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Abst ract

We discuss a new conceptual framework for the convexification of
di screte optinization_problens, and a general technique for obtaining
approxi mations to the-convex hull of the feasible set. The concepts
come fromdisjunctive progranmng and the key tool is a description of
the convex hull of a union of polyhedra in terns of a higher- di nensiona
pol yhedron. Al though this description was known for several years, only
recently was it shown by Jeroslow and Lowe to yield inproved represen-
tations of discrete optimzation problems. W express the feasible
set of a discrete optimzation problemas the intersection (conjunction)
of unions of polyhedra, and define an operation that takes one such
expression into another, equivalent one, with fewer conjuncts. W then
introduce a class of relaxations based on replacing each conjunct (union
of polyhedra) by its convex hull. The strength of the relaxations in-
creases as the nunber of conjuncts decreases, and the class of rel axa-
tions forns a. hierarchy that spans the spectrum between the conmon
linear programm ng relaxation, and the convex hull of the feasible set
itself. Instances where this approach presents advantages include
critical path problens in disjunctive graphs, network synthesis problens,
certain fixed charge network flow problenms, etc. W illustrate the
approach on the first of these problenms, which is a nodel for nachine

sequenci ng.




1. | ntroduction

Most discrete optimzation problens are solved by some kind of enunera-
tive procedure. These procedures use relaxations of the feasible set, and
of the subsets into which the latter is broken up, in order to derive bounds
on the objective function value of these subsets. Their efficiency depends
crucially on the strength of these bounds, which in turn hinges on the strength
of the relaxation used. The nmobst comonly used relaxation is the linear pro-
gram obtai ned by renoving the integrality conditions, sonetimes anmended with
cutting planes. However, sone integer programi ng problens have nore than
one formulation, and the various formulations nmay give rise to linear pro-
gramm ng rel axations of varying strengths. This was known for a long tine
about thethf1pt£$|ﬂitii6%%«i«f?#?fl%[«»i for which the disaggregation of
the capacity constraints involving the 0-1 variables produces a consider-
ably stronger linear program than the aggregated one. To the di saggrega-
tion of the capacity constraints, Rardin and Choe [11] have recently added

v peoblond,

either fromarc into path flows, or fromsingle commodity into nulti-

a di saggregation of the flow variables of fixed charge

comodity flows, which often yields a stronger |inear programthan the
one in the original variables.

Approachi ng the probl em from another standpoint, that of m xed
integer representability of various functions and sets, Jeroslow and Lowe
[10] have recently shown how certain mxed integer formulations using a
| arger number of variables than the common formul ation, give rise to stronger
l'inear programmng relaxations. Their approach essentially uses disjunctive

programm ng, and our work is closely related to theirs.




Di sjunctive programmng is optimzation over disjunctive sets. A

di sjunctive set is a set defined by inequalities connected to each other by

the operations of conjunction (A juxtaposition, "and") or disjunction

(V, "or''). Since inequalities define hal fspaces, a disjunctive set can al so
be viewed as a collection of hal fspaces joined together by the operations of
intersection (0) or union (U). A disjunctive programis then a problem

of the formm n{cx|x e F}, where F is a disjunctive set.

Any integer or mixed integer programcan be stated as a disjunctive
program wusually in nore than one way. Conversely, any bounded disjunctive
program can be stated as a pure or m xed integér 0-1 program This is not
al ways true, though, of an unbounded disjunctive program the set
X. <0 v x,

b ]
vari abl es unl ess x3 i s bounded.

> 1, for instance, cannot be represented by the use of integer

Besides this - not too inportant - difference in the domain of applica-:
bility of the two problemclasses, it is often convenient to view integer
programm ng problenms as disjunctive prograns. Apart fromthe fact that this
is the most natural and straightforward way of stating nany problens in-
vol ving | ogi cal conditions (dichotomes, inplications, etc.), the disjunctive
progranmi ng approach seens to be fruitful both theoretically and practically.
On the theoretical side, it provides some neat structural characterizations
whi ch offer new insights. On the practical side, it produces a variety of
cutting planes, including facets of the convex hull of feasible points,

“which are hard to obtain by other means. In sone cases, like set covering’
and partitioning, these cutting planes have been shown to be considerably

stronger than those derived by other neans, and have been successfully used




inalgorithms. In this paper we show that disjunctive progranmng also pro-
vides strong relaxations of an integer program For background on disjunc-

tive programm ng, see the surveys [4], [9], [12]+«

In this paper we introduce a general framework in which various linear
progranmm ng rel axations can be classified, ranked, strengthened at a given
conputational cost, and viewed froma unifying perspective. In fact, we
provide a fanily of relaxations of a (pure or m xed) integer 0-1 program (P)
whose menbers forma hierarchy in terns of their strength, or tightness. The
menbers of this hierarchy span the whol e spectrum between the usual Iinear
programm ng relaxation and the convex hull of the feasible se{ of (P). This
is obtained by viewing (P) as a disjunctive program and nmaki ng use of the
rich variety of representations available for the latter. Qur main tool
is the operation of taking the convex hull of various disjunctive sets.

The paper is organized as follows. Section 2 discusses sone basic
properties of disjunctive sets and their equivalent forns, and describes
a procedure for systematically generating these forns from each other.
Section 3 deals with characterizations of the convex hull of a disjunctive
set, and their relationship to mxed integer representations of such a
set. Section 4 introduces the hull relaxation of a disjunctive set, which
gives rise to the hierarchy of relaxations mentioned earlier. Section 5
illustrates these concepts and procedures on the disjunctive graph formla-

tion of the machi ne sequencing probl em




2. Disjunctive Sets and Their Equivalent Forms

We denote a halfspace by
B = {x ¢ R"|ax > ao},

where ae Rn, aoe R. While the intersection of a finite collection of

halfspaces, i.e., a set of the form

P= NH = {x sl{nlaixZa
ieM

‘o’ ieM}

is known as a polyhedron, we call the union of a finite collection of

halfspaces, i.e,, a set of the form

D= UBH = {x e]Rnl % (aix > aio)}’
i1eM * ieM

an elementary disjunctive set.

A disjunctive set F can be expressed in many different forms, that
are logically equivalent and can be obtained from each other by considering
F as a logical expression whose statement forms are inequalities, and
applying the rules of propositional calculus. Among these equivalent

forms, the two extreme ones are the conjunctive normal form (CNF)

t]
fer I

where each Di is an elementary disjunction, and the disjunctive normal
form (DNF)

F= UP,
ieQ L

where each Pi is a polyhedron.




The usual statenent of npbst discrete optinization problens is in the
formof an intersection of elenentary disjunctions, that is in CNF. W give
a few exanpl es.

The feasible set of a mixed integer 0-1 program given by the constraints

ax > b;, icM 0<_x.J<_1, jeN x:|50Vx. >1, jel cN

J

is in CNF, and can be wittenas F- H D., with T»M(JN UNUI (where
ieT * 1 2

N« » N, » N), and D defined as {xJaSc > b" for ieM {x|x; >0} for i*";

Cx|-x¢ > -1} for icNy; and [x]-x¢ >0V x; > 1} for id.

P

The DNF of the sanme set is F s
S

=U where P, is the set of those x

sa S

satisfying a*x Sbh,, ieM 0 <x J<71, jeN x.351, j.S; and -x2 =0, jel\S.
Simlarly, the feasible set of a linear conplenmentarity problemgiven by

asc + bSr =c¢?, icM x* 0, yJ =0, jeN x] T0Vy3l=<O0, jeN

is in CNF, and so is the feasible set of the machi ne sequenci ng problem [1]

tj "oty S dv, (i,]) ¢ z,
ty S 0, i eV,
t: o ts _>din- vt & (i>3)r (jiji) €w

-l

where each inequality of Z defines a precedence relation between two jobs,
and each disjunctive pair (i,j), (j,i) € Wstates the condition that jobs i

and j cannot overl ap.




'

On the other hand, the feasible set of the set covering problem de-
fined by the m X n matrix A = (%" «j«tOl}¢ ¥ i,j, can be stated in
CNF either in the sane way as shown for the general mixed integer program

or else by letting T=M-(l¢...,mM) and F - DD., with
ieT *

D. - {x| V (x. >1)}, icT, where N. -{jcNa.. =1}. The D\NF of the sane

problem on the other hand, is Fe+ U (x|x. >1, jeC}, where Cis the set
CcC J
of all covers.

Al though the ONF and the DNF are the two extremes of the spectrum of
equi val ent fornms of a disjunctive set, they share a property not common to

all forns: each of themis an intersection of unions of polvyhedra. W wll

say that a disjunctive set that has this property is in regular form (RF).

Thus the RF is

(2.1) F- 0S.,
jeT?

where for jeT,

. . . .
(2.2) S - U P, P, a pol yhedron, ieQ .
j

J ieqQ !
The ONF is the RF in which every Syis elenentary, i.e., every
pol yhedron P4 is a hal fspace. The DNF, on the other hand, is the RF in which
| T| = 1. Notice that if Fis in the RF given by (2.1), (2.2), each Sy is in

DNF. A disjunctive set S. in the DNF (2.2) will be called inproper if
j y (2.2) Jlnprop

3 h|

S. = P for sone ieQ,, proper otherwise. Any disjunctive set Sj such t hat
‘|Tj| = 1 is inproper. % is convex (and polyhedral) if and only if it is

i mpr oper.




Next we define an operation which, when applied to a disjunctive set
in RF, results in another RF with one less conjuncts, i.e., an operation
whi ch brings the disjunctive set closer to the DNF. There are several
advantages to having a disjunctive set in DNF, i.e., expressed as a union of
pol yhedra; beyond this, the notivation for the basic step introduced here
wi Il becone clearer bel ow when we discuss relaxations of disjunctive sets.

Theorem 2.1. Let F be the disjunctive set in RF given by (2.1), (2.2),,
Then F can be brought to DNF by | T| - 1 applications of the follow ng basic
Step, which preserves regularity:

For sonme kjC'e T, kt X bring S, (1 % to DNF, by replacing it with

(2.3) S,-(V._1K_J(PnP))u\__/P)

K & L K 1
Proof. First we show that Sq; is the DNF of SkfIS,. By the dis-
tributivity of Uand H we have

N
s,Ns, ={u pjn{u Pp
k' 'og (“Qk 1/ chqj j)

= U u((P. >,
iGQk (-'l mp

But for every 1g« Qk nQ,

u (¢ np)-p =u (Pnp ),
jeQ  \, ? 'o  jeQ. ! 'o

and thus S.nS” = Sy; as defined in (1.3).

The set F given by (2.1), (2.2) is the intersection of |TJ unions of
pol yhedra. Every application of the basic step replaces the intersection of
p unions of polyhedra (for some positive integer p) by the int ersection of
p-1 unions of polyhedra. Regularity is thus preserved, and after |T| - 1

basic steps F beconmes a single union of polyhedra, i.e., is in D\F.|'|




Remark. If S, =P, for sonei eQ , i.e., S, is inproper, then
- K l o X ic
\ H 10¢Q£
(2.4) St =
U (P HP) ot herw se .
]

Every basic step reduces by one the number of conjuncts S, in the RF

i
to which it is applied. On the other hand, it is also of interest to know

the effect of a basic step on the nunber of pol yhedra whose unions are the
conjuncts of the RF. \When the basic step is applied to a pair of conjuncts
Sk’ S; that are both proper disjunctive sets, nanely unions of polyhedra

i ndexed by QK and Q, respectively, then the set Sg; resulting fromthe

basic step is the union of p polyhedra, where
P- 1 QM x [0 Ql +]Qng.

This is to be conpared with the number of polyhedra in the unions defining

Sk and SL’ which is |(&| + |gp| . CObviously, nore often than not a basic

step applied to a pair of proper disjunctive sets results in gn_increase in

the nunber of polyhedra whose union is taken. On the other hand, when one

of the two disjunctive sets, say Sk’ is inproper, then S¢ is the union of

at nmost as many pol yhedra as Sl.

Gven a disjunctive set in CNFwith t conjuncts, where the ith conj unct
is the union of qi hal f spaces, and given the same disjunctive set in DNF, as
the union of q polyhedra, we have the bounding inequality
_ g<q X..XQ0;.

Because perfornmng a basic step on a pair S S. such that . S" is

'K (A
i mproper, results in a set Skl that is the union of no nore polyhedra than

is S, it is often useful to carry out a parallel basic step, defined as
JL

fol |l ows:




For F given by (2.1), (2.2), and % =~ for sonme igeQx (i.e., S
inproper), replace OS by f~ \S , where e?’;\ch S..is defined by (2.4).

jeT! jeT\ (k} *J kJ

Note that if sonme of the basic steps of Theorem 2.1 are replaced
by parallel basic steps, the total nunber of steps required to bring F to
DNF renains the sane.

Next we turn to the operation of taking the convex hull of a disjunc-
tive set, which plays a central role in the construction of the famly of
rel axations that we are about to introduce.

3. Hre—Conrwex—HHHt—of—a—bisfunct i veSet-

W have two characterizations of the convex hull of a disjunctive set,
each of which requires the set to be in DNF. The first one is described by
the following two theorens.

Fheorem3-1- [3, 4, 9]. Let

(3.1) F= UP, P, = {x eH"A”rc > a'}, ieQ
ICQX X

o

wher e eachAi'is anm x nmatrix, each aiis an m- vector, and Qis an
i 0 i
arbitrary index set. Let @ » {icQJP.l" 0}, and let

Cm>_a0for all (<,») eR"*! such that

c@Q) ={xe R | @a=uV,a <uV, ieQ* , .

- Ay
for some u'iB', u- > 0, ieQ*.

Then

clconv F = C(Q*).
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For the next Theoremwe need a definition. An inequality Gx >d is
said to define (or induce) a facet of a polyhedron P of dinmension n, if

ax >_a0for all xeP, and atx = cto for n affinely independent points xeP.

Theorem3.2 [3, 4]. Let the set F defined by (2.1) be full-dinensional,
and let Qbe finite. Then the inequality #Xx >_at°> wher e aot 0, defines a

facet of clconv F if and only if a™ 0 is a vertex of

y =* u’\l, i eQ
y
=g yelR* [for some ul >0, ieq

such that uiai'> ct

00— 0
Anal ogous results are known for the cases where F is less than full

di mensional and/or a = 0 (see [3]).
0

This characterization can be used to derive strong cutting planes
whenever Qis small or, although Qis large, the special structure of the
pol yhedra P mmkes it easy to find vertices of F . Such cutting planes have
been derived in [2, 4, 5, 7, 12] and have been successfully used to sol ve,
for instance, set covering [6] and set partitioning [8] problens.

" The second characterizati onnexpresses the convex hull of a disjunc-
tive set as the projection into H of a higher dinensional polyhedron.
It is this second characterization that we are going to use extensively
in this paper. Since this result is froman unpublished technical report,

Wwe provide the proof here. As before, we denote @ = {ieQP1 * 0).

eorem a. 3]. Let F be given b 3.1), and let 5 be the set
Theorem 3.3 [3]. | given by (3.1), apd let 5(Q)
of all those x e B" such that there exist vectors (y , vy PeTR |, ieq,

satisfying




1

v =0
i eQ
alyt (')y;_>_0 . ieq
(3.2) .
E y* =1
ie@ °
y* >0 , ieQ
0 *—
Then

cl conv F = S(Q*).

Proof. (i) W first show that conv FCS(Q*). Let x e conv F; then

for some points zieP., ieQ, and scalars Xi >0, ieQ, such that E Xi = 1.
! i eQ
i i i
Settingy =z \iand yo= X1 ieQ, we obtain a set of vectors (y!, yb,

ieQ, that together with x satisfy (3.2); hence x eS(Q*).

(ii) Next we show that S(@Q) Ccl conv F. Let x e S(Q) and |et

—+ —+ —
(y , Y)> ieQ, be vectors that together with x satisfy (3.2). Let

Q = [ieQ[” >0}, Q= (ieQ[" =0},

For ieQ;, ?/%is a solution to Alx >al i.e., (T/iIVDeP.l; therefore

Yy e ® ?ijpij+ L wtf,
jevi kewi
i ik
1

for some extrene points v’ and extrene direction vectors w of P., in-

1 ) 1] — o1 ik -
dexed by V* and W respectively, and some scalars a.. . >0, jeV., v >0,
kew * satisfying Z 7s+= 1 Setting nsP = pras v./}g‘l = 6, , W obtain

H 4oy, 5 . J o ] IK o I'K

e
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;i = £ v g * z wikcik
JGVi ke:w1
: =i
with pij >0, JeVi, %k >0, kewi, and I pij =,

jevi

For ing, either ;i = 0, or else ;i is a nontrivial solution to the

homogeneous system Aiy > 0; hence

-1 _ ik
y = L w Ok
keW
i
for some extreme direction vectors wik of Pi’ indexed by Wi, and some scalars
%k >0, kewi.
Thus we have
x= Iy,
ieQ*
/ \ \
= T /\E vijp + T wikck/"*' z \/E wikoiw
1€Q¥ ‘jev 13 kew i 1 eQ% ‘keW
1 i 2 i
= z z vijp .+ I z wikoik
ieQ¥ jeV 13 1eQr keW
1 i i
with
Z z pij = z ;i = 1!
* %*
1:Q1 JcVi 1eQ1

i.e., x is the convex combination of finitely many points and directions

of F. Hence ; € cl conv F.

(iii) Since
conv FS£(Q*) ccl conv F

and 3(Q*) is closed, while cl conv F is the smallest closed set containing

conv F, clearly $(Q*) = cl conv F:l




In order to use this characterization of the convex hull, one needs
to know whi ch P':. are nonenpty. This inconvenience is considerably mtigated
by the fact, to be shown below, that the information in question becones
irrelevant if the systens A-Ly.L > ai satisfy a condition that is often easy

to check. Let (3.2) be the constraint set obtained from (3.2) by substi-
Q

tuting Q for @, and let g(Q be the set obtained fromS(Q) by the sane

substitution. For any polyhedron P,let rec P denote the recession cone

of P, i.e.,

rec P := [y|x 4 \ycP, ¥x c P, ¥\ > 0}.

If SL and S2 are sets, we denote
S, +S, = (x]x = y! + y? for some y~ S~ y?eS,}.

Fheerem3-4: 3(Q =S(Q) if and only if

(3.3) V. NyEIR| Ay = 0}c E rec P{.
i eQ @ i eQ
: i | R _
Proof For ieQ\Q*, A’y -ay >0, y >0 impliesy = 0.
. oo o ¢}
Therefore

S(Q =9(Q) +C

where C is the expression (union of polyhedral cones) on the |efthand side
of (3.3). dearly, S(Q) +C=£(Q) if and only if CQec S(Q")- But from

Theorem 3. 3,
rec S(Q) =rec cl conv F

- E rec P,,
i eQ X

hence S(Q = S(Q@) if and only if (3.3) holds.j|
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Corollary 3.5, If for every ieQ some subset of the set of inequalities

ANY f_alodefi nes a bounded nonenpty pol yhedron, then g(Q « S(Q*).

Thus the disjunctive programmin(cx|x e F}, where F is given by
(3.1), is equivalent to the linear programmn(exjx e S(Q)}. Furthernore,
there is a 1-1 correspondence between vertices of the polyhedra P*, ieQ,

and basic solutions of the system(3.2), Mre specifically [3]:

(i) If Xis avertex of Pi for some ieQ, then the vector with

conponents (7, y*) = (x, 1), (y», ») = (0, 0), keQ (i}, together with X,
is a basic solution of the system (3.2).

(ii) 1f R together with (y¥ y"ko), keQ is a basic solution of
(3.2), then (V% 'S/o*) = (%, 1) for sone ieQ, (y\ y'@ = (0, 0) for keQ (i},
and X is a vertex of P,.

Thus all basic solutions of the system (3.2) (or (3.2) satisfy the

- Q)
condition y*s{0, I}, ieQ On the other hand, a solution of (3.2) (or (3.2)9
satisfying this condition need not be basic. It is then natural to ask the
question, what do such solutions represent? The next theorem addresses this

i ssue.

W denote by S (Q the set of those x enf for which there exist
vectors (y~, Y7 )tB™ ", ieQ satisfying the constraints of (3'2)Q and
the condition yi: Oor 1, ieQ i.e.,

S2(Q: = {x e§(Q|y"e{0, I}, ieQ.

Iheorem3.6. Let F= UP, Q = (ieQP.t 0}, and Q* = {ieQ|p. £P,
’ ) iEQX X X _
¥ ieQ(i}3. If Fsatisfies




(3.4) rec ?. =* rec I} , ¥i,je@*
and
(3.5) [y|Ay >0} crec 2. , ¥ keQQ, ieQ*
t hen
SjCQ =F.

Proof. Wth or without (3.4) and (3.5), S*"Q) 2F. Indeed, if x e ?.
i i k k
o o
for sone ieQ then x together with the vectors (y , y) =(x, 1), (y, y) =
I
(0, 0), keQ (i}, satisfies the constraints definingS (Q . It remains to be
shown that if (3.4) and (3.5) hold, §].'(Q £F.
I
Suppose (3.4) and (3.5) are satisfied and let x e S (Q . Then there.

exists ke@*, Q cQ** and Q' ¢ QQ, such that
k ~ A
X =y +7 y .
i eQ UQ"
and x together with the vectors (yl,t 1), (y% 0), ieQ UQ*, and (y*, y";) =
(0, 0), jeQXQ UQ uOc}, satisfies (3.2),. But then y*eP, and y'e rec P.
for ieQ (from(3.4)) and for ieQ’ (from(3.5)). Thus x e R.||
Wiile the condition of Theorem3.6 is not necessary, it is as weak
a sufficient condition as one can get without breaking up Q@* into further
subsets, for sone of which the equality in (3.4) can be weakened to inclusion. -
The essential fact about Theorem 3.6 is the follow ng imediate

consequence, which was proved earlier in a different way by Jerosl ow and

Lowe [ 10].

Corollary 3.7. If each P':. i s nonenpty and bounded, then S{(Q = F.

Thus not only is S(Q the convex hull of the union of the nonenpty,

bounded polyhedra P, ieQ but S(Q is a valid m xed-integer representation
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of such a union of polyhedra. As Jeroslow and Lowe [10] have recently
noticed, this representation is better than the usual one, since its linear
programming relaxation is 5(Q), the convex hull of the union, which is often
not true of the usual representation. By the latter we nean the representa-
tion of F = UP. as the set Ar(Q of those x eR" satisfying

ieQL X

rx - (@ - LY6, ALY, ieQ

6:€{0, 1} , ieQ.

wher e each Li is a |lower bound (vector) on Ai‘x,

If we denote by A(Q the set obtained from At(Q) by relaxing the

condi tions Gie{O, 1} to 61 >0, ieQ A(Q is not necessarily the convex

hull of F, In other words, while S(Q = conv St(Q) whenever all Pi are non-:

enpty and bounded, for A we only have the relation

A(Q 2 conv AI(Q)

which often holds as strict inclusion, as will be illustrated |ater.

W need one nore result before introducing the famly of relaxations
of a disjunctive set. Nanely, we want to use Theorem 3.3 to characterize
the convex hull of an elementary disjunctive set.

Theorem 3.8 Let D= UH" » (x cH'l V (a”~ >a.)}. Then
ite IeQ Il o

[]R‘:l if D is proper
cl conv D =(L

+

if D is improper, with D = Hk.

)




L7

Proof. If D* H: for sonme keQ cl conv D* H: si nce Il: is closed
and convex. Suppose now that Dis proper, and |et X be an ar bitrary but

fixed point i nH®. From Theorem 3. 3, x ecl conv Dif and only if the

system
Ey? =X
ieQ
i1 i
a’y -aioyozo , 1&Q

yj >0 , ieQ

has a solution. Fromthe Theoremof the Alternative, this is the case if

and only if the system

~uY + v =0 , i«Q

(3.6)

VX - v. <0
0
i
% >0 > 1ieQ,

where u:;eH, ieQ, v°6 H, and veR", has no solution*

Since Dis proper, there exists no keQ such that H:CH,:, ¥ ieQ

, i : bl KKy
hence there exist no scalars Uo 20, ieQ such that & = ujaj, ¥icQ

Thus (2,6) has no solution for any ;, and hence x e ¢l conv D for all

x eH", i.e., cl conv D =nf. ||
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The convex hull of a proper elenmentary disjunctive set is thus 1Rn,
i.e., replacing such a set with its convex hull is tantamunt to throw ng
away all the constraints that define it. This of course is not true for
nore general disjunctive sets, as will becone clear soon.

The system (3.2) which defines the convex hull of a disjunctive set
in DNF is easy to wite down, but is unw eldy when the set Qis large; and
for a mxed integer programwhose feasible set F is expressed as a disjunc-
tive set in DNF, Qtends to be large. Thus an attenpt to use Theorem 3.3
to generate the convex hull of the feasible set is in general not too
prom si ng.

On the other hand, the feasible set of nobst discrete optinization
probl ens, when given as a disjunctive set in CNF, has conjuncts that are the
uni ons of small nunbers of hal f spaces, often only two. Perform ng some
basic steps one obtains a set in RF whose conjuncts are still the unions
of small nunbers of polyhedra. Note that if a disjunctive set is in the RF
given by (2.1), (2.2), each conjunct % is in DNF;, hence we know how to take
its convex hull. Naturally, taking the convex hull of each conjunct is in
general not going to deliver the convex hull of the disjunctive set, but can
serve as a relaxation of the latter. This takes us to the class of rel axa-

tions announced at the begi nning of this paper.

4, A Herarchy of Relaxations of a D sjunctive Set

G ven a disjunctive set in regular form

F=NS.
jeT’

wher e each S.J is a union of polyhedra, we define the hull-rel axation of

F, denoted h-rel F, as
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h-rel F := fl cl conv S..
j€T J
The hull-relaxation of F is not to be confused with the convex
hull of F. its usefulness comes precisely fromthe fact that it involves
taking the convex hull of each union of polyhedra before intersecting them
Next we relate the hull-relaxation of a disjunctive set to the usual
linear programm ng relaxation of the feasible set of a mxed integer program
oviously, the hull-relaxation of any disjunctive set is polyhedral, since
the intersection of polyhedra is a polyhedron. Suppose now that we have a

di sjunctive set in CNF,

F « nb.,
° JET’

wher e each D.J is the union of halfspaces. Let T* = {j_cTJD.J is inproper},

and denote

with Po =]R" if T* = 0. Pq can be viewed as the "polyhedral part' of F .

i.e., the intersection of those elementary disjunctive sets that are halfspaces,

Lema 4.1.
h-rel FO: PO.
Pr oof.

h-rely 0D,, - h-rell P fl (F=\D.) .
\jsTj, 0 -j(GT\T':'j}

= ¢l conv P H! / '\ cl conv D

0 V]etvr JA
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by the definition of the hull-relaxation. But cl conv Po = Po and from

Theorem 3.6, cl conv D =R® for all jeI\T*. This yields the equality

i
stated in the Lemma“
When the feasible set of a (pure or mixed integer) O-1 program is
stated in CNF (which is the usual way of stating it), T* is the index set
of all the conjunctive, i.e., ordinary linear constraints, and T\T* is the

index set of the disjunctions x, < 0 V xj > 1. Thus Po is the linear pro-

3
gramming feasible set, and the hull-relaxation of a (pure or mixed-integer)

0-1 program stated in CNF is identical to the usual linear programming

relaxation.

The next question we address is what happens if one applies the hull-
relaxation to a disjunctive set that is not in CNF. Specifically, we look
at the effect of a basic step in the sense of relating the hull-relaxation
of the RF before the basic step to that of the RF after the basic step.

Lemma 4.2. For j =1, 2, let

i’

where each Pi’ ier, j=1, 2, is a polyhedron. Then
4.1y cl conv(SlﬂSZ) < (¢l conv Sl) N (¢l conv Sz).

Proof. Certainly Sl ﬂS2 < (¢l conv Sl) N (c¢l conv SZ}’ and since

cl conv (SlnSZ) is the smallest closed convex set to contain S 082, 4.1

1
follows.”

Theorem 4.3, For i = 0, 1,...,t, let

F, = N s
i j
jeT,
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be a sequence of regular fornms of a disjuntive set, such that
(i) Fois inCNF, with Pg « n{S°j|S’3is i mproper};
(ii) FtisinDNF;
(iiit) for i=l,4 .,t, F. is obtained fromF* by a (possibly

paral l el ) basic step.

Then

P =h-rel F 2h-rel F,a... a h-rel F. =¢cl conv F,.
0 0 1 t t

Proof. The first equality holds by Lemma 4.1, since F is in CNF.
0

The last equality holds by the definition of a hull-relaxation, since Ft
is inDNF i.e., |Tt| = 1. Each inclusion holds by Lemma 4.2, since for
k=1,...t, F¥ is obtained fromFE"# by a basic step.||

For any FL in the above sequence, we can obtain fromthe hull-rel axa-
tion a m xed-integer programmng representation of Fi by using Theorem 3. 6.

However, this representation requires one 0-1 variable for every pol yhedron

P?® in the expression

42 F.=o0 st st=u B %=:A[>¢e|R“"|A“y_> a"}, heQ: jcT,
tojeT, I hoQ, 0 j i

which is usually much nore than the nunber of 0-1 variables needed to

represent the CNF of the sanme set, i.e.,
(4.3) F =0 s , S = U H
o 1 1 v

reTo chr

The next theorem gives a mixed integer representation of F':. whi ch uses

the same nunber of variables as that of F . For F as defined in (4.3), let
0 0
™ = {rcT0|s°r is proper}.
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Theorem 4.4. Let F be the disjunctive set in CNF given by (4.3),
and let Fi be the disjunctive set in RF given by (4.2), obtained from Fo
by a sequence of basic steps, and satisfying the conditions of Theorem 3.6.
Then Fi is the set of those x ¢ R" for which there exist vectors (yh,yg)e RP+1,

her, jeTi, and scalars érs’ seQr, reTé, satisfying

x - Z yh =0
h
it
hh hh
A"y - ay 20 heQ,
(404) jeTi
h
Yo 20
z y: =1
h
it
4,5 h s =0 seQ eT’
(4.5) E:::::;yo s r > T
h|P, <H_
b =1, reT’
seQrrs

(4.6)
6rs¢{0,1} , seQr, re’r;.

Proof. From Theorem 3.6, for each jeT, the constraints (4.,4)

i
define the convex hull of S?, and if amended with the condition yze{o,l},

her, they define S; itself. We will show that the constraints (4.5), (4.6)

enforce precisely this condition, and therefore all constraints together

define F, = N st.
jel‘i J

For any given § satisfying (4.6), the unique set of y: satisfying

(4.5) is defined by
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1 if 6 =1, ¥(r,5):H,2?, and =Q,
7))  riTi,
L otherwise.

Indeed, 6,4 - O inplies yE =» 0 for all heQ‘, jeT;, such that
H;SZP h.’ whi ch means that those constraints (4.5) for which 6 _ « 1 nust
" h
be satisfied by setting yo = 1 for precisely those heQy, jeT” for which
this is prescribed by (4.7). ||
Theorem 4.4 provides a way of representing any disjunctive set in
regular formas the feasible set of a mxed-integer programwith the sane
nunber of 0*1 variables as would be required to represent the sane disjunc-
tive set in CNF.
In order to nmake best use of the hierarchy of relaxations defined

in Theorem4.3, one would like to know which basic steps result in a strict

i nclusion as opposed to an equality. The next theoremaddresses this question.

TheoremZ4.5° For j =1, 2, let
S. -IU P.,

where each P1, ieQ |j » 1, 2, is a polyhedron. Then

(4.8) cl conv(SinS;) = (el conv S*) Pl (cl conv S;)

if and only if every extreme point (extreme direction) of (cl conv S.)L Pl

(cl conv S;) is an extreme point (extrene direction) of P'). 0 Pk for sone
(i, k)€Q x Q.
Proof. Let TL and TR denote the lefthand side and righthand side,

respectively, of (4.8). Then
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Thus x s TLT if and only if there exist scalars \“.| >0, jeV and \i)< >0,
AdW, such that E\. =1 and
jev ’

x= Ev.\.+ E w.p,,
jev 77 auw X L

where V and Ware the sets of extreme points and extrene direction vectors,

respectively, of the union of all » "~ "~ J (i» k) cQ X Qx«

On the other hand, x e T_ if and only if there exist scalars X, >0,
K

J
jev' and p,) > 0, XcW', such that E \' = 1 and
b~ jev' !
: X= E v+ L Wi,

jev’ 33

where v' and w are the sets of extrene points and extrene direction vectors,
respectively, of Tg. If the condition of the theoremholds, i.e., if viev

and w' cW then T«£Ty, and since by (4.1) T_ QI., we have Ty = T_ as
. K Jj L K - L K

cl ai nmed. If, on the other hand, viv ~ 0 or wW\W" 0, then there exists

X s T\T_, hence (4.1) holds as strict inclusion.]||
K L

One i medi ate consequence of this Theoremis

Corollary 4.6. Let

K={x elR|O=xj3<1, j =1,...,n},
and
S. = (xeKx, <0vx, >1}, j =1,...,n
y ( IJ_, y 3 } i
Then
n n
(4.7) conv. HS. _ = Pl conv S..
=17 el !
Thus basic steps that replace a set of disjunctive constraints of
the form

X

jo< V) o> JeT

by a disjunctive constraint of the form
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x, <0\, jes
v ]
scT x, >1/, jeI\s

before caking the hull-relaxation, do not produce a stronger relaxation:
taking the convex hull before or after the execution of such basic steps
produces the same result. |In order to obtain a stronger hull-relaxation,
the basic steps to be performed nust involve sonme other constraints than
those of the above form

Next we illustrate on sonme exanples various situations when taking

the convex hull before or after a basic step does make a difference.

, <11

3% (x «K?|-X1 + Xz 20.5, x| > o,

Example 4. \. (Fig. 3.1) Let Pl
: 2
P2=[x c]Rlx1=1 0<x,_<1}

{x eR?|x;> = 0, 0 < X

-
]
1

Xo A1l wPg=tx  eR%y o X, > 0.5, % <1, *, 20}, and let F = 5,05,

with S; = P,"JP;, S; = P3UP,. Then

(0, 1) (1, 1) 3 2 U
————- - o . -
|
P, — & P )
1 2
©, 3! a,
| - <N
SNt 1 P
(0, 0) (1, 0) 5 1)) 4
1
(1’ EY, l
1, 3
. 1, 0
(%, 0) (el conv(slﬁsz)( )

(cl conv $*) (1 (cl conv Sr)

Fig. 3.1
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cl conv §n = £x cR‘|O_<x15_1, 0<x, <1}

2 .
cl conv 82 = (x elR0.5_<xx +x%x2< 15 05" <1l 0<x <},

and

(cl conv S—L) 0 (cl conv Sz) = cl conv 82'
On the other hand, S(0S, = (PcUPs>fl (P,UP,> (since ?, 0P, =

P20P3:0), and

cl conv(SiriS) = {x CR?)|l <X+ 2X, <2, 0 <Xy <1}.

Here (4.1) holds as strict inclusion, because the vertices (0.5, 0)

and (0.5, 1) of (cl conv S) Q (cl conv %) are not vertices of either PIPIP"

or P27AP4* 3 though the first one is a vertex of P., and the second one a
9 A

vertex of P..
3

Exanple 4.2 (Fig. 3.2) Let ?, = [x elR”" » 0, xz >0},

P2

(x €]R|x1 =1, X, =0}, P;s = {x €IR|x; =0, x, =0},

Py = (X eIR‘|xX =1, x, >0}, and let F=S"S”™ with § = P;UP;,

S% = P.JUP,4. Then
Pl P&
P Q A (0 ,0) (1, 0)
(0,0)) (1,0
(cl conv Sl) (1 (cl conv S<£<) cl conv(Slﬂsz)
Fig. 3.3
cl conv S = ¢l conv S; = [X eE2|0_<_xX <1, xz >0},
= (cl conv Sy) O (cl conv S;),

wher eas

cl eonv(S, NS,) = cl conv((P,UP;3) 0 (P, UP,))

= (X el R2|O_< Xt i 1,. xz = O}.
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Here (4.1) holds as strict inclusion because (0, 1) is an extrene
direction vector of (cl conv Sj) fl (cl conv Sz), but not of PJHPJ or P,"P4*

It is an inportant practical problemto identify typical situations
when it is useful to performsone basic step, i.e., to intersect two con-
juncts of a RF before taking their convex hull. The useful ness of such a
step can be neasured in terns of the gain in strength of the hull-relaxation
versus the price one has to pay in terns of the increase in size. Since the
convex hull of an elenentary disjunctive set is HB® i.e., taki ng the convex
hul I of such sets does not constrain the problemat all, one should inter-
sect each elenentary disjunctive set S.J in the given RF with sone other con-
j unct Slc before taking the hull-relaxation. This can be done at no cost (in
terns of newvariables) if Sk is inproper. Oten intersecting a single im
pr oper gonj unct Sic wi th each proper disjunctive set S.J appearing in the same
RF, i.e., executing a single parallel basic step before taking the hull re-
| axation, can substantially strengthen the latter without nuch increase in
probl emsize. As to shich inproper conjunct S’a to select, a general principle

that one can fornulate is that the nore restrictive is Sx. with respect to each

S.J, the better suited it is for the purpose. The next exanple illustrates this,,

Exanmple 4.3 Consider the 0-1 program
. 1
P mn = - + 4 - + > 0; )
(P) | z XL Xol =i + X2 2 00 %) + 4x, > 2; X, xzc{O, l]J*

illustrated in Fig. 3.3.

“xy +x >0

2
(0, 1)

(1, 1)

\k _ z -%y + 6::.2

x1+4x222

}/(Io, 0) (1, 0)
Figure 3.3
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The usual linear programmng relaxation gives the optiml solution

X1 = ;2 = 2/5, with a value of Z = 6/5. This of course corresponds to
taking the hull-relaxation of the CNF of the feasible set of (P), which

contains as conjuncts the inproper disjunctive sets corresponding to each

of the inequalities of (P) (including 0_<_x,151, 0 < Xiil) and the
two proper disjunctive sets S = (x eH |x]:_< 0 Vx1>_l},

2
S; = [Xx clR [x2 £ 0 V x, > 1}. If Pois the intersection of all the

i mproper disjunctive sets, the hull relaxation of the ONF of (P) is

F0 = Pofl conv S,1 fl conv 82.

Let us wite K=(x e RTo<x, <1, 0<Xx,<1], and P =P . HP,,
1 — — 2. — (@] a a

with PP = {x e Kl -x* +x, 50}, P% = (x e K| X4 4x, S 1\. Now suppose we

intersect each of S* and S, with P®* before taki ng the convex hull, i.e.,
use the hull relaxation . =P, Pl conv(P- 0S) fl conv(P- fl S,). Ve find

1 oz a 1 a Z
ol 1 ol 2 2 -

that conv(P 0 S ) =conv(P - fl S) ={x e KJ-* +x > 0], and hence
i 0 :

F- =F , i.e., these particular basic steps bring no gain in the strength

of the rel axati on.
L 2 o_

Suppose instead that we intersect S and S with P, before taking the
Z o1 o_ L

convex hull, i.e., use the hull relaxation Fk = P, 0 conv(P, fl S) fl

conv(Pgp n S;). Then conw(Pgyp f\ S*) - {x e KIXx + 4x, > 2], conv(Pg 0 S>>

={x gKlx, =1}, and F* - {x € KIx» =1}, which is a stronger relaxation
o - o L

than F . Using the rel axati“%n F, instead*of F , i.e., solving m"n{z = -X-
‘I
+4xJx e Fp}, yields » =x =1, with z = 3, which happens to be the

optimal solution of (P).
ol L

Not e Ehat P, cuts off only one vertex of conv(S fl K) =conv(S, OK) =
L)

whereas P cuts off two vertices of K |j

Ka
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When basic steps are used that intersect proper disjunctive sets
before taking their convex hull, the nunber of variables in the_hull rel axa-
tion increases. Especially attractive are those situations where the in-
crease in problemsize is nitigated by the presence of some structure that
nakes it possible to solve the increased linear prograns efficiently. This
is the case in the machi ne sequencing problem discussed in the next section,

as well as in certain network synthesis and fixed charge network f1 ow pr obl emns.

5. An [llustration: Machi ne Seguenci ng via Di sjunctive & aphs

In this section we illustrate the concepts and nethods discussed in
sections 1-4 on the exanple of the follow ng well known job shop scheduling
(machi ne sequencing) problem n operations are to be perforned on different
itens using a set of machi nes, where the duration of operation i is di’ The
objective is to mnimze total conpletion time, subject to (i) precedence con-
straints between the operations, and (ii) the condition that a nachine can
process only one itemat a tine, and operations cannot be interrupted. The

problemis usually stated [1] as

min t
Ltz - (ir3) ©°*
P) t. >0, i €V
A _ ti/\diV fCi _ €\]/\d‘] 1 (1|J) €W+

wher e ti is the starting tine of job i (with n the dummy job "finish"),
Vis the set of operations, Z the set of pairs constrained by precedence
rel ations, and W the set of pairs that use the same nachine and therefore

cannot overlap in time. It is often useful to represent the problemby a




30

di sjunctive graph G » (V, Z, W, with vertex set V and two kinds of directed

arc sets: conjunctive (or usual) arcs, indexed by Z, and disjunctive arcs,
i ndexed by W The set Wconsists of pairs of disjunctive arcs and is of
the formW= WUW , with (i,j)eW if and only if (j,i)eWw-. The subset
of‘ nodes corresponding to each machi ne, together with the disjunctive arcs

joining themto each other, forns a disjunctive cligue, A _selection SCW

consi sts of exactly one nenber of each pair of W i.e., there are 2q

possi bl e sel ections, where g = )i]wj : Gis illustrated in Fig. 5.1, where the

di sjunctive arcs are shown by dotted lines. |If g denotes the set of selections,
for every SeS, G = (V, ZUS) is an ordinary directed graph; and the prob-

lem (P(S)) obtained from (P) by replacing the set of disjunctive constraints

i ndexed by V\fwith the set of conjunctive constraints indexed by S is the

dual of a longest path (critical path) probl emir-1 G.. Thus solving (P)

amounts to finding a selection S cS that mninizes the length of a critical

path in Gg.

The usual m xed integer programm ng fornulation of (P) represents

each disjunction

(5.1) ”'ti-)-d Voe -t >d

by the constraint set
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- - - >
tj ty (di I.“)jrij > L“
. -t, +t, +(d, - L >d
Yij.{Osl}s
wher e Li.j is a |lower bound on t,J - ti.' Unl ess one wants to use a very
crude lower bound L. ., one has to derive |ower and upper bounds, L, and

i ic
|k, respectively, on each t1, ieV, and set Lij = L3 - UL, L) can be taken
to be the length of a longest path fromnode 1 (the source) to node j. in the
(conjunctive) graph G = (V, Z), and U the difference between the |ength
of a critical path in G for some arbitrary selection Sc3, and the |ength
of a longest path fromnode j to node n (the sink) in G.

The constraint set (5.2) accurately represents (5.1) (amended with

the bounds LK =tk = Uk, k = 1,2), but its linear progranm ng relaxation

(5. 2)L. , obtained by repl aci ng yi'j'€'(0’ 1} by O iyij' <1, has no constraining
power, as shown by the next theorem

JheoremS 1. |f the disjunction (5.1) is proper, then every ty, t_.I

that satisfies
(5.3) Le <t <\J. , L =tj =Uj

al so satisfies (5.2)..
1

Proof~. It suffices to show that the four extrenme points (L%, Lj),

(Le, W), (U, B), (U, W) of the two-dinensional box defined by (5.3)

-satisfy (5.2)" for some y... W first wite (5.2)7 in the form
L LJ L
(5.2). (b - Uy - yig) o d™ <y - te <djd - ¥i3) + vy -I‘i)nj
0 <vyi. S‘l
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) : i ) =1 and y_, = 0,
and note that (Li, l{]) and (Ij’ l:.K) satisfy (5.2) for X] ylj
respectively. To show that (Li’ Lj) satisfies (5.2), for some yij’ we

substitute (L., L.) into (5.2)7 and obtain
1 ] L

d,-L,+L oL
(5.4) L, Sy S L]

To see that (5.4) is feasible, note that the right hand side increases
with U, ; so (5.4) is feasible if it is for the smallest admissible value of
Ui’ which is L.-1 + d'_] (for smaller U':. (5.1) becones inproper). Substituting
L:] + d.-1 for Ui we obtain that (5.2) is feasible whenever Li. +dif Uj’
which is a condition for (5.1) to be proper.

An anal ogous argunent shows that (U'i U.J) satisfies (5.2) for sone
oo

Consi der now the mixed integer representation of (5.1) associated
withthe hull-relaxation of the feasible set of (P). |If the latter is
given in CNF, as is usually the case, applying the hull-relaxation to this
formyields nothing, since the convex hull of the disjunctive set defined
by (5.1) is R2, the space of (ti’ 3.)» If we performa parallel basic
step of the type defined in section 3 and introduce into each disjunct of

(5.1) the |ower and upper bounds on t, and tj’ this replaces every elenmentary

i

di sjunctive set D.l.-1 defined by a pair of constraints (5.1), by a disjunctive

set

t. - ¢t t, = >

j 1« dj i tj—dj
S, = .
1j (ti'tj) Listisui v I‘i Stlsut

L. <t, <U L

3 £ =Y IR
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The feasible set of (P) is then of the form

(5.7) pn"/"\sij) :
(1,5 ot
wher e Po is the pol yhedron defined by the inequalities (5.3) and tj - i z_d
(i,j)e Z. Further, we have (since all S. . are bounded, clconv S =* conv S,.)
1) 1) 1]
h-rel F=Pn(/" "\ ;)
-re = n conv ,
(1,3)¢€ ir
and from Theorem 3.3, the convex hull of Si’_‘| is the set of those (ti’tj)
satisfying the constraints
2
K K k= 1,]
1 1
- > d
By " ' 2 %74y
2 2
-t +t, >d, (1 -
I . j( y,_j)
(5.8)
< 1
Levyy S 4 = ey
k=1,3

Al so, fromCorollary 3.7, the set of those (ti.’t ) satisfying

]

(5.8) and yije(QI} is Si.j‘ since both disjuncts of S,, are bounded

13
pol yhedra; and thus using (5.8) with yuc{O,I} for all (i,j)eWis a

valid mxed integer formulation of (P). This representation uses the

sane nunber of 0-1 variables as the usual one, but introduces two new

vari abl es, ti, ti, for every original variable tk' wi th associ ated boundi ng

inequalities LN <tJ <\7.y \d - 7)) <td <UJ(l - y*). At the

price of this increase in the nunber of variables and constraints, one




34

obtains as the hull-relaxation a linear programwhose feasible set is
considerably tighter than in the usual formulation, since each constraint
set (5.8) defines the convex hull of S’:.'J' It is not hard to see that each

of the two points (L':.’ L.J) and (U Uj) violates (5.8) unless it is con-

il
tained in one of the two hal fspaces defined by t. - t. >d. and t, - t. >d.,,
] 1— 1 1 ]

Let us now perform sone further basic steps on the regular form (5.7)
before taking the hull-relaxation. In particular, let us intersect all $.U

such that i and j belong to the sane disjunctive clique K If we denote

T(K): =n(S i, JeK 1*j), and if JK =p, then

1j°
g -t 2di V- to2d 0, SR, 149

L

<ty £\ icK

1

Taking the basic steps in question consists of putting T(K) in
disjunctive normal form Let < K > denote the subgraph of G induced by
K, i.e., the disjunctive clique with node set K A selection in <K >,
as defined at the beginning of this section, is a set of arcs containing
one menber of each disjunctive pair. Thus if <K >is viewed sinply as

the conplete digraph on K, then a selection is the same thing as a

tournanment in < K>  If S,K denotes the k-th selection in <K > and Q
indexes the selections of < K> then the DNF of T(K) is T(K) - UT, (K),
keQ X
wher e
tj = ti ?di* (i!j) esk
T(K) = ¢ ceRP .

L <t <V, 1K
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It is easy to see that if S, contains a cycle, then Ty(K) « O.
Let @ « CkeQSi, 'S acyclic}. Every selection is known to contain a
directed Hamilton path, and for acyclic selections this path nust be
uni que. Furthernore, every acyclic selection is the transitive closure
of its unique directed Ham|ton path.

Let P, denote the directed Hamlton path of the acyclic selection

Sk ; then S’x is the transitive closure of P,K, and the inequalities
t. -t >d., (i,j) € Py, obviously inply the remaining inequalities of

T€ (K), corresponding to arcs (i,j) € S5\ P» T8 2amore econonical ex-
pression for the DNF of Tis T(K) » U T.®MK), with

keQ* '

t, - & >d, (L ePk

Te(K) = < tc3R _ .

Now let Mbe the index set of the disjunctive cliques in G and K
m

the node set of the mth such clique. Then the RF obtained from (5.7)

by performng the basic steps described above is

(5.9) F=profl ({)T()),
meM

and the hull-relaxation of this formis
(5.10) h-rel F=P H( f7]°™ T(K)).
men

For meM et (% i ndex the acyclic selections in < Km > and for
keQ¥, let gMand R™denote the k-th acyclic selection in < K, > and its
directed Hamilton path, respectively. Then introducing a continuous

vari abl e X.In for every acyclic selection S* and a 0-1 variable y. . for
K K I

every disjunctive pair of arcs {(i,j), (j,i)}, and using Theorem4. 4,
we obtain the following mxed integer fornmulation of problem (P) based

on the hull-relaxation (5.10).
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Theorem 5«2, Problem (P) is equivalent to (P): if t is a feasible
solution to (P), there exist vectors tk and scalars X3, keQ> neM and a
vector y, satisfying the constraints of (P); and conversely, if t, tk, rK\K,
keql, meM and y satisfy the constraints of (P), thent is a feasible
solution to (P).
Proof, (P) is the representation of (P) given in Theorem4.4, with

the set F replaced by F as defined in (5.9), and with the difference that
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k
the upper bounding inequalities - tj + Uj kk >0, jcKm, are replaced by

k k
the single inequality tj(l,k) - tj(pk,k) + (Uj(pk,k) Lj(l,k))xk > 0.

The role of the upper bounding inequalities is to force each tj to 0 when

x:==o, and the inequality that replaces them in P does precisely that:
together with the inequalities associated with the arcs of Pm, it defines

a directed cycle in < K_ > and thus x;‘ = 0 forces to 0 all tI;, jek .l

The linear programmimg relaxation of (P) is much stronger than the
linear programming relaxation of the common mixed integer formulation of (P).
Preliminary computational experience on a few small problems indicates that
the value of this stronger linear programming relaxation tends to be much

higher than that of the usual linear programming relaxation. For example:

Value of
Usual LP Strong LP IP
Problem 1 18 25,1 31
Problem 2 8 10.7 13
Problem 3 20 25.8 35

On the other hand the linear programming relaxation of (P), umlike
that of the usual mixed integer formulation of (P), is not a longest path
problem, This is a serious disadvantage, which has to be overcome by
finding a solution method that takes advantage of the structure of ().
While this is in general still an unsolved problem, an important
aspect of it has been successfully solved. Namely, if () is to be
solved by projection on the space of the y-variables, i.e,, by Benders's
partitioning method, then in order to generate the inequalities of the
Benders master problem one has to solve the dual of the linear program
obtained from (P) for various 0-1 values of y. We have recently found a

way of deriving a solution to this problem from a solution to the longest
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path problemthat corresponds to it in the usual formulation of (p). But

the discussion of this algorithmis left to another paper.

Acknow edgenent

wi sh to acknow edge the useful conversations that | had with Bob

Jerosl ow on the subject matter of this paper.

Ref er ences

E. Bal as, "Machine Sequencing via D sjunctive Graphs: An Inplicit
Enuneration Al gorithm ' Qperations Research, 17, 1969, p. 941-957.

E. Balas, "Cutting Planes fromLogical Conditions." 0. Mngasarian,
R R Meyer and S. Robinson (editors), Nonlinear Progranming 2.
Acadeni ¢ Press, 1975, p. 279-312.

E. Balas, "D sjunctive Programming: Properties of the Convex Hull of
Feasible Points." MSRR No. 348, Carnegie-Mllon University, July 1974,

E. Balas, "Disjunctive Programmng." Annals of Discrete Mathemmtics, 5*
1979, p. 3-51.

E. Balas, "Cutting Planes from Conditional Bounds: A New Approach to
Set Covering." Mathematical Program ng Study 12, 1980, p. 12-36.

E. Balas and AL Ho, "Set Covering Algorithns Using Cutting Pl anes,
Heuristics, and Subgradient Optimzation: A Conputational Study."
Mat hemati cal Programming Study 12, 1980, p. 37-60.

E. Balas and R G Jeroslow, "Strengthening Cuts for Mxed Integer Prograns."”
Eur opean Journal of (perational Research 4, 1980. p. 224-234.

R E Canpello and N Mcul an, "On Deep Disjunctive Cutting Planes for
Set Partitioning." To appear in R W Cottle, M L. Kelmanson and

B. Korte (editors), Proceedings of the International Conference on
Mat hematical Program ng (R o de Janeiro, April 1981).

R G Jeroslow, "CQutting Plane Theory: Disjunctive Methods." Annals
of Discrete Mathematics, J, 1977, p. 293-330.

- )

R Rardin and U Choe, "Tighter Relaxations of Fixed Charge Network
Fl ow Problens." Georgia Institute of Technol ogy, My 1979.

H D, Sherali and C M Shetty, Optinizationw th D sjunctive Constraints.
Lecture Notes in Economics and Mathematical Systens, 181, Springer
Verl ag, 1980.




