NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.
DISJUNCTIVE PROGRAMMING AMD A HIERARCHY OF RELAXATIONS FOR DISCRETE OPTIMIZATION PROBLEMS

by
E. Balas
December, 1983

DRC-70-21-R3

AND A HIERARCHY OF RELAXATIONS
 FOR DISCRETE OPTIMIZATION PROBLEMS

by

Egon Balas

June 1983

The research underlying this report was supported by Grant ECS-8205425 of the National Science Foundation and Contract N00014-82-K-0329 NR047-607 with the U.S. Office of Naval Research. Reproduction in whole or in part is permitted for any purpose of the U.S. Government

Management Science Research Group
Graduate School of Industrial Administration
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

Abstract

We discuss a new conceptual framework for the convexification of discrete optimization problems, and a general technique for obtaining approximations to the convex hull of the feasible set. The concepts come from disjunctive programming and the key tool is a description of the convex hull of a union of polyhedra in terms of a higher- dimensional polyhedron. Although this description was known for several years, only recently was it shown by Jeroslow and Lowe to yield improved representations of discrete optimization problems. We express the feasible set of a discrete optimization problem as the intersection (conjunction) of unions of polyhedra, and define an operation that takes one such expression into another, equivalent one, with fewer conjuncts. We then introduce a class of relaxations based on replacing each conjunct (union of polyhedra) by its convex hull. The strength of the relaxations increases as the number of conjuncts decreases, and the class of relaxations forms a. hierarchy that spans the spectrum between the common linear programming relaxation, and the convex hull of the feasible set itself. Instances where this approach presents advantages include critical path problems in disjunctive graphs, network synthesis problems, certain fixed charge network flow problems, etc. We illustrate the approach on the first of these problems, which is a model for machine sequencing.

1. Introduction

Most discrete optimization problems are solved by some kind of enumerative procedure. These procedures use relaxations of the feasible set, and of the subsets into which the latter is broken up, in order to derive bounds on the objective function value of these subsets. Their efficiency depends crucially on the strength of these bounds, which in turn hinges on the strength of the relaxation used. The most commonly used relaxation is the linear program obtained by removing the integrality conditions, sometimes amended with cutting planes. However, some integer programming problems have more than one formulation, and the various formulations may give rise to linear programming relaxations of varying strengths. This was known for a long time about the fttflpt the capacity constraints involving the $0-1$ variables produces a considerably stronger linear program than the aggregated one. To the disaggregation of the capacity constraints, Rardin and Choe [11] have recently added a disaggregation of the flow variables of fixed charge mand either from arc into path flows, or from single commodity into multicommodity flows, which often yields a stronger linear program than the one in the original variables.

Approaching the problem from another standpoint, that of mixed integer representability of various functions and sets, Jeroslow and Lowe [10] have recently shown how certain mixed integer formulations using a larger number of variables than the common formulation, give rise to stronger linear programming relaxations. Their approach essentially uses disjunctive programming, and our work is closely related to theirs.

Disjunctive programming is optimization over disjunctive sets. A disjunctive set is a set defined by inequalities connected to each other by the operations of conjunction (A, juxtaposition, "and") or disjunction
(V, " $o r^{11}$). Since inequalities define halfspaces, a disjunctive set can also be viewed as a collection of halfspaces joined together by the operations of intersection (0) or union (U). A disjunctive program is then a problem of the form $\min \{c x \mid x \in F\}$, where F is a disjunctive set.

Any integer or mixed integer program can be stated as a disjunctive program, usually in more than one way. Conversely, any bounded disjunctive program can be stated as a pure or mixed integer 0-1 program. This is not always true, though, of an unbounded disjunctive program: the set $x_{j} \leq 0 \vee x_{j} \geq 1$, for instance, cannot be represented by the use of integer variables unless \mathbf{x}_{j} is bounded.

Besides this - not too important - difference in the domain of applicability of the two problem classes, it is often convenient to view integer programming problems as disjunctive programs. Apart from the fact that this is the most natural and straightforward way of stating many problems involving logical conditions (dichotomies, implications, etc.), the disjunctive programming approach seems to be fruitful both theoretically and practically. On the theoretical side, it provides some neat structural characterizations which offer new insights. On the practical side, it produces a variety of cutting planes, including facets of the convex hull of feasible points, which are hard to obtain by other means. In some cases, like set covering and partitioning, these cutting planes have been shown to be considerably stronger than those derived by other means, and have been successfully used
in algorithms. In this paper we show that disjunctive programming also provides strong relaxations of an integer program. For background on disjunctive programming, see the surveys [4], [9], [12]\#

In this paper we introduce a general framework in which various linear programming relaxations can be classified, ranked, strengthened at a given computational cost, and viewed from a unifying perspective. In fact, we provide a family of relaxations of a (pure or mixed) integer 0-1 program (P) whose members form a hierarchy in terms of their strength, or tightness. The members of this hierarchy span the whole spectrum between the usual linear programming relaxation and the convex hull of the feasible set of (P). This is obtained by viewing (P) as a disjunctive program and making use of the rich variety of representations available for the latter. Our main tool is the operation of taking the convex hull of various disjunctive sets. The paper is organized as follows. Section 2 discusses some basic properties of disjunctive sets and their equivalent forms, and describes a procedure for systematically generating these forms from each other. Section 3 deals with characterizations of the convex hull of a disjunctive set, and their relationship to mixed integer representations of such a set. Section 4 introduces the hull relaxation of a disjunctive set, which gives rise to the hierarchy of relaxations mentioned earlier. Section 5 illustrates these concepts and procedures on the disjunctive graph formulation of the machine sequencing problem.

2. Disjunctive Sets and Their Equivalent Forms

We denote a halfspace by

$$
\mathrm{H}^{+}=\left\{\mathrm{x} \in \mathbb{R}^{\mathrm{n}} \mid \mathrm{ax}^{2} \geq \mathrm{a}_{0}\right\},
$$

where $a \in \mathbf{R}^{\mathbf{n}}, a_{o} \in \mathbb{R}$. While the intersection of a finite collection of halfspaces, i.e., a set of the form

$$
P=\bigcap_{i \in M} H_{i}^{+}=\left\{x \in \mathbb{R}^{n} \mid a^{i} x \geq a_{i 0}, i \in M\right\}
$$

is known as a polyhedron, we call the union of a finite collection of halfspaces, i.e., a set of the form

$$
D=\underset{i \in M}{\cup H_{i}^{+}}=\left\{\left.x \in \mathbb{R}^{n}\right|_{i \in M} ^{\vee}\left(a^{i} x \geq a_{i o}\right)\right\},
$$

an elementary disjunctive set.
A disjunctive set F can be expressed in many different forms, that are logically equivalent and can be obtained from each other by considering F as a logical expression whose statement forms are inequalities, and applying the rules of propositional calculus. Among these equivalent forms, the two extreme ones are the conjunctive normal form (CNF)

$$
F=\bigcap_{i \in T} D_{i},
$$

where each D_{i} is an elementary disjunction, and the disjunctive normal form (DNF)

$$
F=\bigcup_{i \in Q} P_{i},
$$

where each P_{i} is a polyhedron.

The usual statement of most discrete optimization problems is in the form of an intersection of elementary disjunctions, that is in CNF. We give a few examples.

The feasible set of a mixed integer 0-1 program, given by the constraints

$$
a^{\dot{L}} \mathbf{x} \geq b_{i}, \quad i c M ; \quad 0 \leq x_{j} \leq 1, \text { jeN; } x_{j} \leq 0 v x_{j} \geq 1, \text { jel } c N
$$

 ietr -
$\left.N_{x} \gg N_{2} \gg N\right)$, and D_{i} defined as $\left\{x J a S c \geq b^{\wedge}\right.$ for ieM; $\left\{x \mid x_{i} \geq 0\right\}$ for $i * \wedge$; $\left.C x \mid-x_{t} \geq-1\right\}$ for $i \mathrm{CN}_{2} ;$ and $\left[x \mid-x_{t} \geq 0 V x_{i} \geq 1\right\}$ for id. The DNF of the same set is $F=\underset{S C I}{U} P_{c}$, where P_{s} is the set of those x


```
Similarly, the feasible set of a linear complementarity problem given by
aSc + bSr = c' ', icM; x^ >0, y J > 0, jeN; x] < 0 v y < < 0, jeN;
```

is in CNF, and so is the feasible set of the machine sequencing problem [1]

$$
\begin{aligned}
& \text { tj " } t_{t}>d^{\mu}, \quad(i, j) \in z, \\
& t_{t}>0, \\
& \text { i e V, }
\end{aligned}
$$

where each inequality of Z defines a precedence relation between two jobs, and each disjunctive pair $(i, j),(j, i) \in W$ states the condition that jobs i and j cannot overlap.
*

On the other hand, the feasible set of the set covering problem de-
 CNF either in the same way as shown for the general mixed integer program, or else by letting $T=M\left(-\left(l_{f} \ldots, m\right)\right.$ and $F-D$ D., with ieT ${ }^{\text {L }}$
D. $-\{x \mid \mathrm{V}(\mathrm{x} .>1)\}$, icT, where $N .-\{j c N \mid a . .=1\} . \quad$ The DNF of the same problem, on the other hand, is $F \cdot \underset{C c C}{U(x \mid x .} \geq 1$, jeC\}, where C is the set of all covers.

Although the CNF and the DNF are the two extremes of the spectrum of equivalent forms of a disjunctive set, they share a property not common to all forms: each of them is an intersection of unions of polyhedra. We will say that a disjunctive set that has this property is in regular form (RF). Thus the RF is
(2.1) F- 0 S.,
jeT ${ }^{\text {J }}$
where for jeT,

The CNF is the RF in which every $S j$ is elementary, i.e., every polyhedron $P i$ is a halfspace. The DNF, on the other hand, is the RF in which $|T|=1$. Notice that if F is in the $R F$ given by (2.1), (2.2), each $S g$ is in DNF. A disjunctive set S_{j} in the DNF (2.2) will be called improper if $S_{j}=P_{t}$ for some ieq j^{\prime} proper otherwise. Any disjunctive set S_{j} such that $\left|T_{j}\right|=1$ is improper. S_{j}. is convex (and polyhedral) if and only if it is improper.

Next we define an operation which, when applied to a disjunctive set in RF, results in another $R F$ with one less conjuncts, i.e., an operation which brings the disjunctive set closer to the DNF. There are several advantages to having a disjunctive set in DNF, i.e., expressed as a union of polyhedra; beyond this, the motivation for the basic step introduced here will become clearer below when we discuss relaxations of disjunctive sets.

Theorem 2.1. Let F be the disjunctive set in $R F$ given by (2.1), (2.2), Then F can be brought to DNF by $|T|-1$ applications of the following basic step, which preserves regularity:

For some $k, j \subset e T, k t X, b r i n g S_{f c}\left(1 S_{\mathbf{L}}\right.$ to DNF, by replacing it with

$$
\mathbf{K} \quad \approx
$$

$k \quad \boldsymbol{\ell}$

Rroof. First we show that $S_{f \subset j J}$ is the DNF of $S_{\dot{k}}{ }^{f l S} S_{\sim}$. By the distributivity of U and H, we have

$$
\begin{aligned}
S_{k} \cap S_{\ell} & =\left(\bigcup_{i \propto Q_{k}} P_{i}\right)^{\cap}\left(\bigcup_{j \in Q_{\ell}} P_{j}\right) \\
& =u_{i \in Q_{k}} u(P \cdot n P>
\end{aligned}
$$

But for every $1_{Q}<Q_{i k} n Q_{i,}$

and thus $S_{f c} n S^{\wedge}=S_{k i}$ as defined in (1.3).

The set F given by (2.1), (2.2) is the intersection of |TJ unions of polyhedra. Every application of the basic step replaces the intersection of p unions of polyhedra (for some positive integer p) by the intersection of p-1 unions of polyhedra. Regularity is thus preserved, and after |T| $\mathbf{~} \mathbf{~} 1$ basic steps F becomes a single union of polyhedra, i.e., is in DNF.|'|

(2.4) $\quad S_{k \ell}= \begin{cases}1 & \\ 1 \neq 1_{o} Q_{\ell} \\ U & (P . H P) \\ \text { otherwise . }\end{cases}$

Every basic step reduces by one the number of conjuncts S_{j} in the RF to which it is applied. On the other hand, it is also of interest to know the effect of a basic step on the number of polyhedra whose unions are the conjuncts of the RF. When the basic step is applied to a pair of conjuncts $S_{k}, S_{\#}$ that are both proper disjunctive sets, namely unions of polyhedra indexed by Q_{k} and $Q_{N_{\prime}^{\prime}}$, respectively, then the set $S_{f c j t}$ resulting from the basic step is the union of p polyhedra, where

$$
P-I Q^{\wedge} I x\left|q_{x}\right| Q_{k}\left|+\left|Q_{k} n q_{x}\right| .\right.
$$

This is to be compared with the number of polyhedra in the unions defining $S_{\dot{K}}$ and $S_{\mathcal{L}}$, which is $\left|Q_{k}\right|+\left|Q_{j} J\right|$. Obviously, more often than not a basic step applied to a pair of proper disjunctive sets results in an increase in the number of polyhedra whose union is taken. On the other hand, when one of the two disjunctive sets, say $S_{k^{\prime}}$ is improper, then $S_{f c j t}$ is the union of at most as many polyhedra as $\mathrm{S}_{\boldsymbol{i}}$.

Given a disjunctive set in CNF with t conjuncts, where the $i^{\text {th }}$ conjunct is the union of q_{i} halfspaces, and given the same disjunctive set in DNF, as the union of q polyhedra, we have the bounding inequality
$\mathrm{q} \leq \mathrm{q}_{1} \mathrm{X} . . \mathrm{X} \mathrm{q}_{\mathrm{t}}$.
Because performing a basic step on a pair $S_{\mathbf{K}_{\mathbf{K}}} \mathbf{S}_{\overline{\boldsymbol{l}}}$ such that \mathbf{S}^{\wedge} is improper, results in a set $S_{k \bar{\varepsilon}}$ that is the union of no more polyhedra than is S, it is often useful to carry out a parallel basic step, defined as JL follows:

Note that if some of the basic steps of Theorem 2.1 are replaced by parallel basic steps, the total number of steps required to bring F to DNF remains the same.

Next we turn to the operation of taking the convex hull of a disjunctive set, which plays a central role in the construction of the family of relaxations that we are about to introduce.

3. The-conver-Hull of z-Diejunativo-Set

We have two characterizations of the convex hull of a disjunctive set, each of which requires the set to be in DNF. The first one is described by the following two theorems.

Theorom_3.1. [3, 4, 9]. Let
where each A^{i} is an m. x matrix, each a^{i} is an m vector, and Q is an arbitrary index set. Let $Q^{*} \gg\left\{i c Q J P{ }_{\mathbf{z}} \wedge 0\right\}$, and let

Then
$\operatorname{clconv} \mathbf{F}=\mathbf{C}\left(\mathbf{Q}^{*}\right)$.

For the next Theorem we need a definition. An inequality $Q \in \mathbb{p}>\mathrm{d}$ is said to define (or induce) a facet of a polyhedron P of dimension n, if $a x \geq a_{o}$ for all $x e P$, and atx $=c_{0}$ for n affinely independent points $x e P$.

Theorem 3.2 [3, 4]. Let the set F defined by (2.1) be full-dimensional, and let Q be finite. Then the inequality $\# x>_{-} a t_{0}>$ where $a_{0} t 0$, defines a facet of clconv F if and only if a ^ 0 is a vertex of

$$
F^{\#}=\left\{y e j R^{\mathbf{n}} \left\lvert\, \begin{array}{c}
y=\star u^{\wedge^{1}}, \quad \text { ieQ* } \\
\text { for some } u^{i} \geq 0, ~ i e Q^{*} \\
\text { such that } u^{i} a^{i}>c t \\
0-0
\end{array}\right.\right\}
$$

Analogous results are known for the cases where F is less than full dimensional and/or $a=0$ (see [3]).

0
This characterization can be used to derive strong cutting planes whenever Q is small or, although Q is large, the special structure of the polyhedra $P^{\mathbf{1}}$ makes it easy to find vertices of F. Such cutting planes have been derived in $[2,4,5,7,12]$ and have been successfully used to solve, for instance, set covering [6] and set partitioning [8] problems.

The second characterization expresses the convex hull of a disjunctive set as the projection into H of a higher dimensional polyhedron. It is this second characterization that we are going to use extensively in this paper. Since this result is from an unpublished technical report, we provide the proof here. As before, we denote $Q^{*}=\{i e Q \mid P!$ ^ 0).

Theorem 3.3 [3]. Let F be given by (3.1), and let $5 \underset{i}{\left(Q_{n+1}^{*}\right)}$ be the set of all those x e B^{n} such that there exist vectors $(y, y \rho e T R$, ieQ*, satisfying

$$
\underset{\text { ieQ* }}{\mathrm{y}^{i}} \quad=0
$$

$$
A^{i} y^{i}-a_{0}^{i} y_{0}^{i} \geq 0, \quad i e Q^{*}
$$

$$
\left.\begin{array}{l}
E y^{*}=1 \tag{3.2}\\
\text { ied* }
\end{array}\right] \begin{aligned}
& \\
& y^{*}>0, \text { ied*. } \\
& 0
\end{aligned}
$$

Then

$$
\text { cl conv } F=S\left(Q^{*}\right) .
$$

Proof. (i) We first show that cont FCS (Q*). Let x e conv F; then

$$
\vec{x}=\underset{i e Q^{*}}{E} z_{i}^{i}
$$

111
Setting $y=z \backslash i$ and $y 0=X .1$ ie Q*, we obtain a set of vectors ($\left.y^{1}, y^{1} 0\right)$, ie*, that together with x satisfy (3.2); hence x eS (Q*).
(ii) Next we show that $S\left(Q^{*}\right)$ Col conv F. Let x e $S\left(Q^{*}\right)$ and let -i $-i$ ($\left.\mathrm{y}, \mathrm{y}^{\mathrm{j}}\right)>$ reQ*, be vectors that together with x satisfy (3.2). Let

$$
Q_{\hat{L}}^{*}=\left[\left.i e Q^{*}\right|^{\wedge}>0\right\}, \quad Q_{2}^{*}=\left(\left.i e Q^{*}\right|^{\wedge}=0\right\} .
$$

For ie Q ${ }_{1}^{*}, \overline{y^{i}} / \bar{y}_{Q}$ is a solution to $A^{i} x \geq a_{0}^{1}$ i.e., $\quad\left(\bar{y}^{i} / \bar{y}_{0}^{i}\right)$ eP i_{i} therefore

$$
\vec{y} / \vec{y}_{0}^{i}=\sum_{j \varepsilon V_{i}} v^{i j} \mu_{i j}+\sum_{k \varepsilon W_{i}} w_{i k}^{i k}
$$

ii
ik
for some extreme points v^{J} and extreme direction vectors w of P^{1}, in-

$$
\vec{y}=\sum_{j \in V_{i}} v^{i j} \rho_{i j}+\sum_{k \in W_{i}} w^{i k} \sigma_{i k}
$$

with $\rho_{i j} \geq 0, j \varepsilon V_{i}, \sigma_{i k} \geq 0, k \varepsilon W_{i}$, and $\sum_{j \in V_{i}} \rho_{i j}=\bar{y}_{o}^{i}$.
For $1 Q_{2}^{*}$, either $\bar{y}^{i}=0$, or else \bar{y}^{i} is a nontrivial solution to the homogeneous system $A^{i} y \geq 0$; hence

$$
\bar{y}^{i}=\sum_{k \in W_{i}} w^{i k} \sigma_{i k}
$$

for some extreme direction vectors $w^{i k}$ of P_{i}, indexed by W_{i}, and some scalars $\sigma_{i k} \geq 0, \mathrm{kEW}_{i}$.

Thus we have

$$
\begin{aligned}
\bar{x} & =\sum_{i \in Q^{*}} \bar{y}_{i} \\
& =\sum_{i \in Q_{1}^{*}} \sum_{j \in V_{i}} v^{i j} \rho_{i j}+\sum_{k \in W_{i}} w^{i k} \sigma_{i k} j_{i \in Q_{2}^{*}}+\sum_{k \in W_{i}} w^{i k} \sigma_{i k} \\
& =\sum_{i \varepsilon Q_{1}^{*}} \sum_{j \in V_{i}} v^{i j} \rho_{i j}+\sum_{i \in Q *} \sum_{k \in W_{i}} w^{i k} \sigma_{i k}
\end{aligned}
$$

with

$$
\sum_{i \in Q_{1}^{\star}} \sum_{j \in V_{i}} \rho_{i j}=\sum_{i \varepsilon Q_{1}^{*}} \bar{y}_{0}^{1}=1
$$

i.e., \bar{x} is the convex combination of finitely many points and directions of F. Hence $\bar{x} \in c l \operatorname{conv} F$.
(iii) Since

$$
\text { conv } F \subseteq \subseteq\left(Q^{*}\right) \subseteq c 1 \text { conv } F
$$

and $\mathfrak{3}\left(Q^{*}\right)$ is closed, while $c 1$ conv F is the smallest closed set containing conv F, clearly $S\left(Q^{*}\right)=c l$ conv $F . \|$

In order to use this characterization of the convex hull, one needs to know which P_{i} are nonempty. This inconvenience is considerably mitigated by the fact, to be shown below, that the information in question becomes irrelevant if the systems $A^{\dot{L}} y^{\dot{L}} \geq a_{0}^{i}$ satisfy a condition that is often easy to check. Let (3.2) be the constraint set obtained from (3.2) by substiQ
tuting Q for Q^{*}, and let $g(Q)$ be the set obtained from $S\left(Q^{*}\right)$ by the same substitution. For any polyhedron P, let rec P denote the recession cone of P, i.e.,

```
        \(\operatorname{rec} P:=\{y|x 4-\backslash y c P, \quad \geq x \subset P, \quad \geq|>0\}\).
If \(S 1\) and \(S 2\) are sets, we denote
    \(S_{x}+S_{2}=\left(x \mid x=y^{1}+y^{2}\right.\) for some \(\left.y^{\wedge} S^{\wedge} y^{2} e S_{2}\right\}\).
Theorem 3,4, \(3(Q)=S\left(Q^{*}\right)\) if and only if
\[
\begin{array}{ll}
V_{i e Q \backslash Q^{*}} & \left(Y € 1 R^{n} \mid A^{i} y>0\right\} c  \tag{3.3}\\
\text { ieQ* } & \text { rec } P 1 . .
\end{array}
\]
```

 Therefore

$$
S(Q)=g\left(Q^{*}\right)+C
$$

where C is the expression (union of polyhedral cones) on the lefthand side of (3.3). Clearly, $S\left(Q^{*}\right)+C=£\left(Q^{*}\right)$ if and only if C Qrec $S\left(Q^{*}\right)$ - But from Theorem 3.3,

$$
\begin{aligned}
\text { rec } S\left(Q^{*}\right) & =\text { rec cl conv } F \\
& -\underset{i e Q^{*}}{E} \operatorname{rec} P_{x},
\end{aligned}
$$

hence $S(Q)=S\left(Q^{*}\right)$ if and only if (3.3) holds.j|

Corollary 3.5, If for every ieQ, some subset of the set of inequalities $A^{A^{1}} \geq a^{1}{ }_{0}$ defines a bounded nonempty polyhedron, then $g(Q)<S\left(Q^{*}\right)$.

Thus the disjunctive program $\min (c x \mid x$ e $F\}$, where F is given by (3.1), is equivalent to the linear program min(exjx e $\left.S\left(Q^{*}\right)\right\}$. Furthermore, there is a 1-1 correspondence between vertices of the polyhedra P^{\wedge}, ieQ*, and basic solutions of the system (3.2), More specifically [3]:
(i) If \bar{x} is a vertex of P_{i} for some ieQ*, then the vector with components $\left(7^{1}, \bar{y}^{\wedge}\right)=(\bar{x}, 1),\left(y^{\wedge}, \wedge\right)=(0,0)$, keQ $\backslash(i\}$, together with \vec{x}, is a basic solution of the system (3.2).
(ii) If \hat{x} together with $\left(\hat{y}^{k}, \hat{y}_{0}^{k}\right)$, keQ, is a basic solution of (3.2), then $\left(y^{1}, \hat{Y}_{0}^{*}\right)=(x, 1)$ for some ieQ*, $\left(y \backslash \hat{y}_{0}^{k}\right)=(0,0)$ for keQ $\backslash(i\}$, and \hat{x} is a vertex of P_{i}.

Thus all basic solutions of the system (3.2) (or (3.2) Q_{Q}) satisfy the condition $y^{\wedge} s\{0,1\}$, ieQ. On the other hand, a solution of (3.2) (or (3.2) $)_{0}$) satisfying this condition need not be basic. It is then natural to ask the question, what do such solutions represent? The next theorem addresses this issue.

We denote by $S_{][}(Q)$ the set of those $x e m^{n}$ for which there exist vectors $\left(y^{-}, \overline{y_{f 1}}\right) t B^{--}$, ieQ, satisfying the constraints of (3.2) $\dot{Q}^{\text {and }}$ the condition $y_{0}^{i}=0$ or 1 , ieQ; i.e.,
 jeQ* (i\}3. If F satisfies

$$
\begin{equation*}
\text { rec } ?_{ \pm}=* \operatorname{rec} P_{f}, \quad ¥ i, j e Q * * \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[y \mid A^{k} y \geq 0\right\} c \text { rec } ?_{ \pm}, \quad ¥ \text { keQ } Q^{*} \text {, ieq** } \tag{3.5}
\end{equation*}
$$

then

$$
\mathrm{Sj}(\mathrm{C})=\mathrm{F} .
$$

Proof. With or without (3.4) and (3.5), $\left.S^{\wedge} Q\right) 2 F$. Indeed, if x e $\underbrace{}_{ \pm}$ $i \quad i \quad k \quad k$ for some ieq, then x together with the vectors $(y, y)=(x, 1),\left(y, y^{0}\right)=$ I $(0,0)$, keQ $(i\}$, satisfies the constraints defining $S(Q)$. It remains to be shown that if (3.4) and (3.5) hold, $\S_{1} \cdot(Q) £ F$.

Suppose (3.4) and (3.5) are satisfied and let x e $S^{I}(Q)$. Then there exists keQ**, $Q^{\prime} c Q^{* *}$ and $Q^{\prime \prime} c Q \backslash Q^{*}$, such that

$$
x=y+\hat{\wedge} \overline{i e Q ' U Q "}^{i}
$$

and x together with the vectors $\left(y^{k}, 1\right),\left(y^{1}, 0\right)$, ieQ'UQ*, and ($\left.y^{\wedge}, y_{0}^{\wedge}\right)=$ $(0,0)$, jeQXQ'UQ'UOC\}, satisfies (3.2) \quad. But then $y^{k} e P$, and $y^{i} e$ rec P. for ieQ ${ }^{7}$ (from (3.4)) and for ieQ ${ }^{7 /}$ (from (3.5)). Thus x e $P_{f c} . \|$

While the condition of Theorem 3.6 is not necessary, it is as weak a sufficient condition as one can get without breaking up Q** into further subsets, for some of which the equality in (3.4) can be weakened to inclusion.

The essential fact about Theorem 3.6 is the following immediate consequence, which was proved earlier in a different way by Jeroslow and Lowe [10].

Corollary 3.7. If each P_{i} is nonempty and bounded, then $S_{T}(Q)=F$.
Thus not only is $S(Q)$ the convex hull of the union of the nonempty, bounded polyhedra P^{\wedge}, ieQ, but $S j(Q)$ is a valid mixed-integer representation
of such a union of polyhedra. As Jeroslow and Lowe [10] have recently noticed, this representation is better than the usual one, since its linear programming relaxation is $5(Q)$, the convex hull of the union, which is often not true of the usual representation. By the latter we mean the representation of $F=U P$. as the set $A_{T}(Q)$ of those $x e R^{n}$ satisfying ieQ ${ }^{\text {L }}$
where each L^{i} is a lower bound (vector) on $A^{i} x$,

If we denote by $A(Q)$ the set obtained from $A_{I}(Q)$ by relaxing the conditions $\mathbf{6}_{i} e\{0,1\}$ to ${\underset{i}{i}}^{2} \mathbf{0}$, ieQ, $A(Q)$ is not necessarily the convex hull of F, In other words, while $S(Q)=\operatorname{conv} S_{I}(Q)$ whenever all P_{i} are nonempty and bounded, for A we only have the relation
$A(Q) 2 \operatorname{conv} \Delta_{L}(Q)$
which often holds as strict inclusion, as will be illustrated later.
We need one more result before introducing the family of relaxations of a disjunctive set. Namely, we want to use Theorem 3.3 to characterize the convex hull of an elementary disjunctive set.

cl conv $D= \begin{cases}\mathbb{R}^{\mathfrak{D}} & \text { if } D \text { is proper } \\ \mathbb{H}_{k}^{+} & \text {if } D \text { is improper, with } D=H_{k^{\prime}}^{+}\end{cases}$

Proof. If $D * H_{i k}^{+}$for some ReQ, cl conv D * H_{k}^{+}since $I_{I_{k}^{+}}^{+}$is closed and convex. Suppose now that D is proper, and let \bar{x} be an arbitrary but fixed point in H ${ }^{a}$. From Theorem 3.3, \bar{x} e cl conv D if and only if the system

$$
\begin{aligned}
& E_{i \in Q}^{1} \\
& \text { ReQ } \\
& a^{i} y^{i}-a_{i 0_{0}} y_{0}^{i} \geq 0, \quad i \& Q \\
& \\
& E Y_{0}^{1}-!
\end{aligned}
$$

$$
y j \geq 0, \text { ieQ }
$$

has a solution. From the Theorem of the Alternative, this is the case if and only if the system

$$
\begin{align*}
& -u V_{0}+v \quad=0, \quad i<Q \\
& u_{0}^{1} a_{10}-v_{0} \geq 0 \quad, \quad \text { ied } \tag{3.6}\\
& \overline{v x}-v_{0}<0 \\
& \%_{0}^{i} \geq 0>i \varepsilon Q \text {, }
\end{align*}
$$

where $u_{0}^{i} e H$, ie, $v_{0} 6 H$, and veRn ${ }^{n}$, has no solution*

 Thus $(2,6)$ has no solution for any \bar{x}, and hence \bar{x} e cl cons D for all $\overline{\mathrm{x}} e \mathrm{H}^{\mathrm{n}}$, ie., cl conv $\mathrm{D}=\mathrm{m}^{\mathrm{a}} . \|$

The convex hull of a proper elementary disjunctive set is thus $1 R^{\mathbf{n}}$, i.e., replacing such a set with its convex hull is tantamount to throwing away all the constraints that define it. This of course is not true for more general disjunctive sets, as will become clear soon.

The system (3.2) which defines the convex hull of a disjunctive set in DNF is easy to write down, but is unwieldy when the set Q is large; and for a mixed integer program whose feasible set F is expressed as a disjunctive set in DNF, Q tends to be large. Thus an attempt to use Theorem 3.3 to generate the convex hull of the feasible set is in general not too promising.

On the other hand, the feasible set of most discrete optimization problems, when given as a disjunctive set in CNF, has conjuncts that are the unions of small numbers of halfspaces, often only two. Performing some basic steps one obtains a set in RF whose conjuncts are still the unions of small numbers of polyhedra. Note that if a disjunctive set is in the RF given by (2.1), (2.2), each conjunct S_{J} is in DNF; hence we know how to take its convex hull. Naturally, taking the convex hull of each conjunct is in general not going to deliver the convex hull of the disjunctive set, but can serve as a relaxation of the latter. This takes us to the class of relaxations announced at the beginning of this paper.

4. A Hierarchy of Relaxations of a Disjunctive Set

Given a disjunctive set in regular form

$$
\mathbf{F}=\underset{j e T}{\mathbf{\Omega}} \mathbf{S}
$$

where each S_{j} is a union of polyhedra, we define the hull-relaxation of F, denoted h-rel F, as

```
h-rel F:=
```

The hull-relaxation of F is not to be confused with the convex hull of F : its usefulness comes precisely from the fact that it involves taking the convex hull of each union of polyhedra before intersecting them.

Next we relate the hull-relaxation of a disjunctive set to the usual
linear programming relaxation of the feasible set of a mixed integer program. Obviously, the hull-relaxation of any disjunctive set is polyhedral, since the intersection of polyhedra is a polyhedron. Suppose now that we have a disjunctive set in CNF,

where each D_{j} is the union of halfspaces. Let $T *=\{j c T J D$. is improper\}, and denote

$$
P_{0}={\underset{j c T *}{ } D_{j}, ~}_{\text {, }}
$$

with $\left.P_{Q}=\right] R^{n}$ if $T^{*}=0 . \quad P_{Q}$ can be viewed as the "polyhedral part ${ }^{11}$ of F_{o}, i.e., the intersection of those elementary disjunctive sets that are halfspaces, Lemma 4.1.

$$
h \text {-rel } F_{o}=P_{0}
$$

Proof.

by the definition of the hull-relaxation. But $c 1$ conv $P_{0}=P_{0}$ and from Theorem 3.6, cl conv $D_{j}=\mathbb{R}^{n}$ for all $j \in T \backslash T^{*}$. This yields the equality stated in the Lemma. \|

When the feasible set of a (pure or mixed integer) 0-1 program is stated in CNF (which is the usual way of stating it), $T *$ is the index set of all the conjunctive, i.e., ordinary linear constraints, and $T \backslash T$ * is the index set of the disjunctions $x_{j} \leq 0 \vee x_{j} \geq 1$. Thus P_{o} is the linear programming feasible set, and the hull-relaxation of a (pure or mixed-integer) 0-1 program stated in CNF is identical to the usual linear programming relaxation.

The next question we address is what happens if one applies the hullrelaxation to a disjunctive set that is not in CNF. Specifically, we look at the effect of a basic step in the sense of relating the hull-relaxation of the $R F$ before the basic step to that of the RF after the basic step.

Lemma 4.2. For $j=1,2$, let

$$
S_{j}=\bigcup_{i \in Q_{j}} P_{i}
$$

where each P_{i}, $i \varepsilon Q_{j}, j=1,2$, is a polyhedron. Then (4.1) $\quad c 1 \operatorname{conv}\left(S_{1} \cap S_{2}\right) \subseteq\left(c 1 \operatorname{conv} S_{1}\right) \cap\left(c 1 \operatorname{conv} S_{2}\right)$.

Proof. Certainly $S_{1} \cap S_{2} \subseteq\left(c 1\right.$ conv $\left.S_{1}\right) \cap\left(c 1\right.$ conv $\left.S_{2}\right\}$, and since cl conv $\left(S_{1} \cap S_{2}\right)$ is the smallest closed convex set to contain $S_{1} \cap S_{2}$, (4.1) follows.||

Theorem 4.3. For $i=0,1, \ldots, t$, let

$$
F_{i}=\bigcap_{j \in T} S_{j}^{i}
$$

be a sequence of regular forms of a disjuntive set, such that
(i) F_{Q} is in CNF, with $P_{Q}<n_{i} S_{j} \mid S$? is improper $\} ;$
(ii) F_{t} is in DNF;
(iii) for $i=1, \# . ., t, F_{ \pm}$is obtained from F^{\wedge} by a (possibly parallel) basic step.

Then

$$
P_{0}=h \text {-rel } F_{o}^{2 h-r e l ~} F_{1} a \ldots a \operatorname{h-rel} F_{E}=c l \text { conv } F_{t} .
$$

Proof. The first equality holds by Lemma 4.1, since F is in CNF. The last equality holds by the definition of a hull-relaxation, since F^{t} is in DNF, i.e., $\left|T^{\ddagger}\right|=1$. Each inclusion holds by Lemma 4.2, since for $\mathbf{k}=\mathbf{l}, \ldots, \mathrm{t}, \mathrm{F}^{\mathbf{K}}$ is obtained from $\mathrm{F}^{\mathbf{K - \frac { 1 } { \boldsymbol { t } }}}$ by a basic step.||

For any F. in the above sequence, we can obtain from the hull-relaxation a mixed-integer programming representation of $\mathrm{F}^{\mathbf{1}}$ by using Theorem 3.6. However, this representation requires one $0-1$ variable for every polyhedron $P_{r}^{\mathbf{n}}$ in the expression
which is usually much more than the number of $0-1$ variables needed to represent the CNF of the same set, i.e.,

The next theorem gives a mixed integer representation of F_{i} which uses the same number of variables as that of F. For F as defined in (4.3), let $T^{\wedge}=\left\{\left.\operatorname{rcT}_{\circ}\right|_{\mathbf{s}} ^{0}\right.$ is proper $\}$.

Theorem 4.4. Let F_{o} be the disjunctive set in CNF given by (4.3), and let F_{i} be the disjunctive set in RF given by (4.2), obtained from F_{0} by a sequence of basic steps, and satisfying the conditions of Theorem 3.6. Then F_{i} is the set of those $x \in \mathbb{R}^{n}$ for which there exist vectors $\left(y^{h}, y_{o}^{h}\right) \in \mathbb{R}^{n+1}$, $h_{\epsilon} Q_{j}, j \in T_{i}$, and scalars $\delta_{r s}, s_{\varepsilon} Q_{r}, r \in T_{o}^{\prime}$, satisfying
(4.4)
(4.5)

$$
\sum_{h \mid P_{h}=H_{s}^{+}} y_{0}^{h}-\delta_{r s}=0 \quad s \in Q_{r}, r \in T_{0}^{\prime}
$$

(4.6)

$$
\sum_{s \in Q_{r}}{ }_{r s}=1, \quad r \in T_{0}^{\prime}
$$

$$
\delta_{r s} \in\{0,1\}, s \in Q_{r}, \quad r \in T_{0}^{\prime}
$$

Proof. From Theorem 3.6, for each $\mathrm{jeT} \mathrm{i}_{\mathrm{i}}$ the constraints (4.4) define the convex hull of $\mathrm{s}_{\mathrm{j}}^{\mathrm{i}}$, and if amended with the condition $\mathrm{y}_{\mathrm{o}}^{\mathrm{h}} \in\{0,1\}$, $h Q_{j}$, they define S_{j}^{i} itself. We will show that the constraints (4.5), (4.6) enforce precisely this condition, and therefore all constraints together define $F_{i}=\bigcap_{j \in T_{i}} s_{j}^{i}$.

For any given δ satisfying (4.6), the unique set of y_{o}^{k} satisfying (4.5) is defined by


```
    Indeed, 6rg - O implies y£ =» O for all heQ^, jeTi, such that
H+
                            h
be satisfied by setting }\mp@subsup{Y}{\ell}{}=* 1 for precisely those heQj, jeT^ for which
this is prescribed by (4.7). ||
Theorem 4.4 provides a way of representing any disjunctive set in regular form as the feasible set of a mixed-integer program with the same number of \(0 * 1\) variables as would be required to represent the same disjunctive set in CNF.
In order to make best use of the hierarchy of relaxations defined in Theorem 4.3, one would like to know which basic steps result in a strict inclusion as opposed to an equality. The next theorem addresses this question.
Theorem 4.5* For \(j=1,2\), let
```



```
where each \(P \mathbf{i}\), ieQ, \(j \gg 1,2\), is a polyhedron. Then
(4.8) cl conv \(\left(S_{i} n S_{2}\right)=\left(e l \operatorname{conv} S^{\wedge}\right) P I\left(c l \operatorname{conv} S_{2}\right)\)
if and only if every extreme point (extreme direction) of (cl conv S.) PI
(cl conv \(S_{2}\) ) is an extreme point (extreme direction) of \(P_{i} 0 P_{k}\) for some
\((i, k) \in Q_{1} \times Q_{2}\).
Proof. Let \(T_{L}\) and \(T_{R}\) denote the lefthand side and righthand side, respectively, of (4.8). Then
\[
T_{L}=c l \operatorname{conv} \underset{\backslash c Q_{1}}{U} \underset{\mathrm{keQ}_{2}}{U}\left(P_{2}, O P_{k}\right)^{\prime}
\]
```

Thus $x s_{T}$ if and only if there exist scalars $\backslash_{J} \geq 0, j e V$ and $i_{X} \geq 0$,
$A c W$, such that $E \backslash_{J}=1$ and $\mathrm{jeV}^{\mathrm{J}}$

$$
\mathbf{x}=\underset{j e V}{E} \mathbf{v}_{\mathbf{j}} \backslash_{\mathbf{j}}+\underset{\mathrm{JuW}}{\mathbf{E}} \mathbf{w}_{\mathbf{x}} \cdot \mathbf{p}_{\ell},
$$

where V and W are the sets of extreme points and extreme direction vectors, respectively, of the union of all ^^^ J (i> k) $\mathrm{CQ}_{1} \mathrm{X} \mathrm{Q}_{2}$ 《

On the other hand, $x \in \mathbb{T}_{\mathbf{k}}$ if and only if there exist scalars $\underset{J}{X . '} \geq 0$, $j \varepsilon V^{\prime}$ and $p_{1}{ }^{\prime}>0, X c W^{\prime}$, such that $\underset{j c v^{\prime}}{E} \backslash_{j}^{\prime}=1$ and

$$
x={\underset{j \in V}{E} v_{j}^{\prime} \lambda_{j}^{\prime}+\sum_{l \in W}, \mathbf{W}^{\prime} \mu_{l}^{\prime} \prime}^{\prime}
$$

where v ' and w ' are the sets of extreme points and extreme direction vectors, respectively, of T_{R}. If the condition of the theorem holds, ie., if $V^{\prime} \subseteq V$ and $w ' c W$, then $T \ll T_{T}$, and since by (4.1) $T_{-} Q T_{-}$, we have $T_{T}=T_{-}$as claimed. If, on the other hand, $v \backslash v \wedge 0$ or $w^{\prime} \backslash W$ ^ 0 , then there exists \mathbf{x} stint_, hence (4.1) holds as strict inclusion.||

One immediate consequence of this Theorem is

```
Corollary 4.6. Let
    K={x e!R'| < x j<1, j = l,...,n},
```

and

$$
s_{j}=\left(x \text { er }\left.\right|_{j} \leqslant 0 \vee x_{j} \geq 1\right\}, \quad j=1, \ldots, n .
$$

Then

```
            n \(\quad\) n
(4.7) cons \(\underset{j=1}{H E S}=\underset{j=1}{P I}\) cons \(S_{j}\).
```

Thus basic steps that replace a set of disjunctive constraints of
the form

$$
x_{j} \leq \circ \vee^{x_{j}}>_1 \gg J e T
$$

$\begin{array}{ll}\operatorname{VCT}\end{array}\binom{x_{j} \leq 0}{x_{j} \geq 1}, \quad j \in S$
before caking the hull-relaxation, do not produce a stronger relaxation: taking the convex hull before or after the execution of such basic steps produces the same result. In order to obtain a stronger hull-relaxation, the basic steps to be performed must involve some other constraints than those of the above form.

Next we illustrate on some examples various situations when taking the convex hull before or after a basic step does make a difference.

Example 4. 1. (Fig. 3.1) Let $P_{1}=\left\{\mathbf{x}\right.$ e $\left.\left.R^{2}\right|_{X]>}=0,0 \leq x_{2} \leq 1\right\}$, $\mathbf{P}_{2}=\left[\mathrm{x} \in \mathbb{R}^{2} \mid \mathrm{x}_{1}=1,0 \leq \mathrm{x}_{2}<1\right\}, \mathrm{P}_{3}=\left(\mathrm{x} \ll \mathrm{K}^{2} \mid-\mathrm{x}_{1}+\mathrm{x}_{2} \geq 0.5, \mathrm{x} 1 \geq 0\right.$, $\left.x_{2} \wedge^{1\}}>{ }^{P} 4^{=} t^{x} \quad \varepsilon^{R}{ }^{2} l_{i} \|_{2} x_{2} \geq 0.5, x_{1} \leq 1, *_{2} \geq 0\right\}$, and let $F=S_{1} \cap S_{2}$, with $S_{1}=P_{1}{ }^{\prime} J P_{2}, S_{2}=P_{3} U P_{4}$. Then

$\left(\frac{1}{2}, 0\right)$

(cl conv S^{\wedge}) (1 (cl conv $\left.S_{z}\right)$
Fig. 3.1

$$
\begin{aligned}
& \text { cl conv } \left.\mathrm{Sj}^{\wedge}=£ \mathrm{x} \mathrm{cR}^{4} \mid 0 \leq \mathrm{x}_{1} \leq 1,0 \leq \mathrm{x}_{2} \leq 1\right\} \\
& \text { cl conv } \mathrm{S}_{2}=\left(\mathrm{x} \text { elR } \mathrm{R}^{2} \mid 0.5<\mathrm{x}_{\mathrm{x}}+\mathrm{x}_{2} \leq 1.5,0 \leq \wedge \leq 1,0 \leq \mathrm{x}_{2} \leq 1\right\}
\end{aligned}
$$

and
$\left(\mathrm{cl}\right.$ conv $\left.\mathrm{S}_{1}\right) 0\left(\mathrm{cl}\right.$ conv $\left.\mathrm{S}_{2}\right)=\mathrm{cl}$ conv S_{2}.
On the other hand, $S_{x} 0 S_{2}=\left(P_{x} U P_{3}>f l\left(P_{2} U P_{4}>\right.\right.$ (since $P_{1} 0 P_{4}=$ $P_{2} 0 P_{3}=0$), and

$$
\text { cl } \operatorname{conv}\left(S_{i} r i S_{2}\right)=\left\{x \subset R^{2} \mid 1 \leq x_{x}+2 x_{2} \leq 2,0 \leq x_{x} \leq 1\right\}
$$

Here (4.1) holds as strict inclusion, because the vertices (0.5, 0) and $(0.5,1)$ of ($c l$ conv S) $C \backslash\left(c l \operatorname{conv} S_{2}\right)$ are not vertices of either P_{1} PlpA or ${ }^{\mathrm{P}} 2{ }^{\wedge}{ }^{\mathrm{P}} 4 *{ }^{\mathrm{a}} \mathrm{l}^{\mathrm{t}}$ hough the first one is a vertex of $\mathrm{P} \cdot{ }_{4}$ and the second one a vertex of P_{j}.

$\left.P_{2}=(x \in] R^{2} \mid x_{1}=1, x_{2}=0\right\}, P_{3}=\left\{x \in l R^{2} \mid x_{1}=0, x_{2}=0\right\}$,
$P_{4}=\left(x \operatorname{eIR}^{\kappa} \mid x_{x}=1, x_{2} \geq 0\right\}$, and let $F=S \wedge S \wedge$ with $S_{1}=P_{1} U P_{2}$, $S_{8}=P_{j} \mathrm{UP}_{4}$. Then

$$
\text { cl conv }\left(S_{1} \cap S_{2}\right)
$$

(cl conv $\mathrm{S}_{\mathbf{1}}$) (1 (cl conv $\mathrm{S}_{<}$)

Fig, 3,3

$$
\text { cl conv } \begin{aligned}
S_{x}=c l \text { conv } S_{2} & =\left[x \text { es }{ }^{2} \mid 0 \leq x_{x} \leq 1, x_{2} \geq 0\right\} \\
& =\left(c l \text { conv } S_{x}\right) 0\left(c l \operatorname{conv} S_{2}\right)
\end{aligned}
$$

whereas

$$
\begin{aligned}
c l \operatorname{conv}\left(S_{1} \cap S_{2}\right) & =c l \operatorname{conv}\left(\left(P_{x} U P_{3}\right) 0\left(P_{2} U P_{4}\right)\right) \\
& =\left(x \operatorname{elR}^{2} \mid 0 \leq x_{t} \leq 1, x_{2}=0\right\}
\end{aligned}
$$

Here (4.1) holds as strict inclusion because (0, 1) is an extreme direction vector of (cl conv $S j$) fl (cl conv S_{2}), but not of PJHPJ or $P_{2}{ }^{n P} 4$ * It is an important practical problem to identify typical situations when it is useful to perform some basic step, i.e., to intersect two conjuncts of a RF before taking their convex hull. The usefulness of such a step can be measured in terms of the gain in strength of the hull-relaxation versus the price one has to pay in terms of the increase in size. Since the convex hull of an elementary disjunctive set is H^{n}, i.e., taking the convex hull of such sets does not constrain the problem at all, one should intersect each elementary disjunctive set S j in the given RF with some other conjunct S_{k} before taking the hull-relaxation. This can be done at no cost (in terms of new variables) if S_{k} is improper. Often intersecting a single improper conjunct S_{k} with each proper disjunctive set S_{j} appearing in the same RF, i.e., executing a single parallel basic step before taking the hull relaxation, can substantially strengthen the latter without much increase in problem size. As to shich improper conjunct $S_{\mathbf{\prime}}$, to select, a general principle that one can formulate is that the more restrictive is $\mathbf{S}_{\mathbf{x}}$ with respect to each S_{j}, the better suited it is for the purpose. The next example illustrates this,"

Example 4.3 Consider the 0-1 program

$$
\begin{equation*}
\left.\min \left|z=-x_{1}+4 x_{2}\right|-x_{1}+x_{2} \geq 0 ; x_{1}+4 x_{2} \geq 2 ; x_{1}, x_{2} \in\{0,1\}\right\} \tag{P}
\end{equation*}
$$

illustrated in Fig. 3.3.

The usual linear programming relaxation gives the optimal solution $\overrightarrow{x_{1}}=\overrightarrow{x_{2}}=2 / 5$, with a value of $\vec{z}=6 / 5$. This of course corresponds to taking the hull-relaxation of the CNF of the feasible set of (P), which contains as conjuncts the improper disjunctive sets corresponding to each of the inequalities of (P) (including $0 \leq x_{1} \leq 1,0 \leq x_{i} \leq 1$) and the two proper disjunctive sets $S^{\mu}=*\left(x\right.$ e $\left.\left.H^{H}\right|_{\mathbb{L}}<0 V_{x} \geq 1\right\}$, $S_{2}=\left[x \operatorname{clR} \mid x_{2} \leq 0 V x_{2} \geq 1\right\}$. If P_{Q} is the intersection of all the improper disjunctive sets, the hull relaxation of the CNF of (P) is $F_{0}=P_{0}$ flconv S_{1} flconv S_{Z}.

 intersect each of $S \underline{\perp}$ and S_{2} with $P \underline{\perp}$ before taking the convex hull, i.e., use the hull relaxation $F=P P_{\circ} P I \operatorname{conv}(P-0 S-) f l \operatorname{conv}\left(P-f l S_{\circ}\right)$. We find $\begin{array}{llllllllll}01 & 1 & 1 & 01 & 0 Z & 01 & 1 & 01 & Z\end{array}$
 $F-=F$, i.e., these particular basic steps bring no gain in the strength of the relaxation.

Suppose instead that we intersect $S-$ and S with P_{2} before taking the convex hull, i.e., use the hull relaxation $F \ll P, 0 \operatorname{conv}\left(P_{2} f l \mathrm{~S}-\right.$) fl
 $=\left\{x g_{0} K \mid x_{?}=1\right\}$, and $F^{\wedge}-\left\{x \in \operatorname{KJx}^{\wedge}=1\right\}$, which is a stronger relaxation than L^{\prime}. Using the relaxation $F_{\text {? }}$ instead of F, i.e., solving minfz $=-x-$ $\left.+4 \times J x \in F_{2}\right\}$, yields $\hat{\wedge}=x=1$, with $z=3$, which happens to be the optimal solution of (P).

1
Note that P, cuts off only one vertex of $\operatorname{conv}(S-f l K)=\operatorname{conv}\left(S_{2} O K\right)=K$, 02
whereas P cuts off two vertices of $K . \mid j$

Abstract

When basic steps are used that intersect proper disjunctive sets before taking their convex hull, the number of variables in the hull relaxation increases. Especially attractive are those situations where the increase in problem size is mitigated by the presence of some structure that makes it possible to solve the increased linear programs efficiently. This is the case in the machine sequencing problem discussed in the next section, as well as in certain network synthesis and fixed charge network flow problems. 5. An Illustration: Machine Sequencing via Disjunctive Graphs

In this section we illustrate the concepts and methods discussed in sections 1-4 on the example of the following well known job shop scheduling (machine sequencing) problem: n operations are to be performed on different items using a set of machines, where the duration of operation is is d_{1}, The objective is to minimize total completion time, subject to (i) precedence constraints between the operations, and (ii) the condition that a machine can process only one item at a time, and operations cannot be interrupted. The problem is usually stated [1] as $\min t_{n}$ (P) $$
\left.{ }^{t}\right]^{\prime \prime} t_{i} \geq d_{i},
$$ $t_{ \pm} \geq 0$, $\mathbf{i} € \mathbf{V}$ $$
\wedge-\mathbf{t}_{\mathbf{i}} \wedge \mathbf{d} \mathbf{i} \mathbf{V} \mathrm{fc}_{\mathbf{i}}-{ }^{€} \mathbf{J} \wedge \mathbf{d} \mathbf{J} \quad, \quad(1, \mathbf{J}) \quad € \mathbf{W}+
$$ where t_{i} is the starting time of job i (with n the dummy job "finish"), \underline{V} is the set of operations, Z the set of pairs constrained by precedence relations, and W^{+}the set of pairs that use the same machine and therefore cannot overlap in time. It is often useful to represent the problem by a

disjunctive graph $G>(V, Z, W)$, with vertex set V and two kinds of directed arc sets: conjunctive (or usual) arcs, indexed by Z, and disjunctive arcs, indexed by W. The set W consists of pairs of disjunctive arcs and is of the form $W=W^{+} U W^{"}$, with $(i, j) e W^{+}$if and only if (j,i)eW~. The subset of nodes corresponding to each machine, together with the disjunctive arcs joining them to each other, forms a disjunctive clique, A selection $S C W$ consists of exactly one member of each pair of W : ie., there are 2^{q} possible selections, where $\left.q=\frac{1}{\mathbf{x}} \right\rvert\, w j: G$ is illustrated in Fig. 5.1 , where the disjunctive arcs are shown by dotted lines. If g denotes the set of selections, for every S eS, $G_{g}=(V, Z U S)$ is an ordinary directed graph; and the problem (P (S)) obtained from (P) by replacing the set of disjunctive constraints indexed by w^{+}with the set of conjunctive constraints indexed by S is the dual of a longest path (critical path) problem in G_{c}. Thus solving (P) amounts to finding a selection S CS that minimizes the length of a critical path in Kg.

Fig. 5.1

The usual mixed integer programming formulation of (P) represents each disjunction

$$
\begin{equation*}
t_{j}-t_{1} \geq d_{i} \quad v \quad t_{i}-t_{j} \geq d_{j} \tag{5.1}
\end{equation*}
$$

by the constraint set

$$
\begin{align*}
t_{j}-t_{i}-\left(d_{i}-L_{i j}\right) y_{i j} & \geq L_{i j} \\
-t_{j}+t_{i}+\left(d_{j}-L_{j i}\right) y_{i j} & \geq d_{j} \tag{5.2}\\
y_{i j} & \in\{0,1\},
\end{align*}
$$

where $L_{i j}$ is a lower bound on $t_{\prime_{j}}-t_{i}$. Unless one wants to use a very crude lower bound L. ., one has to derive lower and upper bounds, L, and ij
 to be the length of a longest path from node 1 (the source) to node j in the (conjunctive) graph $G \hat{\sim}=(V, Z)$, and U the difference between the length of a critical path in G_{g} for some arbitrary selection $S c 3$, and the length of a longest path from node j to node n (the sink) in G. .

The constraint set (5.2) accurately represents (5.1) (amended with the bounds $L K \geqslant t K \geqslant U K, k=1,2$), but its linear programming relaxation $(5.2)_{L^{*}}$, obtained by replacing $y_{i j^{\prime}} \in_{(}(0,1\}$ by $0 \leq y_{i j} \leq 1$, has no constraining power, as shown by the next theorem.

Thمoram_ 5_1. If the disjunction (5.1) is proper, then every t_{1}, t_{j} that satisfies

$$
\begin{equation*}
L_{ \pm}<t_{ \pm}<\backslash J_{ \pm} \quad, \quad L_{j} \geqslant t_{j} \geqslant U j \tag{5.3}
\end{equation*}
$$

also satisfies (5.2)..

Proor. It suffices to show that the four extreme points ($L i, L j$),

satisfy (5.2)* for some y... We first write (5.2) L_{L} in the form
$(5.2)_{I} \quad\left(L_{j}-U_{1}\right)\left(1-y_{i j}\right)+d^{\wedge}\left\langle_{t j}-t_{t}\left\langle d_{j} l-y_{i j}\right)+\left(U_{j}-L_{i}\right) y_{i j}\right.$

$$
0 \leq Y_{i}{ }_{j} \leq 1
$$

and note that $\left(L_{i}, U_{j}\right)$ and ($\left.L_{J}, I_{i} K\right)$ satisfy (5.2) for $Y_{\bar{J}}=1$ and $Y_{i j}=0$, respectively. To show that $\left(L_{i}, L_{j}\right)$ satisfies (5.2) for some $y_{i j}$, we substitute (L., L.) into (5.2) I_{T} and obtain

$$
\begin{equation*}
\frac{d_{j}-L_{i}+L_{j}}{d_{j}-L_{i}+U_{j}} \leq y_{i j} \leq \frac{U_{i}-{ }_{i}}{U_{i}-L_{j}+d_{i}} \tag{5.4}
\end{equation*}
$$

To see that (5.4) is feasible, note that the right hand side increases with U_{i}; so (5.4) is feasible if it is for the smallest admissible value of U_{i}, which is $L_{j}+d_{j}$ (for smaller $U_{i}(5.1)$ becomes improper). Substituting $L_{j}+d_{j}$ for U_{i} we obtain that (5.2) is feasible whenever $L_{i}+d_{i} \leq U_{j}$, which is a condition for (5.1) to be proper.

An analogous argument shows that ($\mathrm{U}_{\mathrm{i}}, \mathrm{U}_{\mathrm{j}}$) satisfies (5.2) for some $y_{i j} . \|$

Consider now the mixed integer representation of (5.1) associated with the hull-relaxation of the feasible set of (P). If the latter is given in CNF, as is usually the case, applying the hull-relaxation to this form yields nothing, since the convex hull of the disjunctive set defined by (5.1) is R^{2}, the space of (t_{1}, t_{j}.)» If we perform a parallel basic step of the type defined in section 3 and introduce into each disjunct of (5.1) the lower and upper bounds on t_{i} and t_{j}, this replaces every elementary disjunctive set $D_{i j}$ defined by a pair of constraints (5.1), by a disjunctive set

$$
S_{i j}=\left\{\left(t_{i}, t_{j}\right) \left\lvert\,\left(\begin{array}{l}
t_{j}-t_{i} * d_{i} \\
L_{i} \leq t_{i} \leq U_{i} \\
L_{j} \leq t_{j} \leq U_{j}
\end{array}\right) \vee\left(\begin{array}{l}
t_{i}-t_{j} \geq d_{j} \\
L_{i} \leq t_{i} \leq u_{t} \\
L_{j} \leq t_{j} \leq U_{j}
\end{array}\right)\right.\right\}
$$

The feasible set of (P) is then of the form

$$
\begin{equation*}
F=P_{0} \cap(\overbrace{(i, j) \in N^{+}} S_{i j}) \tag{5.7}
\end{equation*}
$$

where P_{0} is the polyhedron defined by the inequalities (5.3) and $t_{j}-t_{i} \geq d_{i}$, (i, j) e Z. Further, we have (since all $S_{i j}$ are bounded, clconv $S_{i j}=$ * cont $S_{i j}$)
and from Theorem 3.3, the convex hull of $S_{i j}$ is the set of those $\left(t_{i}, t_{j}\right)$ satisfying the constraints

$$
\begin{gathered}
1 \\
k \\
t_{j}^{1}-t_{i}^{1} \geq d_{i} y_{i j} \\
-t_{j}^{2}+t_{i}^{2} \geq d_{j}\left(1-y_{i j}\right)
\end{gathered}
$$

$$
\begin{gather*}
L_{k} y_{i j} \leq t_{k}^{I} \leq u_{k} y_{i j} \tag{5.8}\\
\left.L_{k}\left(1-y_{i j}\right) Z_{V}-y_{i j}\right) \\
0 \leq y_{i j} \leq 1
\end{gather*}
$$

Also, from Corollary 3.7, the set of those $\left(t_{i}, t_{j}\right)$ satisfying (5.8) and $y_{i j} e(0,1\}$ is $S_{i j} t$ since both disjunct of $S_{i j}$ are bounded polyhedra; and thus using (5.8) with $\mathrm{Y}_{\mathrm{ij}} \mathrm{C}\{0,1\}$ for all $(\mathrm{i}, \mathrm{j}) \mathrm{eW}^{+}$is a valid mixed integer formulation of (P). This representation uses the same number of 0-1 variables as the usual one, but introduces two new variables, t_{k}^{1}, t_{k}^{2}, for every original variable t_{k}, with associated bounding inequalities $\left.L^{\wedge}<t J<Z_{ \pm} y \mid d-7^{\wedge}\right)<t \underset{J}{J} \underline{U}_{f_{c}}\left(l-Y^{\wedge}\right)$. At the price of this increase in the number of variables and constraints, one
obtains as the hull-relaxation a linear program whose feasible set is considerably tighter than in the usual formulation, since each constraint set (5.8) defines the convex hull of $\mathbf{S}_{\mathbf{i j}}$. It is not hard to see that each of the two points $\left(L_{i^{\prime}} L_{j}\right)$ and ($\left.U_{i^{\prime}} U_{j}\right)$ violates (5.8) unless it is contained in one of the two halfspaces defined by $t_{j}-t_{i} \geq d_{i}$ and $t_{i}-t_{j} \geq d_{j}$ " Let us now perform some further basic steps on the regular form (5.7) before taking the hull-relaxation. In particular, let us intersect all $S_{\text {rid }}$ such that i and j belong to the same disjunctive clique K. If we denote $T(K):=n\left(S_{i j}: i, j_{6} K, i * j\right)$, and if $J K J=p$, then

Taking the basic steps in question consists of putting $T(K)$ in disjunctive normal form. Let $<K>$ denote the subgraph of G induced by K, i.e., the disjunctive clique with node set K. A selection in $<K>$, as defined at the beginning of this section, is a set of arcs containing one member of each disjunctive pair. Thus if $<K>$ is viewed simply as the complete digraph on K, then a selection is the same thing as a tournament in $<K>$. If S_{k} denotes the k-th selection in $<K>$ and Q indexes the selections of $\langle K\rangle$, then the $D N F$ of $T(K)$ is $T(K)-U T,(K)$, keQ ${ }^{k}$ where

$$
T_{k}(K)=\left\{\begin{array}{l}
t_{j}-t_{i} \geq_{d_{i} *}(i, j) \text { es }{ }_{k} \\
I_{J_{i}} \leq t_{i} \leq{ }_{u_{i}}, i \varepsilon R
\end{array}\right\}
$$

It is easy to see that if $S_{f c}$ contains a cycle, then $T_{k}(K) \ll 0$. Let Q^{*} • CkeQ| ${ }^{\text {s }} \mathbf{i}$, is acyclic\}. Every selection is known to contain a directed Hamilton path, and for acyclic selections this path must be unique. Furthermore, every acyclic selection is the transitive closure of its unique directed Hamilton path.

Let $P_{!}$denote the directed Hamilton path of the acyclic selection S_{k}; then S_{K} is the transitive closure of $P^{\prime}{ }_{K}$, and the inequalities t. - t $>\mathrm{d} .,(i, j) € P_{v}, ~ o b v i o u s l y$ imply the remaining inequalities of j i \mathbf{i}
 pression for the DNF of T is $T(K) \geqslant U T .{ }^{\mathbf{K}}(\mathrm{K})$, with

Now let M be the index set of the disjunctive cliques in G, and K m the node set of the m-th such clique. Then the RF obtained from (5.7) by performing the basic steps described above is
(5.9) $\quad F=P_{Q} f\left(\prod_{m \in M} T\left(K_{m}\right)\right)$,
and the hull-relaxation of this form is

For meM, let Q_{m}^{*} index the acyclic selections in $\left\langle K_{m}\right\rangle$: and for
 directed Hamilton path, respectively. Then introducing a continuous variable $X_{\text {. }}{ }^{m}$ for every acyclic selection $S ?{ }^{1}$ and a $0-1$ variable y. . for K K lj
every disjunctive pair of arcs $\{(i, j),(j, i)\}$, and using Theorem 4.4, we obtain the following mixed integer formulation of problem (P) based on the hull-relaxation (5.10).
$\min t_{n}$
 $t_{j}, t_{j}^{k} \geq 0, v j, k ; \lambda_{k}^{m} \geq 0, v k, m ; y_{i j} \in\{0,1\},(i, j) \in W^{+}$.

Theorem 5<2\# Problem (P) is equivalent to (P): if t is a feasible solution to (P), there exist vectors t^{k} and scalars $X 3$, reQ*> meM, and a vector y, satisfying the constraints of (P) ; and conversely, if $\left.t, t^{k}, r_{k}^{\prime}\right\rangle$ ked*, meM, and y satisfy the constraints of (P), then t is a feasible solution to (P).

Proof, (P) is the representation of (P) given in Theorem 4.4, with the set F_{i} replaced by F as defined in (5.9), and with the difference that
the upper bounding inequalities $-t_{j}^{k}+U_{j} \lambda_{k} \geq 0, j \in K_{m}$, are replaced by the single inequality $t_{j(1, k)}^{k}-t_{j\left(p_{k}, k\right)}^{k}+\left(U_{j\left(p_{k}, k\right)}-L_{j(1, k)}\right) \lambda_{k} \geq 0$. The role of the upper bounding inequalities is to force each t_{j}^{k} to 0 when $\lambda_{k}^{m}=0$, and the inequality that replaces them in p does precisely that: together with the inequalities associated with the arcs of P_{k}^{m}, it defines a directed cycle in $<K_{m}>$ and thus $\lambda_{k}^{m}=0$ forces to 0 all $t_{j}^{k}, j \in \mathbb{R}_{m} \cdot \|$ The linear programming relaxation of (P) is much stronger than the linear programming relaxation of the common mixed integer formulation of (P). Preliminary computational experience on a few small problems indicates that the value of this stronger linear programming relaxation tends to be much higher than that of the usual linear programming relaxation. For example:

Value of

	Value of Problem 1 Problem 2		
Usual LP	Strong LP	IP	
Problem 3	18	25.1	31
	8	10.7	13
	20	25.8	35

On the other hand the linear programming relaxation of (P), unlike that of the usual mixed integer formulation of (P), is not a longest path problem. This is a serious disadvantage, which has to be overcome by finding a solution method that takes advantage of the structure of (P). While this is in general still an unsolved problem, an important aspect of it has been successfully solved. Namely, if (P) is to be solved by projection on the space of the y-variables, i.e., by Benders's partitioning method, then in order to generate the inequalities of the Benders master problem one has to solve the dual of the linear program obtained from (P for various $0-1$ values of y. We have recently found a way of deriving a solution to this problem from a solution to the longest
path problem that corresponds to it in the usual formulation of (p). But the discussion of this algorithm is left to another paper.

Acknowledgement

I wish to acknowledge the useful conversations that I had with Bob Jeroslow on the subject matter of this paper.

References

[1] E. Balas, "Machine Sequencing via Disjunctive Graphs: An Implicit Enumeration Algorithm/ ${ }^{1}$ Operations Research, 17 . 1969, p. 941-957.
[2] E. Balas, "Cutting Planes from Logical Conditions." 0. Mangasarian, R. R. Meyer and S. Robinson (editors), Nonlinear Programming 2. Academic Press, 1975, p. 279-312.
[3] E. Balas, "Disjunctive Programming: Properties of the Convex Hull of Feasible Points." MSRR No. 348, Carnegie-Mellon University, July 1974.
[4] E. Balas, "Disjunctive Programming." Annals of Discrete Mathematics_ 5_* 1979, p. 3-51.
[5] E. Balas, "Cutting Planes from Conditional Bounds: A New Approach to Set Covering." Mathematical Programing Study 12. 1980, p. 12-36.
[6] E. Balas and A. Ho, "Set Covering Algorithms Using Cutting Planes, Heuristics, and Subgradient Optimization: A Computational Study." Mathematical Programming Study 12, 1980, p. 37-60.
[7] E. Balas and R. G. Jeroslow, "Strengthening Cuts for Mixed Integer Programs." European Journal of Operational Research. 4. $_{\text {E }}$ 1980. p. 224-234.
[8] R. E. Campello and N. Maculan, "On Deep Disjunctive Cutting Planes for Set Partitioning." To appear in R. W. Cottle, M. L. Kelmanson and B. Korte (editors), Proceedings of the International Conference on Mathematical Programing (Rio de Janeiro, April 1981).
[9] R. G. Jeroslow, "Cutting Plane Theory: Disjunctive Methods." Annals of Discrete Mathematics. J., 1977, p. 293-330.

[11] R. Rardin and Ui Choe, "Tighter Relaxations of Fixed Charge Network Flow Problems." Georgia Institute of Technology, May 1979.
[12] H. D, Sherali and C. M. Shetty, Optimization with Disjunctive Constraints. Lecture Notes in Economics and Mathematical Systems, 181, Springer Verlag, 1980.

