
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



DISJUNCTIVE PROGRAMMING AMD A HIERARCHY OF
RELAXATIONS FOR DISCRETE OPTIMIZATION PROBLEMS

by

E. Balas

December, 1983

DRC-7O-21-R3



DISJUNCTIVE PROGRAMMING

AND A HIERARCHY OF RELAXATIONS

FOR DISCRETE OPTIMIZATION PROBLEMS

by

Egon Balas

June 1983

The research underlying this report was supported by Grant ECS-8205425
of the National Science Foundation and Contract N00014-82-K-0329 NR047-607
with the U.S. Office of Naval Research. Reproduction in whole or in part
is permitted for any purpose of the U.S. Government

Management Science Research Group
Graduate School of Industrial Administration

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

University Libraries
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213



Abstract

We discuss a new conceptual framework for the convexification of

discrete optimization problems, and a general technique for obtaining

approximations to the convex hull of the feasible set. The concepts

come from disjunctive programming and the key tool is a description of

the convex hull of a union of polyhedra in terms of a higher- dimensional

polyhedron. Although this description was known for several years, only

recently was it shown by Jeroslow and Lowe to yield improved represen-

tations of discrete optimization problems. We express the feasible

set of a discrete optimization problem as the intersection (conjunction)

of unions of polyhedra, and define an operation that takes one such

expression into another, equivalent one, with fewer conjuncts. We then

introduce a class of relaxations based on replacing each conjunct (union

of polyhedra) by its convex hull. The strength of the relaxations in-

creases as the number of conjuncts decreases, and the class of relaxa-

tions forms a. hierarchy that spans the spectrum between the common

linear programming relaxation, and the convex hull of the feasible set

itself. Instances where this approach presents advantages include

critical path problems in disjunctive graphs, network synthesis problems,

certain fixed charge network flow problems, etc. We illustrate the

approach on the first of these problems, which is a model for machine

sequencing.



1. Introduction

Most discrete optimization problems are solved by some kind of enumera-

tive procedure. These procedures use relaxations of the feasible set, and

of the subsets into which the latter is broken up, in order to derive bounds

on the objective function value of these subsets. Their efficiency depends

crucially on the strength of these bounds, which in turn hinges on the strength

of the relaxation used. The most commonly used relaxation is the linear pro-

gram obtained by removing the integrality conditions, sometimes amended with

cutting planes. However, some integer programming problems have more than

one formulation, and the various formulations may give rise to linear pro-

gramming relaxations of varying strengths. This was known for a long time

about the fttflpt* »|*ftt io**«i«t #?fl*l«»i for which the disaggregation of

the capacity constraints involving the 0-1 variables produces a consider-

ably stronger linear program than the aggregated one. To the disaggrega-

tion of the capacity constraints, Rardin and Choe [11] have recently added

a disaggregation of the flow variables of fixed charge

either from arc into path flows, or from single commodity into multi-

commodity flows, which often yields a stronger linear program than the

one in the original variables.

Approaching the problem from another standpoint, that of mixed

integer representability of various functions and sets, Jeroslow and Lowe

[10] have recently shown how certain mixed integer formulations using a

larger number of variables than the common formulation, give rise to stronger

linear programming relaxations. Their approach essentially uses disjunctive

programming, and our work is closely related to theirs.



Disjunctive programming is optimization over disjunctive sets. A

disjunctive set is a set defined by inequalities connected to each other by

the operations of conjunction (A, juxtaposition, "and") or disjunction

(V, "or11). Since inequalities define halfspaces, a disjunctive set can also

be viewed as a collection of halfspaces joined together by the operations of

intersection (0) or union (U). A disjunctive program is then a problem

of the form min{cx|x e F}, where F is a disjunctive set.

Any integer or mixed integer program can be stated as a disjunctive

program, usually in more than one way. Conversely, any bounded disjunctive

program can be stated as a pure or mixed integer 0-1 program. This is not

always true, though, of an unbounded disjunctive program: the set

x. < 0 v x. > 1, for instance, cannot be represented by the use of integer

variables unless x. is bounded.

Besides this - not too important - difference in the domain of applica-

bility of the two problem classes, it is often convenient to view integer

programming problems as disjunctive programs. Apart from the fact that this

is the most natural and straightforward way of stating many problems in-

volving logical conditions (dichotomies, implications, etc.), the disjunctive

programming approach seems to be fruitful both theoretically and practically.

On the theoretical side, it provides some neat structural characterizations

which offer new insights. On the practical side, it produces a variety of

cutting planes, including facets of the convex hull of feasible points,

which are hard to obtain by other means. In some cases, like set covering

and partitioning, these cutting planes have been shown to be considerably

stronger than those derived by other means, and have been successfully used



in algorithms. In this paper we show that disjunctive programming also pro-

vides strong relaxations of an integer program. For background on disjunc-

tive programming, see the surveys [4], [9], [12]#

In this paper we introduce a general framework in which various linear

programming relaxations can be classified, ranked, strengthened at a given

computational cost, and viewed from a unifying perspective. In fact, we

provide a family of relaxations of a (pure or mixed) integer 0-1 program (P)

whose members form a hierarchy in terms of their strength, or tightness. The

members of this hierarchy span the whole spectrum between the usual linear

programming relaxation and the convex hull of the feasible set of (P). This

is obtained by viewing (P) as a disjunctive program and making use of the

rich variety of representations available for the latter. Our main tool

is the operation of taking the convex hull of various disjunctive sets.

The paper is organized as follows. Section 2 discusses some basic

properties of disjunctive sets and their equivalent forms, and describes

a procedure for systematically generating these forms from each other.

Section 3 deals with characterizations of the convex hull of a disjunctive

set, and their relationship to mixed integer representations of such a

set. Section 4 introduces the hull relaxation of a disjunctive set, which

gives rise to the hierarchy of relaxations mentioned earlier. Section 5

illustrates these concepts and procedures on the disjunctive graph formula-

tion of the machine sequencing problem.



2. Disjunctive Sets and Their Equivalent Forms

We denote a halfspace by

H + = (x e]Rn|ax > a },

where a c F , a e l . While the intersection of a finite collection of

halfspaces, i.e., a set of the form

P = 0 H? = (x en111a1* > a , icM}
ieM L 10

is known as a polyhedron, we call the union of a finite collection of

haIfspaces, i.e., a set of the form

D - U H+ = (x €lRa| v (aSc > a )},
ieM L ieM io

an elementary disjunctive set.

A disjunctive set F can be expressed in many different forms, that

are logically equivalent and can be obtained from each other by considering

F as a logical expression whose statement forms are inequalities, and

applying the rules of propositional calculus. Among these equivalent

forms, the two extreme ones are the conjunctive normal form (CNF)

F - n D
ieT L

where each D. is an elementary disjunction, and the disjunctive normal

form (DNF)

F - U P ,
ieQ i

where each P is a polyhedron.



The usual statement of most discrete optimization problems is in the

form of an intersection of elementary disjunctions, that is in CNF. We give

a few examples.

The feasible set of a mixed integer 0-1 program, given by the constraints

aLx > bi, icM; 0 < x. < 1, jeN; x. < 0 V x. > 1, j el c N;

is in CNF, and can be written as F - H D. , with T » M (J N. U N U I (where
ieT L 1 2

Nx » N2 » N), and Di defined as {xJaSc > b^ for ieM; {x|xi > 0} for i*^;

Cx|-xt > -1} for icN2; and [x|-xt > 0 V xi > 1} for id.

The DNF of the same set is F = U Pc, where Pe is the set of those x
SCI S S

satisfying a*x > b±, ieM; 0 < x < 1, jeN; x. > 1, jeS; and -x. > 0, jel\S.

Similarly, the feasible set of a linear complementarity problem given by

aSc + bSr = c1, icM; x^ > 0, y. > 0, jeN; x. < 0 V y. < 0, jeN;

is in CNF, and so is the feasible set of the machine sequencing problem [1]

tj " tt > d̂ ,̂ (i,j) € z,

tt > 0, i e V,

ti " ti - di V ti " tj - d j ' ( i > J )' ( j j i ) € W'

where each inequality of Z defines a precedence relation between two jobs,

and each disjunctive pair (i,j), (j,i) € W states the condition that jobs i

and j cannot overlap.



On the other hand, the feasible set of the set covering problem de-

fined by the m X n matrix A = (a±i^ «lj«tO>l}f ¥ i,j, can be stated in

CNF either in the same way as shown for the general mixed integer program,

or else by letting T = M(-(lf...,m}) and F - D D., with
ieT L

D. - {x| V (x. > 1)}, icT, where N. -{jcN|a.. = l}. The DNF of the same

problem, on the other hand, is F • U (x|x. > 1, jeC}, where C is the set
CcC J

of all covers.

Although the CNF and the DNF are the two extremes of the spectrum of

equivalent forms of a disjunctive set, they share a property not common to

all forms: each of them is an intersection of unions of polyhedra. We will

say that a disjunctive set that has this property is in regular form (RF).

Thus the RF is

(2.1) F - 0 S ,

jeT J

where for jeT,

(2.2) S - U P , P, a polyhedron, ieQ .
J ieQj

 1 j

The CNF is the RF in which every S is elementary, i.e., every

polyhedron P is a halfspace. The DNF, on the other hand, is the RF in which

|T| = 1. Notice that if F is in the RF given by (2.1), (2.2), each S. is in

DNF. A disjunctive set S. in the DNF (2.2) will be called improper if

S. = Pt for some ieQ , proper otherwise. Any disjunctive set S such that

|T | = 1 is improper. S. is convex (and polyhedral) if and only if it is

improper.



Next we define an operation which, when applied to a disjunctive set

in RF, results in another RF with one less conjuncts, i.e., an operation

which brings the disjunctive set closer to the DNF. There are several

advantages to having a disjunctive set in DNF, i.e., expressed as a union of

polyhedra; beyond this, the motivation for the basic step introduced here

will become clearer below when we discuss relaxations of disjunctive sets.

Theorem 2.1. Let F be the disjunctive set in RF given by (2.1), (2.2),

Then F can be brought to DNF by |T| - 1 applications of the following basic

step, which preserves regularity:

For some k,jC e T, k t X, bring Sfc (1 S to DNF, by replacing it with

(2.3) S_ - ( V. 1 K J(PnP))u\ /P.)

Proof. First we show that SfcjJ is the DNF of S.flS,. By the dis-

tributivity of U and H, we have

u u (P. n p > .

But for every 1 Q « Q. n Q,,

u (P. np ) - p = u (P.np ),
jcQx \, J lo jeQfc

 j lo

and thus Sfc nS^ = S k i as defined in (1.3).

The set F given by (2.1), (2.2) is the intersection of |TJ unions of

polyhedra. Every application of the basic step replaces the intersection of

p unions of polyhedra (for some positive integer p) by the intersection of

p-1 unions of polyhedra. Regularity is thus preserved, and after |T| - 1

basic steps F becomes a single union of polyhedra, i.e., is in DNF.||



(2.4)

Remark. If S = P for some i eQ, , i.e., S, is improper, then
K I OK iC

\ l f

U (P. HP ) otherwise

Every basic step reduces by one the number of conjuncts S in the RF

to which it is applied. On the other hand, it is also of interest to know

the effect of a basic step on the number of polyhedra whose unions are the

conjuncts of the RF. When the basic step is applied to a pair of conjuncts

S , S# that are both proper disjunctive sets, namely unions of polyhedra

indexed by Q, and Q,, respectively, then the set Sfcjt resulting from the

basic step is the union of p polyhedra, where

P - I Q ^ I x |qx\Qk| + |Qknqx|.

This is to be compared with the number of polyhedra in the unions defining

S. and S,, which is |Q,| + |QJ|. Obviously, more often than not a basic

step applied to a pair of proper disjunctive sets results in an increase in

the number of polyhedra whose union is taken. On the other hand, when one

of the two disjunctive sets, say S , is improper, then Sfcjt is the union of

at most as many polyhedra as S..

Given a disjunctive set in CNF with t conjuncts, where the i conjunct

is the union of q. half spaces, and given the same disjunctive set in DNF, as

the union of q polyhedra, we have the bounding inequality

q < ql X...X qt.

Because performing a basic step on a pair S, , S- such that S^ is

improper, results in a set S,- that is the union of no more polyhedra than

is S, it is often useful to carry out a parallel basic step, defined as
JL

follows:



For F given by (2.1), (2.2), and 3 . = ^ for some iQeQk (i.e., Sfc
o

improper), replace OS by f \S , where each S is defined by (2.4).
jeT j jeT\(k} kJ kJ

Note that if some of the basic steps of Theorem 2.1 are replaced

by parallel basic steps, the total number of steps required to bring F to

DNF remains the same.

Next we turn to the operation of taking the convex hull of a disjunc-

tive set, which plays a central role in the construction of the family of

relaxations that we are about to introduce.

3. The Convex Hull of a Disjunctive Set

We have two characterizations of the convex hull of a disjunctive set,

each of which requires the set to be in DNF. The first one is described by

the following two theorems.

Theorem 3.1 [3, 4, 9]. Let

(3.1) F = U P., P, = {x eH^A^c > a 1}, ieQ,
icQ x x °

where each A is an m. x n matrix, each a is an m - vector, and Q is an
i o i

arbitrary index set. Let Q* » {icQJP. ^ 0}, and let

C(Q*)

> a for all (<*,» ) e R n + 1 such that
— o °

a = u V , a < u V , ieQ* ,

for some u l i B l , uL > 0, ieQ*.

Then

clconv F = C(Q*)
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For the next Theorem we need a definition. An inequality Qfx > d is
"• o

said to define (or induce) a facet of a polyhedron P of dimension n, if

ax > a for all xeP, and atx = ct for n affinely independent points xeP.
— o o

Theorem 3.2 [3, 4]. Let the set F defined by (2.1) be full-dimensional,

and let Q be finite. Then the inequality #x > at > where a t 0, defines a

facet of clconv F if and only if a ^ 0 is a vertex of

F ye ]R

y =* u ^ 1 , ieQ*

for some u > 0, ieQ*

such that u a > ct
o — o

Analogous results are known for the cases where F is less than full

dimensional and/or a = 0 (see [3]).
o

This characterization can be used to derive strong cutting planes

whenever Q is small or, although Q is large, the special structure of the

polyhedra P. makes it easy to find vertices of F . Such cutting planes have

been derived in [2, 4, 5, 7, 12] and have been successfully used to solve,

for instance, set covering [6] and set partitioning [8] problems.

The second characterization expresses the convex hull of a disjunc-

tive set as the projection into H of a higher dimensional polyhedron.

It is this second characterization that we are going to use extensively

in this paper. Since this result is from an unpublished technical report,

we provide the proof here. As before, we denote Q* = {ieQ|P. ^ 0).

Theorem 3.3 [3]. Let F be given by (3.1), and let 5(Q*) be the set

of all those x e Bn such that there exist vectors (y , y ) e TR , ieQ*,

satisfying
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ieQ*

- aiyi > 0 , ieQ*

(3.2)
E y* = 1
ieQ* °

y* > 0 , ieQ*.
o *—

Then

cl conv F = S(Q*).

Proof. (i) We first show that conv FCS(Q*). Let x e conv F; then

x = E z X
ieQ*

for some points z eP , ieQ*, and scalars X. > 0, ieQ*, such that E X, = 1.
1 ieQ*

Setting y = z \ and y = X., ieQ*, we obtain a set of vectors (y1, y 1 ) ,

ieQ*, that together with x satisfy (3.2); hence x eS(Q*).

(ii) Next we show that S(Q*) Ccl conv F. Let x e S(Q*) and let

—i —i —
(y , y )> ieQ*, be vectors that together with x satisfy (3.2). Let

Q* = [ieQ*|^ > 0} , Q* = (ieQ*|^ = 0}.

For ieQ*, y /yQ is a solution to A x > a
1, i.e., (yi/yi)eP.; therefore

ii ik

for some extreme points v J and extreme direction vectors w of P., in-

dexed by V^ and W respectively, and some scalars a.. . > 0, jeV., v > 0,
keW satisfying Z ^ = 1. Setting n P- = p v./j1 = 6,, , we obtain

**• 4 c y •LJ XJ o ij IK o IK
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vijp + E w l ka
1J 1

with p > 0, jev , a.. > 0 , keW , and E p = y*.

—i —j_

For ieQ*, either y = 0, or else y is a nontrivial solution to the

homogeneous system A y > 0; hence

-i _ ik
y = Z w a i k

ik
for some extreme direction vectors w of P., indexed by W., and some scalars

> 0, ±

Thus we have

E y.
ieQ*

E vljp. + Z E wika
iJ iQ* kW l kieQ*

with

i1
ieQ* jeVĵ  1J ieQ*

i.e., x is the convex combination of finitely many points and directions

of F. Hence x e cl conv F.

(iii) Since

conv F£S(Q*) Ccl conv F

and 5(Q*) is closed, while cl conv F is the smallest closed set containing

conv F, clearly §(Q*) = cl conv F.'|
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In order to use this characterization of the convex hull, one needs

to know which P. are nonempty. This inconvenience is considerably mitigated

by the fact, to be shown below, that the information in question becomes

irrelevant if the systems ALyL > a1 satisfy a condition that is often easy

to check. Let (3.2) be the constraint set obtained from (3.2) by substi-
Q

tuting Q for Q*, and let g(Q) be the set obtained from S(Q*) by the same

substitution. For any polyhedron P,let rec P denote the recession cone

of P, i.e.,

rec P := [y|x 4- \ycP, ¥ x c P, ¥ \ > 0}.

If S. and S are sets, we denote

Sx + S2 = (x|x = y
1 + y2 for some y ^ S ^ y2eS2}.

Theorem 3,4, 3(Q) = S(Q*) if and only if

(3.3) V ^(y€lRn|Aiy > 0}c E rec P .

ieQ\Q* ieQ*

P r o o f , F o r i e Q \ Q * , A y - a y > 0 , y > 0 i m p l i e s y = 0 .
• O O "" O "" O

Therefore

S(Q) = g(Q*) + C,

where C is the expression (union of polyhedral cones) on the lefthand side

of (3.3). Clearly, S(Q*) + C = £(Q*) if and only if C Qrec S(Q*)- But from

Theorem 3.3,

rec S(Q*) = rec cl conv F

- E rec P ,
ieQ* x

hence S(Q) = S(Q*) if and only if (3.3) holds.j|
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Corollary 3.5, If for every ieQ, some subset of the set of inequalities

A ^ 1 > a1 defines a bounded nonempty polyhedron, then g(Q) « S(Q*).

Thus the disjunctive program min(cx|x e F}, where F is given by

(3.1), is equivalent to the linear program min(exjx e S(Q*)}. Furthermore,

there is a 1-1 correspondence between vertices of the polyhedra P^, ieQ*,

and basic solutions of the system (3.2), More specifically [3]:

(i) If x is a vertex of P for some ieQ*, then the vector with

components (71, y^) = (x, 1), (y^, ^) = (0, 0), keQ\(i}, together with x,

is a basic solution of the system (3.2).

(ii) If x together with (yk, y k ) , keQ, is a basic solution of

(3.2), then (y1, y*) = (x, 1) for some ieQ*, (y\ yk) = (0, 0) for keQ\(i},

and x is a vertex of P .

Thus all basic solutions of the system (3.2) (or (3.2) ) satisfy the

condition y^s{0, l}, ieQ. On the other hand, a solution of (3.2) (or (3.2)Q)

satisfying this condition need not be basic. It is then natural to ask the

question, what do such solutions represent? The next theorem addresses this

issue.

We denote by S][(Q) the set of those x e m
n for which there exist

vectors (y , yfl)tB , ieQ, satisfying the constraints of (3.2). and

the condition y = 0 or 1, ieQ; i.e.,

SZ(Q): = {x e§(Q)|y^e{0, l}, ieQ}.

Theorem 3.6. Let F = U P , Q* = (ieQ|P t 0}, and Q** = {ieQ*|p. £ P.,
ieQ x x x J

jeQ* (i}3. If F satisfies
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(3.4) rec ?± =* rec P , ¥ i,jeQ**

and

(3.5) [y|Aky > 0} c rec ?± , ¥ keQ\Q*, ieQ**

then

SjCQ) = F.

Proof. With or without (3.4) and (3.5), S^Q) 2F. Indeed, if x e ?±

i i k k

for some ieQ, then x together with the vectors (y , y ) = (x, 1), (y , y ) =

(0, 0), keQ\(i}, satisfies the constraints defining S (Q). It remains to be

shown that if (3.4) and (3.5) hold, §].(Q) £F.

Suppose (3.4) and (3.5) are satisfied and let x e S (Q). Then there

exists keQ**, Q'cQ** and Q" c Q\Q*, such that

k ^ ^ i
x = y + ^ y ,

ieQ'UQ"

and x together with the vectors (y , 1), (y1, 0), ieQ'UQ*, and (y^, y^) =

(0, 0), jeQXQ'UQ'uOc}, satisfies (3.2)n. But then ykeP, and yie rec P.

for ieQ7 (from (3.4)) and for ieQ7/ (from (3.5)). Thus x e Pfc.||

While the condition of Theorem 3.6 is not necessary, it is as weak

a sufficient condition as one can get without breaking up Q** into further

subsets, for some of which the equality in (3.4) can be weakened to inclusion.

The essential fact about Theorem 3.6 is the following immediate

consequence, which was proved earlier in a different way by Jeroslow and

Lowe [10].

Corollary 3.7. If each P. is nonempty and bounded, then ST(Q) = F.

Thus not only is S(Q) the convex hull of the union of the nonempty,

bounded polyhedra P^, ieQ, but Sj(Q) is a valid mixed-integer representation
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of such a union of polyhedra. As Jeroslow and Lowe [10] have recently

noticed, this representation is better than the usual one, since its linear

programming relaxation is 5(Q), the convex hull of the union, which is often

not true of the usual representation. By the latter we mean the representa-

tion of F = U P . as the set AT(Q) of those x e R
n satisfying

ieQ L X

^x - (a* - L i ) 6 i ^ L 1 , ieQ

I 6, = 1

6i€{0, 1} , ieQ .

where each L is a lower bound (vector) on A x ,

If we denote by A(Q) the set obtained from A_(Q) by relaxing the

conditions 6 e{0, 1} to 6 > 0, ieQ, A(Q) is not necessarily the convex

hull of F, In other words, while S(Q) = conv S_(Q) whenever all P are non-

empty and bounded, for A we only have the relation

A(Q) 2 conv

which often holds as strict inclusion, as will be illustrated later.

We need one more result before introducing the family of relaxations

of a disjunctive set. Namely, we want to use Theorem 3.3 to characterize

the convex hull of an elementary disjunctive set.

Theorem 3.8. Let D = U HI" » (x cH nl V (a^ > a )}. Then

ieQ l ieQ l o

if D is proper
cl conv D =(

if D is improper, with D = H, .



L7

Proof. If D * H. for some keQ, cl conv D * H. since IL is closed

and convex. Suppose now that D is proper, and let x be an arbitrary but

fixed point inHa. From Theorem 3.3, x e cl conv D if and only if the

system

E y 1 = x
ieQ

E y 1 - !
°

yj > 0 , ieQ

has a solution. From the Theorem of the Alternative, this is the case if

and only if the system

V + v = 0 , i«Qo

u a. - v > 0 , ieQ
o 10 o — ' x

(3.6)

vx - v < 0
o

% > 0 >

where u e H, ieQ, v 6 H, and veR n , has no solution*

Since D is proper, there exists no keQ such that H.CH, , ¥ ieQ;

i i i k khence there exist no scalars u > 0, ieQ, such that ua = u a , ¥ icQ.o ~— o o o o

Thus (2,6) has no solution for any x, and hence x e cl conv D for all

x e H n , i.e., cl conv D = ma.||
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The convex hull of a proper elementary disjunctive set is thus 1R ,

i.e., replacing such a set with its convex hull is tantamount to throwing

away all the constraints that define it. This of course is not true for

more general disjunctive sets, as will become clear soon.

The system (3.2) which defines the convex hull of a disjunctive set

in DNF is easy to write down, but is unwieldy when the set Q is large; and

for a mixed integer program whose feasible set F is expressed as a disjunc-

tive set in DNF, Q tends to be large. Thus an attempt to use Theorem 3.3

to generate the convex hull of the feasible set is in general not too

promising.

On the other hand, the feasible set of most discrete optimization

problems, when given as a disjunctive set in CNF, has conjuncts that are the

unions of small numbers of half spaces, often only two. Performing some

basic steps one obtains a set in RF whose conjuncts are still the unions

of small numbers of polyhedra. Note that if a disjunctive set is in the RF

given by (2.1), (2.2), each conjunct S. is in DNF; hence we know how to take

its convex hull. Naturally, taking the convex hull of each conjunct is in

general not going to deliver the convex hull of the disjunctive set, but can

serve as a relaxation of the latter. This takes us to the class of relaxa-

tions announced at the beginning of this paper.

4. A Hierarchy of Relaxations of a Disjunctive Set

Given a disjunctive set in regular form

F = n s
jeT J

where each S. is a union of polyhedra, we define the hull-relaxation of

F, denoted h-rel F, as
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h-rel F := fl cl conv S .
j€T J

The hull-relaxation of F is not to be confused with the convex

hull of F: its usefulness comes precisely from the fact that it involves

taking the convex hull of each union of polyhedra before intersecting them.

Next we relate the hull-relaxation of a disjunctive set to the usual

linear programming relaxation of the feasible set of a mixed integer program.

Obviously, the hull-relaxation of any disjunctive set is polyhedral, since

the intersection of polyhedra is a polyhedron. Suppose now that we have a

disjunctive set in CNF,

F « n D
° J€T J

where each D. is the union of half spaces. Let T* = {jcTJD. is improper},

and denote

P = 0 D.,
° jcT* J

with PQ = ]Rn if T* = 0. PQ can be viewed as the "polyhedral part11 of F ,

i . e . , the intersection of those elementary disjunctive sets that are halfspaces.

Lemma 4 .1 .

h-rel F = P .o o

Proof.

h-rel' 0 D, , - h-rell P fl ( / ~

cl conv P H ! / \ cl conv D. ,
o Vj € T V T* J^
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by the definition of the hull-relaxation. But cl conv P = P and from
J o o

Theorem 3.6, cl conv D = R n for all jcT\T*. This yields the equality

stated in the Lemma.||

When the feasible set of a (pure or mixed integer) 0-1 program is

stated in CNF (which is the usual way of stating it), T* is the index set

of all the conjunctive, i.e., ordinary linear constraints, and T\T* is the

index set of the disjunctions x < 0 V x > 1. Thus P is the linear pro-

gramming feasible set, and the hull-relaxation of a (pure or mixed-integer)

0-1 program stated in CNF is identical to the usual linear programming

relaxation.

The next question we address is what happens if one applies the hull-

relaxation to a disjunctive set that is not in CNF. Specifically, we look

at the effect of a basic step in the sense of relating the hull-relaxation

of the RF before the basic step to that of the RF after the basic step.

Lemma 4.2. For j = 1, 2, let

S = U Pt>

where each P., icQ , j = 1, 2, is a polyhedron. Then

(4.1) cl conv(S-nS2) £ (cl conv S-) 0 (cl conv S ).

Proof. Certainly S-OS £(cl conv S.) H (cl conv S^}, and since

cl conv (S^OS^ is the smallest closed convex set to contain S ^ S ^ (4.1)

follows.||

Theorem 4.3. For i « 0, 1,...,t, let

F - n s]
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be a sequence of regular forms of a disjuntive set, such that

(i) FQ is in CNF, with PQ « n{S°|S? is improper};

(ii) F is in DNF;

(iii) for i=l,#..,t, F± is obtained from F^ by a (possibly

parallel) basic step.

Then

P = h-rel F 2 h-rel F a ... a h-rel F_ = cl conv F .
o o 1 t t

Proof. The first equality holds by Lemma 4.1, since F is in CNF.
————- o

The last equality holds by the definition of a hull-relaxation, since F

is in DNF, i.e., |T | = 1. Each inclusion holds by Lemma 4.2, since for

k = l,..#,t, F. is obtained from F. • by a basic step.||

For any F. in the above sequence, we can obtain from the hull-relaxa-

tion a mixed-integer programming representation of F by using Theorem 3.6.

However, this representation requires one 0-1 variable for every polyhedron

P, in the expression

•»ni *h
rh f rh = ^ye u(4.2) F = 0 S , S = U Ph , P, = [yelRn|A y > a h } , heQ.f j cT,,

1 jcT, J j hcQ4
 h h o j i

which is usually much more than the number of 0-1 variables needed to

represent the CNF of the same set, i.e.,

(4.3) F = 0 S° , S° = U H* .

° ' ' '

The next theorem gives a mixed integer representation of F. which uses

the same number of variables as that of F . For F as defined in (4.3), let
o o

T^ = {rcTo|s° is proper}.
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Theorem 4.4. Let F be the disjunctive set in CNF given by (4.3),

and let F. be the disjunctive set in RF given by (4.2), obtained from F

by a sequence of basic steps, and satisfying the conditions of Theorem 3.6.

which there e

^, satisfying

Then F. is the set of those x e 1R for which there exist vectors (y ,y )e R ,

heQ., jeTi, and scalars

x - S y
heQj

, seQr,

= 0

(4.4)

Ah h h h s nA y - a y > 0J oyo —

yh > 0
Jo —

E y" = 1
°

heQ,

jeT.

(4.5) - 6
rs

E 6
rs

1 ,

seQ , reT'
r o

reT'
o

(4.6)

6rse(0,l}

Proof. From Theorem 3#6, for each j eT. the constraints (4.4)

define the convex hull of S., and if amended with the condition y efo,l},

heQ., they define S. itself. We will show that the constraints (4.5), (4.6)

enforce precisely this condition, and therefore all constraints together

define F. fl
J«T

For any given 5 satisfying (4.6), the unique set of y satisfying

(4.5) is defined by
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i f 6 = 1 , ¥ ( r , s ) : H 2 ? , and seQ

(*.7) ri !
otherwise.

Indeed, 6rg - 0 implies y£ =» 0 for all heQ^, jeTi, such that

H+ 2P • which means that those constraints (4.5) for which 6 « 1 must
rs h r s

be satisfied by setting yQ =* 1 for precisely those heQ., jeT^ for which

this is prescribed by (4.7). ||

Theorem 4.4 provides a way of representing any disjunctive set in

regular form as the feasible set of a mixed-integer program with the same

number of 0*1 variables as would be required to represent the same disjunc-

tive set in CNF.

In order to make best use of the hierarchy of relaxations defined

in Theorem 4.3, one would like to know which basic steps result in a strict

inclusion as opposed to an equality. The next theorem addresses this question.

Theorem 4.5* For j = 1, 2, let

s, - u p: lV
where each P , ieQ, j » 1, 2, is a polyhedron. Then

(4.8) cl conv(SinS2) = (el conv S^) PI (cl conv S2)

if and only if every extreme point (extreme direction) of (cl conv S.) PI

(cl conv S2) is an extreme point (extreme direction) of P. 0 P for some

(i, k)€Q1 x Q2.

Proof. Let T and T denote the lefthand side and righthand side,

respectively, of (4.8). Then

T = cl conv U U (P, OP );
L \ c Q keQ
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Thus x s TT if and only if there e x i s t scalars \ > 0, jeV and \i > 0,
L J X

AcW, such that E \. - 1 and
jeV J

x = E v \ + E w p. ,
jeV J J JUW X

where V and W are the sets of extreme points and extreme direction vectors,

respectively, of the union of all ^ ^ ^ J (i» k) cQ1 X Q2«

On the other hand, x e T_ if and only if there exist scalars X.' > 0,
K J

' and p,' > 0, XcW', such that E \' = 1 and
1 ~ j c v ' j

x = E

where v' and w' are the sets of extreme points and extreme direction vectors,

respectively, of TR. If the condition of the theorem holds, i.e., if V

and w'cW, then T«£T T, and since by (4.1) T_ QT we have TT = T_ as
K Jj Li K Li K.

claimed. If, on the other hand, v\v ^ 0 or w'\W ^ 0, then there exists

x s T_\T_ , hence (4.1) holds as strict inclusion.||
K Li

One immediate consequence of this Theorem is

Corollary 4.6. Let

K = {x e!Rn|O < x < 1, j = l,...,n},

and

S. = (x e K|x. < 0 v x. > l}, j = l,...,n.

Then
n n

(4.7) conv H S. = PI conv S..

Thus basic steps that replace a set of disjunctive constraints of

the form

xj < ° v xj > 1» JeT

by a disjunctive constraint of the form
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V
S C T

before caking the hull-relaxation, do not produce a stronger relaxation:

taking the convex hull before or after the execution of such basic steps

produces the same result. In order to obtain a stronger hull-relaxation,

the basic steps to be performed must involve some other constraints than

those of the above form.

Next we illustrate on some examples various situations when taking

the convex hull before or after a basic step does make a difference.

Example 4. \. (Fig. 3.1) Let

[ , 0 < x 2 < 1 }

R lxi " x2 >
X2 ̂  1}» P4 = tx

with S1 = P1'JP2, S2 = P 3UP 4. Then

{x e R2 |X]> = 0 , 0 < x < l } ,

( x « K 2 | - x 1 + x 2 > 0 . 5 , X l >

< 1, * 2 > 0 } , and l e t F = S

(0, 1) (1, 1)

(0, 0) (1, 0)

(cl conv S^) (1 (cl conv S_)

(0, I)

(1, 0)

Fig. 3.1
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cl conv Sĵ  = £x cR |O < x1 < 1, 0 < x < 1}

cl conv S = (x elR2|0.5 < xx + x2 < 1.5, 0 < ^ < 1, 0 < x2 < l},

and
(cl conv S-) 0 (cl conv S ) = cl conv S .

On the other hand, Sx 0 S2 = (Px UP3> fl (P2 U P4> (since ?l 0 P4 =

P2 0 P3 = 0), and

cl conv(SiriS2) = {x cR
2|l < xx + 2x2 < 2, 0 < xx < l}.

Here (4.1) holds as strict inclusion, because the vertices (0.5, 0)

and (0.5, 1) of (cl conv S) C\ (cl conv S ) are not vertices of either P PlP^

or P 2 ^ P 4 * although the first one is a vertex of P., and the second one a

vertex of P...

Example 4.2. (Fig. 3.2) Let ?1 = [x e IR
2 ̂  » 0, x2 > 0},

P2 = (x €]R
2|x1 = 1, x2 = 0}, P3 = {x €lR

2|x1 = 0, x2 = 0},

P4 = (x eIR |xx = 1, x2 > 0}, and let F = S ^ S ^ with Sl = P 1UP 2,

So = P. U P, . Then

^ — 2̂
( 0 , 0 ) ) (1,0)

(cl conv S-) (1 (cl conv S«)

(0 ,0)

cl conv(S

(1, 0)

Fig, 3,3

cl conv Sx = cl conv S2 = [x eE |0 < xx < 1, x2 > 0},

= (cl conv Sx) 0 (cl conv S 2),

whereas

cl cl conv((Px UP3) 0 (P2 UP4))

= (x elR2|O < xt < 1, 0}.
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Here (4.1) holds as strict inclusion because (0, 1) is an extreme

direction vector of (cl conv Sj) fl (cl conv S ), but not of PJHPJ or P2
nP4*

It is an important practical problem to identify typical situations

when it is useful to perform some basic step, i.e., to intersect two con-

juncts of a RF before taking their convex hull. The usefulness of such a

step can be measured in terms of the gain in strength of the hull-relaxation

versus the price one has to pay in terms of the increase in size. Since the

convex hull of an elementary disjunctive set is H , i.e., taking the convex

hull of such sets does not constrain the problem at all, one should inter-

sect each elementary disjunctive set S. in the given RF with some other con-

junct S, before taking the hull-relaxation. This can be done at no cost (in

terms of new variables) if S, is improper. Often intersecting a single im-

proper conjunct S, with each proper disjunctive set S. appearing in the same

RF, i.e., executing a single parallel basic step before taking the hull re-

laxation, can substantially strengthen the latter without much increase in

problem size. As to shich improper conjunct S, to select, a general principle

that one can formulate is that the more restrictive is S- with respect to each

S., the better suited it is for the purpose. The next example illustrates this,

Example 4.3 Consider the 0-1 program

(P) min |z = -xL + 4x2|-Xl + x2 > 0;

illustrated in Fig. 3.3.

(0, 1)

> 2;

(1, 1)

(0, 0) (1, 0)

Figure 3.3
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The usual linear programming relaxation gives the optimal solution

x1 = x2 = 2/5, with a value of z = 6/5. This of course corresponds to

taking the hull-relaxation of the CNF of the feasible set of (P), which

contains as conjuncts the improper disjunctive sets corresponding to each

of the inequalities of (P) (including 0 < x, < 1, 0 < x- < 1) and the

two proper disjunctive sets Ŝ ^ =* (x e H |x- < 0 V x > l},

2
S2 = [x clR |x2 < 0 V x2 > 1}. If PQ is the intersection of all the

improper disjunctive sets, the hull relaxation of the CNF of (P) is

F = P flconv S, flconv S_.
o o 1 2

Let us write K = (x e R lo < x, < 1, 0 < xo < l], and P = P . H P o,
1 — 1 — — 2. — O Ol OL

with P - = {x e K|-x- + x2 > 0}, P 2 = (x e K|X- -f- 4x2 > l\. Now suppose we

intersect each of S- and S2 with P - before taking the convex hull, i.e.,

use the hull relaxation F. = P o PI conv(P - 0 S-) fl conv(P - fl S o). We find
1 OZ Ol 1 Ol Z

that conv(P 0 S ) = conv(P - fl S ) = {x e KJ-^ + x > 0], and hence

F- = F , i.e., these particular basic steps bring no gain in the strength

of the relaxation.

Suppose instead that we intersect S- and S with P 2 before taking the

convex hull, i.e., use the hull relaxation F« = P , 0 conv(P 2 fl S-) fl

conv(PQ2 n S 2 ) . Then conv(PQ2 f\ S^) - {x e KJX X + 4x2 > 2], conv(PQ2 0 S2>

= {x g K|x? = l}, and F^ - {x € KJx^ = l}, which is a stronger relaxation

than F . Using the relaxation F? instead of F , i.e., solving min{z = -x-

+ 4xJx e F 2}, yields ^ = x = 1, with z = 3, which happens to be the

optimal solution of (P).

Note that P , cuts off only one vertex of conv(S- fl K) = conv(S2 O K ) = K,

whereas P cuts off two vertices of K. |j
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When basic steps are used that intersect proper disjunctive sets

before taking their convex hull, the number of variables in the hull relaxa-

tion increases. Especially attractive are those situations where the in-

crease in problem size is mitigated by the presence of some structure that

makes it possible to solve the increased linear programs efficiently. This

is the case in the machine sequencing problem discussed in the next section,

as well as in certain network synthesis and fixed charge network flow problems.

5. An Illustration: Machine Sequencing via Disjunctive Graphs

In this section we illustrate the concepts and methods discussed in

sections 1-4 on the example of the following well known job shop scheduling

(machine sequencing) problem: n operations are to be performed on different

items using a set of machines, where the duration of operation i is d,, The

objective is to minimize total completion time, subject to (i) precedence con-

straints between the operations, and (ii) the condition that a machine can

process only one item at a time, and operations cannot be interrupted. The

problem is usually stated [1] as

min tn

t- " t
i > d. , (i'J) e z

(P) t± > 0 , i € V

^ - t i ^ d i V f c i - € J ^ d J ' ( 1 ' J ) € W +

where t. is the starting time of job i (with n the dummy job "finish"),

V is the set of operations, Z the set of pairs constrained by precedence

relations, and W the set of pairs that use the same machine and therefore

cannot overlap in time. It is often useful to represent the problem by a
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disjunctive graph G » (V, Z, W), with vertex set V and two kinds of directed

arc sets: conjunctive (or usual) arcs, indexed by Z, and disjunctive arcs,

indexed by W. The set W consists of pairs of disjunctive arcs and is of

the form W = W +UW", with (i,j)eW+ if and only if (j,i)eW~. The subset

of nodes corresponding to each machine, together with the disjunctive arcs

joining them to each other, forms a disjunctive clique, A selection SCW

q
consists of exactly one member of each pair of W: i.e., there are 2

possible selections, where q = x|wj : G is illustrated in Fig. 5.1, where the

disjunctive arcs are shown by dotted lines. If g denotes the set of selections,

for every S eS, Gg = (V, ZUS) is an ordinary directed graph; and the prob-

lem (P(S)) obtained from (P) by replacing the set of disjunctive constraints

indexed by W with the set of conjunctive constraints indexed by S is the

dual of a longest path (critical path) problem in Gc. Thus solving (P)

amounts to finding a selection S cS that minimizes the length of a critical

path in Gg.

Fig. 5.1

The usual mixed integer programming formulation of (P) represents

each disjunction

t j -(5.1)

by the constraint set
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(5.2)

where L is a lower bound on t, - t . Unless one wants to use a very

crude lower bound L. , one has to derive lower and upper bounds, L, and
ij ic

IL, respectively, on each t., ieV, and set L = L. - U . L. can be taken

to be the length of a longest path from node 1 (the source) to node j in the

(conjunctive) graph G^ = (V, Z), and U. the difference between the length

of a critical path in Gg for some arbitrary selection S c3, and the length

of a longest path from node j to node n (the sink) in G^.

The constraint set (5.2) accurately represents (5.1) (amended with

the bounds L. < t. < U, , k = 1,2), but its linear programming relaxation

(5.2). , obtained by replacing y. .€(0,1} by 0 < y. . < 1, has no constraining
L ij — ij —

power, as shown by the next theorem.

Theorem 5.1. If the disjunction (5.1) is proper, then every t., t.

that satisfies

(5.3) L± < t± < \J± , Lj < tj < U

also satisfies (5.2)..
IJ

Proof. It suffices to show that the four extreme points (L , L ),

(Lt, U.), (Ut, L ), (U±, U.) of the two-dimensional box defined by (5.3)

satisfy (5.2) for some y... We first write (5.2)T in the form

L LJ L
(5.2)L (Lj - U l ) (l - y i j) + d^ < tj - tt < - d j ( l -

0 < Y i. < 1
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respectively. To show that
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, U.) and (L., IK) satisfy (5.2) for y_ 1 and y = 0,

, L.) satisfies (5.2)L for some y , we

substitute (L., L.) into (5.2)T and obtain
1 J L

(5.4)
Ui-Li

To see that (5.4) is feasible, note that the right hand side increases

with U. ; so (5.4) is feasible if it is for the smallest admissible value of

U., which is L. + d. (for smaller U. (5.1) becomes improper). Substituting

L. + d. for U. we obtain that (5.2) is feasible whenever L. + d. < U.,

which is a condition for (5.1) to be proper.

An analogous argument shows that (U., U.) satisfies (5.2) for some

y.

Consider now the mixed integer representation of (5.1) associated

with the hull-relaxation of the feasible set of (P). If the latter is

given in CNF, as is usually the case, applying the hull-relaxation to this

form yields nothing, since the convex hull of the disjunctive set defined

2
by (5.1) is R , the space of (t , t.)» If we perform a parallel basic

step of the type defined in section 3 and introduce into each disjunct of

(5.1) the lower and upper bounds on t and t., this replaces every elementary

disjunctive set D.. defined by a pair of constraints (5.1), by a disjunctive

set

* di\

< t. < ut



(5.7)
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The feasible set of (P) is then of the form

where P is the polyhedron defined by the inequalities (5.3) and t - t > d ,

(i,j)e Z. Further, we have (since all S. . are bounded, clconv S . =* conv S .)

h-rel F = P n(/" \ conv S \

and from Theorem 3.3, the convex hull of S . is the set of those (t.,t.)

satisfying the constraints

. k

(5.8)

z'U v1 -

Also, from Corollary 3.7, the set of those (t.,t ) satisfying

(5.8) and y e(O,l} is S t since both disjuncts of S are bounded

polyhedra; and thus using (5.8) with y c{0,l} for all (i,j)eW+ is a

valid mixed integer formulation of (P). This representation uses the

same number of 0-1 variables as the usual one, but introduces two new

1 2
variables, t , t , for every original variable t, , with associated bounding

inequalities L^ < tJ < \7±y \d - 7^) < tJ < Ufc(l - y^). At the

price of this increase in the number of variables and constraints, one
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obtains as the hull-relaxation a linear program whose feasible set is

considerably tighter than in the usual formulation, since each constraint

set (5.8) defines the convex hull of S... It is not hard to see that each

of the two points (L., L.) and (U , U.) violates (5.8) unless it is con-

tained in one of the two halfspaces defined by t. - t. > d. and t - t. > d.,

Let us now perform some further basic steps on the regular form (5.7)

before taking the hull-relaxation. In particular, let us intersect all S.

such that i and j belong to the same disjunctive clique K. If we denote

T(K): =n(S..: i, j6K, i*j), and if JKJ = p, then

'U

T(K) = tell*

tj > dj V tj - t. > d., i,

< tt < \J±9 icK

Taking the basic steps in question consists of putting T(K) in

disjunctive normal form. Let < K > denote the subgraph of G induced by

K, i.e., the disjunctive clique with node set K. A selection in < K >,

as defined at the beginning of this section, is a set of arcs containing

one member of each disjunctive pair. Thus if < K > is viewed simply as

the complete digraph on K, then a selection is the same thing as a

tournament in < K >. If S, denotes the k-th selection in < K > and Q

indexes the selections of < K >, then the DNF of T(K) is T(K) - U T, (K),
keQ k

where

Tk(K)

- di*

Ji - i - u i '

eS
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It is easy to see that if Sfc contains a cycle, then Tk(K) « 0.

Let Q* • CkeQ|si, is acyclic}. Every selection is known to contain a

directed Hamilton path, and for acyclic selections this path must be

unique. Furthermore, every acyclic selection is the transitive closure

of its unique directed Hamilton path.

Let P, denote the directed Hamilton path of the acyclic selection

S ; then S, is the transitive closure of P, , and the inequalities

t. - t >d., (i,j) € Pv, obviously imply the remaining inequalities of
j i "~" i

T, (K), corresponding to arcs (i,j) € sk\
p
k» T*1118 a m o r e economical ex-

pression for the DNF of T is T(K) » U T. (K), with
keQ*

Tk(K) = < tc3RP

"i - i' 'J' e k

-t <
 t

i <
 u

t> i *

Now let M be the index set of the disjunctive cliques in G, and K
m

the node set of the m-th such clique. Then the RF obtained from (5.7)

by performing the basic steps described above is

(5.9) F = P Q fl

and the hull-relaxation of this form is

(5.10) h-rel F = P H ( f ] conv T(K )).

For meM, let Q* index the acyclic selections in < K >: and for
m m

, let S™ and P™ denote the k-th acyclic selection in < K >, and its

directed Hamilton path, respectively. Then introducing a continuous

variable X for every acyclic selection S?1 and a 0-1 variable y. . for

K K lj

every disjunctive pair of arcs {(i,j), (j,i)}, and using Theorem 4.4,

we obtain the following mixed integer formulation of problem (P) based

on the hull-relaxation (5.10).
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min t

(P)

t. - t.

- Z

'j(l.k)

m

A
j(pk-l,k)*k

tj(pk,k)
 + (uj(pk,k)"

Lj

^ d i

0 jeK , meM
m

> 0

> 0

keQ*,

vm

Z

m

K
, m

K -

> 0, V k,m;

Theorem 5«2# Problem (P) is equivalent to (P): if t is a feasible

solution to (P), there exist vectors t and scalars X3, keQ*> meM, and a

k r\
vector y, satisfying the constraints of (P); and conversely, if t, t , K ,

keQ*, meM, and y satisfy the constraints of (P), then t is a feasible

solution to (P).

Proof, (P) is the representation of (P) given in Theorem 4.4, with

the set Fi replaced by F as defined in (5.9), and with the difference that
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the upper bounding inequalities - t. + U. Xfc > 0, j«Km> are replaced by

the single inequality t* ( l k ) - t ^ ^ + (U j ( P k > k ) - L j ( 1 , k ) * k > 0.

The role of the upper bounding inequalities is to force each t to 0 when

\™ = 0, and the inequality that replaces them in p does precisely that:

together with the inequalities associated with the arcs of P™, it defines

a directed cycle in < K > and thus A.™ - 0 forces to 0 all t., jeK .11

m K. j m

The linear programming relaxation of (P) is much stronger than the

linear programming relaxation of the common mixed integer formulation of (P).

Preliminary computational experience on a few small problems indicates that

the value of this stronger linear programming relaxation tends to be much

higher than that of the usual linear programming relaxation. For example:

Usual LP

18

8

20

Value of

Strong LP

25.1

10.7

25.8

IP

31

13

35

Problem 1

Problem 2

Problem 3

On the other hand the linear programming relaxation of (P) , unlike

that of the usual mixed integer formulation of (P), is not a longest path

problem. This is a serious disadvantage, which has to be overcome by

finding a solution method that takes advantage of the structure of (P).

While this is in general still an unsolved problem, an important

aspect of it has been successfully solved. Namely, if (P) is to be

solved by projection on the space of the y-variables, i.e., by Bendersfs

partitioning method, then in order to generate the inequalities of the

Benders master problem one has to solve the dual of the linear program

obtained from (P) £o£ various 0-1 values of y. We have recently found a

way of deriving a solution to this problem from a solution to the longest
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path problem that corresponds to it in the usual formulation of (p). But

the discussion of this algorithm is left to another paper.

Acknowledgement

I wish to acknowledge the useful conversations that I had with Bob

Jeroslow on the subject matter of this paper.

References

[1] E. Balas, "Machine Sequencing via Disjunctive Graphs: An Implicit
Enumeration Algorithm/1 Operations Research, 17, 1969, p. 941-957.

[2] E. Balas, "Cutting Planes from Logical Conditions." 0. Mangasarian,
R. R. Meyer and S. Robinson (editors), Nonlinear Programming 2.
Academic Press, 1975, p. 279-312.

[3] E. Balas, "Disjunctive Programming: Properties of the Convex Hull of
Feasible Points." MSRR No. 348, Carnegie-Mellon University, July 1974.

[4] E. Balas, "Disjunctive Programming." Annals of Discrete Mathematics, 5,*
1979, p. 3-51.

[5] E. Balas, "Cutting Planes from Conditional Bounds: A New Approach to
Set Covering." Mathematical Programing Study 12, 1980, p. 12-36.

[6] E. Balas and A. Ho, "Set Covering Algorithms Using Cutting Planes,
Heuristics, and Subgradient Optimization: A Computational Study."
Mathematical Programming Study 12, 1980, p. 37-60.

[7] E. Balas and R. G. Jeroslow, "Strengthening Cuts for Mixed Integer Programs."
European Journal of Operational Research, 4, 1980. p. 224-234.

[8] R. E. Campello and N. Maculan, "On Deep Disjunctive Cutting Planes for
Set Partitioning." To appear in R. W. Cottle, M. L. Kelmanson and
B. Korte (editors), Proceedings of the International Conference on
Mathematical Programing (Rio de Janeiro, April 1981).

[9] R. G. Jeroslow, "Cutting Plane Theory: Disjunctive Methods." Annals
of Discrete Mathematics, J., 1977, p. 293-330.

§m

[11] R. Rardin and Ui Choe, "Tighter Relaxations of Fixed Charge Network
Flow Problems." Georgia Institute of Technology, May 1979.

[12] H. D, Sherali and C. M. Shetty, Optimization with Disjunctive Constraints.
Lecture Notes in Economics and Mathematical Systems, 181, Springer
Verlag, 1980.


