. The availability of a systematic procedure
that is proven correct and complete will guarantee that all feasible sequences and only the feasible
sequences will be generated.

• The planning aid programming chores in manufacturing are time consuming and error-prone. For
small batches of production, the cost of planning and programming can weigh heavily in the total
production cost. Moreover, the time spent in planning and programming may excessively delay the
actual production. The automation of these chores will expedite their execution, reduce their cost, and
improve their quality. Systematic procedures are needed in order to facilitate the automation of
planning and programming of assembly systems.

• In simultaneous engineering environments, the automation of sequence planning will help the designer
to assess the assembly process requirements of different design solutions for a given product For some
products, small changes in the design can have a large impact on the assembly alternatives.

• Autonomous systems for applications such as space or deep sea exploration will need the ability to
generate assembly or disassembly sequences that fit the particular situation they encounter. It is
virtually impossible to preprogram all possible situations those systems might face, particularly if
execution errors can occur and the systems are expected to recover autonomously.

• In less structured, more dynamic manufacturing systems or facilities there is a need to adapt the
assembly process to different machines. The need to produce different products in the same shop may
lead to the choice of an assembly sequence for a product that may not be the most efficient but uses the
idle equipment in the shop. Knowledge of all assembly sequence options of each product is needed in
order to optimize the overall use of machines and tools. Similarly, when the same product is assembled
in different stops, the knowledge of all assembly sequences is needed in the selection of the sequence
more suitable to the equipment available in each shop.

This paper presents an algorithm for the generation of mechanical assembly sequences and a proof of its

correctness and completeness. The algorithm takes a description of the product and returns the corresponding

AMD/OR graph representation of assembly sequences [17]. It is assumed that exactly two pa t s or subassemblies are

joined at each time, and that after parts have been put together they remain together. It is also assumed that

whenever parts are joined forming a subassembly, all contacts between the parts in that subassembiy are established.

These assumptions are con&stent with the trend towards product designs that are suitable for automatic

assembly [2t 5].



Unlike the work described above, which aimed at high level languages for robotic assembly, the work of
Bourjault [6] aimed at modeling the assembly process. Towards that goal he used two types of graphs to represent
products. The graph of contacts ("graphe de liaisons mecaniques" [6]) contains one node for each part in the
assembly, and one edge for each contact between two parts. Since the same pair of parts may have more than one
contact, the graph of contacts is not necessarily simple. From the graph of contacts, Bourjault defined the graph of
connections Cgraphe de liaisons fonctionelles" [6]) which has one node for each part in the assembly, and one edge
for each pair of parts that have at least one contact By definition, the graph of connections is always a simple
graph.

The model of assemblies presented in section 3 is similar to the attributed graph used previously [37,39] but
extended to incorporate the attachment of contacts. This extension is needed to make possible the reasoning about
the feasibility of assembly tasks.

2.2. Representation of assembly sequences

One assembly sequence can be represented by an ordered list of tasks; therefore it is possible to represent the set
of all assembly sequences by a set of lists, each corresponding to a different assembly sequence. Since many
assembly sequences share common subsequences, attempts have been made to create more compact representations.

One early attempt was the use of a set of tasks and a set of precedence constraints relating two tasks [15]. But as
discussed elsewhere [17], there are products for which standard precedence constraints cannot encompass all
sequences.

Directed graphs of assembly states can explicitly encompass the set of all assembly sequences. The nodes in
these graphs may be either a partition of the set of parts [18], or a subset of connections of pairs of parts [6, II].
Figure 1 shows a directed graph of assembly states for a three part product The nodes in figure 1 are labeled by the
partitions of the set of parts containing the subsets of parts of each subassembly already assembled at each state of
the assembly process. Lower and upper bounds for the size of these graphs as a function of the number of parts in
the product are presented elsewhere [18].

AND/OR [17] graphs of subassemblies can also encompass the set of ail assembly sequences. The nodes in these
AND/OR graphs correspond to subassemblies and the hyperarcs correspond to assembly tasks in which two
subassemblies are joined to yield a larger more complex subassembly. The hyperarcs point from the nodfe
corresponding to the larger subassembly to the nodes corresponding to the smaller subassenibiles. Figure 2 shews
the AND/OR graph of subassembiies for a three-part product The nodes in Ogure 2 are kbeled by ihe set of par^ thai
make up their corresponding subassemblies.

Although for three-part assemblies the AND/OR graph has more nodes than the directed graph of assembly states,
for assemblies with large number of parts the ANCHOR graph lias substantially fewer nodes than the directed graph of
assembly stales. Moreover, the AHUKM graph of sEbassemblies shows explicitly the possibility of poodle! execution
of assembly tasks. Xx>wer and upper lx>unds for the ske o^
in the product are presented elsewhere [IS].

Bourjault [6] shewed that a set of logical expressions can be used to encode tfie directed graph of assembly states.
For t product tint hasL connections between paks of pans, Bcwpmlt represented each state to the directed graph of
assembly states by a binary vector e={Xt .J^, • • • *if) in which the t* component is true or false respectively if the
i* connection is established in that state or not Let 5; be the set of states from which the fi1 connection can be
established without precluding the completion of die assembly. Cfeaiiy, if Si has K elements* each dement satisfies



Figure 1: The directed graph of assembly states of a three-part assembly

Figure 2: The AND CR graph for a three-part assembly

K I

wbem both the ami and the pnodoct mt logical opemmm* awl yki h eitfaer the symbol Xi if the A* element in 5f

cooGspoods to a slate in which die I* connection has been established, or the symbol Xj if the i^1 element in 5/
cocresponds to< t stale in which the Fd connection hm not been established. Boorptilt calls the left side of the
equation above tfke esmbttfmmm cmuUUmfor the i* conmctmn fcaMlil&ms cte i&lisabiliifi81 [<g> and he rqrosoits

FOT seme i^o<te»»
short By faiowii^ die estabiishmeot oo^

as iwl as ±e produces .^rapi cf ccnnecLions, me can reconstruct the directed .grsph of assembly states.

23* Generation of assembly plans

Pkiumtf has bee^ an important research tope in artificial tnfd%eoce9 and ihe AI approach has dominated much
of ffie research m rcrc: nsk planing û :,ng dcmain-Iri'dependen: meihC'ds. Urn centra] idea of domain independent
phmmg m fi> Mve CMK geoml pin|K^ kfemee engine which cm be used fur my domain by describing the initM
stale, ike goal* and Ike opeiators im a logic formtMsn. But dema-n-mdependent planners Mve saioiis limiratfans
thai pKliKte i^ff asc in ge»«atlng ««aably ^qiwm^ based on a dtesOTpiiaii of the product Chapman 110̂
reviews the MtemMm m domaiii-ii«^aMfc»t plmmmg and discusses tbdbr man limitations*



Bourjault [6] has explored ways to obtain the establishment conditions Ct without enumerating all the states in the
directed graph of assembly states. For example, he noticed that an affirmative answer to the question

• Is it true that the I th connection cannot be established if they * connection has already been established?

means that no C will contain expressions including Yi X-, and that C- will not contain expressions including \ X~,
unless the Ith and the 7th connections can be established simultaneously. Bourjault's method uses a cleverly chosen
sequence of questions that can in many cases expedite the obtainment of the establishment conditions for all
connections.

De Fazio and Whitney [11] proposed a set of questions smaller than that used by Bourjault The user of their
method must first draw the graph of connections corresponding to the assembly, and then answer a pair of questions
for each connection. For the i* connection, the questions are:

1. what connections must be done prior to doing the fi1 connection?
2. what connections must be left to be done after doing the Ith connection?

The answers to these questions should be expressed in the form of precedence rdationships between connecticttis or
between logical combinations of connections. For example, the answers to the two questions for the i* connection
Ct could be:

1. (Cj or (Ck and Cm)) -> Ct

2.Cf -* (Cs or (C, and CJ)
The symbol " -»" reads must precede, and Cj, C& Cm, C^ Cv and Cu are other connections between parts of the
assembly. Once the precedence relationships have been generated, a computer program can generate the assembly
sequences. Lui [25] describes a program that generates the assembly sequences based on the precedence
relationships and on the graph of connections.

Both of these approaches [6,11] lend themselves to interactive systems in which a computer program generates
the questions, a human expat supplies the answers, and the program thai generates the precedence relationships
between connections or between logical combinations of connections. For simple cases, these approaches have the
advantage that they exploit the engineer's intuitive understanding of parts relations and feasibility of operations. For
complex cases, it may be very difficult for a human expert to answer the questions and to guarantee the correctness
of the answers. And even assuming that the questions are answered correctly, proofs of correctness and
completeness of the algorithms are needed to guarantee that the resulting precedence relations are saiisfied by all the
feasible assembly sequences and only by the feasible assembly sequences. Neither Bourjault nor De Fazio aid
Whitney have formally proven the correctness ami completeness of their algorithms.

Furthermore, it seems very difficult to develop computer programs that will answer the questions in either method
directly from a description of the assembly; any system based on these approaches will need the human expert to
supply the answers. In the cases in which precedence relationships, together with the assembly's graph of
connections provide a useful representation of assembly sequences, an alternative to have the questions answered by
a human expert is to have them answered by a program thai takes as mpm the set of assembly sequences generated
by the algorithm presented in this paper.

3, A Relational Model for Assemblies

A mechanical assembly is a composition of pans infeftomected forming a stable unit Each pat is a sold object
P^rtsaie interconnected whenever they have one or more surfaces in contact Surface contacts between ports reduce
the ifegrees of freedom for relative motion. A cylindrical contact, for example, prevents any relative motion thai is
sot a ttanshtiofi along the axis or a rotation amend the axis. Attachments may act on surface contacts and eliminate



all degrees of freedom for relative motion. For example, if a cylindrical contact has a pressure-fit attachment, then
no relative motion between the parts is possible.

The representations of products developed for high level robot programming languages emphasized the geometric
aspects such as the shape of the parts and the contacts between parts. That emphasis is consistent with the goal of
generating a sequence of robot actions that will join two subassemblies, given the sequence in which parts or
subassemblies should be put together. However for the generation of the assembly sequences, a purely geometric
description of the product is not sufficient There are sequences that would be feasible from a geometric point of
view, but are unfeasible in practice due to forces resulting from fasteners. Therefore, a model of assemblies to be
used in generating assembly sequences must represent explicitly the fastenings that bind one part to another.

The representation of assemblies used by the algorithms described in sections 4 and 5 is a relational model that
includes three types of entities: parts, contacts, and attachments. It also includes a set of relationships between
entities. Both entities and relationships can have attributes. Formally, the relational model of an assembly is a

, C ,A ,R , a-functions) in which
• P is a set of symbols, each of which corresponds to one part in the assembly. No two elements of P

correspond to the same part

• C is a set of symbols, each of which corresponds to a contact between surfaces of two parts of the
assembly. No two elements of C correspond to the same contact ITie two surfaces must be compatible.
An example of a pair of compatible surfaces are a cylindrical shaft and a cylindrical hole. The same
pair of parts may have moie than one contact And the same surface of one part may be in contact with
surfaces of two or more otlier parts.

•A is a set of symbols, each of which corresponds to an attachment that acts on a set of contacts. No two
elements of A conespond to the same attachment An attachment always has an agent, which can be
either the attached contact* or another contact, or a part The access to an attachment may be blocked
by one or more parts.

• R is a set of symbols, each of which corresponds to a relationship between pairs of dements of
PuCuA.

is a sec of attribute fimctions2 whose domains am subsets of PuCuAuR. These
fractions apodal© entities <x relationships to their characteristics such as the type of attachment, the
entities related by a idmimMp, and the shape of a part

This de ilnition of a relational model represe ni£ ticn of assemblies is sufficiently general to encompass a large class
of assemblies. The set of functions can be enlarged lo include all the infixmatioa that might be necessary to
gomMcmsmiAysajmitm* In piicticejt may be convex Oor
cmratt ejsjwAneilal implementation Ito the ^ ^ ^

• Thecottarbetwera , •'' \ /
• ptanr surface aod another planar surface,

• cylindrical d»ft and cylMrical hole,

• polyhedral shaft and polyhedral hole,
• thieadsd cylindrical shaft and ifereaded cylindrical bole.

2A ftmcooo k ^ f i ^ m a safe§et rfiw cirtotuni product rftwo sets (the domain and fhe mnfe) lhat ha* no two pairs wfeote fejt dement* an
tike «nis» m i snei fttf «v«y dement n te ^ m i i tppemiy ia one pair.



• The types of attachments are:
• glue attachment,
• pressure fit attachment,
• clip attachment,
• screw attachment.

• The attribute functions are the following:
• The function that associates a part to a description of its shape:

shape:P ->S
where S is the set of all shape descriptions.

• The function that associates a part to a description of its location:

location:P -> T

where T is the set of all 4 x4 homogeneous transformation matrices. The matrix T- associated to
part p-9 corresponds to the position and orientation of a reference frame attached to part p> with
respect to a global frame of reference for the whole assembly. The choice of this global frame of
reference is arbitrary, but the same global reference must be used for all parts.

• The function that associates a contact to its type:

type-of-contact:C -» contact-types

where contact-types- {planar, cylindrical, slot, threaded-cylindrical}.
• The function that associates a planar contact to the coordinates, with respect to the assembly's

global frame of reference, of a vector normal to the contact plane

normal: {c\ [c e C] A [type-of-contact(c)=j>lamr]} —»R3

• The function that associates a planar contact to the part-relationship that relates die contact to the
part that is back of the contact

back: {c\ {c e C] A ltype-of-contact(c)=ytexm}} -» R
This function must be consistent with the function normal.

• The function that associates a planar contact to the part-relationship thai relates the contact to the
part that is forward of the contact:

forward: [c\ [ c € C] A ltype-rf-(xntaa(c)=j&am[}} - » #
This function must be consistent with the function normal,

• The function that associates a cylindrical, slot, or threaded-cylindrical contact to the coordinates,
with respect to the assembly's global frame of reference, of the line of the axis of both the hole
and the shaft.

axis: {c | [c € C] A
itype-of-contact(c) € (cyUodticaI9slot,this^ } J} ~*R3 x R3

• The function that associates an attachment to its type:

type-cf—attacfamentiA —> attachment-types
vfb@mamtchmem~types^{cBp , pressure, screw t glue}.

• Hie function that associates a relationship to its type:

type~of-relatiomsMp:R -» rekstwrnsfdp-iypes

where relationship-types = { part-contact; Wigu-Miachmtni* ageBtsttadtanait, bloddng-part-
}



• The function that associates a part or a contact to its part-contact relationships:

part-contact-relationships: P u C -» II (R )

where II (R) is the set of all subsets of R.

• The fiinction that associates a part-contact relationship to its part

part: {r\[r e R] A [type-qf~retationship (r)=part-cont&ct]} —> P

• The fiinction that associates a part-contact relationship to its contact

contact: {r\ [r e R] A [type^f-relationship(r) =pan-contact]} -» C

• The fiinction that associates an attachment or a contact to its target-attachment relationships:

target-onochment-relationships: CKJA -> TL(R)

•The function that associates an attachment, a contact or a part to its agent-attachment
relationships:

agent-amckment-relationships:PvCuA -*TL(R)

• The function that associates a target-attachment relationship to its contact

target: {r\[r e R] A [type-of-relationsMp(r)^t2iga'2^X2^mmt]} -> C
• The function that associates an agent-attachment relationship to its agent

agent: {r\[r € R] A [type^f^elationsMp(r)=2igmt-attachin£nt]} -» PKJC

• The function that associates a blocking-pait-attachment relationship to its blocking-pan

blocking-part: {r\ [r e R] A
A [OP^~^ r^^^^( r)=blocldng-part-atfachment]} -» P

«The function that associates a target-attachment, a blocking-pait-attachment, or an agent-
attachment relationship to its attachment

attachment: [r\[r € R] A [type-of~relationship(r) € B]} -» A
with B » { teigGt-dftachineiii, blockirsg-part-att&chfiieot, agent-attachment ] .

The reladonal iTiOdel of an assembly must be ccrisistent. Forexample, i f^f lnC^)^^ and ^^racr(r !)=c1 then
f| e part-cmitac$-reiati@nsfips{pi) awi r t 6 part-a?ntact-relationsMp$(pi) mist hohL Furtfaennofe, tte
re^ticnal model of an assembly most satisfy some syntactic constraint^ the most Important of which are:

• every comae: must have exactly iwo part-contaci relationships;

• every put must have at least one part-contact relationship, except in the case the assembly has only one
pat;

• every attachment must lusve at least one taigct-attachmait raJaiioiiship, and at least one agent-
attachrnent

Ttie relational model of ar: assembl>T am be represented by a graph pies the associated attribute functions. Figure
3 shows a simple product, and Ggmt 4 shows its ecrrespending relational model graph.

The nodes In figure 4 correspond :c tte entities. Nodes corresponding to part endiies one rectangles, nodes
aw^xx i lBf to ocMilact entities are tildes, a d nodes caaespaodiiv to ai t^ .411 ncdes
ccmtaki W ^ s iKfcrtmg their contspoiicifig entities.. The attrfc^ functions associated with the contact entities a c
shown in Table 1.

Tic libeled lues comiectEiig two nodes k figure 4 antspood to the relauonshrps, Bxc^>t fcr R5f RS, R:.'C,

R14, Ml retatkntfaqis are part-contact Rdationsliifw FB and R13 are t a g ^ - ^ K t e a i t ; :lkqr indfc^ 'tta the
contacts C2 and C5, respectively* axt attached Relationships R6 and R14 mt accm-attachiaeiit; they Mutate that the
agCBts of the attachments are the taiget cc«^ts ttemselves. Next social (see figures 9 and 10) stows an example
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Figure 3: A simple product in exploded view

Figure 4: The relational model graph for the product show in figure 3

of an attachment whose agent is not the contact itself.

Given the relational model of a product (P f C , A ,R, a-fitnctions), a number of other useful representations
may be generated For example, the graph of connections of the assembly, as defined by Bonrjault [6] (see section
2), is the simple graph ( V,E) in which

V=P

A 3 C 3 T J 3r 2 [ [c € C]A>[[ri,r2}

, ,.i(' „ A iPi^part^)] A lPj**part(r2)] J }

H^»e 5 dDws1 tl» grajrfi of comiectioiis far the simple product shown in figure 3.



Table 1: Attribute Functions for the Contact Entities in Figure 4

type-of-contact

normal

back

forward

axis

part-contact
relationships

target-attachments
relationships

agent-attachment
relationships

C1

planar

(010)

cap

stick

nil

(R1 R2)

nil

nil

C2

threaded-
cylindrical

nil

nil

nil

((000) (010))

(R3R4)

(R5)

(R6)

C3

cylindrical

nil

nil

nil

((0 00) (010))

(R7R8)

nil

nil

C4

planar

(010)

stick

handle

nil

(R9 R10)

nil

nil

C5

threaded-
cylindrical

nil

nil

nil

((000) (010))

(R11 R12)

(R13)

(R14)

C=»cap S = stick R = receptacle H = handle

Fipore 5: The graph of connections for the product shown in Figure 3

3.1. Sobassemblks

A subassembly is a nonempty subset of parts thai either has only one element (Le. only cue part), or is sodi thai
every port has at least one surface contact with another part in the subset. Although there aie cases in which It is
possible io join the same pair of parts in more than one way, a unique assembly geometry will be assumed for each
pair o€ parts. This geometry corresponds to their relative location in the whole assembly. A sobassembly is said to
be stable if its parts maintain their relative position and do not break contact spontaneously* AM one-pan

Given t t e relational model of a product (P, C , A f E , a~fitnctwns)9, the reJ&fknai model of a stibassenibty of
that product is a rdstiaoa! model (Ps 9CSfASvRs* a-fw®ctionss) 'm which Ps &P*Csc C A s c A % g if,
m i every function it €t-fitmctmnsS9 n a subset erf the carrespowling fmx:A» in a-fiim^ns. In additfott

rdatimal 0KxW<rf«ass«My most ttdsfy. die
{f s * C 5 , A5 9 X 5 , o^liiictfm95>Gf a sobasseiiibiy of (P ,C tA,R 9 a-fumAms) most also satisfy ttecoasfcauit:



Vc Vrj Vr 2 [[c e C] A [{rl9r2} = part-contact-relationships{c)] A

A [part(r2) e Ps] ] - > [ c e C5]
This constraint corresponds to the assumption that whenever parts are joined forming a subassembly all contacts
between the parts in that subassembly are established. It requires that those contacts in the model of the assembly
whose two part-contact relationships involve parts in the subassembly must also be in the model of the subassembly.
For example, for the product shown in figure 3, there is no subassembly relational model in which Ps= { CAP,
RECEPTACLE, STICK }, and C5= { C2, C3 }. If both the cap and the stick are in Ps, then contact C1 must also be in
Cs. This constraint allow the characterization of any subassembly (Ps 9CS,AS ,RS, a-functionss) of a product
(P , C , A 9 R , orfunctions) by its set of parts Ps only. This feature will be used in the algorithm for the generation
of mechanical assembly sequences described in the subsequent sections. In that algorithm, the intermediate
subassemblies will be characterized by their sets of parts. Given a subset of parts Ps> there is a corresponding
subgraph (VS,ES) of the assembly *s graph of connections (V,E). In this subgraph, the set of nodes Vs includes all
the elements of V that correspond to the parts in Vs. And the set of edges Es includes all the elements of E that have
both end points in Vs. A subset of parts Ps characterize a subassembly if and only if the corresponding subgraph
(VS,ES) is connected (Le. has only one component). A predicate that is satisfied only by fee siibsets of parts that
correspond to subassemblies can be defined as follows:

Definition 1: The subassembly predicate associated to subassemblies of assembly
W=(P ,C tAtR 9a-functions) is the predicate

sa^:U(P) -> {true,false}

tree if the subgraph (VS%ES) in which

E = { (Pi*Pj) I lPi € PS1A lPj € Ps] A

A 3c 3rj 3r 2 [ [c € C] A [ {rx ,r2] =part-contact-relationsMps(c)j A

A lp=pan{r{)\ A [/^»/wt(r2)] 1 }

is connected.

4. Decompositions of a Relational Model of an Assembly

The problem of generating the assembly sequences for a product can be transformed into the problem of
generating the disassembly sequences for the same product. Since assembly tasks are- not necessarily reversible, the
equivalence of the two problems will hold only if each task used in disassembly is the reverse of a feasible assembly
task, regardless of whether tins reverse task itself is feasible or not The expression disassembly task, therefore,
refers to the reverse of a feasible assembly fade

As mentioned in the introduction, it was assumed thai exactly two parts or sabassemblies are joined at each time.
It was also assumed that whenever parts are pined forming a subassembly, ail contacts between the pans in thai
»feip«ibly sre established. In the disassembly problem* each lade splits one subassembly into two smaller
siibassemblies, maintaining all contacts between the pans in either of the smaller subassemblies,

A decomposition approach can be used to solve the disassembly problem. In this approach the problem of
disassembling one assembly is decomposed into two distinct subprobiems, each being to disassemble one
sotetsembly. Every decorapoation most correspond to a disassembly tasL If solutions for both subproblems that
itsofe from the cfaxHtqxmlKffls are found, a solution for the original problem can thai be obtained by combining the
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solutions to the two subproblems and the task corresponding to the decomposition. For subassemblies that contain
one part oily, a trivial solution containing no assembly task always exists. This decomposition approach lends itself
to an AND/OR graph representation of assembly sequences [17]. The correspondence between the AND/OR graph and
the directed graph representations of assembly sequences is discussed elsewhere [18].

From now on, references to products, to assemblies, or to subassemblies are references to their relational models,
which are always assumed to be consistent and to satisfy the syntactic constraints of a relational model of an
assembly. A real product will be referred to as a. physical product, a real assembly as & physical assembly, and a real
subassembly as & physical subassembly.

A decomposition of an assembly {P , C ,AtR, a-functions) is a pair of its subassemblies

(Psi'Csi'Asi'Rsi'fi-fiMfoMsi) n®1 (ps2>cn>Asz*RS2>a^fi*nctionssz) such that PS\^Ps2 = p and
PS1 n P ^ = 0 . The set Csi-$2~C-(CSIuC^) is referred to as the contacts of the decomposition; they are the
contacts that belong to C and do not belong to either CS1 or C^ . The contacts of a decomposition of an assembly
define a cut-set in that assembly's graph of connections. Conversely, a cut-set in the graph of connections of an
assembly deilne a decomposition of that assembly.

A decomposition of an assembly is said to be feasible if it satisfies three predicates: GEOMETRIC-FEASIBILITY,
MECHANICAL-FEASIBILITY, and STABILITY. These predicates reflect the feasibility of joining the physical
subassemblies to produce the physical assembly.

The GEOMETRIC-FEASIBILITY predkale is true if there is a collision-free path to bring the two subassemblies
into contact from a situation in which they are sufficiently far apart For the assembly shown in figure 3, for
example, there is no collision-free, path that will bring the stick into contact with the subassembly made up of the
cap, the receptacle, and the handle. Joining the stick to the subassembly made up of the three other parts is said to
be geometrically unfeasible. Joining the stick to the sobassembly made up of the cap and the receptacle, however, is
geometrically feasible since ihere is a collision-free path to bring the two subassemblies into contact

The MECHANICAL-FEASIBIUTY predicate is true if it is feasible to establish the attachments that act on the
contacts of tic decomposition. Figure 6 shows a three-part assembly in which the part in the centra* (part 3) is
attached to die part in the right (part C) through two built-in belts. Although it is geometrically feasible to join the
part in the right (part C) to the sobassembly made up of the two other parts, it is impossible to establish the
attachments because the access to the bolts is blocked by the part in the left (part A). Joining the part in the right
(port C) IO the subassembly made up of the two other parts is saM to be mechanically unfeasible.

in either physical subassembly maintain their relative position and do
not break contact spontaneously. For the assembly shown in figure 7, the sebassembly made up of the parts 3 m& C
is not stable since the two parti wil break contact spontaneously dee to gravity, regardless of their orientation in

la practice, me feasibility of joining two subassemblies depends on the avaHabliity of adequate resources such as
machines, tools, and fixtures. Per the general analysts' presented here, it is assumed that ail such resources are
available.

As ilsctiwea » section 3, the subasseoiWies of a given assembly ¥ * < F fC9A»R t a-fknetiom) tit* Ut;

mmmm Mm tm Utmm put* • md C in fipws 7 are not tunded by
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Figure 6: An assembly that illustrates the mechanical feasibility predicate

Figure 7: An assembly that illustrates the stability predicale

characterized by their sets of parts. Therefore, the three predicates described above can be defined as follows:
Definition 2: The geometric-feasibility predicate associated to subassembiies of assembly

T s ( f , C , A , i ? , ar-functions), in which P-{Pi,p2^
 mmm ,/^Kisthepredicaie

gfo:Tl(P) xTl(P) - • {true,false}
with ^/'4/(01,92)=true if and only if O r oG 2 =0 and there is a collision-free path to bring the two
physical subassembiies of T characterized by Ql and 82 into contact from a situation in which they are
sufficiently far apart

Definition 3: The ™.4yhfl'*»nrt-ftiM»frffify predicate associated to subasseinbiies of assembly
M?=(P , C ,A 9R ,a-^fumtiQm)/mwtwdfoP*z{pltp2* •• - , % } , is the predicate

x H{P) -»

with gf^CQj ,02)=true if and only if 0, n 82=0V arid it is feasible to establish me attachments that act on
the set of contacts between parts in Qt and parts m %.

Definition 4: The stability predicate associated to sufaassemblles of assembly
W*s{P ,C9A,R> ct~fimciioMS%kiwimiiP^{pltp2% • - • »pN\

s ^ i l l ( ? ) —> (true,false}
with ,s^(B)=tnie if and only if the parts in 8 maintain their relative position and do not tofeak
spontaneously.

Tim GEOMETRIC-FEASIBILITY predicate can be computed using path planning tlgtmthms [13,20,38] to
genente a osilisioa-free padi to taring the two subasseinblies kito contact, or, equivakotly, a c»llMoii»frec path to

the two sobassemblies. These algorithms typically tavoive large amounts of conqputstion and more
eBSdat approaches to genera! path feasibility t&^s are needed For many industrial assemblies, the computation of
geometric feasibility cm be significantly reduced by perfanting a ample local analysis which can indicate that a
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collision-free path does not exist For a given decomposition, this local analysis looks at the assembled assembly
and checks whether there exists an incremental translation of one of the two subassemblies that is not blocked by
any of the contacts between one of its parts and one of the parts in the other subassembly.

For many types of contacts there arc very few feasible motions between the parts. For example, the only direction
along which a pin in a hole can translate is the direction of the axis. Whenever the part or subassembly has such a
constraining contact, the local analysis can be performed by checking the compatibility of the most restrictive
contact with all other contacts. In the case of the pin in the hole, the local analysis consists of checking whether a
translation of the pin along its axis is not blocked by any of the other contacts between the pin and the other part or
subassembly.

The local analysis is more difficult when the part or subassembly to be disassembled is constrained by planar
contacts only. Each planar contact leaves an infinite number of unconstrained directions along which translation is
possible. All these directions have positive projection over the normal to the surface of the blocking part, pointing
towards the outside of the blocking part

In order to decide whether a set of planar contacts does not completely constrain one part or subassembly, one
must find whether there is a nonzero solution to the system of linear inequalities

where #;«[/*; 2 ni2 r. /3] is the normal to the surface of Lhe/^ contact. This system erf linear inequalities defines a
polyhedral convex cone. It has been shown [16] that such a polyhedral convex cone can be built up from its
(unique) d-dimensional face and its Oi-f l)-dimensional faces (if any), where <i=3-rank(Af), and M is the matrix
of the coefficients n^j. If d is greater than zero, then the polyhedral convex cone has a face of dimension greater
than zero and therefore the system of inequalities has a nonzero solution. If di is equal to zero, thai the system of
Inequalities 1ms a nonzero solution only if the polyhedral convex cone has at least one one-dimensional face. The
existence of a one-dimensiona! face can be determined by checking the }f*(N-1) pairwise intersections of the
pknes correspendmg to the mequalities. Each intersection of r^o distinct planes is a Ime. If one of the two unity
vectors, j and - £ along the intersection line of two piano has positive projection ova- a i the normal vectors
%»«2» • • • *%»then the half-line defined by that vector (/ or - £ ) is a one-dimensional fece of the polyhedral
convex cone.

If there is a nonzero solution to the system of inequalities, then the part or si:bassembly is not completely
constrained. Otherwise the subassembly is completely constrained, and there is no need to look for a collision free
pith.

Our current implementation is not limited to only checking the existence of a nonzero solution to the system of
linear inequalities, but includes the computation of the polyhedral convex cone of all solutions. Appendix I
addresses tine reasoning about the feasibility of local translations for robotic assembly of a pan constrained by planar
contacts.

The ose-fubess of the local analysis is further enhanced by the use of vkmal contacts to describe blocking
relationships equivalent to contacts. In the product shown in figure 3, for example, if the stick did not touch the
handle, the local analysis as described above would indicate thai the suck cm iranslaie (im^mrnnmEj) along its
mm* Iri a case liie tMs. a v ; r?^ /p la ra^

tte bfockiitg of ifae stick by the handle.

MMCMMff€SL*FBASiBaiIY predicate cm be compiitei by inspection of the relational model of t te
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R12

Figure 8: The relational model of the assembly shown in figure 6

assembly. In our current implementation, a procedure MECHANICAL-FEASIBILITY checks whether the
attachments acting on the contacts of the decomposition are not blocked in the resulting assembly, and are not
present in either one of the subassemblies. Two examples will illustrate this computation.

Figure 8 shows the relational model of die assembly shown in figure 6. Relationships R10 and R13 are agent-
attachment, relationships R11 and R14 are target-attachment, and relationships R9 and R12 are blocking-part-
attachment; all other relationships are part-contact The relationships R9 and R12 indicate that part A blocks the
access to attachment A2 and to attachment A4. One of the disassembly tasks whose mechanical feasibility must be
computed is the separation of part C from the subassembly made up of parts A and B. The mechanical unfeasibility
of this task can be detected by inspection of the relational model which indicates that the attachments acting on the
contacts of the decomposition are blocked by part A. After part A is removed, those attachments will no longer be
blocked and part C can be separated from part B.

Figure 9 shows an assembly that has three parts: a box, a cover, ami a clip that attaches the cover to she box.
Figure 10 shows this assembly's relational model. Relationships R7, R8, and R§ in figure 10 are target-attachment;
they indicate that the three contacts C1, C2, aid C3 are attached by attachment A1. Relationship Rio is agent-
attachment; it shows that the agent of attachment At is the clip. One of disassembly tasks whose mechanical
feasibility must be computed is the separation of the cover from the subassembly made up of the box and the clip.
The mechanical unfeasibility of this task can be detected by inspection of the relational model which shows that the
contacts cannot be detached while the agent of the attachment is. present. The separation of the clip from the
subassembly made up of the box and the cover, however, is feasibte because the agent of the attachments is being

The computation of the STABILITY predicate will depend oa additional assumptions about the assembly process.
For example, it may be assumed that all subassembUes o n be made stable through the use of jigs aid fixtures. In
oar current implementation we made this assumption and wecb«^ compute the STABILITY predicate. In previous
wtxk aimed at selecting an assembly sequence [17], we assessed the stability of a subassembly by the degrees of
freedom for relative motion between parts. Similarly, one am establish a threshold on the degrees of freedom for
reiaftivc motion ®bmt which a subassemWy would be comidared unstable.
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Figure 9: Assembly example

Figure 10: Relational model for the assembly example show in figure 9

An alternative approach for the computation of the STABILITY predicate is to check whether there is an
orientation of the subassembly such that there is no relative motion between puts due to gravity. As a first
approximation, faction can be ignored since it typically helps the stability. Boneschanscfaer et aL [4] have taken this
approach with t ie additional assumption that the subassembly si is on a table. They used a convex hull algorithm ID

find candidate orientations in which the subassembly can sit on a table, and for fiiese orientations they 'Checked the
static stability. Their analysis lakes friction into account.

For the discussion in the next section, which presents the algorithm for generating the assembly seqaenees, k is

that there zxisi correct algoritiuns for computing the three predi^cates discussed above, awl that they are



procedure FEASIBILFTY-TEST(decompositiony assembly)

return AND ( GEOMETRIC-FEASIBIUTY{decompositiont assembly),
STABIUTY(decomposition\
MECHANICAL-FEASIBIIJTY^decomposition, assembly) )

end procedure

Figure 11: Procedure FEASIBILITY-TEST

5. The Algorithm for Generating All Assembly Sequences
As discussed in the previous section, this research takes a decomposition approach to the problem of generating

assembly sequences. The basic idea underlying the approach is to enumerate the decompositions of the assembly
and to select those decompositions that are feasible. The decompositions are enumerated by enumerating the
cut-sets of the assembly's graph of connections. Knowledge of the feasible decompositions allows the construction
of the AND/OR graph representation of assembly plans. Each feasible decomposition corresponds to a hyperarc in
the AND/OR graph connecting the node corresponding to the assembly to the two nodes corresponding to the two
subassemblies. The same process is repeated for the subassemblies and subsubassemblies until only single parts are
left

It has been shown [12,21] that the set of all cut-sets of a graph (VyE) is a subspace of of the vector space over
the Galois field modulo 2 associated with the graph. The vectors in this vector space are the elements of Y1(E), the
set of all subsets of E, It has also been shown that the fundamental system of cut-sets relative to a spanning tree is a
basis of the cut-set subspace. Therefore, the cut-sets of a graph can be enumerated by constructing a spanning tree
of the graph, finding the fundamental system of cut-sets relative to that spanning tree, ami computing all the
combinations of fundamental cut-sets. In our current implementation, the cut-sets are enumerated using a more
efficient approach. We first look at all connected subgraphs having the cardinality of their set of nodes smaller than
or equal to half of die cardinality of the set of nodes in the whole graph. For each of these subgraphs, the set of
edges of the whole graph that have only one end in the subgraph defines a cut-set if their removal leaves the whole
graph with exactly two components.

Figure 12 shows the procedure GET-FEASIBLE-DECOMPOSTIJONS which takes as input the relational model of
an assembly and returns all feasible decompositions of that assembly* The procedure first generates the graph of
connections for the input assembly and computes the cut-sets of this graph. Each cut-set corresponds to a
decomposition. The procedure GET-DECOMPOSITIONS is used to find the decomposition that corresponds to a
cut-set, and the procedure FEASIBIIITY-TEST discussed in the previous section is used to check whether that
decomposition is feasible or not The feasible decompositions are stored in the list feasible-decompositions which
was empty at the beginning. After all cut-sets have been processed, the procedure returns the list
feasible-decompositions.

An example will illustrate the computation of the feasible decompositions of an assembly. Mien passed the
relational model of the assembly in figure 3, procedure GET-FEASIBLE-DECOMPOSTTIONS will compute the
graph of collections shown in figure. 5, and all its cut-sets, which are indicated in figure 13. The analysis of those
cut-sets will indicate the feasible decompositions. The first cut-set yields a feasible decomposition since it is
feasible to join the cap and the subassembly made op of the three other parts. The second cut-set also yields a
feasible decomposition because it is feasible to join the subassembly consisting of the cap plus the receptacle, and
ihe sabassembly consisting of the stick plus the handle. The third cat-set, however, does not yield a feasible
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procedure GET-FEASIBLE-DECOMPOSITIONS(assembly)

feasible-decompositions «- NIL

graph <r- GET~GRAPH-0F-C0NNECI70NS(assembly)

cut-sets <- GET-CUTSETS(graph)

while cut-sets is not empty do

begin loopl

next-cutset <- FIRST(cut-sets)

cut-sets <- TAIL(cut-sets)

next-decomposition «- GET-DECOMPOSniON(next-cu$-set)

iiFEASWILITr-TEST(next-decomposUion)
tkenfeasible-decompositions <

end loopl

retwmfeasible-decompositions

end procedure

Figure 12: Procedure GET-FEASIBLE-DECOMPOSITIONS

cot-1

....cnt-6

Kginre 13: The cut-sets of tte grai* of ccunections for the assembly siiown in Rgnre 3

decomposition, since it is not possible to join the stick and the subassembly made up of the three oLher
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sixth cut-sets.
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procedure GENERATE-AND-OR-GRAPH(assembly)

open <r- UST(GET-POINTERS(UST(assembly)))

closed <r- NIL

hyperarcs <- NIL

while open is not empty do

begin loopl

next-subassembly «- FIRST(ppen)

open <— TAILippen)

closed <- UNION(closed,UST(next-subassembly))

decompositions-of-next-subassembly <- GET-FEASIBIJE-DEC0MP0Sn7ONS(mxt-siibas$embly)

while decompositions-of-next-subassembty is not empty do

begin loopl

next-decomposition <- FlRST(decompositions-of~next-sid>assembly)

decompositionsof-next-subassembly <— TAIL(decompositions^f-next-suh€Lssemhly)

subassemblies <- GET-POINTERS(next-decomposition)

hyperarcs <- UNION(hyperarcs9 LISTiLISTinext-sitbassembly, subassemblies)))

while subassemblies is not empty do

begin Ioop3

next-subassembly « - FIRST(subassemblies)

subassemblies 4 - TAIL{subassemblies)

if next-subassembly is not in open or in closed, add it to 0/wi; otherwise ignoie it

end

end loopl

weimmLISTXctosed, hyperarcs)

end procedure

Figure 14: Procedure GmERAZE-AND~OR-GRAPH
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generated.

The procedure takes one element of open at a time, moves it to closed, and uses procedure
GET-FEASIBLE-DECOMPOSITIONS to generate all decompositions of the relational model pointed by that
element For each decomposition, procedure GENERATE-AND-OR-GRAPH uses the procedure GET-POINTERS to
get the pointers to the relational models of the subassemblies. Procedure GET-POINTERS checks whether each
resulting subassembly has appeared before or not. If the subassembly has appeared before, its pointer is used,
otherwise a new pointer is created. The new pointers are inserted into open. Each decomposition yields one
hyperarc of the AND/OR graph.

Figure 15 shows the resulting AND/OR graph for the product shown in figure 3.

A more efficient implementation of the method for the generation of assembly sequences presented above will
include additional tests aimed at avoiding unnecessary computation4. One such test is to check whether the
feasibility of a decomposition follows from the feasibility of other decompositions. For example, the feasibility of
the decomposition corresponding to hyperarc 10 in figure 15 follows from the feasibility of the decompositions
corresponding to hyperarcs 4 and 5. If it was geometrically and mechanically feasible to disassemble the handle
from the whole assembly (hyperarc 4), then it is geometrically and mechanically feasible to disassemble the handle
from a subassembly. And since the subassembly made up of the stick and the receptacle is stable (hyperarc 5), it
follows that the decomposition corresponding to hyperarc 10 is feasible. This test indicates that if the
decompositions corresponding to hyperarcs 4 and 5 have already been analysed and found to be feasible, then it is
not necessary to perform the computation corresponding to procediffe FEASIBILITY-TEST in the analysis of the
decomposition that corresponds to hyperarc 10. Similarly, another additional test would check whether the
unfeasibility of a decomposition follows from the unfeasibility of other decompositions already analysed.

6. Analysis of the Algorithm

This section presents an analysis of the algorithm for the generation of all assembly sequences. First, a proof of
the correctness and completeness of the algorithm GET-FEASIBLE-DECOMPOSIUONS is presented. These results
are then used to prove the correctness and completeness erf the algorithm GENERATE-AND-OR-GRAPH. At the
end, an assessment of the computation involved in executing GEM2RATE-AND-OR-GRAPH is presented.

6 X The correctness of algorithm GET-FEASIBLE~DECOMPOSITIONS
The partial correctness of the algorithm GET-FEASJBLE-DECOMPOSJTTONS is immediate. Tlie list cuts is

initially empty. Only feasible decompositions are added to the list cms. Therefore, the list returned by
GET~FEASBLE-DECOMPOSniONS does not contain any element that is not a feasible decomposition of the

The total correctness follows from the fact that there is only a finite number of cut-sets in a .'graph. The list
cut-sets contains initially all cot-sets of the graph of fmctiood oomectto At
each execution of tooplt one element is removed from the list cut-sets. Therefore, after a finite number of
execalioTS of hopl the list C ^ J ^ S becomes em

This poof m m e s t t e Asdfsoissed
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Figure 15: Hie ANDOR graph for the assembly stown in figure 3
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in the previous section, the enumeration of the cut-sets of a graph is studied in graph theory; for example, Deo [12]
and Liu [21] discuss that problem.

This proof also assumes that it is possible to decide correctly whether a decomposition is feasible or not, based on

geometrical and physical criteria, as discussed in the section 4.

6.2- The completeness of algori thm GET-FEASIBLE-DECOMPOSITIONS

There is a one-to-one correspondence between cut-sets in the graph of connections of an assembly, and the
decompositions of that assembly. Therefore, since algorithm GET-FEASIBLE-DECOMPOSmONS goes over all
cut-sets of the graph of connections, all feasible decompositions will be generated

As in the proof of correctness above, this proof of completeness assumes the use of a correct and complete
algorithm far the generation of all cut-sets of a graph, and a correct algorithm for deciding the feasibility of a
decomposition.

63* The correctness of algorithm GENERATE-AND-OR~GRAPH
l i s t closed is updated at only one point, and it only gets elements that were previously in the open list The open

list contains initially a pointier to the relational model of the assembly input, which is a node of the AND/OR graph,
l is t open is updated inside Ioop3 where it gets pointers to the relational models of the subassemblies that are part of
a feasible decomposition, and therefore, are nodes of the AND/OR graph. Therefore, the elements in the open list,
and consequently the elements in the closed list, are always pointers to relational models either of the original
assembly, or of subassemblies thai take part of a feasible decomposition.

The hyperarcs list is initially empty. It is updated only inside Ioop2 where it gets the hyperarc corresponding to a
feasible decomposition. Therefore, algorithm GET-FEASIBLE-DECOMPOSITIONS can only return a set of nodes
and a set of hypeiarcs of the AND/OR graph. This establishes the partial correctness of the algorithm.

List open gets only subassemblies and no subassemhly is inserted more than once. Since there is a finite number
of subassemblies, the algorithm terminates. This establishes the total correctness of the algorithm.

6.4. The completeness of algori thm GENERATE-AND-OR-GRAPH

Since algorithm GET-FEASIBLE-DECOMPOSITIONS is complete, all possible decompositions of all
sobassembiies that are inserted into the list open yield a hyperarc. Furthermore, all subassemblies that result from a
decomposition are inserted into list open, and later are moved to list closed. Therefore, the first list returned
contains all subassemblies that resulted from some decomposition, and the second list returned contains one
hyperarc for each decomposition of each subassembly.

6 5 . Complexity
The amount rf computation involved in the generation erf the AND/OR graph for a given assembly depends on the

number N of pans that mate op the assembly, on how interconnected those parts are, and also on the resulting
ANQ*OR graph.

Tte number of prospective decompositions (Le. cut-sets of the graphs of functional connections) that must be
analysed win be used in this section as a measure of tte amount of computation involved in the generation of all



assembly sequences5. Two models for how the parts in the assembly are interconnected are considered in order to
provide bounds in the estimate of computational complexity:

1. a strongly connected assembly in which every part is connected to every other part; and
2. a weakly connected assembly in which there are N-l connections between the N parts, with the Ith

connection being between part the Ith, and the (z+l)4 parts.
And three possibilities for the resulting AND/OR graph are considered:

1. a balanced tree AND/OR graph in which there is at most one hyperarc leaving each node and this
hyperarc points to two nodes whose corresponding subassemblies either have the same number of
parts, or their number of parts differ by one;

2. one-part-at-a-time tree AND-OR graph in which there is at most one hyperarc leaving each node, and
this hyperarc points to two nodes one of which corresponds to a one-part subassembly; and

3. a network AND/OR graph in which there are as many hypearcs leaving each node as there are cut-sets in
the graph of functional connections of the node's corresponding subassembly.

The resulting total number D of decompositions that must be analysed as a function of the number N of parts that
make up the assembly for each possible combination of how the parts are interconnected and the type of the
resulting AND/OR graph is:

L Weakly connected assemblies:
a. Balanced tree AND/OR graph: the number of prospective decompositions that mist be analysed

is N-l for the initial assembly, N-2 for all subassemblies, N-4 for all subsubassemblies, and so
on. Therefore6,

b. One-part-at-a-time tree AND/OR graph: the number of prospective decompositions that must be
analysed is N-l for the initial assembly, N-2 for the (N-2) part subassembly, N-3 for the
(JV-2)-part subassembly, and so on. Therefore,

M—1

-- +2+1 - T (N-i) m N<N~l)

c. Network AND̂ OR graph: the number of prospective deccmpositksiis that most be analysed is
N-l for the AT-part subassembly, JV-2 for eacfa of the tiro (V-i>part sebassembltes, tf-3 for
eachof thethree (iV-~2)-partsubassembiies,andsoon. Therefore,

cwsfiH aw^totky of algorithm GENERATE-AND-QR-GRAPH Acrid tike into nceooot tm oompotttioD mvolvcd in genontkg the
c^i-szu cf ib.s graph of fuociiofial ti
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2. Strongly connected assemblies:
a. Balanced tree AND/OR graph: the number of prospective decompositions that must be analysed

is (2 - 1 ) for the initial assembly, (2 2 - 1 ) + (2 2 - 1 ) for aH subassemblies,

* £ * ) int^) * » ta»

(2 4 - 1 ) + (2 4 - 1 ) + (2 4 - 1 ) + (2 4 - 1 ) for all

subsubassemblies,andsoon. Therefore,

*>= T y [2
b. One-part-at-a-time tree AND/OR graph: the number of prospective decompositions that must be

2V-1 N-Z
analysed is (2 - 1 ) fear theiV-partsubassembly, (2 -l)forthe(iV-l)-partsubassembly,

N-3
(2 ~I)forthe(iV-2)-paitsubassembly,andsoon. Therefore,

AM N-2 N-3 M • '

) 2 - 1 ) + . - . +(2~1)=:2 -N-l

c Network AND/OR graph: the number of prospective decompositions that must be analysed is

(2 - 1 ) for the iV-part subassembly, (2 - 1 ) for each of the ( ^ ) (N-l)-part

N-3N-3
aitass^nblies, (2 - 1 ) for each of the ( ^ 2 ) (W~2)~part sobassemblies, aid ^ OIL

Therefore,

tf

F » o c h of the thnee possibilities of the resulting ANCK>R grai*f table 2 shows the number of decompositions that
must be analysed for weakly connected assemblies aid table 3 shows the number of decompositions that must be
analysed for strongly connected assemblies, as a function of the number of parts that make up the product The
figures in table 3 me given as a reference since it is very unlikely that there would be a twenty-part assembly in
which every port is connected to every other part

The results above take into account the fact that the type of the resulting A NOOR graph is not known a priori. For
©cample, far the weakly connected assembly whose AMEVOR graph is a balanced tree, all the N-l cut-sets of the
whole assembly were included in tine number of decompositions that art tested, although there is only one cut-set
that yields two sabftssembUes that have the same number of parts.

As discussed in the aid of section 5, a more efficient implementation of the method for the genenttioe of
assembly sequences presented in this paper will include additional tests aimed at avoiding unnecessary computation.
Om wefa test is to check whether the feasibility of a decomposition follows from tie feasibility of otha:

In the case erf strongly connected assemblies in which M deccwipositjofis of an subassemblies are
fl» c«»pitatiiOT am be significantly redoced if this test is perfarmed before analysing each decomposition.

Since all imwspmtkm of the whole assembly aic feasible, all decompositions of all subassemblies should also be



Table 2: The number of decompositions that must be analysed for each type of
resulting AND/OR graph, as a function of the number of parts, for

weakly connected assemblies.

Number of Parts
N

2

3

4

5

6

7

8

9

10

15

20

25

30

Balanced-tree
AND/OR graph

1

3
5
8

11

14

17

21

25

45

69

94

119

Qne-part-at-a-tiirie
AND/OR graph

1

3

6

10

15

21

28

36

45

105

190

300

435

network
AND/OR graph

1

4

10

20

35

56
84

120

165

560

1330

2,600

4,495

Table 3: The number of decompositions that must be analysed for each type of
resulting AND/OR graph, as a fraction of the number of parts, for

strongly connected assemblies.

Number of Parts
N

2

3

4

5

6
7

8

9

10

15

20

25

30

Balanced-tree
AND/OR graph

1

4

9

20

39

76

145

284

551
16,604

525389

16,783,550

536,904,119

One-part-at-a-time
ANOOR graph

1

4

11

26

57

1 120

247

502

1,013

32,752

1,048,555

33,554,406

1,073,741,793

network
AND/OR graph

1

6

25

90

301

966

3,025

9330
28,501

7,141,686

1,742343,625

423,610,750,290

102,944,492,305,501
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feasible. Therefore, with a simple additional test, the total number of decompositions that must be analysed is

reduced fom:i-Li- 2 to (2 - 1 ) .

7. Conclusion

A correct and complete algorithm for the generation of all mechanical assembly sequences was presented. To the
authors' knowledge, no previous algorithm for the generation of all mechanical assembly sequences has been proven
correct and complete.

The problem of generating assembly sequences was transformed into the equivalent problem of generating
disassembly sequences. The algorithm operation consists in looking at all the decompositions of the assembly, i.e.
all the ways the assembly can be split into two subassemblies. This is done by generating all cut-sets of the
assembly's graph of connections, and checking which cut-sets correspond to feasible decompositions. A
decomposition is feasible if it possible to obtain the assembly by joining the two subassemblies. The same process
is repeated for the subassemblies, far the subsubassemblies, and so on, until only single parts are left At the end,
the AND/OR graph representation of assembly sequences is returned.

The algorithm also lends itself to an interactive implementation in which a computer program generates questions
that axe answered by a human expert Each question addresses the feasibility of a decomposition. But unlike
previous methods [6,11], it is possible to have a computer program, instead of a human, to answer the questions
directly from a description of the assembly. Our current implementation, which has the restrictions on the types of
assemblies discussed in section 3, includes programs that answer the questions.

An approach to compute the answer to the question of whether it is feasible to obtain a given assembly by joining

two subassemblies was presented This approach is based on the use of a relational model description of the

assembly, The model includes three types of entities: parts, contacts, and attachments; it also includes a set of

relationships between entities. Both entities and relationships can have attributes. To* decide whether a given

decomposition is feasible, three predicates must be computed, using the data in the relational model:

• The GEOMETRIC-FEASIBILITY predicate which is true if thene exists a collision-free path to bring the

two physical subassemblies into contact from a situation in which they are sufficiently far apart.

• The MECHANICAL-FEASIBILITY predicate which is true if it is feasible to establish the attachments

that act on the contacts of the decomposition.

• The ST^ZL/7Y predicate which is true if the parts in each subassembly maintain their relative position

and do not break contact spontaneously.

The key assumption in proving the correctness of the algorithm was that it is always possible to decide correctly,
based oo geometrical ami physical criteria (Le. using the three predicates above), whether it is feasible to obtain a
given assembly by joining two subassemblies.

The amount of compulation involved in generating ail mechanical assembly sequences was assessed by
delennining the number of deccwiqx^itkHis that must be analysed. That amount depends not only on the number of
ports 2nd on bow fbey are interconnected, but on the solution AND/OR graph as well. The least amount of
computation occurs for weakly connected assemblies in which each subassembly has only one feasible

and that decomposition yields two subassemblies whose number of p i t s are either equal or differ by

one. The maxurani amotmt of computation occurs for strongly connected assemblies in which all decompositions
of a i mimsmMks are feasible* This worst case, however, is very unlikely to occur in practice. Furthermore,



additional simple tests discussed in section 5 can reduce the amount of computation.

In practice, an evaluation of the alternative assembly sequences generated by the algorithm presented in this paper
is needed in order to choose the sequence that will be actually used in the assembly process. Different evaluation
funtions have been explored including a function based on parts entropy [32,33], and a function based on the
complexity of assembly tasks and the stability of subassemblies [17].

It is also possible to implement an interactive system in which a computer program generates the alternative
sequences, as described in this papa:, and a human expert thai selects the best one. Still another possibility would
be to use an evaluation function for a preselection of "good" alternative sequences and thai have a human expert to
make the final choice.

Whenever the amount of computation exceeds the available computational resources, at least two strategies may
be followed:

1. The number of parts can be artificially reduced by treating subassemblies as single parts. An analysis
of the graph of connections may indicate the clusterings of parts that yield bigger reductions in the
amount of computation.

2. Tlie algorithm generates fewer, hopefully the best, sequences using some heuristics to guide the
generation of assembly sequence. Such heuristics should be compatible with the evaluation function
used to choose among the alternative assembly sequences.

In both strategies, the computation will be reduced at the expense of the completeness, since not all possible
sequences will be generated. The devolpment of a procedure to cluster parts into subassemblies to obtain a
hierarchical model of the assembly, and the development of good heuristics to guide the generation of assembly
sequences are issues for future research.
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Appendix

L Reasoning about the Feasibility of Local Translations for Robotic Assembly of a Part
Constrained by Planar Contacts

LL Introduction

The high level of planning the assembly of a product can be viewed as a path search in the state-space of possible
configurations of the set of parts that comprises the product [17]. The initial state corresponds to the configuration
in which all parts are disconnected from each other. The goal state corresponds to the configuration in which the
parts are properly joined The moves correspond to the assembly operations, since they change one state into
another.

A complete description of the product is available for planning purposes. This description includes the shape of
the parts, their relative positions, and the spatial and mechanical relations between parts,

The search can be conducted backwards from the goal state to die initial state. The moves in the backward search
correspond to disassembly tasks which are defined to be the reverse of feasible assembly tasks. The preconditions
for a disassembly task [34] include:

1. release of attachments.
2. stability of subassemblies.
3. separability of subassemblies:

a. local analysis - test incremental motion;
b. global analysis - find global trajectory.

The local analysis consists of checking whether there exists aa incremental motion of (Hie part or subassembly
that is not blocked by any one of its contacts with other parts. For many types of contacts there are very few feasible
motions between the parts. For example, a cylindrical pin in a hole can either translate in the direction of the axis, or
rotate around the axis. Whenever the part or subassembly under consideration has such a constraining contact, the
local analysis can be performed by checking whether at least one of the few motions thai are compatible with the
most restrictive contact is also compatible with all other contacts.

The local analysis is more difficult when the port {€X sobasaeailbiy) to be disassembled is constrained by planar
contacts only. Each planar contact Ie&¥& an infinite raKulw of HQCQiffiteilsicd directions along which translation is
possible. Inthiscase, theiniersecnonof Lĥ
by discrete search over a finite sot of directions*

This appendix presents an efficient procedure lo obtain explicitly the set of directions along which an object dial
is constrained by several planar contacts can translate* In addition to answering the question of whether there is a
direction along which translation is feasible, the procedure also produces a representation of the set of all those
tikte&oaa*
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L2. Background

Shoham [35] and Mani [26] analyzed the freedom of two dimensional objects when in contact with other objects.
Although both studies include translational and rotational freedom, they are restricted to two dimensional objects,
and neither one indicates how the analysis can be scaled up to three dimensions.

Jain and Donath [19] analyzed the translational and rotational freedom of parts in an assembly but with the
constraint that the existing contacts between parts cannot be broken. They do not show how their approach can be
extended to deal with the case of breaking of contacts.

Ejiri et aL [14] proposed the use of restraint vectors to decide whether a part constrained by planar contacts could
translate. The restraint vector of a part/* was defined to be

* a-x> a+y> a - y a+z>
where

a r
f 1 if P is restrained along direction r
\ 0 if P is not restrained along direction r

and the logical possibility of disassembling part P was decided by the logical formula

. f l , when possible
when impossible. ^ '

That formula corresponds to the requirement that the part be free in the upper (positive z) direction and both x and y
are free in either the positive or the negative direction. Although the above logical formula is a sufficient condition,
it is not necessary. It is also not difficult to think of a situation in which disassembling a part is feasible and the
logical formula yields 0. Figure 16 shows one such situation.

«?«(1,1,0,1,0,1)

f%wrel6; I t o P o m mowIwtthe logical f o r a ^

-ft"



Within the work in kinematics, Asada and By [3] introduced the concept of Automatically Recortfigured Fixturing
which is a fixturing system that can be adapted to hold different workparts. It consists of a number of fixture
elements that can be placed on a flat horizontal table to conform to the geometry of the workpart to be fixtured. The
table has magnetic chucking capability which can be activated to secure the fixturing elements in place. When
completely fixtured, the workpart will be in contact with a number of fixturing elements that will constrain its
movements completely. The process of fixturing one workpart starts with a positioning phase in which the workpart
is brought into contact with a subset of the fixturing elements which, in this paper, will be referred to as guiding
elements. Once positioning is achieved, additional elements are placed on the table to constrain the workpart
completely.

Asada and By carried out a kinematic analysis aimed at answering the following questions:
1*. Is the location of the workpart that achieves contact with all guiding elements unique?
2. Is this location that achieves contact with the guiding elements accessible/detachable?
3. Do the additional elements (together with the guiding elements) constrain the woikp&rt completely?

The last two questions are similar to the problem addressed in this paper. In the second question, they are
interested in guaranteeing that there are feasible local motions for the workpart, so it can be brought into contact
with all guiding elements. In the third question, they are interested in guaranteeing that there are no feasible local
motions (i.e. that the workpart is constrained completely).

Asada and By modeled the contacts between die workpart and the fixturing elements as point contacts, and
derived conditions for the feasibility of local motions, including both translations and rotations. Those constraints
were used to check whether die configuration of the fixturing elements would constrain the workpart completely.
They did not address how to determine the set of incremental motions that satisfy the derived conditions.

More recent research on robotic planning [22,23] has aimed at enabling robots to execute tasks specified in
task-level commands such as

move <part-id> to <location-specificatiort>

in which the second term within angle brackets specifies a configuration (a position and an orientation) either as a
homogeneous transform matrix or as a set of spatial relationships among objects. Hie translation of a task-level
command into robot-level commands involves selecting fixtures, grasping points, gross motions, fine motions, etc.

It is clear that procedures that are able to construct a path for a part from an initial configuration to a final
configuration can also be used lo answer whether there exists a direction in which local translation of that part in the
initial configuration is feasible. If there is a path, there is a direction in which local translation is feasible.
Lozano-Perez [24] shows one procedure to construct a path that avoids obstacles and lists the most significant
literature on that subject The procedures to construct a path, however, involve extensive computation, and therefore
their use in the high level of planning will weaken the planner efficiency. One of the major advantages of
hkmcMc®k planning [31] is the possibility of abstracting the details at the high level.

13. Representation of Local Constraints

In most cases of two puts or subassemUies in contact, a pure rotation of one with respect to the other will not
separate them. In these cases the motion must include a nonzero temsMoiial component in order to separate parts
in contact. Therefore, to deckle whether two parts in contact can separate from each other, the local analysis can
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focus on translational motions only7.

Let P and Q be two parts that have one planar contact Let n be a vector perpendicular to the contact plane, and
pointing towards part P. Part Q blocks translations of part P that have negative projections over n. Therefore, to
decide whether part P can translate by a vector / , it is necessary to check whether r • n (the scalar product of r
and n ) is greater than or equal to zero.

In general, a part P has N planar contacts with other parts: let n * be a vector perpendicular to the plane of the Ith

planar contact, pointing towards part P. Then,* must satisfy
t •ni > 0 / = 1 , 2 , ••• ,N (2)

in order to be a feasible translation for part P.

The set of inequalities (2) is a necessary but not sufficient condition for the global translation t of part P, since
other parts that are not directly in contact with P may also constrain its movements. For local analysis, distant
objects do not interfere, and system (2) becomes a sufficient condition. Moreover, if to satisfies system (2), so do
all vectors yt0 for any scalar y greater than zero; and it is always possible to pick y sufficiently small to guarantee
that a translation by yto of part P is feasible. Therefore, to answer whether part P can translate locally, it is
sufficient to answer whether system (2) has a nonzero solution.

Each inequality in system (2) divides the space R3 into two halfspaces. The set of vectors satisfying the system of
inequalities (2), which is the intersection of finitely many halfspaces, is a polyhedral convex cone. Polyhedral
convex cones may have several different shapes and enumeration of these shapes will be useful for the search
procedure. Figure 17 shows one example of a polyhedral convex cone which is the intersection of five halfspaces,
each one defined by a plane that goes through the origin and that is pCTpendiculartoaveaornf.Tlraefore, thecone
can be characterized as the set of vectors that have greater than or equal to zero projection over vectors
Hi»Hi»23 »5.4»Us • whfch a*£ perpendicular to the five faces of the cone, and have the appropriate (Le. towards
the inside) orientations. Alternatively, the same polyhedral convex cone can be characterized as the set of positive
linear combinations of vectors e x , e 2 , £ 3 , £ 4 , £ 5 , which have directions along the five edges of the cone, and the
appropriate orientations [16].

These alternative representations of the polyhedral convex cone and their properties may be defined as follows:
Definition 5: Given a polyhedral convex cone C, any set of vectors V= { v t , v 2 , • - - , Vj } with the

property that any vector x e C has positive projection over all vectors vt- € V (Le. x • v t ^ 0 for
z = 1,2, • • • , / ) , is called a tangential representation of C.

Definition 6: Given a polyhedral convex cone C, any set of vectors E= {£ x, e2 » " * • * £ / } such that
any positive linear combination of the e p £ 2 • * " ' * £ / y^Ms a vector in C and, conversely, any vector

x in C can be expressed as a positive linear combination of ex t £ 2 * " • » £ / (*-e- i ^ X i s i 0 1 / ! * w ^
a4* > 0 i = 1 *2, • • • , / , if and only if x e Q is called a point representation of C.

Definition 7: Two distinct (point or tangential) representations of the same poiybedteai convex com are
said lo be equivalent representations.

Definition 8: A tangential representation of a polyhedral convex cone is said to be a minimal
tangential representation if it has no equivalent tangential representation with fewer vectors.

e a n d wtae two puts m coeiici cm aaty separate from each other If asm uackigoes a pwe rotetioo followed by a translation. These
ocmsposi 10 mom complo: comacis, and itierefcte require the use of moie complex models. In products designed for mssemby [2,5}t



Figure 17: A polyhedral convex cone which is the intersection of five halfspaces

Definition 9: A point representation of a polyhedral convex cone is said to be a minimal point
representation if it has no equivalent point representation with fewer vectors.

The minimal point representation of polyhedral convex cones is used in the local analysis of feasible directions of
motion because one can readily check if the set of feasible nonzero translations is empty by checking whether the
point representation has a nonzero vector. It is also useful as a basis for the global analysis because it allows the
enumeration of the feasible translations.

In the next section, a syntax for a computer representation of polyhedral convex cones in R3 is developed based
on the formulation described above. A procedure is defined which finds the computer representation from a
tangential representation. The procedure provides the teas for toting the feasibility of disassembly operations.

L4. Search Procedure for Feasible Local Translations

The solution procedure is based on enumeniiion of the 10 possibilities for the shape of a polyhedral convex cone
in the tee© dimensional space R3. These are listed in table 4. A syntax fcr a ccnniMte'rq^^atation of polyhedral
convex cones, wMch inoKporates explicitly their shapes is shown in figwe 18. This representation is compact, yet
captures a l the infiniadon needed in the procedure to find the solutions of the system of Inequalities (2).

Figure 19 shows procedure SOLVE which takes as input a tangential representation of a polyhedral convex cone,
r = { JI j f j»2 » • • * »5j^ } which need not be minimal, and returns its computer representation, in the syntax shown
in f|ptre 18.
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Table 4: The possible shapes of polyhedral convex cones in three dimensional space

shape

SPACE

HALFSPACE

QUADRANT

POLYGONAL

PLANE

HALFPUNE

SECTOR

LINE

KALFLINE

POfMT

definition

All points in R3.

All the points on one side of a plane and the
points on the plane.

The points within the intersection of two
halfspaces whose defining planes are not
parallel.

The points within the intersection of three or
more halfspaces when no plane exists that
contains all points in die cone.

All the points that lie on a plane that goes
through the origin.

All the points thai lie on a plane that goes
through the origin, and to one side of a line on
that plane that also goes through the origin.

All the points that lie on a plane that goes
through the origin, and also to one side of two
lines on that plane that also go through the
origin.

All the points on one straight line.

All the points on one straight line, to one side of
the origin.

Tie origin.

comments

This is a degenerate case in which N in the
system of inequalities (2) (i.e. the number of
planes) is zero.

Typically, this is the case in which N in system
(2) is one, but it is also the case in which all
vectors / t j , n 2 , • • • , nN are parallel and have
the same orientation.

Typically, this is the case in which N is two, and
the two vectors n x and n2 are not parallel.

This is the shape of the cone in figure 17.

This is the two dimensional correspondent of
SPACE. Typically, this is the case in which N is
two, and the two vectors are parallel and have
opposite orientations.

Typically this is the case in which N is three,
two of the vectors are parallel and have opposite
(mentations, and die third vector is not parallel
to the other two.

Typically, this is the case in which N is four,
two of the vectors are parallel and have opposite
(mentations, and both the other two vectors are
not parallel to any other vector.

(tee example of this is the case in which N is
three and the three vectors lie on a plane, with
no two vectors parallel, and no one of the three
vectors can be expressed as a positive linear
combination of the other two.

Typically, this is the case in which N is five,
four vectors define a line, and a fifth vector is
not parallel io any one of the other four.

This is also a degenerate case in which the only
solution io the system of inequalities is the zero
vector.
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<cone> = (SPACE) 1 (HALFSPACE <vector>) I
(QUADRANT <<vector> <vector>) ) |
(POLYGONAL (<min-tangent-repr> <m±n-point-repr>) )
(PLANE < v e c t o r » | (HALFPLANE (<vector> <vec tor» )
(SECTOR <iain-point-repr>) | (UNE < v e c t o r » I
(HALFLINE <vector>) | (POINT)

<min-tangent-repr> = (<vector-sequence>)

<min-point-repr> = (<vector-sequence>)

<veetor-sequence> = <vector> I <vector>

Figure 18: The computer representations of cones

procedure SOLVE(tanrep)
solution 4- (SPACE)
while FIRST(solution) * POINT and tmrep is sot empty do

begin
n <— FIRST(tanrep)
tanrep «~ TAIL(tanrep)
solution <r- INTER(solution n )
end

return solution
endSOLVE

Kgurel9: The procedure SOLVE

The solution procedure consists of finding, successively, a computer representation for die sequence of cones
C0fC|,C2» • • • *CN. Hie polyhedral ccmvex cone Co is the whole specs R3, and the polyhedral convex cones
ClfC2**—*CN have the sets Tl9T2* •• • ,TJy, i^sectivdy, as (not nece^arily minimal) tangential
representations* whereT i-{n l f n 2 , - • • n f '}.

Tim compito1 rq^e^atatiOE otCM is genaatol by procedure HV7ER using the faa that
c M s C . - n f e l i # aM ^0) (3)

ix.s cc»e CM ccmtaiiis the vector thai are in both cotm Ci mid in the faaifspace defiled by the plane perpendicular
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to vector n*+1 and going through the origin. Procedure SOLVE terminates as soon as a cone of shape POINT is found
in the sequence Co , C j , C21 • ** » Q f » ^ ^ ^ the remaining cones in the sequence would also be of shape POINT.

Incorporating the shapes into the representations of the cones simplifies the reasoning needed to compute their
intersection with a halfspace because for each shape of the cone, there are only a few possibilities for the shape of
the intersection. Figure 20 shows a state diagram in which the nodes (Le the states) correspond to the shapes of
polyhedral convex cones in R3, and the arcs (Le. the transitions) correspond to the possibilities for the shape of their
intersection with a halfspace. The iterations performed by procedure SOLVE can be seen as a sequence of
transitions in that state diagram. The initial state is the shape SPACE which is the shape of cone Co. Each iteration
in procedure SOLVE causes a transition in the state diagram, and the final state is the shape of the solution. The
actual transition is computed by procedure INTER which also computes the necessary parameters to completely
characterize the cone in the syntax of figure 18.

The inputs to procedure INTER are the computer representation of a cone C, and a vector v . The output of
INTER is the computer representation of cone C =C n {x \ x • v > 0}. The computation performed by INTER

depends on the shape of the cone input Figure 21 shows the cases in which the shape of the cone input is SPACE or
HALFSPACE. The other cases, although more extensive, are not difficult to infer.

15. Example of the Computation of the Directions of Feasible Translations

Figure 22 shows an assembly that has two parts with seven planar contacts between them. The vectors
perpendicular to the contacts and pointing towards the upper part are:

£ l = (1 0 0) n 2 = (0 0 1) /s3= (0 2 1) n 4 = (0-2 1) * 5 = (0 1 1) « 6 = (0-1 1) * 7 = (0 0 1)

For this example, procedure SOLVE does seven iterations to find out the set of directions along which the upper
pan can translate. The first iteration produces die Intersection of the whole space with the halfspace defined by the
plane perpendicular to n t; the intersection is the halfspace itself, whose representation is (HALFSPACE (1 0 0) ).

The second iteration produces the intersection of the halfspace obtained in the first iteration with the halfspace
defined by the plane perpendicular to n2; because /t | ami n2 are not parallel, the intersection has shape quadrant,
ami its representation is (QUAD-RANT (1 0 0) (0 01 ) ) .

Tie third Iteration produces the intersection of this quadrant-shape cone with ttie halfspace defined by the plane
perpendicular to n$; because nt ,n2*

 a n d !L% a r e ^^^Y independent, the Intersection is a polygonal (triangular)
oooBwboaeiqmMaiatioiiis (K>tYGQHAl ((1 GO)(00 1) (02 l ) ) ( ( 0 1 0 ) ( 1 0 0 ) ( 0 - l 2 ) ) ) .

H e fourth iteration produces the intersection of the polygonal-shape cone obtained in the third iteration with the
halfspace denned by the p i n e perpendicular to n4; because the projections over n4 are less than zero for the first

zero for the second edge, and greater than zero for the third edge, the representation of ttie intersection is

H e fifth, im sixth, aid the seventh iterations do not change the polyhedral convex con© produced in the fourth
taatikii, which happens to lie entirely within ihe halfspace defined by the plane perpendicular to n5, the halfspace
define! by the plane perpemiaito ID J I ^ and the halfspaee defined by the plane perpendicular to J I 7 . TMs
oonchifjon caa be »ade by c*^f¥»g that the flaee edges (01 2), ( 10 0), and (0 -12) have greater than or equal to

mo prefcctioii mm n 5> 5 ^ and mT



Figure 20: Slate diagram for procedure SOLVE

37



procedure INTER(cone v)
case

(1) FIRST(cone) = SPACE return (HALFSPACE v)
(2) FIRSJ(cone) = HALFSPACE do

begin
n <- SECOND(cone)
it n and v are parallel do

begin
if n and v have the same orientation return (HALFSPACE v)
return (PLANE v)
end

return (QUADRANT (vn))
end

Figure 21: Part of procedure INTER

The final solution returned by the algorithm is the polyhedral convex cone whose computer representation is
(TOLYGONAL( (1 0 0) (0-2 l ) (0 2 1) ) ( ( 0 ^
of the vectors (0 1 2),(1 0 0), and (0-1 2) is a feasible translation for the upper part in figure 22. For this example,
the result can be verified by inspection* The set of all directions d along which translation is feasible can be scanned
systematically by letting

d = a-(0 1 2) + &•(! 0 0) + c-(0 - 1 2 )

14 Relations to Other Work

Within the research in robotic planning, the work of Brooks [7,8] has some relation with the results presented in
this paper. Brooks formalizes the process of checking and modifying robot plans to ensure thai they will work m
spite of inacciiraaes of mechanical de\ice-s and the inaccuracies in Lhe informadon the fobot has about the position
and cdeotation of pans within lhe workstation.. That fcrmaiizaiicn leads ta a system of (not necessarily Imear;
inequaliiies and Brooks uses a constraint manipulaticn systein to decide whether the sysieni has a soludcn and to

system,
ID tte ^rtoni erf i»p»Itim, M«w^^» the conclusions drawn from thai system tend



Figure 22: Two parts that have seven planar contacts

to be conservative; they are safe to be used in robot planning but they may lead to the elimination of plans that are
reliable.

Systems of linear inequalities have been studied within linear programmming [36], where the extremal points of
linear functions are sought in multidimensional spaces. Goldman and Tucker [16] present important theoretical
results that have been used as basis for the formulation presented in this paper. Those results alone have been used
by Ohwovoriole and Roth [27], in the context of mechanical assembly, to solve a system of inequalities in a five
dimensional space. By restricting the dimension of the space to three, as we have done, mere efficient procedures
could be constructed.

In addition to being less efficient (although more general), the linear programming approach to solving systems of
linear inequalities has problems in degenerate cases which aie common in assembly planning. One degeneiacy is
the feet that the set of solutions is unbounded in all cases, except when no solution exists. Another degeneracy
occurs whenever the feasible sobitioas lie oa a plane (ix. the set of solutions has volume zero); and this happens
whenever parts have parallel faces which are in contact with other parts.
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The intersection of half spaces has been studied within computational geometry [30]. Brown [9] showed how the
problem of finding the intersection of N half spaces can be converted to the problem of finding the convex hull of N
points; that leads to an algorithm that takes O (NlogN) time.

Although more general, the algorithms in computational geometry have been designed for the case in which the
solution set is bounded. Like the linear programming approach, these algorithms have problems in degenerate cases
which are veiy common in assembly planning. The procedure presented in this paper, has been designed for the
assembly planning problem. It is less general than those in computational geometry but is more efficient since it
finds die solution in at most N steps, and it can handle the degenerate cases.

As mentioned in section 1.2, the work of Asada and By [3] has some relation with the results presented in this
paper. Although Asada and By modeled the contacts between the workpart and the fixturing elements as point
contacts, for local translations, point contacts and planar contacts yield the same constraints. The conditions that
Asada and By derive for local translations are the same conditions as equation 2 in this paper. (The reader is warned
that there is an error in equation 20 of Asada and By paper, it should read GfAq> 0.) But Asada and By do not
address how to determine the set of solutions to equation 2, which is their equation 208.

L7. Conclusion

The problem of finding the directions of feasible local translations for a part constrained by planar contacts has
been formulated mathematically as that of finding the set of solutions to a system of inequalities. The system of
inequalities is represented by a polyhedral convex core, and the solution procedure exploits the fact that in the three
dimensional space R3 there are only 10 possibilities for the shape of a polyhedral convex cone.

A syntax for the computer representation of polyhedral convex cones in R3, which incorporates explicitly their
shapes, is presented along with an implemented algorithm that uses that representation to produce the set of
solutions. The algorithm can handle all possible cases and produces the sdution in at most iV (the number of planar
contacts) steps. It may take less than N steps when the only solution to the system of inequalities is the zero vector.

In addition to providing the basis for testing the feasibility of assembly operations, the computer representation
generated by the procedure is useful later in the assembly planning process to guide the search fear a path, since it
allows a systematic scan of all directions along which local translation is feasible.

*Saes lfa» iocmslitka framed by Assla mi Wf ̂ dndzs fotttioos; tte Mritiog system cf efttom Involves six vmwMm,
solving flat ®fmem wnsM be mm* cunpfei. ihan n t o ^ f c M i f c r f ^ 2 k t l i
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