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Abstract

Scheduling can be formalized as a constraint satisfaction problem (CSP). Within this framework
activities in a plan are interconnected via temporal relation constraints a la Allen, thereby
defining a temporal constraint graph (TCG). Additionally there are capacity constraints
restricting the use of each resource to only one activity at a time. Together these constraints form
a temporal/capacity constraint graph (T/CCG) . Preferences such as meeting due dates,
reducing order flowtime, or selecting accurate machines are modeled as utility functions over the
domain of possible start times and durations of activities and over the sets of possible resources
activities can use. These preferences interact via the TCG and via the resource capacity
constraints. Hence, in general, they cannot be simultaneously optimized. The objective of
preference propagation techniques is to transform such local a priori preferences so as to
account for their interactions.

In this paper we describe a probabilistic framework in which start time, duration and resource
preferences are propagated across T/CCGs in order to focus attention in an incremental
scheduler. The propagation is first performed across the TCG, thereby producing activity (a
posteriori) start time and duration distributions. These distributions allow for early detection of
unsolvable CSPs, and provide measures of value goodness and variable looseness for activity
start times and durations. In a second phase, these distributions are combined to predict the
degree of contention for each resource and the reliance of each activity on the possession of that
resource.




1. Introduction

1.1. The Issue

We are concerned with the issue of how to opportunistically focus an incremental scheduler’s
attention on the most critical decision points and the most promising decisions in order to reduce
search and improve the quality of the resulting schedule. More specifically we are concerned
with incremental constraint directed scheduling where the problem is defined as a set of
variables and a set of constraints. Both variables and constraints are determined by the initial
scheduling problem and the earlier decisions made by the scheduler. The interactions of the
constraints determine the structure of the problem space. We characterize the problem space with
a set of texture measures that are used to both identify critical decision points and select a
decision at each of these points. The process of analyzing the current problem and generating
new decisions (e.g. scheduling an operation) is repeated, thereby resulting in the incremental
construction of a schedule.

Real-life scheduling problems are subject to a variety of preferences [Johnson 74, Fox 83, Ow |
84, Smith 86] such as meeting due dates, reducing the number of machine set-ups, reducing |
Inventory costs, using accurate and/or fast machines, making sure that some jobs are performed
within a single work-shift, etc. Although these preferences are usually set independently to one
another, they interact. For instance selection of a good start time for an activity (e.g. to meet a
due date) may prevent the selection of an accurate machine for another operation or may prevent
meeting another job’s due date. For this reason, selecting operation start times or allocating
resources based solely on local a priori preferences is likely to result in poor schedules.
Preference propagation is meant to allow for the construction of measures that reflect preference
interactions. These measures can then serve to guide the construction of a good overall schedule
rather than a schedule that locally optimizes a subset of preferences.

We perform preference propagation within a probabilistic framework. We associate with each
variable’s value a probability that reflects the likelihood that this value results in a good schedule
overall (value goodness). These probabilities are refined by being propagated across the problem
constraints. Value goodness is a texture measure that helps selecting assignments for variables.
Identification of critical variables (i.e. decision points) is performed using another texture
measure, called variable looseness. A critical variable or group of variables is one whose good
overall values are likely to become unavailable if one were to start assigning values to other
variables first. Notice that if our measures of value goodness were perfect, the order in which
variables are instantiated would not matter. However such perfect measures could only be
obtained by first solving the problem. Because in practice measures of value goodness contain
some uncertainty, one has to account for the effects of assigning a value to a variable over the
availability of good values for other variables. A variable instantiation order is accordingly
defined starting with the most critical (i.e. least loose) variables. In this paper we are interested
in the identification of critical activities (i.e. operations). An activity is made of a start time
variable, possibly a duration variable, and a set of resource variables. We identify critical
activities as the ones that heavily rely on the possession of highly contended resources. Indeed, if
such critical activities are not scheduled first, it is very likely, that by the time the scheduler turns
its attention to these activities, the resources that would havc been the most appropriate for these
actwmcs will no longer be available.




We discuss preference propagation in temporal/capacity constraint graphs (T/CCG). Temporal
constraints define partial orderings among the activities to be scheduled. All thirteen of Allen’s
[Allen 84] temporal relation constraints are accounted for. Resource capacity constraints restrict
the use of resources to only one activity at a time. Both situations with fixed and variable
duration activities are discussed. Our formalism allows for both activity start time and duration
preferences as well as for resource preferences. It also accounts for prior resource reservations if
any. It is shown that the (a posteriori) start time and duration distributions resulting from the
propagation across the temporal constraints can be combined to identify resources that are highly
contended for (resource contention) and activities that heavily rely on the possession of these
resources (activity resource reliance) in function of time.

We also argue that a posteriori start time/duration distributions can be seen locally as measures
of start time/duration goodness and globally as measures of start time/duration looseness. Our
notion start time/duration looseness generalizes the Operations Research notion of slack [Baker
74, Johnson 74].

1.2. Formalization of the Scheduling Problem

The factory scheduling problem is often described as a two step problem: a process planning
step and a resource planning step [Fox 83]. Process planning deals with the generation and
selection of plans (i.e. process routings) that satisfy the order specifications. Resource planning,
sometimes also referred to as scheduling, deals with the allocation of resources (e.g. machines)
to activities and the assignment of start and end times to activities. In general both steps can be
interleaved.

In this paper we will be concemed exclusively with the scheduling part of the problem: we will
assume that we are given a set of plans to schedule. Here a plan is simply defined as a partial
ordering of activities. Each activity may require one or more resources, for each of which there
can be several alternatives.

We formalize the scheduling problem as a constraint satisfaction problem (CSP). The variables
of the problem are the activity start times, the resources allocated to each activity, when there is a
choice, and possibly the duration of each activity. An activity’s end time is defined as the sum of
the activity’s start time and duration. We differentiate between two types of constraints: required
constraints and preferential constraints [Fox 83]. Required constraints determine the
admissibility of a solution to the CSP (schedule) while preferential constraints allow for
differentiating among admissible solutions. The degree of satisfaction of a preferential
constraint is defined by a utility function that maps the possible values of a variable onto utilities
ranging between 0 and 1. A utility of 0 indicates a non-admissible value. A value with utility 1 is

an optimal value.

We will be dealing explicitly with two types of required constraints: temporal relation
constraints and resource capacity constraints. Temporal relation constraints are used to describe
partial orderings among activities as provided by the process planning step. We will be using
Allen’s temporal relation constraints [Allen 84] to describe these constraints (Figure 1-1). We

> will refer to the graph defined by these constraints, for a given CSP, as the CSP’s temporal

constraint graph (TCG). Capacity constraints restrict the number of reservations of a resource
over any time interval to the capacity of that resource. In this paper, for the sake of simplicity,



Relation Pictorial Representation
X BEFORE Y XXX YYY
Y AFTER X

X EQUALS Y XXX

Y EQUALS X Yy

X MEETS Y XXXYYY
Y MET-BY X

X OVERLAPS Y XX

Y OVERLAPPED-BY X YYY

X DURING Y XXX

Y CONTAINS X YYYYY
X STARTS Y xx

Y STARTED-BY X YYYYy
X FINISHES Y XXX
Y FINISHED-BY X . YYYYY

Figure 1-1: Allen’s 13 temporal relation constraints

wc.will always be assuming resources with unary capacity. Together these required constraints
form a temporal/capacity constraint graph (T/CCG). A schedule that does not satisfy the required
constraints of the CSP is not admissible.

We will allow for preferential constraints on activity start times and durations as well as on the
resources to be used by each activity. Preferential constraints are described with utility functions.
For a given preferential constraint, a variable’s value is admissible only if its utility is strictly
positive. High preference for an admissible value is indicated by a high utility. In practice the
domain of admissible values resulting from these preferential constraints, i.e. the domain with
strictly positive utilities, is always bounded. For instance the domain of admissible start times of
an activity is constrained at one end by the order release date and at the other end by the order
due date according to the durations of the activities that precede/follow the activity within the
plan.

Notations

We have to schedule a set of activities {A|, A,,..., A,}. Let I, denote the time interval over
which A, spans. st,, et, and du, respectively denote I,’s start time, end time, and duration.
Activities are connected by a set of temporal relation constraints, thereby forming a TCG. We
view TCGs as undirected graphs. An arc in a TCG indicates the presence of a temporal relation
between two intervals (e.g. I, BEFORE I, or equivalently I, AFTER I)). Let C,, C,...., C,, denote
the temporal relation constraints in the TCG. The TCG, which has been produced during the
process planning phase, is assumed consistent.
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Additionally there are capacity constraints limiting the use of each resource to only one
activity at a time. By adding these capacity constraints to the TCG, one obtains the CSP’s
T/CCG. In this paper we will not need to formalize the description of T/CCGs any further as we
will be mainly dealing with their temporal abstractions, i.e. the TCGs obtained by omitting the
capacity constraints in the T/CCGs.

Each activity A, has a preferential start time constraint with associated utility function denoted
Uy Activity A;’s duration is either fixed or constrained by a preferential constraint with utility

function Ug, - The ranges of admissible start times and durations are assumed to be bounded,
which is always the case in practice.

Each activity A, may require one or more resources R,;, R ,,..., Rkp. For each resource R,
required by activity A,, there is a set of possible resources Ry, Ryp,..., Ry, available on the
factory floor. This set is assumed to be finite, which is also always the case in practice. These
different resources are usually not equally preferred. A resource utility function, u Ry associates a
utility (preference) uRb_(Rb-j) with each possible resource R,;. For instance a milling operation
may require a milling machine and a human operator. There may be two milling machines
available on the factory floor. For this specific milling operation, milling-machine, may have a
preference of 1.0 and milling machine, a preference of 0.4 (e.g. due to a difference in the
accuracy of the machines.). There may also be several human operators available with different

utlites.

The global utility of a schedule is obtained by summing all the preferential constraints’ utilities
(for the given schedule).

1.3. An Example
We now introduce a simple scheduling problem that we will use throughout this paper.

The problem involves scheduling two orders: order, and order, (Figure 1-2):
¢ order, comprises five activities: A, Az,...,AS,
* order, comprises three activities: A¢, A4, and Ag.
All activities have the same duration, namely 30 time units. C;,C,,... C, are the temporal
relation constraints imposed by the process planning step. For instance, C; indicates that A; has
to precede A,. The domain comprises three physical resources: Ry, R,, and R5.
e A, requires a resource Ry, which can be either R, or R, (with equal preference), i.e.
“R”(Rl)’mku(Rz)‘-'l' and uR”(R3)=0. |
e A, requires a resource R,, which has to be R;, ie. uRu(Rl):l, and
Ur,, (Rp)=0r,, (R3)>=0.
e A; requires a resource Rj; which has to be R,, ie. uRM(Rz):l, and
uRsi(Rl):ﬂRn(R3}=0'
e A, requires a resource Ry, which has to be R,, ie. uR“(R2)=1, and
uRu(Rl):uR“(Rs):ﬂ'



e Ag requires a resource Rg; which has o be Ry, 1e. URSI(RI):L and
ule(Rz):uRSI(RE;):O. '

* Ag requires a resource Rg; which has to be Rj, ie. uRm(R3):1’ and
* A5 requires a resource R, which can be either R, or Ry (with equal preference), i.e.
UR_“(Rz):uR_”(RB):I, and uR-n(Rl):O'

e Ag requires a resource Rg; which has to be Rj, ie. uRs1(R3)=1’ and
uRs . (Rl )=uR8 . (R2)=0.

C
orderl C A 2
A A
C4 A4
order2
C C
6 7
Aé A'i AS

C.: A, BEFORE A,
C,: A, BEFORE A;
Cs: A;BEFORE A
C.: A, BEFORE A,
Cs: AsBEFORE Aj
Cs: A ¢ BEFORE A,
C;: A; BEFORE As

Figure 1-2: TCG for a two order scheduling problem

Activities in order; (ie. A,..., Ag) are assumed to have the same start ime utility function.
The function requires that these actdvities start between time O and time 140, with an optimal
start time at 120 (Figure 1-3). Time 0 can be interpreted as the order release date. Time 140 + 30
=170 (latest-start-time + duration = latest-finish-time) could represent the time after which the
client would refuse the order.

All activities in order, will be assumed to have a uniform start time utility between 0 and 120
(Figure 1-3).

In general preferential constraints are set independently to one another and may therefore be
incompatible. For instance, it will obviously be impossible to simultaneously schedule both A,
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Figure 1-3: Start time utility functions

and Aj at their optimal start time, namely 120. Therefore instead of a priori preferences, one
needs (a posteriori) preferences indicating values that are likely to result in a good schedule
overall. Such preferences can only be obtained by accounting for constraint interactions. This is
the objective of the propagation technique presented in this paper.

Looking more closely at our example, one notices that there are four activities requiring
resource Ry: Aj, Ag, Ay, and Aq. Out of these four activities, up to three can occur in parallel,
namely A3, Ay, and A;. These activities will therefore compete for the possession of R,. There is
no such competition for R; and R5 as the activities that require these resources are fully ordered
temporally (e.g. A; has to be carried out before A,). The scheduling of R, is therefore more
critical than that of R; and R3. An incremental scheduler should first focus its attention on the
competition between Ag, Ay, and A4 for R,. Moreover, since A5 has two resource alternatives
(R, and R3) while A3 and A, have only one, and since Ag has less slack than A, we would like

our incremental scheduler to first schedule Ag with Rzl.

A more detailed analysis confirms that first scheduling A5 rather than A, is the right decision.
It also reveals the influence of the preferential constraints (in this case the start time preferences)
in determining activity criticality. We consider two scenarios: one where the first activity to be
scheduled is A4 (scenariol) and one where it is A3 (scenario2). Given that Ag cannot start later
than 140 and that A3 and A, have a duration of 30, A;, Ay, Aj, and A, cannot start later than
110. Hence, according to their start time utility functions, these activities will prefer to start as
late as possible (Figure 1-3). In scenariol, A, is the first activity to be scheduled. It is scheduled
as late as possible (while still leaving some room for A to have a good schedule), say at time 90.
Since both Az and A, require R;, A; has to be scheduled before A 4. The resulting schedule is the
sequence Aj, Ay, Ay, Ay, and A, as displayed in Figure 1-4. Altematively (scenario2) suppose
that we decide to first schedule A;. This time A, is scheduled to start at time 90, and A4 has to
occur before A;. However A, and A, can occur in parallel before A5 (Figure 1-5). Hence,
globally, A; to A, start later in scenario2 than in scenariol. In other words, scenario2 results in
a higher global utility than scenariol.

INotice that we are assuming an incremental scheduler whose reservations are nonpreemptible. The order in
which activities are allocated resources would not matter if allocations were preemptible. Most predictive

schedulers do not allow for such preemptions as they tend to produce infinite loops if one does not take special |

precaution.



Our approach to preference propagation formalizes the above considerations. L
RL i E Hm B oo e IRt
o oA tiochiiio A D »
R piiin 5 oniiiipiiiio 4 oo >
1 1 1 1 1T T 1T T T T T T T 1 ,M"“W
O 10 20 F0 40 BO A0 TO G0 Q0 100110 120 130 140150 5 H; MM
e, s
AW
Q/Wg LA
o 3
sy 0y R Av o LT

tgy (0)+ ity (30)+tgy (60)+ug, (90) 41 (120)=25 [

Figure 1-4: Gantt chart for a schedule of orderl obtained with scenariol.
The global start time utility has been obtained by adding the start time
utility of the five activities. AR
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Figure 1-5: Gantt chart for a schedule of orderl obtained with scenario2.
The global start time utility has been obtained by adding the start time
utility of the five activities.

1.4. Organization of the Paper

In the next section we give an overview of related work in constraint satisfaction and
scheduling. Section 3 introduces the assumptions that are the basis to our probabilistic approach
to preference propagation and gives an overview of the approach. Section 4 describes the
propagation of start time and duration probability distributions in TCGs. As already mentioned
earlier, when one is simply concemed with knowing whether two time intervals are temporally
related or not, a TCG can be considered as an undirected graph. When we will be talking abour
cycles in the TCG, we will always be referring to the undirected interpretation of the graph.
Subsection 4.2 deals with acyclic TCGs with fixed-duration activities. Subsection 4.3 relaxes
the fixed-duration hypothesis. Subsection 4.4 relaxes the acyclicity assumption. Subsection 4.5
discusses propagation in general TCGs where there are explicit disjunctions of temporal relation
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constraints. Finally subsection 4.6 analyzes the results of the section with respect to a set of
requirements and desiderata identified in subsection 3.2. Section 5 explains how the results of
the previous section can be combined to obtain measures of resource contention and activity
resource reliance. In section 6, we discuss the time complexity and the expressiveness of our
framework as well as possible improvements. Section 7 summarizes the main ideas of the paper.

For the sake of concision, subsections 4.2 and 4.3 contain only the treatment of two temporal
relation constraints (BEFORE, and MEETS). Formulas for the complete set of Allen’s temporal
relation constraints is presented in appendix 1. For the same reason, section 5 only sketches the
computation of resource demand densities. The reader will find a complete treatment of these
densities in appendix 2.

2. Related Work

We already mentioned that this paper does not deal with process planning. Hence it is
assumed that the TCGs to be scheduled are consistent. [Vilain 86] has proved that consistency
checking in a general TCG is NP-hard. Several algorithms have been proposed in the literature to
perform partial or total consistency checking in a TCG. Allen’s algorithm [Allen 83] achieves
3-consistency? in a general TCG in polynomial time and space. A complete consistency
checking algorithm using a variation of data dependency backwracking is presented in
[Valdes-Perez 87]. Although the algorithm is designed for quick pruning, its asymptotic
complexity remains exponential. [Vilain 86] and [Tsang 87] point out that consistency checking
can actually be performed in polynomial time provided that the TCG does not contain certain
types of disjunctive relations such as "Interval, has to be eizher BEFORE or AFTER Interval,”.

When additional constraints such as capacity constraints, preferential start time constraints,
preferential duration constraints, preferential resource constraints, or resource reservations are
added to a consistent TCG, the resulting CSP may stop being consistent. These are the types of

inconsistencies that we will be referring to later in this paper. Consider the simple example

depicted in Figure 2-1. There are two activities: A, and A,. A, is BEFORE A,. A, has a
preferential start time constraint specifying that it has to start between 10 and 15. A,’s
preferential start time constraint specifies that A, has to start between 0 and 5. A,’s duration is
10. A,’s duration does not matter. The resulting CSP is obviously inconsistent (unsatisfiable) as
A,’s earliest end time (10+10=20) is after A,’s latest start time (5).

Propagation of activity start and end time windows (earliest/latest start and end times) dates
back to the CPM algorithm [Johnson 74]. The PERT method generalizes CPM by allowing for
uncertainty in activity durations. [Vere 83] adapted the CPM propagation techniques to a
planning system called DEVISER. In DEVISER start time windows are described as triples of
the form (earliest-start-time, ideal-start-time, latest-start-time). The ideal start time information
is optional. A start time triple can be seen as a triangle-shaped? start time utility function (Figure
2-2). When the ideal start time is omitted, the window can be interpreted as a rectangle-shaped

2According to [Freuder 82], a constraint graph is k-consistent if for any set of (k-1) variables, any consistent
assignment of values to these (k-1) variables, and any k-th variable, there always exists a value for the k-th variable
such that the k values taken together (i.e. for the (k-1)+1 variables) are consistent.

*This is not the only possible interpretation.

- ey T
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A 's start time
window
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C:: Ai\BEFORE A,

du,: A,'s duration

Figure 2-1: An inconsistent CSP with a consistent TCG

start time utility function. In DEVISER start time windows are dynamically compressed to
account for new temporal relations and activities introduced during the planning process. The

case with an ideal case without ideal
start time start time
utility gutility
l
0 .' — 0 >
est 1st Ist est I[st
time time

est: earliest start time
Ist: latest start time
ist: ideal start time

Figure 2-2: A utility interpretation of DEVISER’s start time windows

A variation of Vere's algorithm is presented in [Bell 84] that accounts for variable duration
actvines. [Smith 83] extends Vere's approach by also accounting for DURING/CONTAINS
temporal relation constraines (see also [LePape 87)). Smith's temporal module also allows for the
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propagation of resource reservations over T/CCGs. [Rit 86] describes a Waltz algorithm to
propagate generalized temporal windows over TCGs. A generalized window is the composition
of a start time, end time, and duration window (Figure 2-3). The method accounts for all 13 of
Allen’s temporal relations as well as for disjunctions among these relations. In the general case,
Rit’s algorithm is only guaranteed to achieve arc-consistency [Mackworth 77]. Total consistency
can however be guaranteed in TCGs that do not contain disjunctions of temporal relation
constraints.

st: start time

et: end time

est: earliest start time
Ist: latest start time
eet: earliest end time
let: latest end time

fort?«dden md: minimum duration

(st > et)

eet

Md: maximum duration

0 est Ist st
Figure 2-3: Rit’s generalized window

None of the propagation techniques that we just described handles preferences. In practice,
however, different times within a window are not equally preferred. For instance, in the factory
scheduling domain, due dates and associated late delivery penalties induce preferences on
activity end times (and hence start times). Inventory costs are another source of start time
preferences. In general preferences cannot be accounted for independently. Selection of the
optimal start time for one activity may prevent selection of the optimal start time for another
either because of temporal relation constraints between the two activities or because of capacity
constraints, or a combination of the two. This is why it is crucial not only to propagate time
windows but also to propagate preferences over these windows. Window propagation simply
guarantees admissibility of the values within a compressed window. Preference propagation
strives not only for admissibility but also for optimality by locally reflecting preference
interactions.

Our purpose is to develop preference propagation techniques to guide an incremental
- scheduler. Both empirical and analytical studies reported in [Haralick 80, Freuder 82, Purdom
83, Nadel 86a, Nadel 86b, Nadel 86c, Stone 86] indicate that, in general, the amount of search
required to find a solution to a CSP can be significantly reduced by using the following two
look-ahead schemes [Dechter 88]:

1. Variable Ordering: Focus on the most constrained variables first.

2. Value Ordering: Try the least constraining values first.

Tightly constrained variables and constraining values are determined by the interactions of the
problem constraints. In CSPs where variables have finite sets of possible values and all values



11

are equally preferred, the number of possible values left after constraint propagation (i.e.
consistency checking) can be used to determine variable tightness/looseness. In problems where
values are not equally preferred, like in the scheduling domain, this is not sufficient. One has
also to account for value goodness, i.e. the utility of a value and the impact of selecting that
value on the availability of good values for the other variables. Qur notion of value goodness
and our generalization of the notion of variable looseness are intended to allow for the
generalization of these two look-ahead strategies to CSPs where variables can have infinite
bounded sets of possible values with non-uniform preferences.

[Muscettola 87] presents a probabilistic framework to compute resource contention in
T/CCGs with only BEFORE/AFTER temporal relation constraints based on assumptions on the
order in which the activities are scheduled. This paper extends Muscettola’s approach for
computing resource contention by removing the need for assumptions on the order in which
activities are scheduled, by dealing with all of Allen’s constraints, by allowing for duration and
resource preferences and by accounting explicitly for earlier resource reservations.

3. A Probabilistic Framework for Preference Propagation

3.1. An Overview of the Approach

Our purpose is to develop preference propagation techniques to guide an incremental
scheduler. An incremental scheduler works by iterating through a two-phase process. In the first
phase it analyzes the structure of the CSP resulting from the initial scheduling problem and the
decisions that have already been made. In the second phase, based on this analysis, new
decisions are generated resulting in the expansion of the current schedule (e.g. new activities are
scheduled). If the scheduler reaches a deadend, it backtracks. The process goes on undl a
satisfactory schedule is produced.

The first phase analysis is performed using preference propagation to dynamically identify
critical decision points. Such decision points are determined by the interactions of the problem
constraints. In the case of the scheduling problem, there are two main types of interactions:
operation precedence interactions and resource requirement interactions [Smith 85]. .

1. The operation precedence interactions are the ones induced by the TCG. They are |

sometimes also referred to as intra-order interactions*. oo

2. Resource requirement interactions are induced by the capacity constraints. They
arise from the contention of several activities for the same resource. They are
sometimes referred to as inter-order interactions.

Intra-order and inter-order interactions have respectively motivated so-called order-based and
resource-based scheduling techniques. In the past few years it has become clear that efficient
scheduling requires the ability to combine these two perspectives [Smith 85, Smith 86] so as two
, account for both types of interactions. Unfortunately both types of interactions are not totally
mdcpendem Intra-order interactions affect the time intervals over which activities will contend
for resources, thereby influencing inter-order interactions. Resource contention in tum restricts

“Although activities within a same order can also interact by competing for the same resources.
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the times over which activities can occur, thereby influencing intra-order interactions.

In order to deal with the uncertainty in the interactions between uninstantiated variables, we
have adopted a probabilistic model. For each uninstantiated variable, a probability density is
computed for the variable’s possible values that indicates the likelihood of each value to result in
a good schedule overall, given the decisions already made by the incremental scheduler. This
probability is a dynamic measure of value goodness. When the corresponding probability density
is normalized, we also interpret this probability as the dynamic probability that the scheduler
assigns that value to the variable.

In its simplest form our approach involves the following steps:
1. Based on the current partial schedule as well as start time, duration and resource
preferences, a priori probability distributions are produced for the start time,
duration and resources of each unscheduled activity,

2. These a priori probability distributions are propagated over the TCG, resulting in a
posteriori start time and duration probability distributions,

3. The a posteriori distributions obtained in the previous step are combined to
compute activity individual demand densities. An activity A;’s individual demand
density at time ¢ for a resource Ry;;, say D Ia'j(t)’ is defined as the probability that A £
is active at time ¢ and uses R kij tO fill its resource requirement R,

4. Activity individual demand densities are combined to measure resource aggregate
demand densities. The aggregate demand density for a resource at time 7 is the
probabilistic demand for that resource at time ..

Both iterative and hierarchical variations of this basic propagation algorithm will be discussed.

From an Operations Research point of view, activity a posteriori start time and durations
provide a measure of intra-order interactions and a generalization of the notion of slack [Johnson
74]. Resource aggregate demand densities reflect the level of resource contention defined by the
CSP’s inter-order interactions. Resource aggregate demand densities can be identified with the
Operations Research concept of bortleneck analysis [Smith 85, Smith 86, Muscettola 87].

From a constraint satisfaction perspective, a posteriori start time/duration distributions should
be regarded locally as measures of value goodness, and globally as measures of variable
looseness for activity start times and durations. Aggregate demand densities can be interpreted as
measures of constraint contention and individual demand densities as measures of activiry
resource reliance.

3.2. Building A Priori Probability Distributions Based on Local A Priori Preferences

Our approach uses Bayesian probabilities to estimate value goodness, i.e. the likelihood that a
given value will result in a good schedule overall. It consists in the construction of a prior
probability distributions for each uninstantiated variable based on local preferences. These
probabilities are then refined so as to account for constraint interactions, thereby resulting into a
posteriori probability distributions.

Obviously the main concem in such an approach is to obtain good estimates of value goodness
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(desideratuml) as these estimates are essential to both the identification of critical decision
points in the search space and the selection of a decision at these points. There are however
some more specific requirements and desiderata to which one should give special attention.
Indeed, besides its need for good focus of attention mechanisms, efficient search also requires
the ability to quickly prune deadend paths in the search tree.

In our probabilistic framework, unsatisfiability is detected when a posteriori probability
densities are uniformly zero. This indicates that the interactions of the problem constraints have
reduced the set of admissible values for a variable to the empty set. Detecting unsatisfiability in
this fashion requires that:

1. Requirementl: Every value that is a prior admissible’is given a strictly positive a
priori probability, though possibly very small.

2. Requirement2: The propagation step, which combines a priori probabilities to
account for constraint interactions, produces a posteriori probability densities that
are zero only for values forbidden by the constraint interactions.
Requirementl restricts the construction of a priori probability distributions. Requirement2 is a
restriction on the propagation method itself.

Desideratum2: Additionally, in order to detect and prune inconsistent states as soon as
possible, one would like a posteriori probabilities to be zero for all non-admissible values
(complete consistency checking). Unfortunately interactions between the resource requirements
of unscheduled activities seem computationally very expensive to totally account for.
Consequently we will have to settle for partial consistency checking.

These general requirements and desiderata having been identified, we turn our attention to the
construction of a priori probability distributions. We start with some general observations.

In the presence of a unique variable with a single (unary) preferential constraint, one can just
select one of the optimal values defined by the utility function. The probability density for the
variable’ s value consists of a set of peak distributions (Dirac distributions), each centered
around one of the optimal values (Figure 3-1b).

On the other hand, in the presence of several variables and constraints, it is not always possible
anymore to simultaneously select an optimal value for each variable. For instance, it is not
always possible to schedule an activity at its optimal start time and with a set of optimal
resources. Very often one has settle for suboptimal start times and/or resources in order to find a
feasible schedule (i.e. satisfy all the CSP’s constraints). If, for a given variable, the interactions
defined by the constraints are weak, it is usually possible to select a value that is still very close
to the optimum (or one of the optimums). As interactions become stronger, it becomes more
difficult to select values close to the optimums: the probability density widens (Figure 3-1c and d
). In situations of extremely strong interactions, one is just happy to find a solution within the
domain of admissibility (non-zero utility value). Hence the probability distribution tends towards
a uniform distribution over the range of admissible values (Figure 3-1e).

SOf course, 2 more sophisticated analysis will result in the rejection of a larger number of possible values (see
desideratum?2). Therefore what is really important for requirementl is that no value received a zero a priori
probability while it could have resulted in an admissible schedule.

e

e

s

s
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Figure 3-1: A priori probability density P(x) for a variable x with usility function u(x).
This is an example with a single optimal value.

The a priori probability densities that we are currently using are essentially obtained by
normalizing utility functions. Intuitively this can be interpreted as a sort of average difficulty
assumption (see Figure 3-1). The resulting a priori probabilities obviously satisfy
requirement]l. Moreover, because we assume that domains of admissibility defined by utility
functions are bounded, normalization is always possible.

Prior to nommalizing a utility function, its domain is pruned to account for earlier resource
reservations.  This improves the quality of the probability distributions with respect to
desideratum?2. In particular we remove from the start time probability distributions the start
times that are not allowed by the current resource reservations. A start time 7 is not allowed for
an activity A,, if there is at least one resource R, required by A, such that none of the resources
R,; is totally available between r and t+6km, where 6"...'" is A, ’s smallest admissible duration.

We are currently investigating altemative methods for producing a prior probability
distributions. In particular we are investigating both iterative and hierarchical approaches to
preference propagation. In an iterative approach one can use the resource demand densities
obtained by the previous iteration to estimate the probability that a given resource will be
available for an activity at some time r. Using these probabilitics, new a priori start time
probability distributions can be obtained and the propagation process can be carried out all over
again. Altemnatively, in a hierarchical scheme, one can use the propagation results obtained at an
upper level 1o compute resource availability estimates. Again these estimates can be combined
with the start time utility functions to obtain a priori start time probability distributions for the
new level.
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4. Propagating Start Time and Duration Distributions in a TCG

4.1. Preliminary Remarks

Now that we have some a priori distributions for the start time, duration (if variable) and
resources of an activity, we can refine these a priori probabilities so as to account for the actual
constraints of the problem. In this section we compute a posteriori start time (and duration)
probabilities that account for the interactions defined by the TCG.

This section is subdivided into several subsections each dealing with the propagation problem
under increasingly more general assumptions. As we already mentioned earlier we view TCGs as
undirected graphs. Subsection 4.2 develops the computation of a posteriori start time probability
distributions in acyclic TCGs with fixed duration activities. In subsection 4.3 the fixed-duration
assumption is relaxed. In subsection 4.4 we relax the acyclicity assumption. Subsections 4.2 to
44 all assume that there are no explicit disjunctions in the TCG. The transitivity
properties [Allen 83] of the relations may however induce disjunctions, which are then implicitly
accounted for in the propagation. An example of TCG with no explicit disjunction is represented
in Figure 4-1. The TCG specifies that I, OVERLAPS L,, and I, is DURING I,. This implicitly
induces the disjunction I, {DURING, STARTS, OVERLAPS} I, i.e. I; is DURING or STARTS
or OVERLAPS I3. All our calculations allow for this type of implicit disjunctions. On the other
hand- explicit disjunctions are more difficult to handle and are quite infrequent in practical
factory scheduling problems. Propagation in TCGs with explicit disjunctions is discussed in
subsection 4.5. Figure 4-2 displays a TCG with explicit disjunctions. Subsection 4.6 interprets
the results.

explicit constraint

implicit constraint

C,: I OVERLAPS L
C,: LDURING I
C,: I (DURING, STARTS, OVERLAPS} [,

Figure 4-1: Example of a TCG with no explicit disjunctions




explicit constraint

C: I {BEFORE, AFTER} I,

Figure 4-2: Example of a TCG with explicit disjunctions

Notations

¢ C1,Cy,-..,C,,, will denote the explicit temporal relation constraints that define the
TCG (See Figure 4-1 for an example).

® G (st,=t) will denote I,’s a prior start time probability density, obtained as suggested
in the previous section. ¢ is the variable.

. * 9,(du,=d) will denote I’s a priori duration probability density, obtained as suggested
in the previous section. d is the variable. This distribution will only be used for
variable-duration activities.

o P(st,=t&C, &C,&...&C,) (where A, is assumed to be a fixed-duration activity)
will denote I,’s a posteriari start time probability density. This density (with
variable #) corresponds to the a posteriori probability that A starts at time 7 (i.e.
st;=t) and that the temporal relation constraints Cy, C,,...,C, are satisfied.

e P(st,=r&du,=d&C,&C,&...&C,) (where Ay is assumed to be a variable-
duration activity) will denote the two-dimensional joint a posteriori probability
density of I ’s start time and duration. This density (with varables ¢ and d)
corresponds to the a posteriori probability that Ay starts at time 7 (Le. 57,=f) and has
duration 4 (i.e. du,=d) and that the temporal relation constraints C,, C,, ..., C  are all
satisfied.

In order to avoid the accumulation of parentheses in iterated integrals, we adopt the usual
convention that:

[ e f::h(n)dn denotes | [ j:fh(mdn]d&

We will also be using the following functions:

e opredicate) is a function that returns 1 when predicate evaluates to true and 0
otherwise®.

®The rcader who is not familiar with this formalism can think of it as a convenient way of expressing IF-
statements in mathematical formulas.
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* BI[EQ,(&)], where EQ,(E) is a linear equation in &, is a distribution” such that:

[7BUEQ,©)e®)dE
=o[L < x < U] g(x) if x is the unique solution to EQ,(§),
= JLU g(8)d€ if EQ,(€) holds for VE, and
=0 if EQ (&) is inconsistent.

This simply expresses that the integration variable & is not only restricted to values
between L and U but that the values it can take should also satisfy the linear

equation EQ,(§).

 More generally BEQ,(§,----&,)s--- EQ& 5---.&,)], where EQ(E.....§,)(for i=1 to ]) is
a linear equation, is a distribution such that:

[ 2 PBUEQ, D O E N B E ),

Ly
= L[ikdgk Lt:k: ld§k+1"fLU"a[Ll <F1(€k’§k+l"‘§n) < Ul]"a[Lk—l <Fk_1(§k’§k+l"'én) < U —1]
g[Fl(gk’éLwl"'9§n)v"fk—1(§k’§k+l""&n)’gk’ék+l""§n] dén

if the system of linear equations is consistent and equivalent to:

g 1=Fl(&k’§k+l’"'1§n)
EmFHEErsrr-5a)

ék—lek—l(ékaék,,,p--—’gn) (k—l < l)
=0 if the system of equations is inconsistent.

4.2. Propagation in an Acyclic TCG with Fixed-duration Activities

In this subsection we express the a posteriori probability density P(st,=1&C, & C, & ... &C))
for the start time of an arbitrary time interval I in terms of the a priori start time distributions?.
We assume fixed-duration activities arranged in an acyclic TCG.

We denote by 19, I, ..., 120 the intervals directly adjacent to I, in the TCG (Figure 4-3).
C; (1 <i<p,) is the temporal constraint between I, and I]. Each time interval I’ (1 <i<py) is
itself related directly or indirectly to some other time intervals by a set of constraints S?. The
sets S? are disjoints as the TCG is assumed to be acyclic (Figure 4-3).

Since the TCG may be disconnected, which is the case when there are several independent
orders to schedule, we have:

(CHIUSIU{C3}USS..U{Cy 1US, < {C1.CarnniCo ) ey

"Our B distribution is a variation of the Dirac distribution. The reader who is not familiar with this formalism can
simply look at it as a convenient way of expressing constraints on the values that an integration variable can take.

81, is an arbitrary element of {I,, I,....I_}.




1o

Figure 4-3: An Acyclic TCG.

The time ;ﬁx:crval Iis related to I;’, Ig, . 120
by respectively C‘:, Cg, ves C}(:o'

mdmﬁn—l(numbarofcdgcsmanm-mm); |

We will express the (a posterior
G- ,Cmamsatxsﬁcdmtennsof

e the a priori probabllnyﬁmlgssmmm}ﬁ,am

ability that I starts at time 1 and that the c

ccounted ﬁm (m- more pmcxsciy dmr a pmn start time
distributions). At that point we have an expression of the a posteriori start time distribution that
only contains a priori start time distributions, i.e. distributions that we know from the previous
section.

mmmmmmwm‘ v

Indeed, the a posteriori probability that stg=r and that the temporal relation constraints C,
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C,,....C,, are satisfied is given by9 the a prior1 probability that I, starts at time ¢, denoted
Oq(stp=t), multiplied by the conditional probability that C;, C,,..., C, are satisfied, given that
sty=t, denoted P(C, & C, & ... &C, [st,=1)):

P(sty=t&C, &Cy& ... &C, )= 0y(st,=1) X P(C, & C, & ... &C, [sty=1) 2)
with 7 being the distribution variable.

Furthermore, assuming Ij’s start time fixed at time ¢, the satisfaction of the constraints

{C? }US? is independent of the satisfaction of the constraints {C}) }US? (for i # ), since we are
dealing with an acyclic TCG. Hence:

Po
P(C,&Cy&...&C, |sty=0= T[PCI&S]|sty=1) 3)
i=1
where P(C? &S? | sty =1) is the conditional probability distribution that C? and the constraints in
S? are satisfied given that st, = ¢ (with t being the distribution variable).

Using (3) we can now account separately for each constraint C? . We will express each
multiplicand, P(C? &S? |sty=1), in terms of P(stf.’ = 1:&5? ), the probability that I? starts at some
time T (to be defined) and that the constraints in S? are satisfied. Consequently equations (2) and
(3) will enable us to express P(st, =t&C, & C,&...&C,) in terms of probabilities of the form
P(s0=1&S?), ie. probabilities of the same form as the original probability
P(sty=1&C & C,&...&C,) except that S? is only a subset of {C;, C,,...,C,}. By recursively
repeating this process, we will be able to account for all the temporal relation constraints. The
recursion  process  stops when S) gets empty since at that  point

P(sr?:t&S?) = P(st? =17)= O'?(SI? =1), I?’s a priori start time density.
Paragraghs 4.2.1 and 422 develop the computation of P(CY&S?|sty=1) in terms of
P(s=1&S)) = o3(st)=T) P(S?|s7=t) in the case where C° is respectively of the form “10

MEETS ", and "IOBEFOREI?’,. The treatment of the set of all thirteen of Allen’s temporal
relation constraints can be found in appendix1.

42.1.C: I, MEETS I

The constraint "I, MEETS I;" requires (Figure 4-4) that ;s end time be equal to I;’s start
time, i.e. it requires that er0=st0+du0=s1? - In other words, assuming that s7y=¢, the probability that
C; and the constraints in S7 are satisfied is equal to the probability that s/=r+du, and that the

P& S5ty =1) =P(st) = 1 + duy & S)
=G2(st? = t + dug) P(S? | 517 = t + du) @

9P(A&B)=P(A)xP(B:A):mwmpmbﬁhyofmmAammeecxpmedasmpm&mofﬁw
probability of event A with the conditional probability that B occurs given that A is assumed to occur.
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Figure 4-5: I, BEFORE [

The constraint "/, BEFORE 1?“ requires (Figure 4-5) that [’s end time be smaller than I? ’s
start time, ie. it requires that erg=sty+dug< st?. In other words, assuming -that 'st0=t, the
probability that C; and the constraints in S, are satisfied is equal to the probability that
st > t4+dugy and that the constraints in S? are satisfied:

PC&SIsty=0)= [ P(sf =t&SHdr

z+du0

=7 s =0P( s =1)dr ®
!+ dup
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4.2.3. Example
We use the three activities of order, (Figure 1-2) to illustrate the computations that we have
just developed. We have:

P(stg=t&C  &C,&...&Cs)
=P(stg=t&C4&C-)
=0g(stg=1) P(Cg&C7|st4=1)
=C¢(ste=1) | ':1“5 O1(st7=17) P(C4 | st=1;) d,

= =D~ at; [T to= 6
_06(St6 1) J.t+du6 0'7(St7='57) qu':’«n»du., 0'8(5 8—‘58) d‘Cs (6)
Also, using the formula given in appendix1 to account for "[; AFTER I¢"

P(st1=t&C&Cr&...&C5)
=P(s17=t&C(c&C;)
=07(s27=0) P(C & C7 | st5=1)
=0(st7=t) P(Cg|st7=t) P(C|s52;=1)
=0(st7=1) | “Mog(ste=TedTg j;‘ﬁ oglstg=Tg)d1g ©)

Finally, in the same fashion:

P(stg=t&C,&Cr&...&C7)
=P(stg=t&C(c&C)
=0g(stg=t) P(Cc&C|stg=1)
=Cg(stg=t) [ “*10(st;=17) P(Cgl st7=17)dvy
=0g(stg=1) [0, (st=17) dv; [T Heo(stg=t6) dng 8

We assume that the resources are initially free (i.e. no priori resource reservations). Therefore,
since activities Ag, A5, and Ag have uniform start time utility functions, their a priori start time
densities are uniform as well, and span between times 0 and 120. Figure 4-6 displays the a
posteriori start time densities computed using these a priori densities. Since in this case the start
time utilities are uniform, the most preferable start times for each activity are the ones that leave
the most freedom to the other activities for satisfying the temporal constraints C4 and C;. For
instance, Ag’s a posteriori start time density indicates that A should start as early as possible in
order to leave as much room as possible to A, and Aglo. As we will see in the example of
subsection 4.4, the propagation of nonuniform start time utility functions such as the ones of the
activities in order; are influenced by a second factor. In addition to looking for start times that
leave a lot of slack to the other activities that have not been scheduled yet, the propagation of
nonuniform utilities gives a higher preference to higher utilities. The a posteriori distributions

1031 is important at this point to bear in mind that we have not yet accounted for resource capacity constraints. In
particular we do not know the effects that these constraints will have on the domain of possible start times for A,
and A;. Hence, at this point, the best start times are the least committing ones with respect to the temporal
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thereby reflect a compromise between the utilities to optimize and the need to leave enough
room for selecting good start times for the other activities that have not yet been scheduled.
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Figure 4-6: Apemﬁm&mdemfmmdcrz

fmmm t&du‘, d&C&Cz&.&C,,) mprcsmﬂsﬂwmbabﬂnymm:ro4anddu0-dmd
that all the temporal relation constraints are satisfied given the activities’ a priori start time and
duration distributions. The integrals involved in the computation of these distributions are very
similar to those of the previous subsection, except that we now have to account for the a priori
duration distributions.
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The equivalent to equations (2) and (3) are:

P(sty=t&duy=d&C & C,&...&C, )= O(sty=1) Xy(duy=d) X
P(C,&C,&...&C, | sty =t &du,=d) ®
with:

Po
P(C,&Co&... &C, |sty=1&duy=d)= T[] P(C;&S;|sty=1t8&duy=d) (10

i=1
Paragraghs 4.3.1 and 4.3.2 develop the computation of P(C? &Sf.’ sty =t&duy=d) in terms of
P(s =1&du’ = 8&S") = 0%st'=1)82(du’=8) P(S°|s’=t & dul=5) in the case where C; is
respectively of the form "I, MEETS I?", and "I; BEFORE I?",. The treatment of the set of all
thirteen of Allen’s temporal relation constraints can be found in appendix1. Exactly like in the
previous subsection, one can use these equations in a recursive fashion to express the a posteriori

start time and duration densities in terms of the a priori ones.

43.1.C}: I, MEETS I

As before, the constraint "I, MEETS 1" requires (Figure 4-4) that /,’s end time be equal to I.”s
start time, i.e. it requires that et0=st0+du0=st?. Hence, assuming that szy=¢ and du0=d, the
probability that C? and the constraints in S? are satisfied is equal to the probability that st=t+d
and that the constraints in S are satisfied:

P(CY& S5ty = t& duy=d) = P(si=t+d &S?)

= [ 8@ =8y o5t} =1+d) P(S} | 8 =1+ d &} =5) dd
0

= j " 8(du’=5)d5 j' “Bi(r=t+d) o (s%=r) P(S° | sP=t & du’ =) dt (11)
0 0

The first equality is the most natural one. We will however use equation (11) in the next
subsection, when allowing for cycles in the TCG.

432.Cy: I, BEFORE I
In the same fashion, if I has to be BEFORE I, one has:
P(CY & S?| sty = t & duy=d)
=[8@d=8)dd[" oYs=D)P(S |5} =1&dul=B)dx 12)
o t+d
4.4. Relaxing the Acyclicity Assumption
We now tumn our attention to the case where there may be cycles in the TCG. Equation (9) still
holds but the computation of P(C, & C, & ... &C |st, =1 &du,=d) becomes more complex.

P(C,&C,&...&C |sty=t&du,=d) is the probability that C,, C,, ..., C_ are satisfied when
sty=t and du,=d given the activities’ a priori start time and duration distributions. The set of
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temporal relation constraints {C, C,, ..., C,} can be expressed as a set of linear equalities and
inequalities (e.g. I; BEFORE I, is equivalent to st+du; <st). This set of equalities and

inequalities together with the conditions sty=t and duy=d defines a polyhedron in the 2(n-1)
dimensional space generated by st;, sr;, ves st:_l, dut, du;, s du:‘_l11
this polyhedron is the domain of admissible values for sty Sty ey ST, du:, du,, ..., du:_l given
the TCG and the conditions st;=t and du,=d (independently of the a priori start time and duration
distributions). Therefore P(C,&C,&... & C,, | sty = t &duy=d) can be obtained by integrating the
multivariable ., _ probability density
G (St;=1,)0,(S5=Ty)--.0. (5t =T, )8,(du;=8)8,(du;=3))...5, (du, ,=8, ) over this volume. In
this subsection we explain how to effectively build this multiple integral as an iterated integral.

. The volume contained in

Notice that, according to Fubini’s theorem (see [Thomas 83] for instance), there are [2(n—1)]!
correct ways to express a 2(n-1)-tuple integral as an iterated integral (each corresponding to a
permutation of the 2(n-1) integration variables). The algorithm that we present builds one of
these [2(n—1)]! iterated integrals. Although all the iterated forms are theoretically equivalent,
some result in faster numerical evaluation than others!2. The algorithm that we describe gives
one way to build these integrals. The integrals can then be rearranged in order to speed up their
evaluations. We will not be concemed here with these implementation details.

Consider again the TCG associated to order, in the example of subsection 1.3 (Figure 4-7)13,
As we saw in equation (6): '
P(C&C, |sty=1)= N o/(st,=1;,)d1, h O5(51,=T5)d T, (13)
715% J.t s J <y
Alternatively, we can start integrating on stg, which produces:

Foo To—du
P(Cs&C7lst5=t)=J Og(St5=Tg) U Tg—du; > t+duy) d’ESJ; To(st=t,)d,
- g

7 oystetdn, [ ost=ryar, (14)
trdugduy trdeg

where a(t,—du, > t+du,) simply expresses that the second integral’s upper bound has to be
greater than its lower bound (since we are integrating probability densities). Figure 4-7
represents the domain of integration of both form (13) and (14). They are obviously the same,
which illustrates that both forms (both iterated integrals) are equivalent. Besides its illustration
of Fubini’s theorem, this example shows how to account for several constraints at the same time
when determining a variable’s domain of integration: in (14) the domain of integration of st, is
determined by the two constraints C¢ and C,. In this example C; determines the lower bound of
the integral and C, the upper bound. The simplicity of the formulas in the previous subsections
was coming from the fact that it was possible to order the integration variables so as to account

UWhere (I, I, Ly o I} = (I, L, ., I}, I being an arbitrary time interval of the set, as in the previous
subsections. The "*" simply indicates that the time intervals have been reordered.

12Some iterated forms are also easier to solve analytically than others.

30ne of the reasons for chosing this example is that the domain of integration can be visualized in 2-D.
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Figure 4-7: Tllustration of Fubini’s Theorem in a TCG with 3 Time Periods

for only one constraint at a time. In TCGs with cycles it is generally not possible to find such an
ordering. The domain of integration of a variable is usually determined by several constraints,
some affecting the lower-bound some the upper-bound. The actual lower-bound will therefore be
given by the maximum of the lower-bounds produced by each constraint (i.e. the most restrictive
one) and the actual upper-bound by the minimum of the upper-bounds produced by each
constraint. Additionally one has to ensure that the lower-bound is smaller than the upper-bound
(see a function in (14)) since we are integrating probability densities.

Order; (Figure 1-2) in subsection 1.3, is an example of a TCG with cycle where the integration
bounds of some start times are obtained by taking the minimum or maximum of the bounds
produced by several constraints. For instance:

P(C\&Cy-.&Cslst=0= | ;‘ O,(s1,=1,)d, L;‘ O (st=t)dT,
trduy 1

oo

[~ G4(st,=1,)dt O{st=1)dT, (15
szz ST, 3_&4”“3@3&%43 s(s1=T5) dTg (15)

As suggested by the above example, the procedure for building iterated integrals to compute a




posteriori probability distributions in TCG with cycles is just a generalization of the formulas
given in the previous subsections. The main differences come from the fact that it is not possible
anymore to find an ordering of the integration variables that would allow for accounting for only
one temporal relation constraint at a time. We just saw how to combine the lower-bounds and
upper-bounds imposed by different temporal constraints. Before describing a general procedure
to effectively build a posteriori probability integrals, we still have one detail to consider. Some of
the formulas given in the previous subsection include B distributions (see also appendix1). For
instance B!(t=t+d) in (11) expresses that st. should be equal to t+d in order for I, to meet I. B
distributions provide an easy way to formally handle all temporal relation constraints in the same
fashion, ie. with integrals over the duration and start time of each time interval. B distributions
allow for expressing equalities involving integration variables. When several constraints
involving B distributions affect the same time interval, one has to make sure that the values for
the interval’s start time (or duration) that they each require are compatible. This is accomplished
by using the following rule (which can easily be verified using the definition of B distributions):

[ BUEQ\ - EQIBEG 1y EQ e 81 b o,
Domain

=[  BUMEQ . EQ:n)8E L)y, (16)

Domain

This is illustrated by the example below.

G

C:1 STARTED-BY L,
C,: I, CONTAINS I,
C,: I,MEETS I,

- —p-
time

Figure 4-8: A TCG with 3 Time Periods

The TCG represented in Figure 4-8 involves 3 time intervals (with variable durations), namely
I,, I, and I;. The temporal relation constraints are:
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e C;:1, STARTED-BY L,
e C,:1, CONTAINS I,, and
e C,:I, MEETS L,

Using equations (39), (41), (35) (see appendix), and (16) one can write:
d 14+d—€
P(C & C&C; | sty=t&du=d)= | By(duy=ede j 36,4(st,=T,)d1,
t

J-Min(“-d } 52 (du,=¢,)de, j' Mb‘{m’mlB2(12=t,‘52=‘t3—92)62(5t2=12) dr,

Max{0,0} Max{—o0,—oo}

This formula can be simplified using the definition of B distributions:
P(C&C,&C,| st =t&du=d)

= :83(du3=£3)d83 | !M'e363(st3=13)oo(0< T <d) 8,(duy=151) Oylst=1) T

=0 ,(st,=1) L:’83(du3=.s3)ar»sq [ 305 (st5=T3) 8 y(du=t,—0) ds

t

To conclude this subsection, Figure 4-9 gives a description of BUILD-A-POSTERIORI-
PROBABILITY-EXPRESSION, a  general procedure to  effectively express
P(C,,....C, | st=t&duy=d) as an iterated integral. The body of the procedure makes use of a
couple of simple functions, of which we only give an informal description:
e adjacent(/, TCG): returns a list containing the time intervals adjacent to / in the
TCG, I being itself a time interval.
¢ pop(list): removes the first element from /ist and returns it.
¢ index(/): returns the index (i.e. subscript) of /, where / is a time interval (e.g.
index(/,) returns 2 ).
o intersection(/ist,list,): returns a list containing the elements of list, that are also in
list, (the order of the elements in the result list is arbitrary).
e union(list list;): returns a list containing any element that is either in list, or list, (or
in both). An element appearing in both list; and lisr, is returned only once.
o list-difference(list,,list,): returns a list with the elements of list, that are not in lisz,.
o start-time-upper-bound-expression(/, lisr): [ is a time interval, and list is a list of
time intervals adjacent to I in the TCG. The function returns the start time upper-
bound expression resulting from the temporal relation constraints between I and the
time intervals in /isz. As explained earlier in this subsection, this is expressed as the
minimum of the upper-bound produced by each constraint.
o start-time-lower-bound-expression(/, lisr): same as above. The lower-bound is
expressed as the maximum of the lower-bound produced by each constraint.
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e duration-upper-bound-expression(/, /isr): same as above for the duration
(minimum).

e duration-lower-bound-expression(/, [lisr): same as above for the duration
(maximum).

o beta-expression(/, lisr): combines the eventual B distributions resulting from the
temporal constraints between I and the time intervals in /ist, as explained earlier in
this subsection. If there are no B distributions the function simply returns the empty
expression.

¢ append(expression,, expression,): appends the two expressions together.
We use € and nil to respectively denote the empty expression and the empty list.

procedure BUILD-A-POSTERIORI-PROBABILITY-EXPRESSION I, , TCG)

INTERVALS-TO-BE-PROCESSED « adjacent(I,, TCG) ;
PARTIAL-EXPRESSION ¢ £ ;
MARKED-INTERVALS « {L} ;
*a list containing L *
while INTERVALS-TO-BE-PROCESSED # nil
I < pOp(INTERVALS-TO-BE-PROCESSED) ;
1 « index(]) ;
RELATED-INTERVALS < adjacent(l, TCG) ;
INTERVALS-TO-ACCOUNT-FOR

intersection(MARKED-INTERVALS, RELATED-INTERVALS) ;

SUB ¢ start-time-upper-bound-expression(l, INTERVALS-TO-ACCOUNT-FOR) ;
SLB ¢ start-time-lower-bound-expression(I, INTERVALS-TO-ACCOUNT-FOR) ;
DUB ¢ duration-upper-bound-expression(l, INTERVALS-TO-ACCOUNT-FOR) ;
DLB ¢ duration-lower-bound-expression(I, INTERVALS-TO-ACCOUNT-FOR) ;
BETA <« beta-expression(l, INTERVALS-TO-ACCOUNT-FOR) ;
LOCAL-EXPR <— o(DUB>DLB) fz'ﬁz(duﬁei)a(SUB>Sw)d£i [BETA O(st=1)dx;;
S8
PARTIAL-EXPRESSION ¢« append(PARTIAL-EXPRESSION,LOCAL-EXPR) ;
MARKED-INTERVALS < union(MARKED-INTERVALS, {I});
INTERVALS-TO-BE-PROCESSED < union(INTERVALS-TO-BE-PROCESSED,
list-difference(RELATED-INTERVALS, MARKED-INTERVALS)) ;
while-end ;
return PARTIAL-EXPRESSION;

Figure 4-9: Procedure to express P(C,,...,C, Ist,=t&du,=d) as an iterated integral

The procedure builds the iterated integral from left to right by successively visiting each time
interval that is directly or indirectly related to [,, LOCAL-EXPR contains the integrals over the
start time and duration of the time interval currently visited. This local expression is appended to
the right of a current partial expression of the iterated integral, thereby resulting in a new partial
expression. Intervals that have been visited (i.e. whose start time and duration a priori densities
have already been integrated in PARTIAL-EXPRESSION) are marked. Integration bounds for a time
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interval’s start time and duration are determined by the temporal relation constraints between
that time interval and the adjacent time intervals that have already been marked.

As illustrated in the previous examples, the expressions produced by this procedure can be
simplified using the definitions of o functions and B distributions. The integration bounds can
also be refined to account for the very domain over which the probability densities are strictly
positive. Finally the order of integration can be rearranged to speed up evaluation. A time
complexity analysis of the method and a discussion of available methods to evaluate the integrals
are given in section 6.

Figure 4-10 illustrates the operation of the procedure in the construction of the iterated integral
in (15). Notice that the & expressions have been omitted as they trivially evaluate to 1.

Figure 4-11 displays the a posteriori start time densities of the activities in order;, assuming no
prior resource reservations. The start time utility functions are the ones described in subsection
1.3, triangle shaped utility functions allowing for start times between 0 and 140 with a peak in
120. One should notice the difference with the propagation of the uniform start time utilities of
order, (Figure 4-6). For instance in the case of As, the a posteriori density was not totally
pushed to the right. Instead the density peaks at 130, which is a compromise between the optimal
start time (120) and the tendency of the other activities to push A towards its latest start time
(140) in order to have more freedom. A similar remark applies to the other four activities. It
should also be noted that A;’s a posteriori start time density between 40 and 50 and Aj5's
between 90 and 100 are not zero, though very small, which unfortunately does not appear very
clearly on the graphs.
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initialization:

step,:

step,:

steps:

Step 4:

PARTIAL-EXPRESSION: £
MARKED-INTERVALS: {I, }
INTERVALS-TO-BE-PROCESSED: {I,, I}

I: I2
PARTIAL-EXPRESSION: [ Gy(st,=1,)d",
t+dug

MARKED-INTERVALS: {Il, 12 }
INTERVALS-TO-BE-PROCESSED: { 14, 13 }

I: I
4
PARTIAL-EXPRESSION: j " 0,(s1,=1,)dT, Ldul o,(st=1,)d,

MARKED-INTERVALS: {I},1,,1,}
INTERVALS-TO-BE-PROCESSED: {13, Is}

PARTIAL-EXPRESSION: f:d.. 0,(s2,=1,)d7, L‘;‘l o (st,=1,)dr, j;d“z O5(st,=15)d1,
1

MARKED-INTERVALS: {I;, I, I3, 1,}
INTERVALS-TO-BE-PROCESSED: {Ls}

L1
5
PARTIAL-EXPRESSION: J’Ml Oy (sty=t)d, | i o (st=t)dr, Lz% O5(st,=15) d;
- Os(sts=15)dt
J-Max{t3+du3.t4+du4} s(515=T) dTs
MARKED-INTERVALS: {Il’ 12, 13, 14, 15}
INTERVALS-TO-BE-PROCESSED: nil

Figure 4-10: Main steps involved in the construction of (15).
Notice that the o expressions have been omitted as they trivially
evaluate to 1.
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Figure 4-11: A posteriori start time densities for order;
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4.5. Propagation in a TCG with Explicit Disjunctions

In the case of explicit disjunctions in the TCG, one has to add the probabilities of all possible
combinations of relations. Consider the example displayed in Figure 4-12. There are three time
intervals [,, I, and I,. The temporal relation constraints are:

e C,: I, {BEFORE, AFTER] L,, and

¢ C,: I, {BEFORE, AFTER} L,.
Four combinations are possible:
1. I, BEFOREL, and I, BEFORE I,,

2.1, BEFOREL, and I, AFTER I,
3.1, AFTER I, and I, BEFORE L, and

4.1, AFTER [, and I, AFTER L,.
The a posteriori probability distributions are obtained by adding the probabilities of all four
possibilities. For example:

P(C,&C,|st,=1)

=4ft:dul Gz(“z"z)dtzf; i 0;(st,=T5)d1,
+‘[':‘"1 02(Stzﬂz)dtzj-z—d%"s(Stszts)dts
+ f:duzcz(“zﬂz)dtzﬂ; m203(5’3=13)d13
+f _’;d“zo'z(stzz*tz)d'czj_?:d"%3(st3=13)d’c3
= -, o=~ [ 2 0y (sr=tdn
+[ o)L ¥ o (st=r)d

C.:1, (BEFORE,AFTER] I,
C,: I, (BEFORE,AFTER} I,

Figure 4-12: A TCG with explicit disjunctions

As the number of possible combinations grows exponentially with the number of time
intervals, the computations are expected to quickly become intractable. Fortunately, in the
factory scheduling domain, it has been our experience that such disjunctions are extremely

infrequent.




33

4.6. Result Interpretation

It 1s interesting at this point to look back at the desiderata and requirements identified in
subsection 3.2 and check if they are satisfied. From subsection 3.2, we already know that our a
priori start time distributions have been built to satisfy requirementl. In order to properly
perform consistency checking we still need to check requirement2, i.e. we need to make sure
that no admissible value may receive a zero a posteriori probability. This just follows from
probability theory. Moreover the method will give a zero a posteriori probability to any value
forbidden by the TCG, given the a priori probability distributions. Hence the computation of the
a posteriori probabilities is perfect with respect to desideratum2, as far as the interactions
defined by the TCG are concemed. The remaining inconsistencies result from the difficulty to
account for inter-order interactions between unscheduled activities.

Once the a posteriori start time and duration distributions have been computed, one has to
distinguish between two possible situations:
1. If at least one of the a posteriori probability density is uniformly zero then the
current CSP is unsatisfiable (inconsistent). The incremental scheduler should
backtrack, if still possible.

2. Otherwise, after having been normalized, the a posteriori distributions can be

..combined to obtain the resource demand densities induced by the CSP, as we

describe in the next section!4. The normalization simply expresses that the total
probability that each activity occurs is equal to one.

Because they account for the interactions defined by the TCG, a posteriori start time (and
duration) distributions reflect intra-order interactions. They generalize the Operations Research
notion of activity slack [Johnson 74]. Indeed a value with a high a posteriori probability will
usually correspond to a high utility and will be likely to leave a lot of freedom for selecting high
utility values for the other variables that have not been assigned a value yet. Therefore selection
of start times (and durations) with high a posteriori probabilities is expected to result in good
solutions to the CSP (desideratum1)!>. An activity whose range of admissible start times (and
durations) with high a posteriori probabilities is very wide is an activity with a lot of slack (with
respect to the TCG). On the other hand, if the range of admissible values with high a posteriori
probabilities is small, the activity has little slack. Equivalently, from a constraint satisfaction
point of view, these a posteriori distributions can be seen locally as measures of value goodness
and globally as measures of variable looseness.

However it is important to understand that, in general, ﬁwpcaksofmeaposmonstannme
and duration distributions will not exactly coincide with the optimal activity start times and
dmwomaf&wmblcm,mrwﬂlﬂmyemmmﬂcwﬁhﬁmszofﬁmpmblcmobtaﬂwdby
omitting the resource capacity constraints. For instance, in the case of order,, the optimal star
times of Ay, A,, A3,A4,andASarercspwuwiy306ﬂ%60mdl?ﬁ(and%é@%%mm
120 if one omits R,’s capacity constraint). Obviously these optimal start times do not exactly
coincide with the peaks of the distributions displayed in Figure 4-11. This is because at this stage

’%sszmatmwmtagumamecmmemeSPlssmsﬁnbkmwcmveMypmmp@mm
consistency checking.

15Although one should still account for inter-order interactions, which is the topic of the next section.
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we have not accounted precisely for the interactions induced by the capacity constraints. Our a
priori distributions accounted only implicitly for the existence of these interactions by assuming
non zero probabilities for values that were not locally optimal (see Figure 3-1). Iterating the
propagation process as suggested in subsection 3.2, i.e. using resource demand densities to guess
new a priori probabilities, should improve the quality of the a posteriori start time and duration
distributions as measures of start time and duration goodness (desideratuml).

5. Resource Demand Densities
We complete the propagation process by combining the a posteriori start time (and duration)
probabilities to estimate the amount of contention for each resource. This is. performed in two
steps:
1. For each activity 4;, we compute a set of individual demand densities D Kij For
each resource R,aj that an activity A, can use, the demand density Db {r) reflects
the probability that A, uses R,a at time 7 to fulfill its resource reqmrement Ry
This probability depends both on the probability that A, is active at time 7 and the
probability that A, uses ij to fulfill its requirement R;.. The probability that an
activity is active at some time ¢ is given by the probability that the activity’s start
time and duration are such that the activity does not start after r and does not start
so early that it is already finished by z. In the case of a fixed-duration activity 4, ,
this is the probability that the activity starts some time between t—duk and 1. A
detailed weatment of the computation of individual demand densities is g1ven in
appcndlx2 We will also interpret D kij (1) as the reliance of A, on the possession of
at time . Indeed activides with httle slack and few good possible resources
wﬂ]l have high individual demand densities concentrated over short time periods
and a few resources, whereas activities with a lot of slack and several good
resource alternatives will have smoother individual demand densities spread over
long periods of time and several resources (see appendix 2 for details).

2. For each resource, activities’ individual demand densities are combined to obtain
the resource’s aggregate demand density.This density gives the expected demand
for the resource as a function of time. In the example described in subsection 1.3,
the aggregate demand densities are given by:

* R,’s aggregate demand density = D{(£)=Dy{(1)+D,1;(0)+Ds51(®

b4 R3,S aggregate demand &D.SIIY = D3(I)=D613(t)+D713(t)+D813(1')
Notice that the aggregation process is performed regardless of the resources’
capacities. As a matter of fact, a resource’s aggregate demand density at some time
t may get larger than its capacity. In general high contention for a resource will -
require prompt attention from the scheduler.

Figure 5-1 depicts the aggregate demand densities D (t), Dy(t), and Ds(t) for the example in
subsection 1.3. Clearly the contention between A3, A, and A4 for R,, which was predicted in
the introduction, has been identified by the propagation method. It corresponds to the peak of
D,(t) centered around t=100. This peak reaches a density of 1.5, which is much larger than any
of the other peaks. Figure 5-2 shows the individual contributions of A5, Ay, and A5 to the
demand around the peak, namely D35(1), Dyyp(1), and D4;,(1). An area of width 30 has been
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delimited around the peak!®. This is the area of high contention for R,. It clearly appears that
within that zone, A is the activity whose individual demand density contributes most to the
demand for R,. Consequently A; is the activity that relies the most on the possession of R,
within the area of high contention. An incremental scheduler can accordingly decide to first

16There is no particular reason for chosing 30 except that it seems to be a characteristic duration for this problem,
since all the activities have a duration of 30. The same results would hold if we were considering slightly smaller or
larger intervals of contention around the peak.
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Figure 5-2: Contributions of A3, A, and A5 to R,’s aggregate demand density

focus its attention on the scheduling of Aj.
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6. Discussion

6.1. Time Complexity

As demonstrated in section 4, in a.TCG with no explicit disjunctive constraints,
P(st,=t&du=d&C, &C,&...&C,) can be expressed at worst with a 2(n—1)-tuple integral of a
priori start-time and duration probability densities, where n is the number of activities to
schedule. The construction of these integrals can be performed in polynomial time (see the
procedure in Figure 4-9). On the other hand, evaluation of multiple integrals using classical
integration techniques requires exponential time. In the worst case computation of the n a
posteriori distributions requires O(nK?*) integrand evaluations, where K is a constant that
depends on the integration method. In the case of fixed-duration activities this complexity is still
O(nK*). This exponential worst-case time complexity is actually a very pessimistic one. In
manufacturing environments activities are grouped in orders. Only activities within the same
order have temporal relation constraints between them. Therefore the largest multiple integrals
that one has to evaluate correspond to the largest number of interconnected activities within an
order (say Max m,,, ) This results in a worst case time complexity of nK?®™or4.r in the case of
n variable-duration activities, and a time complexity of nKMe*myrs in the case of n fixed-
duration activities. This also means that, for a given set of order types (i.e. Max m,,,, is fixed),
the worst-case time complexity to compute the a posteriori probability distributions is linear in
the number of orders to schedule. The computation of the resource demand densities requires at
most O(n X r) steps, for n activities and r resources. Hence for a fixed set of order types and a
fixed set of resources, the asymptotic time complexity of the approach is linear in the number of
orders to schedule.

In manufacturing environments, one may have to schedule up to several thousands of activities
grouped in orders of up to 20 or 30 activities. Assuming that half of these activities are modeled
as variable-duration activities, one may have multiple integrals of dimension up to 60. Numeric
evaluation of such integrals is usually performed using Monte Carlo techniques [Stroud 71].

[Lepage 78] describes an adaptive Monte Carlo method for evaluating multidimensional
integrals whose asymprotic time and space complexities are linear in the integral’s dimension.

Alternatively one may try to reduce the size of the integrals via the use of a hierarchical
scheduler.

6.2. Expressiveness of the Model

The preference propagation techniques that we have presented allow for all thirteen of Allen’s
temporal relation constraints as well as for disjunctions of such constraints. Additionally
quantitative temporal relation constraints such as "Activityp should start at least 5 minutes after
activity," can be represented using dummy activities. For instance, one can introduce a2 dummy
activiry with duration of 5 minutes and the two constraints "activity, MEETS acrivity~" and
"acnivity~ BEFORE activityp". Using duration preferences one can express even more complex
quantitative temporal relation constraints such as "Activiryy should start as soon as possible
within 5 minutes after activiry,".

Our model accounts for three types of local preferential constraints: start time, duration, and
resource preferential constraints. End time preferential constraints can be expressed using
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dummy activities. For instance an end time preferential constraint on an acriviry, can be
expressed as a start time preferential constraint on a dummy activiryy MET-BY activity,. Our
framework also seems to allow for the represcntamon of the most common global orza.mzatmnal
constraints [Baker 74]. For instance, minimizing mean (weighted) order tardiness can be
expressed with the help of end time (hence start time) constraints on the last activities of each
order. Minimization of mean (weighted) order flowtime can be represented with aggregate
activities, each containing all the activities in an order and a preferential constraint on the

duration of each aggregate activity.

6.3. Possible Improvements
The preference propagation technique presented in this paper has been implemented on a Sun

3/60 ing Knowledge Craft on top of Lucid Common Lisp for TCGs with fixed-duration
activities interconnected by BEFORE/AFTER relations and that may contain cycles. An
incremental scheduler has also been built that uses the preference propagation module to focus

its attention.  Preliminary experimentation with the system suggests several possible

improvements.

6.3.1. Iterative and Hierarchical Preference Propagation
As already mentioned in subsection 3.2, we are currently investigating alternative ways to

compute a priori probability distributions. In particular we are considering both iterative and
hierarchical variations of the preference propagation scheme presented in this paper. In an
iterative approach one can use the resource demand densities obtained by the previous iteration
to estimate the probability that a given resource will be available for an activity at some time .
These probabilities can then be combined to obtain more accurate start time, duration, and
resource a priori probability distributions for a new propagation. For instance good start times for
which good resources are likely to be unavailable would see their a priori probability being
reduced. A hierarchical approach is similar except that the additional information is obtained
from the results of the propagation at the upper level rather than from the previous iteration.
Such techniques are expected to account more accurately for the resource requirement

interactions of unscheduled activities.

6.3.2. Activity Criticality
In the introduction we have defined a critical activity as one whose good (overall) start times

and resources are likely to become unavailable if one started scheduling other activities first. In
this paper we have assumed that the most critical activity is the one that relied the most on the
possession of the most contended resource (over the area of high contention for that resource).
This measure of activity criticality is only concerned with the availability of good resources at
good start times. Good start times may however become unavailable just because of operation
precedence interactions (i.e. intra-order interactions), as reflected in the a posteriori start
time/duration distributions.!”We are looking for ways to integrate the notion of start
time/duration looseness identified in subsection 4.6 directly into our measure of activity

In the approach that we have presented, intra-order interactions are accounted for indirectly via the individual
and aggregate demand densities, since these densities are computed from the a posterioni stant time/duration
distributions.
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criticality rather than only indirectly through measures of resource contention and activity
resource reliance. Additionally, rather than simply accounting for activity reliance with respect
to the most contended resource, we would like to develop a measure that accounts for the
reliance of an activity on each of its possible resources and the contention on each of these
resources (over the appropriate time intervals). :

6.3.3. Value Goodness

All along we have assumed that value goodness was solely determined by the problem
constraints, ie. both the required and preferential constraints of the problem. A more
sophisticated approach would consist in also accounting for the time available to come up with a
schedule. If there is very little time available, one will be mainly concermned with finding an
admissible schedule as soon as possible. Good values are therefore the ones that are the least
likely to result in backtracking, i.e. the least constraining values identified in earlier work in
constraint satisfaction with uniformly preferred values [Haralick 80]. Instead if more time is
available, it may be worthwhile considering riskier values because they are likely to result in a
better schedule. For instance, if one machine is more accurate than all the other ones, one could
try to schedule more activities on the most accurate machine. This may however result into some
extra backtracking due to the higher contention for the accurate machine.

7. Summary and Concluding Remarks

Factory scheduling is subject to a wide variety of preferential constraints such as meeting due
dates, reducing order flowtime, using accurate machines, etc. These local a priori preferences
interact. For instance, meeting an order’s due date may prevent the scheduler from selecting an
accurate machine for an operation. Therefore selecting start times or resources based solely on
such preferences is likely to result in poor schedules. Preference propagation strives for the
construction of measures that reflect preference interactions. Such measures can then serve to
guide the construction of good overall schedules rather than schedules that locally optimize a
subset of a priori preferences.

Our approach to preference propagation is inspired by two CSP look-ahead techniques known
as variable ordering and value ordering [Dechter 88]. Both theoretical and empirical studies
[Haralick 80, Freuder 82, Nudel 83, Purdom 83, Stone 86]indicate that these techniques can
significantly reduce the amount of search for a solution. Earlier work had only focused on
applying these techniques to CSPs where variables have finite sets of equally preferred values.
Our approach to preference propagation extends these techniques to CSPs where variables have
infinite bounded sets of possible values with non-uniform preferences. The results, of the
propagation are formulated as a set of texture measures. In this paper we have identified the
following texture measures: start time/duration goodness and looseness, resource contention,
and activity resource reliance.

From an Operations Research point of view our preference propagation technique combines
advantages of both order-based and resource-based scheduling by accounting for both intra-order
and inter-order interactions [Smith 85].

We perform preference propagation within a probabilistic framework. A probability is
associated to each variable’s possible value that dynamically reflects the likelihood that the value
results in a good schedule overall. We have identified requirements and desiderata to guide the
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construction of such probabilities. These requirements and desiderata have been motivated by a
double objective:
1. We want to be able to detect unsatisfiable CSPs as soon as possible (quick
pruning), and

2. we want to use the propagation results to help focus the scheduler’s attention on
the most critical decision points and the most promising decisions at these points
(opportunistic scheduling).
We have argued that the approach presented in this paper fulfills these requirements and
desiderata.

We have described an algorithm to perform preference propagation in T/CCGs. The algorithm
deals with all thirteen of Allen’s temporal relation constraints and allows for cycles in the
corresponding TCG. The algorithm also allows for activity start time, duration, and resource
preferences and accounts for earlier resource reservations if any. We have shown that the results
of the propagation across the temporal constraints can be combined to estimate resource
contention and activity resource reliance. We have also analyzed the computational
requirements of our approach.

The importance of this research lies in its attempt to give a more formal characterization of the
problem space, in which we carry the search for a schedule. Given the underlying uncertainty of
any search problem, a probabilistic characterization is a very attractive one. In this paper, we
have presented a model that uses Bayesian probabilities to account for preference interactions in
T/CCGs. The problem space is finally characterized by a set of textures that are used to guide the

search process. :
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Appendix1: A Posteriori Start Time and Duration Distributions
In this appendix we summarize the essential formulas developed in subsections 4.2 and 4.3 and
complete them to allow for all 13 of Allen’s temporal relation constraints. The notations are the

ones defined in subsection 4.1.

1. Acyclic TCG with fixed-duration activities
We found in subsection 4.2 that:

P(sty=t&C & C,&...&C )= Oy(stg=1) X P(C, & C, & ... &C, |st,=1) a7
with:
Po
P(C,&C,&...&C,|sty=0= [ P(C;&S]|sty=1) (18)

i=1

CO may be any of Allen’s thirteen temporal relation constraints:

1.1.C}: I, MEETS I
P(CY&S) sty =1) =P(st =t + duy & S?)
=02(st) = 1 + dug) P(S° |57 = 1 + duy) (19)

1.2.C): I, MET-BY I
PC2& S sty =1) =P(st =t — dud & 57

=0(st) =t — du) P(S? | s80 = 1 — du) (20)
1.3. C{: I, BEFORE I
P& st,=1) = J’“ P(sf =1&SHdr
- ? +duo
=[7 st =PI =vyar 1)
7 +du,0
1.4.C{: I, AFTER I}

0
P(c‘?&s‘.’gszo-_-z) = TP = 1& S d

—

= j "o%s = 1)P(S° ¥ =) dt | ' 22)

1.5.C}: I, DURING I/
P(CY& S5ty =1) = o(duy < du®) j 0P(st°=t&$?)dt
= o(duy < dut )j R Ust? —'c)P(S”lsr =1)dt (23)
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1.6. C% I, CONTAINS I}

+duo—

0
du.
P(C° &S sty=1) = a(duo>du?)r ‘P(sP=1&S))dT
!

0
dup — du.
= aduy > di) [ 7707 ot = 0P Lot =) e
t

1.7.C’: I, STARTS I{
P(CO& S sty =1) = oddu, < du) P(st; = 1&SY
= aldu, < dil) o2(st) =1) P(S} s =1)

1.8. C% I, STARTED-BY I}
P(CO& S sty =1) = odity > di)) P(st; = 1&S)

= afduy > did) 62(st = 1) P(S; |5t =1)

1.9. C°: I, FINISHES I}
PCO& S sty =1) = odduy < duf) P(st] = t +dutg — di; &S%

= oty < du?) 0X(st® = rdugdid) (S} st} =t + duty — du)

1.10. C: I, FINISHED-BY I}
PC° &S |sty=1) = olduy > du) P(st; = 1 + dup — dil &5?)
= o(dity > di?) 0% =t+dug—dul) P(S] | st =t + duy — d)

1.11. C*: I, OVERLAPS I}
PCP&S sty =1) = t* o , Pt} =t&SHdt
Max{z.r+duo—dui}
= j"“’“" - =P st=T)d

Max {t,¢ + dug — du; }

1.12. C*: I, OVERLAPPED-BY I}
5 0
PCaSlsy=0 = [ T pel = e Sa
t - du.

0
Min (1,1 + dug — du; }
= [ e =PIt = e
1~ du,

(24)

(25)

(26)

27)

(28)

29

(30)
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1.13. C{: I, EQUALS I}
P(C& S} Isty=1) = o(dug=du]) P(st)=t & 5?)

= o duy=dul) o?(sé?::) P(S? |s0=r) (31)

2. Acyclic TCG with variable-duration activities
We found in subsection 4.3 that:

P(sty=t&duy=d&C, & C,&...&C,)= o(sty=1) Xx8y(duy=d) x
P(C,&C,&...&C,, |sty =t &duy=d) (32)
with:
Po
P(C,&Cy&...&C, |sty=t&duy=d)= T[] P(C]&S]|st,=18&duy=d) (33)

i=1

C? may be any of Allen’s thirteen temporal relation constraints:

2.1.C{: I, MEETS I
P(CY&SY|sty=t&duy=d) = P(st)=t+d & S})
= j:sf(du?=8)0?(.::?:r+d)P(S?(sr?=z+d&du?=5)d8 |
=j:5?(du§?=5)d6 j:ﬁl(r:zw o2(s0=1) P(S° | st°=t & du°=8) d (34)

The first equality is the most useful one. However equation (34) is useful for the treatment of
TCGs with cycles (see subsection 4.4). The same remark applies to the other equations involving
B distributions.

22.C: L, MET-BY I’
P(C & S? sty = t & duy=d)
= J:S?(du?=8) S (s =1—8) P(S° |50 =1— 8 &du¥= ) dS
= jss?(dug’:a)ds | :[31(1::—5) S2(s¥=1) P(S° | s0=t & du® =) de 35)
23.C" I, BEFORE I° | | |
P(C; &S] |5ty =1 & duy=d)
= J:&?(d;@:ﬁ)dﬁ J:dcf(sr?=t)P(Sf.’tsr?:*r&du?=8) dr (36)




2.4.CY: |, AFTER I}
P(CY& S |5ty = t& duy=d)
23 -9
- J’o 8al=8)a5[ ol =0 P(S; |5t} =1& dif{=5)dv (37)

25.C": I, DURING I}
P(CY& S?|st, = t & duy=d)
=j:5§’(du?=8) d8 ao?(st?rr)P(S?lst?=‘c&du?=5) dt (38)

t

t+d-

2.6. C": I, CONTAINS I
P(CY&SY |ty = t& duy=d)
=_[:5f.’(du?=5)d6j:+d'sc?(sz?=1)1>(sf.’|szf.’=r&du?=8)dr (39)

2.7.CY: 1, STARTS I}
P(C2& S} sty = 1& duy=d)
=J:5? (du)=8) o}(st) =r) P(S} |st{ =1 & du; =) dB
= [ 8@y=5) a8 [ "B e=0) (s =0) P(S! )= e} =B) e @)

2.8. C’: 1, STARTED-BY I
P(C &S] |5ty = t& duy=d)
- J:S?(d::?=5) s =1) P(S | s0=1 & dn0=8) dd
- j:zsf.’(du? =88 | Bi(x=0) st =) P(S] |5 =t e i =B) e 1)

29.C?: I, FINISHES I
P(C) &S] |5ty = t& duy=d)
= ["8au=8) ol =1+d-B) P(S] |t} =1+ d~ Bl i} =) db
' d

j :5?(@? =8)ds j B r=t+d-8) ¥(s°=1) P(S? | s =1&dil¥=5) dn (42)
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2.10. C!: I, FINISHED-BY I}
P(CY& S0 51, = t & duy=4d)
b |
= [(8(dul =®) of(st} =1+d~B) P(S] |st) =1 +d— & duf = §) dd
0

| “8(du’=5) dd [ Bi(t=t+d-8) 0¥(st°=1) P(S° | st°=1&du’=5) @3)
0 00

2.11. C: I, OVERLAPS I
P(C)& S |st, = t&duo—d)

= j 2 dl=5as[" XA =0)P(S°|s0 =1 &di’=5)dr
Max{tt+d-8}

= odaf(duf.’=5)d8 [ t:d_scg(st? =0) P(S° |50 =t & dud=8) d
+
j :8?(du?=8)d5j‘t+dc?(sr? =) P(S? | s =1 & dul="B)dx (44)
2.12.CY: I, OVERLAPPED-BY I
P(CY& S? |51, =t & duy=d)

= j 5°(du°.5)d5j M (st =) P | s = & du’=8) it

=jd$(du?ﬁwﬁj " o0 =0) P(S? | s =1 & i =) dt
0 ]

+

j “8(du’=5)dd J' s =) PO s =t & i =) it (45)
d -5

2.13.C{: L, EQUALS I
P(C) &S] |5ty = t & duy=d)
=8(du;=d) 63(s0=1) P(S° | s'%=t & dul=d)

=f "sf(duﬁ’:&)daj B2(8=d,t=t)0 (s’ =1)P(S° | s=t & di’=8)d (46)
0 —oo
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Appendix2: Activity Individual Demand Densities

1. Notations
In this appendix we assume that a posteriori start time densities have already been computed as

described in section 4. We assume that none of these densities is uniformly zero, otherwise this
would indicate unsatisfiability of the current CSP and the incremental scheduler would have to
backtrack. As already mentioned earlier, a posteriori start time densities can then be normalized
to express the fact that each activity will occur once (i.e. each activity will start exactly once).
These normalized a posteriori densities will be denoted:

o fixed-duration activities: Py(st=t&C &...&C,)
o variable-duration activities: P (st=t&du=d&C &...&C)

Pr,, (R,;) will denote the a priori probability that A, uses R,; to fulfill its resource requirement

R,. Dh (t) will denote A,’s individual demand for qu as a function of t. This is the probability
that A, uses R,;; at time t to fulfill its resource requirement R,;. The computations are performed
assuming an mcremental scheduler whose earlier resource reservations are non-preemptible.
Therefore the demand density has to be reshaped so that it does not overlap with earlier
reservations. We propose a method for doing so, which involves two steps.

Finally we will be using the predicate AVAIL(R,; t,t+du,) which returns true if and only if
resource R,;; is available at all time between t and t+du,. This is a precondition for scheduling
activity A, to start at time 7, if A, is to use resource R,;.

2. Resource Demand Densities Produced by Fixed-Duration Activities

The probability that activity Ay uses Rkij at time ¢ to fulfill its resource requirement Ry; is
given by the a priori probability that Ay uses Ry to fulfill Ry; multiplied by the conditional
probability that Ay is active at time ¢ given that it uses Ryy; to fulfill Ry;. It turns out that this
latter conditional probability may be uniformly zero for some resources Rkij due to earlier
reservations. This can be accounted for by refining the a priori probabilities kai(Rklj) D, (0 s

therefore computed in two steps:
1. In the first step we compute:

t
DI =Py R | Pyt =1&C & &C JRR )
Y t—dy m i

where Pp(s2=1&C &..&C [R,=R,;) is the probability that st;=T and that the
temporal relation constraints C,,.. ,d are satisfied given the activities’ a priori start
time distributions and given that R, is the resource used to fulfill requirement R,,.
This probability can be approxxrnatcd by computing I,’s a posteriori start time
distribution starting from an a priori start time d1smbut1on that accounts for R, ki S
reservations. We do so by replacing G,(st,=1) with G, (s7,=1) X ([AVAIL(R,;;,t,1+du,)]
in the computation of P(st,=1&C,&...&C,)). In other words:

Py(s1=1&C &.. &C IR, =R, )=xP(st,=1&C &..&C )

o[AVAIL(R,; ., T+du,))

kij?
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where ¥ is a normalization factor!$.
2. In the second step the a priori probabilities kal_(RL_[j) are refined to account for the
resource reservations. The refined probabilities are denoted p;"pz(Rkij). Indeed, due
ki

to earlier reservations, Some resources Ry have a posteriori probabilities
P\(st=t&C &...&C IR, =R,) that are uniformly zero. A,’s individual demand for
these resources is therefore uniformly zero as well. Hence one can use the new
probabilities:

pgcf’z(RHj)_.; 0 if P (st,=1&C [8.2:...&C mth:Rh.j) is uniformly 0
, ki K.P Rla‘(R ) Otherwise

where X,; is a normalization factor. Notice that, for each R,;, because of the
consistency checking performed after the computation of the a posteriori start time
distributions, we are guaranteed at this point to have at least one resource R,; such

that Pp(st=1&C,&...&C, [ R,=R,;) is not uniformly zero. One can then compute:

t
D0 =ppPRg) | Pyt =18C & &C R =R
k

In practice it is not necessary to compute Di‘;"l(t): one can just compute P (st=1&C &...&C |
R,=R,;) and check if it is uniformly zero or not.

Finally, notice that the total demand is given by:

oo
=p;’zi(R,dj) j_*:dt j:_duk Py(st,=E&C & ...&C IR, =R, )dE
=P ARy [ P51 ~E&C & &C IR =R )| ;”‘“"kdt (using Fubini)
=p:z’2(Rﬁj) xdu, (since Py is normalized)

and hence for each R,; required by A, :
S| _Prrede=d
j —0

which simply expresses that an activity A,’s total demand for a resource R,; is equal to its
duration du,. This duration has simply been distributed over time and over several resources
~ (Ry; to account for the different possible schedules of the activity.

18 Again this normalization simply expresses that the activity will occur exactly once.
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3. Resource Demand Densities Produced by Variable-Duration Activities
The computations in the case of variable-duration activities are very similar to the ones for
fixed-duration activities:
1. In the first step one computes the distributions

P(st=1&du=e&C &...&C R, =R )=xP(st,=1&du,=e&C &..&C,)
[AVAIL(R T, 1+¢€)]

where K is a normalization factor.

2. The probabilities pRH(RHj) are refined in the same way as for fixed-duration
activities. One can then compute:

L t -
DEFA) =P Ry jo de J‘ | Pulst=i8dume&C & C, R=R )
Lastly, using Fubini’s theorem, one can check that:
[P,
=p;‘:’2(Rk,.j) [Tar, J':da L‘l Prlst=t,&di=e&C .. &C R, =R ),
—o0 1~
= pj;z’Z(R,dj) J':ds J':drz j;l*PN(srkﬂz&du ~E&C,..&C IR, =R,;)dT,

= P::z(Rh]) jo"‘dgjj: eP N(J'l' kztz&du k=€&C,.. .&CMIR kz:R kij)d‘cz
Hence, for each Ry, required by A, A,’s total demand is:

> J' D2t )dr, = jo de[ e[y, P HRugP (st =T, &l =68C .. &C R, =R, )ldr,
ji =

which is A,’s expected duration given the joint start time and duration probability density
Zj p::Z(R P n(st=1,&du=e&C\ . &C IR, =R ;).
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