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ABSTRACT

In this paper marginal investnent costs are assunmed known
for two kinds of equipnment stocks enployed to supply tel ecom
muni cations services: trunks and sw tching facilities.‘ From
the supply viewpoi nt custoner demands for service and quality
of service are specified probabilistically between pairs of
junctions in a network according to different hours of the day.
Traffic itself may flow over direct "high usage" routes or over
alternate routes according to a specified network routing hierarchy,
a structuring which has classically led to econom es of equi pnent
i n supplying custoner service*

In this paper a network hierarchy is defined which includes
I nportant cases occurring in the field and al so appearing in the
literature. A different use of the classical concept of the
mar gi nal capacity of an additional trunk at prescribed bl ocking
probability leads to a linear programm ng supply nodel which can
be used to conpute the sizes of all the high usage trunk groups.
The sizes of the remaining trunk groups are approxi mated by the
I i near programm ng nodel, but can be determ ned nore accurately
by alternate nethods once all high usage group sizes are conputed.

The approach applies to larger scale networks than previously
reported in the literature and permts direct application of the
duality theory of linear programming and its sensitivity anal yses
to the study and design of swi tched probabilistic conmunications

networks with multiple busy hours during the day. Nunerica




Abstr act

results are presented for two exanples based on field data, one

of which having been designed by the multi-hour engineering
nmet hod.




1. lntroduction; A _Design Synthesis Problem

In this paper we treat tel econmunications networks where
custonmer demands for service are specified probabilistically
bet ween pairs of junctions according to different hours of the
day. Tel ephone traffic nay flow over the direct route which
joins two distinct junctions or over an alternate route which is
defined in a prespecified network routing hierarchy. Networks
whi ch perm t alternate routing of traffic are termed switched
because switching operations are required to alternately route
a call. The network routing hierarchy permts traffic which is
bl ocked on a direct -route to be swi tched through other junctions
in further attenpts to connect the original pair of junctions.
The switching process tends to snooth out the peaks of traffic
| oads whi ch occur throughout the network at different tinmes of
the day. Consequently, |ess equipnment may be required to service
the overall traffic load on the network than for a simlar network
wi t hout alternate routings.

An exanple of a network routing hierarchy is given below in
Figure 1. It consists of junctions A through H and two
different kinds of links joining certain pairs of junctions. A
link is nerely a dinensionless entity whose existence indicates
that tel ephone calls, collectively termed traffic, may flow in
either direction between the two junctions which it joins, wthout
i nvol ving any other junction than these two. A dashed line

designates a direct link while a solid line designates a final

link. If there is a direct link between a call-origination

junction and a call-destination junction, then a tel ephone




connection is first attenpted on this link, the first choice route.,
Should the first choice connection fail, then an attenpt is nmade
to alternately route the call by way of final links, and in this

case the traffic is referred to as overflow traffic. Arrows in

Figure 1 indicate the overflow routing schene. In case no direct
link exists between a call origin and destination, then the call
Is also routed along the final links. Should a connection on

final routes fail, we say that the call is "lost", and the caller

must try to place the call again.
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Figure 1. A Network Hierarchy with Direct ( ) and Final (—)
Li nks Where Overflow Froma Direct Link Onto a Final
Link is Indicated by an Arrow.




The basic problemattacked in this paper is one of design
synthesis; solve for |east-cost equipnment charges in a given
network routing hierarchy which are sufficient to neet altered
poi nt -t o- poi nt cust oner dénands for service during different tines
of day to mﬁthih a prescribed bl ocking probability. The enphasis
is on the provision of a tel ecommunications service by an opti nmal
use of avail able equi pnmente The nodel we devel op includes a
probabilistic specification of custonmer demand by tinme of day and
includes alternate routings, where each direct link has a uniquely
specified alternate route in the hierarchy. It is a nonlinear
I nteger programP, which takes as a basic "unit" of equipnment the
concept of a "trunk". The term nology requires flLlucidation.

In this paper a trunk shall nerely refer to a channel which
is required in order for a telephone call to transpire. As such,
it is a dinmensionless quantity. The call carrying capacity of a
trunk depends on the probabilistic nechani sm underlying custoner
calling patterns. For exanple, during a fixed hour a trunk could
carry 60 one-mnute serially placed tel ephone calls. Under this
discipline the total carried |load during the hour is 3600 call-
seconds, denoted 36 CCS. Expressed anot her way, we observe that
the probability of a call being blocked is zero. On the other
hand should a demand for 60 one-minute calls occur simultaneously,
then the offered load is still 36 CCS, but only 0.6 CCS is actually
carried. The bl ocking probability is now 59/60.

A collection of trunks joining two distinct junctions is
nerely referred to as a trunk group, It is convenient to view

a link as a trunk group. According to network engi neering




principles, it is quite reasonable to assunme that custoner
originated calls.are generated by a Poi sson process and are
assigned sequentially to a trunk group. These assunptions yield
an inportant property which is fundanental to our devel opnent
of a good linear programr ng approximation to the nonli near
integer program P, nanely, that the carried load on the |ast
trunk is nonotonically decreasing with the nunber of trunks,
see Messerli [13]. The necessary results upon which the |inear
programm ng construction is based are proved in an Appendi Xx.
VWen the hours at which the final groups reach capacity
are in sone sense stable and when the hour at which total network
sw tching reaches capacity is stable, then an optimal solution
to the linear program exists for which all direct group_sizes
t hensel ves are integefs. Thi s assunption has sone practica
significance and has been enployed in an exanple in Eisenberg [5].
The nonlinear and l|inear supply nodels of this paper enploy
certain concepts of unit costs with respect to both trunking and
switching. The definition of "cost" shall be limted to the
i ncrenental investnent cost of providing a trunk on the direct
route between two junctions and the increnental investnent cost
of providing a trunk along the uniquely specified alternate route
connecting these two junctions. In addition, we shall include
unit switching investnent costs per CCS as a crude approximation
for switching investnents stemming from swtching calls from one

trunk group to another.




Finally, we present |inear programm ng cal culations for two
network hierarchies occurring in the field, one of which has
been desi gned using nonlinear steepest descent nethods, see

Ei sner [6].




2. Approaches to Determine Trunking and Switching Requirements

Over the past 30 years it appears that there have been at
least two basic approaches to the design synthesis problem
discussed in the previous section.

The basic thrust of our paper proceeds according to what we
term the first approach to the design problem. It incorporates
specific probability distributions for each parcel of traffic,
where a parcel is merely that portion of traffic which follows
specific routes in the network. Different parcels experience
different blocking probabilities, even on the very same trunk
group. For example a given trunk group may accommodate customer
ofiginated traffic governed by the Poisson probability distribution,
and the group may also accommodate overflow traffic which is
"peaked", in the sense that the mean of the distribution is less
than its variance. Investigations of the blocking probabilities
of individual parcels have been made by Wilkinson [20], Katz [12],
and more recently by Deschamps [4].

The pioneering work representing a probabilistic approach
which has had widespread use throughout the telecommunications
industry is the 1954 paper by Truitt [19]. The generally accepted
name of the method reflects the fact that economic considerations
are also an integral part. The method is termed the "ECCS
method", where the letter "E" stands for "economic”. The method
was int:oduced by Truitt for the simplest of routing hierarchies

consisting of a triad of junctions with one overflow possibility,




and one specific tine of day (single hour). The solved-for
variables are the specific sizes of all trunk groups.

Furt her inportant extensions of the ECCS-nethod occurred
in three directions. First, nore accurate refinenments of the
overflow distributions themselves were nmade follow ng the
"equi val ent random net hod" of W I kinson [20]. Second, nore
conplicated network hierarchies were introduced, see for exanple
Rapp [15]. The third advance involved incorporating traffic over-
flows and constraints on bl ocking probabilities for nore than
one time of day in the sanme cost minimzation nodel, see Rapp [15]
and Ei senberg [5]. It appears that it is necessary to consider
overflow traffic for nultiple tinmes of day in order to determ ne
trunk group sizes which neet stated bl ocking probability constraints,,
I n addition, networks based on field data have been reported in
Eisenberg'[5] and Ei sner [6] where potential costs savings may
be realized by incorporating nmultiple tinmes of day.

The second nmj or approach to determ ne |levels of tele-

conmuni cati ons equi pnent appeared in the 1956 paper of Kal aba

and Juncosa [11]. Their approach is based on a |inear progranm ng

nodel for a classical routing problemhaving variable |ink

capacities, and as such is a large scale one. Several contrasts

to the first approach (enbodied in the ECCS nethod) are apparent.
First, the parcels of traffic in the Kal aba-Juncosa nodel

are determnistic. Traffic originating at junction i and

termnating at junction j is a given constant, alj. Second,

demands are specified for each year (or other relevant tine

period), in contrast to a specification for nmultiple "hours"”




within a fixed tine period. Consequently, link capacities my
be specified for ensuing future periods, but the inpact of
mul tiple busy periods within a given period has not been nodel ed.

In spite of severe determnistic assunptions the pioneering
i near programm ng nodel of Juncosa and Kal aba can theoretically
accomodate all conceivable routing possibilities, for their
traffic variables are indexed by an origin-destination point
pair and also a specific through-sw tched point, over al
possi bl e triads.

About 5 years after the Juncosa-Kal aba paper, a series of
papers witten by Gonory and Hu on cdnnunication network flows
appeared in the SIAMJournal [8], [9], [10]. Their work
occurred over a 4-year period and expanded significantly the size
of the linear programm ng network nodels that could be treated
conputationally. They were able to conbine feafures of generalized
| i near programm ng deconposition techniques with efficient
For d- Ful ker son nmet hods for sol ving network subproblens. Gonory
and Hu al so stressed the inportance of including comunications
demands indexed by time, such as tine of day, t. They proceeded
under the reasonable assunption that the time value takes on only
a finite nunber of values. Alternatively, one could enploy a
continuous load curve with tine-of-day varying demand.

Gonory and Hu illustrated their conputational approach on
a 10-node, 20-arc network with demands for two different time
periods, and a given set of unit capacity (expansion) costs.

Based on discussions with engineers in the field, principally

fromthe Long Lines Conpany of A.T. £ T., we have found that




bot h approaches have had significant inmpact in the actual design
of tel ecommuni cations networks. The conpletely determnistic
approach (the second approach) has been particularly inportant
in delineating first choice, second choice, etc. alternate routes
bet ween pairs of junctions to be used in defining a network
hi erarchy. Once a network hierarchy is established, econonies
of scale are then achi evable according to optiml use of the
underlying probability distributions of originating and alternately
routed customer traffic.

Defining a network hierarchy is an essential feature of our

approach, and we proceed now to this task using el enentary graph

t heoretic term nol ogy.
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3, A Formal Specification of a. Network Hierarchy

3.1. Designation of Direct and Final Links

Let there be given N distinct junctions, termed points

p=12...,N where N is a positive integer. \Wen specifying
a pair of points, it shall always be understood that i is

di stinct from j; An arc is defined to be the ordered pair of
points 1] where i s the originating point and j is the
termnating point. Let there be specified a subset G of al

possi bl e ordered pairs to be termed the collection of arcs of
the network. W say that the points 1i,j are joined by an arc
if (i,j)€G In general, not all pairs of points are in G
i.e. the network is typically not a conplete graph. W say that
traffic is permtted to flow over only the arcs of the network.
If ran is in the arc set G then we denote the specia
route ftnﬁ by
ft = m m, n. (1)
m
Routes having nore than one arc are simlarly defined as an ordered
list of s points for s an integer, s > 1 which are pairw se
disjoint when s > 1 together with the correspondi ng arcs enpl oyed
to join i to j:

i;111: il: .es sz; i,

a notation which shall mean

| | == © 4 ' 4 A A
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when s = 1. In graph theoretic termnology a route is sinply
a path of length s + 1.

Let there be specified a collection of arcs 3 having
the follow ng property. For every pair of points (mn), there

Is a unique route ft consisting either of one arc as in (1)

m,n
or consisting of a - number of points [ran].,..., [mn] _
1011 . 1 . an,,n
&> 1 and the corresponding i +1 connecting arcs, denoted
by:
Sm fr=m n{m]1; [rmx;...;[rm]v n, n,
The notation, TT € ft shall mean that ij is one of the

a., +1 arcs_of the Tﬁ?qla]e route ft The unigruety—determined

m,n

positive integer-valued position of arc 1] in the list of arcs

in ft iIs denoted by
nin

n(ij,mn).

Arcs in 3 shall be ternmed final arcs and indicated by

solid lines as in Figure 1 of Section 1. The collection 3
Is the edge set of the given specific spanning tree of the network.,
There is also given another collection of arcs denoted #,

none of which is in ?¢ These arcs are terned high usage arcs,

kE, and connect certain pairs of points (k,£). High usage arcs
are indicated by dashed lines in Figure 1. Since 5 itself is
a spanning tree, it follows that for any 111 e H there is a

uni que route ft defi ned according to (2), where necessarily

K,%
agi >N 1, since KkE£/ 3. This uniquely determ ned route shall

be terned the alternate route for hiagh usage arc KE. Thus,
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each high usage arc has an alternate route consisting solely of

final arcs,, and we shall say that traffic can overflow froma_

high usage arc to its alternate route. The relationships between

3 and # shall be terned a network hierarchy. (bserve that

G= 3 UB

According to the basic idea of a trunk discussed in Section 1,
it follows that a trunk group joining point- m to point n can
service calls from m to n or calls from n to nu In
particular, the trunk group should satisfactorily service the
total offered load arising fromboth traffic directions. These:
.engi neeri ng- bbased considerations notivate a sinple graph theoretic

definition of link M\ G ven any two distinct points mn the

link M shall be the union of the arcs ™ and nm provjded

of course, both arcs are in the arc set G Wen kE and &

are both in B, the link KL shall be identified with the trunk
group servicing total offered load fromarcs kE and “Ux
Simlarly, link 1J in 3 shall service traffic on both arcs
TJ and JL Y shall say that each link M\ consists of x~
nunber of trunks where W;ﬂ is a non-negative variable to be
sol ved for.

The term nol ogy of "high usage" and "final" corresponds
to tel ephone usage in the field and therefore we shall refer to
"high usage arcs or links" rather than "direct arcs or |inks".

Sone of these definitions are illustrated in Figure 2 bel ow

which is a portion of Figure 1 of Section 1.
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Figure 2. Portion of Figure 1 Indicating the Alternate Route
for 5; 53; 3, where cs3 = 2, [53]; =2, [53], =1,

and n(iI}EE) = 2,

3.2. Classifying Point-to-Point Offered Loads

For each pair (m,n) there is a non-negative demand for

traffic denoted a n’ from m to n termed originating traffic.
Traffic is usually stated in units of erlangs, or in hundred call
seconds per hour [CCS] as discussed in Section 1.

Let 1ij be a fixed final arc, I? € & Traffic parcels

offered to 1j consist of three types.

Type 1 Parcel: The originating traffic parcel aij is called

type 1 parcel of traffic.

Type 2 Parcels: Traffic overflowing from high usage arcs onto

final 1j 4is called type 2 traffic. Formally, there exists

ki € ¥ such that 1ij e R .+ We say originating traffic on high

usage arc k4 overflows to 1ij. Introduce,
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By = (ke Wije )} (3)
For example, in Figure 1, with i,] = 1,2

H12 7 (1S, 35,41,7, 75,172,175, 85} .

Tvpe 3 Parcels:; Type 3 traffic occurs between points mn

where M £ G but where neverthel ess demand a IS positive.
F
m
In this case demand is serviced by a route consisting only of

final arcs in G  For this case we assune 1] € R and say
mn o

that originating traffic a™" requires final arc TJ for
conpletion* Introduce

Fig = (ma g Q53 € 2 ). (4)

For example, from Figure 1,

F.s = {16,17,18,21,43} .

Having established a particular network hierarchy, we are
now in a position to specify probability distributions for
customer originated traffic and to determne the expected over-
flow traffic froma high usage group to a final group in its
uni quely specified alternate route. These specifications together
- with the network hierarchy then lead to a nonlinear supply model

formulation, a task we address in the next section
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4., The Fornul ation of a. Nonlinear Supply Mdel

4. 1. Bl ocki ng Probabilities and Overflow Traffic

The call discipline is one of the factors in determning
the relationship between the offered load to a trunk group and its
carried load. Another key factor in determning carried |oads
is the assunption that custoner originated traffic is Poisson
distributed wwth arrival rate denoted by A, see Messerli [13].
Fortunately, there is strong evidence to suggest that the nunber
of calls occurring in a fixed, small tine interval can be adequately
nodel ed as a Poi sson probability distribution. Wth these
assunptions the distinction between a trunk group's offered |oad
and carried load can now be nmade precise.

Assume that calls are assigned sequentially to a trunk group
consisting of n trunks. Let A denote the average custoner
arrival rate according to the Poisson distribution. The only
assunption required on custoner calling tine is that it has
finite nean /i. Oherwise, it may be arbitrarily distributed.
Under these conditions the probability that all of the n trunks

in the group are busy is given by the classical Erlang B-formnula:

n
B(n,a) = (a"nl)/ S (a“ ki), (5)
k=0
for n=20,1,..., where a = Ax with its units terned erlangs.

The history of the original Erlang formula and its inportant
general i zati ons may be found in Gnedenko- Koval enko [7] and

Syski  [18].
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An erlang is thus a neasure of the flow of traffic per
unit tine. In the traffic engineering literature an erlang is
one call-hour per hour, or equivalently 36 CCS per hour. The
"hour" as the unit of tinme is so standard, it is usually dropped,
and one says an erlang is 36 CCS. The value "a" in the Erlang
formula is ternmed the offered load to the given trunk group. The

expected overflow traffic is then aB(n,a).

4.2. An Assunption on Marginal Capacities

The inportant benefits of being able to conpute changes in
equi pnment stock to neet changes in demand were recogni zed nuch
earlier by Kal aba and Junéosa [11], Gonory and Hu [8], [9], [10]
and others. Fortunately, increnental studiés on the network
hi erarchy introduced in Section 3 permt certain sinplifying
assunptiohs that nmake conmputations attractive. These assunptions
relate to the concept of the marginal capacity of an additional
trunk at a prescribed bl ocking probability. The resulting
supply nodel is an optimzation which is nmuch sinpler than would be
possi bl e when constructing a network ab injfio,  The assunptions
and nodel are now presented.

When traffic intensity aAU is offered to a given high
usage arc TJ consisting of er nunber of trunks, then the
expect ed amount which overflows to arc i[ij]: in 3 is
aijB(Xij’ a3 ), according to (5) above- On a final arc, however,
the three types of traffic parcels introduced in Section 3.2

conprise the offered load: originating traffic, overflows from
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hi gh usage arcs, and originating traffic on other final arcs
‘which require the particular final arc for conpletion. The
basi ¢ nodel seeks optimal sizes of |inks, rather than arcs, as
defined in Section 3.1 to accommpdate two-way traffic. The

followi ng definition and key assunption enphasi zes this approach

Definition. For each final link or trunk group [1J consisting

of x-- nunber of trunks let P(x_-,Q-(t)) denote the blocking
probability at time t, where the offered load Q (') consists

of types 1 through 3 traffic parcels (Section 3.2), Define

pt = max {Po_(%.-,Q.-(t)}].
t,IJec 5 IJ'Y"IJ°T1IJ
" is ternmed the quality of service of the

The quantity p = I-p

net wor k.

Mar gi nal Capacity Assunption

For each final link 1J, there exist two positive constants

¥r-r and byt such that if ™ > 0, then

max PJJCXJJ + <T*/ Y, ;> Q,(t) + S 1 pt (6a)

t
and if 0 < T" < b--, then
max PjjfXjj - t™/Y,;]iQy(t) - T) < p', (6b)
t

where <x> is the snallest integer greater than or equal to X,

termed the integer round-up of x and where [x] is the |argest

integer less than or equal to x termed the integer part of x.

Yry 1”7 terned the marginal capacity of an additional trunk at,

bl ocking probabilitv p?t.
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Inequality (6a) states that when <T Y:,J> nunber of trunks
are added to the trunk group servicing final arcs 1j and Ji,
then at least an additional anount of traffic pr+ is carried.
Inequality (6b) states that when t~/Yjjl nunber of trunks are
renoved from the trunk group, then the decrease in carried traffic
is at nost pf""

We assune throughout that each high usage group KL consists

of X4 (integer) nunber of trunks, and that each final group 1J
consi sts of XAI'J_ nunber of trunks, establishing what we term
1he existing netwnrk It is further assumed that the existing
network can supply all service demanded 23,,(') '°r all prjns
(mn) and all times of day t wth the provision of a quality

of service p.

4.3. A Nonlinear Integer Programm ng Formulation for the Network

Hi erarchy of Section 3

The first task is to develop an expression for the sum of
the traffic parcels of Section- 3.2 offered to a final link 1J

of the existing network. The type 1 parcel is sinply 27j(t) *2 ji(t)-

4.3.1. Sumof All Type 2 Parcels Ofered to 1J

For any TJ € 3 it follows fromthe margi nal capacity

assunption that the overflow from k£ e H. is at |east

ai (t) B( Xk, axi(t) +a%(t))p<1<|7>*zI - (7a)

provi di ng H':Lj is non-enpty. Likewise for the final arc in the

opposite direction, "Ji, the overflow from kE € Hji is at nost
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Ay (YB3 (B 4y (1)) plT T (3T KO, (7b)

Summing the overflows in (7a) over all KE € Ftlj, then summi ng
the overflows in (7b) over all Kl e F%A and adding these two
sums yields a lower bound for the total type 2 traffic parcels

offered to trunk group 1J. Let this sumbe denoted by LJEf)(t),
i.€e. s |

Léi)(t) = ‘ET? ak&(t)s(xKL’akL(t) + a{k(t))p(ﬂ(ij,RL)—l)
Hij

+ ——z ak‘L(t)B(xKI’akL(-t) + a{k(t))p(ﬂ(ﬁ,ﬂ)—l)

kLEHji 9

for each final trunk group 1J. For the case that H'lj is empty,
we automatically take the appropriate summand in (8) to be zero
This case does not occur in Figure 1. An upper bound on the

total overflow traffic, type 2, to 1J is obtained by deleting

both p-ternms in expression (8).

4.3,2. Sumof All Type 3 Parcels Offered to IJ

For any m e Py it follows fromthe marginal capacity
assunption that the expected portion of originating traffic

parcel 2,,(')* "™ / G offered to trunk group 1J is:

a_ (¢) pf N(i3,mA)-1)
mn s

provi ded that Flj I's non-empty. Trunk group 1J is also
offered the same expression for the load stenming from m e Fjr

again providing sz 'S non-enmpty.




Sioming all these parcels of traffic over mm € F. _ UP.,
yields the type 3 sum
(3)
Ly3 (€)

mneF. ..
XD Ji (9)

again with the proviso that a sum over an enpty set is defined

to be zero.

4,3.3. A Constraint on the Sumof All Traffic Ofered to

Final IJ
The maximum total expected offered load Ff33> which final
group |J of the existing network can service at blocking
probability 1-p is the maximum over all times of day t, of
the sums of the three types of expected offered | oad parcels.
Accordi ngly,

Ex; = max{a; ;(t) + a™(t) + LN (t) + L (t)}. (10)
t ] |

Qur nodeling approach is concerned with (1), modified offered

| oads 5hn(t) for all pairs (mn), (2), modifications of the nunber

of trunks XM and Q;u, respectively of high usage group KL
and final group 1J, and (3), a modification in the network service
quality ﬁ Under these three kinds of nmodifications, we may

define quite anal ogously to (8) and (9) the expressions

2$7 0w  and £,

and anal ogous to (10) wite
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Brp = mex(d (0 + &0 + 22 1) +Tgr )y (11)

| f E - E;r_ >0, then according to the marginal capacity
assunption, case (6a)s only [(Eﬂj - Bunr’7Y, 5] nunber of trunks
need be added to final group [1J, where YTJ i's the marginal
capacity of an additional trunk at blocking probability 1-p.
Let Yig denote the integer nunber of trunks required in group

IJ in order to service initial demand E__ at the new service
~ u

quality p. Hence we obtain a feasibility requirenent on the

nmodified [J trunk grouﬁ size, Xx__,

E

13 = Erg £ Ypg{Xgy - ¥y3) (12)

wher e X5 18 i nt eger.
| f ETT - E-- <0, then we invoke a stronger version of
the margi nal capacity assunption regarding case (6b)e W require

that T = |7§.- - Erjl >? g*®ntity which depends on the x-

LJ
and certain XL variables, lie within the 0 to bl& range
required in order for (6b) to hold. In other words, when
[|Eﬂ - ETy1//Yp - "UM)et of trunks are renoved from YTJ> the

resulting nodification

.

X13 = Yz = UErz - Bprgl/vegl

may be offered the nodified |oad at bl ocking probability (1-p).
It follows that the same feasibility requirenment as (12) holds
for this case too.

The systemof inequalities (12), one inequality for each
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final group 1J, shall determne a set of constraints for the
nonl i near supply nodel, and we shall wite these constraints
in greater detail when actually specifying the nodel. But,
first we need to take account of the total swtched traffic

in the network.

4.3.4, Accounting for Total Switched Traffic

Let us work with the nodified loads a\~(t), nodified nunber
—~ ~ nai ~

of trunks _x= and x-f{* and nodified service quality p.
‘Let S(t) denote the total switched traffic throughout
the network at time t« W shall now show that

(i3, k-1 _

S(t) « __L _E (& (t)B(" aZ(t) +a " {t)) E. p*}
ije. g
(13)
- (T ELj-=-1
+__Z =2 (a(t) £. pr).
ijed rm€F':|.j g=0

The amount of overflow traffic from high usage arc k<
destined for final arc TJ is "a(t)B(xw, a(t) + " (&)).
However, before this particular parcel reaches 1] it nust be
consecutively switched at points k, [k* ~,. .., [KE] "("J_J’kT)-I
conprising the alternate route 92 of icz if T(],kQ * 2
Therefore, in this case the total amount of switched traffic is:

n(i3,kH-1

3 ,(t)B(R,. ,2, ,(t) +a, (t)) z . (14)
ki *zL7 %% X =0

The sane analysis applies to type 3 traffic. The total
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traffic switched due to originating loads Sgn(t), mn not

in the arc set G, requiring I? € & for completion is

. n(13,k?)-1
a__(t) r p% (15)
mn q=0

We now sum (1l4) over all k2 ¢ Hij and then
over all IE € &, with the convention that the summation
is zero whenever Hij is empty. Similarly, (15)
is summed over all mn € Fij and then over all 1ij € ¥, with the
convention that the respective term is zero when Fij is empty.
Finally, summing these two sums yields (13).

4.3.5. Cost Assumptions and the Nonlinear Model

Analogous to Eisenberg [5] and Elsner [6] we shall invoke
simplifying cost assumptions for trunks and switching. We shall
employ unit marginal investment costs per trunk and shall use
the same cost for augmenting & trunk group as for diminishing a
trunk group.l We shall denote the marginal cost per trunk for
trunk group MN by uN > 0.

Changes in switching investment costs shall be approximated
by using a marginal switching investment cost < per CCS of
switched traffic, as for example in Eisenberg [5].

In the absence of real data and analogous to Eisenberg [5]

we can merely set ¢ =c = g1000 for each final trunk and

IJ KL
high usage trunk, and also set ¢ = 862 (per CCS).

lIn practice, one rarely takes away existing equipment, but merely
waits until the normal growth in message volume takes up the
current slack.
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W are now ready to state the basic nonlinear progranm ng

suppl y nodel .

Program P. Assunme an existing network. Section 3 has demands

am(') for all pairs (mn)s_inteqger _trunk _group sizes x” and

XTJ ~° high usage and final groups respectively, and an overall

network service probabilitv p wth nmarginal capacities YTJ*

Let nodified positive denands be denoted by a"mn(t), and let P

denote ai _nodified _service probability with marginal capacity

7xj . Assune c” and CLJ are costs per trunk on high usage

group KL and final group 1J and that c¢ denotes the swtching

cost per CCS. Let E-J_;l be defined according to_(10) . Conpute

M = mn £ ct ';(IT + £ M Tr + A (16a)
n Finals "7 H gh Usages ~ ~ 7
| J KL

from anbng non-negative integers. Xrr, §C._. for all finals IJ
and hi gh usages KL and real S which satisfy:

o~ — — - —~ ~ ~ —'--'-...—.L-
aij(t) + aji(t) +_E|Z§H”ak'b(t)3(x,ﬁ,ak‘b(t) + a,{k(t))ﬂ(n(lj’k) 1)
1]
*__LF(B)B(X,E () + ch(t))g(n(ji,kt)-l)
kleH

31
+ T gmn(t)s(n{lj,mn)-l) +_z gmn(t)z(ﬂ(;!l,mn)-l)

- Bpy < Yygp{Xpy - ¥r5) (16b)

for each final 1J and each t, where vy.., is the required
number gE trunks in 1J for a P service probability, the
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B-function given in (5), and

~ ~ = ~ ~(n(ij, k) -1)
_z __Zz (t)B(X,, .4, ,(t) + &, (t))p
e T k“HlJakx. *xL %% 4 1k

+ | A(t)Arlan (16¢)
er. ..
i3

or each t. (This conpletes ProgramP.)

(bserve that the systemof inequalities (16b) is nerely
(12) with full detail of the terms £L  showing the "™ and
5&# as variables. On the other hand (16¢c) mnerely defines the
maxi mum switched traffic in the network according to (13).

It is obvious that ProgramP is consistent because the X _
variables may be taken arbitrarily large as well as the S
variable, P nust have a finite mninum Qherwise some X
or Yﬁh necessarily becone arbitrarily large and since all cost
coefficients are positive, the objective function would
arbitrarily increase which is a contradiction.

Program P is a nonlinear integer progranm ng probl em which
can be wel| approximated for practical purposes by a continuous
convex program In fact, even nore can be done. ProgramP can
be approxi mated by a‘finite | i near programbased on the special
convexity property and nonotonicity property of the Erlang B-
function,see Messerli [13]. W focus now on how the |inear

progranm ng approxi mation is constructed.
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5* A Linear Procrrannning Approximation to the Nonlinear Program P

51 _The Convexity Properties of the Blocking Probabilities:

In engineering practice the definition of the "load on
last trunk™ with respect to a trunk group of size n + 1 which is

offered the load "a" is defined by:
D(n,a) =B(n,a) - B(n + 1,a) (17)

where the Erlang B-function is defined in (5), for n » Qls ..,
where B(Oa) » i. (Cbserve that D(n,a) > 0 for each non-
negat ilve integer n. Messerli [13] gives a proof that for any
fixed a >0, D(n,a) is strictly decreasing in the non-negative

integer variable n,
D(n + 1,a) < D(n,a) (18)

for n=0,1,¢°.

For "a" fixed define the polygonal function I?j;(*,a) from

t he non-negative reals to the non-negative reals by
£(x,a) =-D(n,a)x + (n +1)B(n,a) - nB(n + |a), (19

where n is the integer part, [x], of x. Note that
£(r,a) = B(r,a) for each non-negative integer r.

The graph of the polygonal function £(-,a) reveals its
convexity and nonotonicity properties, which are basic for the

construction of the |inear program
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(G B(Q a))

é(() a)-B(1, a)

(1,B(1,2))

. s e it . g sl g

B(I,a)-B(2, a)
(2,B(2,a))

/

= —---{--——-

N ot ot o o g 2t g

Figure 3. The Pol ygonal Function Determ ned by the Erl ang

B- Functi on on Non-Negative Integers

For each non-negative integer n the left-hand side of
(19) defines an affine function on the non-negative reals. The
follow ng cunul ative-type expression for this affine function
foll ows from Charnes- Cooper [1l], pages 352-353.

For a. _fixed non-_neqgative_integer n

n
-D(n,a)x + (n + 1)B(n,a) - nB(n +1l,a) =1+ L (c--c ,)(x-r)
r:0 r ro X
(20)
for every real non-negative x, where ¢ -, =0 and ¢ = -D(r,a)

for r =0,1,..¢°
As strongly suggested by Figure 3, the follow ng proposition

yields a uniquely determ ned system of supporting hyperpl anes
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for the epigraph K of the function £(-,a). The proposition

and its three corollaries shall be proved in an appendi Xx.

Proposition 1. Let K be the epigraph of ﬁ‘(-,a),

K={(z,x) e ]R?|Ix~O and z~£(x,a)}. Let L be the set
2
of all (2,x) in IR which satisfy the sem-infinite system of

linear inequalities
2-1~ L (c-c. JU-r) (22)

for x 0 and n =0,1,2,....

Then K= L and K is non-enpty.

Corollary 1. Let X be non-negative real. Then (B(X,a),X)
satisfies each inequality of (21) strictly except for (i), the

inequal ity indexed by [X] i.e., the inequality

2-11" £ (S-S
i =O

><X-*) i

which it satisfies as an equality, and (ii) possibly the inequality
i ndexed by [X]-] when X A 1. The latter inequality is satisfied

as an equality if and only if X is a positive integer.

Corollary 2. Let V be a positive integer and set
K =Kn {(z,x)JO£x £V}. Let L be the set of all (2,x)
whi ch satisfy

n
z-1 A r,_\o(<2rucr_|) (x __r> > X A o

for n=0,1,...,V-1. Then K' = L.
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Corollary 3. (z,x) e K is an extreme point of K if and only

iIf X 1is a non-negative integer and z = B(x, a).

In view of Figure 3, which reflects the basic integer
convexity property (18), these results are intuitively clear.

They are fornmally proved in the appendi x.

5.2. The Key Approximation and the Linear Program

We now replace in Program P the B-function by the pol ygonal
ﬁ-functlon, and the integrality conditions on the SA_L, Xy
vari abl es are renoved. Finally, upper boundi ng constraints
Szl‘u.. £ VKI.. are inposed, where the Vg, are | arge positive
I nt egers.

The next step replaces each term "a"( "’\*HI__<I__' Agan gu((t))

in (16b) and (16¢c) with the new variable ZEL and requires that
T, (B)B(R, 3 ,(t) +3,.(8) < zF
k4 tir ' Ry A &k A

The new appr oxi mati on program so obtai ned, denoted P', is the

fol | owi ng.

Program P' . Sane assunptions as in P. Let V.-. be large positive

_ AN —
. o ~ —~ -
My, = mm | ex + L OXTXICT * © (22a)
Finals '’ 'Y High Usages ~ ~*
1J KL

from among reals ?(_X_J, ';_’\’\, Z);jtj an<i & \which satisfy:
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Xis(t) € %y . where Xgz(t) = (22b)

(&) + & (1) gy 5 (025, F(MITkD-D
ij

I~ t ~(n(3i,k0)-1)
L dltizg, e

3i
~((13,m)-1)

+ X S'mn (t)p + I a'm(t) ;( n{ji,mn)-1)

meF -
1] n’neF.J.:"

ey g * Yr¥rs}/Yig

for each final 1J, and time t, and S(t) <+ S (22c)
where
S(t) - | b2 z;{’s(ﬂ(ij,mn)*l) + _ET _ I a-mn(t)s(n(ij,mn)-l)
1je3 k UH; i3e mneF , "

gkL(t)é(zm’gkL(t) + g{.k(t)) S z]t{,t (22d)
for each high usage arc k£, and time t
and 0 1%~ 1 vA , for each (22e)
i

hi gh usage link KL.

It is obvious now in view of Corollary 2 that P is
equivalent to the finite linear programdenoted LP , obtained

by replacing (221?) with the finite systemof linear inequalities:
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SE (DDA (0) +E (N Ry + 28, 2 8, (8) (v + 1B(w,3) ,(t) + 3, (¢))
- 'a'kLvB(v + 1,5‘“(»:) + ng(t)) (23)

for v = O,l,...,vKL - 1, and each k1 e 4, and each t. It
is equally obvious that Program LP' is consistent and has a
finite minimum since the §kL variables are bounded and all
cost ccefficients are positive. Hence P' 1itself has optimal
solutions.

An important observation about optimal solutions to LP'

is best made in the following formal terms.

~ ~ t*, o . :
Proposition 2. Let {(xﬁJ),(xﬁL),(sz),S*} be an optimal solution

to Program P!'. Then
(i) for each final group IJ, (22b) is satisfied exactly

for some t -- denote the set of such +t's by Tr32

(ii) (22c) is satisfied exactly for some t' -- denote the
set of such +t's by T,
(iii) for each kL ¢ ¥ and IJ there is at least one

te Ty such that (22d) is satisfied exactly, and there

is at least one t' € T such that (22d4) is satisfied
exactly, and
. ~ —~ ~ A, o~ [ -~ ~ .
(iv) {(XEJ) ’(}CRL) ’akL(t)B(xiL’ak‘L(t) + a»&k(t))’s*} is also
an optimal solution to P'.

Proof: Since each <c¢ is positive, (22b) cannot be satisfied

IJ

strictly for every t. Otherwise, X can be decreased without

1J
affecting any other variables while maintaining feasibility, and
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with a lower total cost. Let Ty = [t\ { (2“), (5n) , (ZEQ , B}
satisfies (22b) exactly}.

Simlarly, since c >0, (22c) nust be satisfied exactly
for some t, and we denote this set of tfs by T.

To prove part (iii), let kT be any nember of 3i and 1J
be any final group. If to the contrary (22d) were satisfied
strictly, with respect to k-t, for each t e TiJ, t hen ZEL
may be decreased for each t € Tyx; wthout violating (22d) and
hence feasibility. But a%A(t) > 0 for every t, and therefore
the term 3AAAAj  *xx the Joft_hand side of (22b) decreases
strictlyg and this decreases the entire left-hand side of (22b).
Therefore ;EJ itself can be decreased giving a |ower toial
cost since c.-, >0 and no other variables in the cost function
are altered. This is a contradiction, and therefore (22d) is
satisfied exactly for at least one t € T%b'

An identical argunment proves the l|last statenment of part
(iii).

Part (iv) follows fromthe fact that for all those t for

which (22d) is strictly satisfied, 2? may be decreased to its

| oner bound without affecting feasibility. |]

W now use Corollary 1 of Proposition 1 to discuss the cost
effects due to using an optimal solution of P' as a solution
to the integer programP. |If i;jﬂ is not an integer, then
(B(<XN>, ayM(t) + ar(t)) jCEgA) is in the epigraph of
g(',akq(t)jﬂéAft)) for each t, where <%L > is the integer

round-up. The round-up introduces an increase in the total cost
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associ ated with high usage KL, (ZX{Q> "H*KDCN} where
0o </ b%ﬁ> - jgi < le A off-setting cost effect from final
groups |J and sw tching S occurs because fromthe nonot oni city

of $(' ~~(t) *~r-tk~r' each 2% does not increase

Finally, in order to insure quality of service p, non-
integer final group sizes i&a shoul d be rounded up, thereby
increasing total costs. Nunerical estimates of these various
of f-setting cost effects due to round up of trunk group sizes
determ ned by Program P' have not been obtai ned. It appears
to us that such estimates must stem from nunerical experinents
on field data. Certainly, as strongly suggested by Figure 3
and Proposition 1 and its Corollaries, integer programm ng
pat hol ogi es from strai ghtforward roundi ng processes do not occur.

There are special assunptions that can be placed on Program
P! which guarantee the existence of an optimal solution to P’
such that all of the high usage group sizes (YLH) "¢ integers.
These do not necessarily conprise high usage group specification
of an optiml solution to the nonlinear integer program P.
Neverthel ess, they provide a starting point for determning
final group sizes by other nethods which do not depend on the
mar gi nal capacity assunption, such as W ki nson's Equi val ent
randommet hod [ 18], [20].

One of the special assunptions is the follow ng.

Definition. A final group |J is said to have a stable busy

hour t-7 if and only if for any specification ("g;) which

satisfies (22e) for all those KT € th U Hj“ [see (3), Section 3]
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and (zﬁ"_)_ whi ch satisfy (22d) exactly,

XIJ(tIJ} =matxXU(t)_ (24)

The entire network is said to have a stable switching busy hour

t if unda the conditions above
G _

S(ta) - max S(t) . o ( 25)

Proposition 3. Assune that each final group 1J has a stable

busy hour t--, and that a stable sw tching busy hour tg

existse Then there exists an optiml solution to Program P'
such that all high usage group sizes are integers.
Proof: By Proposition 2 an optimal solution to P' exists of

the form . g

X = [J(F’XH’ (z;:) rg*} s

wher e

Xp = {Xljjall final groups 1J},

T%

Xg = {xKL| all high usage groups KL}
and zE* - ~AAA(ALATCAA +5'ik(t))fora11 A € % and
times t. For any non-negative integer Vv define

23" = & (BB, E (8 + T (0).

Then by Proposition 1 and its Corollaries

£ eV

£, Ve
Y T S 2 ) <26)
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for each ki € Ji and time t, where v~ = £%J 2and o £. b £ 1.
Assune now that sone high usage size )?'*Rs is not an integer-.

For each t define

ty e t,v _——
1 o *"RS ~(n{ij,rs)-1) I~ PYRS~(n(ji,sxr)-1)}
X (t) = (a t)z + a t)z

IJ( ) [ rs( ) rs p Sr( Sr P

=~ tx~(n(13,k4)-1) = tr~(n(31,k2) - 1)
+ = akL( t) 2, P + k_{.‘ezﬁ ak{.( t) Z 4P ’ +. ..
ki €122 i
where the ™..." denotes the remaining terms of the expression

Xp7(%) whi ch do not involve any of the subscripted z- variables,

2 1
Let Xae(t) be defined exactly as X/ ;(t) above, except
L1¥ps VRS S¥pstt
tgat z¥s and zST are replaced by z¥s
sVpa™ .
zSr RS_ , respectively. This notational specification is

repeated with respect to the inequalities (22c), obtaining
respectivel y: Sl(t) and Sz(t) for each t«

Define for each t:

_ 1 2
X*iJ(t) = FRSXIJ(t) + (l—-,uRS)XIJ(t) (27a)
and
=3 1l 2
(1) = HpgST(t) + (l-ppg)s (%) (27b)
where now 0 < Bpg < 1 since )?'*RS is not an integer.
Let X*, X;J, and X": denote the maxima of X2 (t),
1 2 (t) respectively with respect to t. Then of

X|J(t), and XJJ
course Xijy = "ks- Ay the enjstence of a stable final group

IVAERY
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busy hour ty, it follows by definition that X__.= X*_(t_) ,,

X1z = X_gtp, and X, ;3» Xgg(t,,). Hence by (27a), we have
¥ o= o xL o+ (g )x3 28)
ts = Hrs¥ro Brg’ *13° (

Simlarly, defining S = mx S(t), S™=nmx S*(t)s and
t
2 2
S =max S (t) , the existence of a stable network sw tching busy

te

hour t inplies
S = ST+ (L-pgg)s . ' (29)

We now consider total costs associated with the three
feasible solutions to P, indexed with "*f, " 1" and "2". Let

C denote the portion of total cost which is common to these

three feasible solutions. Then

o _ 1 1
L G139 * CRsws * SS* +C = upgld ey Xig + Cpglpg + ST + C]
1J Xu
* (l-ppg) [ E ¢ " | + Qgdjjg + 1) +cS* +c]. (30)
XJ

But fromoptimality of the "*"-solution the sumto the left of
the equality sign of (30) is less than or equal to each of the
bracketed terns to the right of the equality sign. Therefores
by (30) itself it follows that both " |™-solution and the 'f2'f-
solution are in fact optimal solutions for ProgramP' . Either
one of themnay be chosen, and the process repeated, nanely
taki ng any renai ni ng non-integral i}L and purifying it to an
i nt eger. Since no high usage group sizes which are already
integer are affected, it follows that the process termnates in

a finite nunber of steps with an optimal solution to P' all of
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whose hi gh usage group sizes x*, are integers, ||

The assunptions of Proposition 3 were enployed in one of
the exanples in Eisenberg [5], pp. 13-14.

Because of the-linear inequality system (23)s; Program LP'
may be quite large and for practical purposes it would be useful
to be able to solve a smaller problemin place of LP'. The
nonotoni city of the §1function, essentially Corollary 1 of

Propositibn 1 suggest a useful procedure.

5* 3. Sol vi ng the Linear Program LP Through Bounded Vari abl e

Reducti ons

Let LPlL~ be the bounded variable version of LP  obtained

al |

by replacing (22e) with

At

for each high usage group, and in (23) restrict u to:

vV = *iBW”9m5ijrr ~ 1 where ™ and ]3* are non-negative

i ntegers such that &ﬂh- 1 - EKL?* 2

Proposition 4. Under the above bounded vari abl e assunptions:

(i) any optimal solution {(£%.),(£%3), (zfy,S*} of =rer.

is feasible for LP

and

(it) if for each KL

tgr, < Xgp < Byps (31)
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then this optimal solution is also optimal for ProgramLP .
Moreover, there exist |7, J* and an optinmal solution of LP*
such that with respect to ﬁKL of that solution, (31) holds.
Proof: By the argunent used in the proof of (iv) of Proposition

2, ((x™), ()_LL*j) ,(Z™) , S is optimal for LP” where

Zoy = B (D8R, &) (t) + 35 (1)) for each k€ xx B gorgiary 1,

for each KL, (7\‘1/2£_>:';K|_A satisfies (23) for every non-negative

_|; =
i nt eger. Since 7" £ z’t*:w

and (22b) and (22c) are already
satisfied, it follows that t Trfa) shjAzr) , &) satisfies all
the constraints of LP'. This proves (i)-

The first part of (ii) follows from |inear programm ng
duality theory. Becéuse of (31) the two dual variables stenmmng
‘respectively from the two bounding constraints on -;SG are both
zero* Hence one nmay delete these constraints in L£‘i‘D and the
sane dual optimal solution prevails. Therefore by duality
C(Séﬁ) : '('XL.) , (;{zT")",S*} is optimal for the rel axed-vari abl e
constrained program LP* . The remaining statement of part (ii)

follows from Corollary 1 and the fact that the non-negative

integers t~ ~ satisfy ~ - 1 - ~ * 2 .| | |

In the next section we present results of nunerical experinents
on two exanples, one of which has been previously solved and

publ i shed, see Eisenberg [5 and Ei sner [6].
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6. Numerical Experiments on Two Examples

6.1. First Example: A Network Based on California Field Data

We apply Program P of Section 4.3.5 to the network given
in Eisenberg [5] and Elsner [6], which in turn is based on
Gardena, California field data. The hierarchical structure of

the network is given in Figure 4 below.

Tandem Switch

44

Tandem Completing

Final

’,/ .
——""_‘—
High Usage

-
—-— -

Figure 4. A Network Hierarchy Based on Gardena, CA Data,

Eisenberg ([5].

In this network there is only one originating office, labelled
O, and 43 terminating offices labellaed 1 through 43. Traffic
flow on each trunk group is one way as indicated, and there are
two times of day, t (hour 1) and t, (hour 2). The overflow

hierarchy is indicated in Figure 4.

Base Demand

We assume that the network is constructed ab initio, namely
all the initial demands between pairs of offices are zero and all

initial trunk sizes are zero. According to (1l0) then, it £follows
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that EQA44 = E44"N =0 for -t » 1,2,...,43.

| ncr emrent al Denand

Fol | owi ng Ei senberg [5], but in the notation of Section 4
we set 5}§4(t) =* 0 and '344,A(t) —0 for t = ty,t, and
*=1,2,...,43. }he rest of the positive increnmental demands
(EQ’A(t)) in CCS are given in colums 2 and 3 of Table 1 bel ow.
Fol |l owi ng Ei senberg we take a nmargi nal capacity of 30 CCS for
all final groups and a quality of service, 0.99. Unit costs are
#1000 per trunk and #62 switching cost per CCS, Wth these
speci fications Program P of Section 4.3.5 becones the follow ng
one. |

44 '
Ei_nd M« min 1000[Xq"as + Z (Xasa ™ +Xo J + 627
=1 ’ ’

subject to

43

gz T = 0,44 for t = tl’t2

and t = tl,tz
and

43 - ~
Z R0t (BIB (Koo (B S 928 v -1y, %

where the ?“.I are all non-negative integers.

The above nonlinear integer programwas approximated by the
i near program derived by the methods of Section 5,2, which was

t hen sol ved using suitable bounded vari abl e reducti ons based on
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Section 5.3, The bounds of the high usage group sizes were
chosen by our prior know edge of Eisenberg’s [5] and El sner’s
[6] solutions. An optinmal |inear progranmm ng sol ution so obtained

is termed the increnented network. Table 1 presents an increnented

network and includes the overflows from the high usage trunk
groups to the final trunk group 0, 47.

Table 2 conpares the sizes of the high usage trunk groups
occurring in our incremented network with those conputed in
Ei senberg [5] and those conputed in Eisner [6]. Finally, Table

3 gives sone overall conparisons between the three sol utions.
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Tabl e 1. Specification of Increnented Ofered Load Demands for
Exanple 1 and an Optimal Linear Progranm ng Sol ution
with all Overflows fromH gh Usage G oups

Offered Loads Overflow High Tandem-
Trunk (CCY (CCY Usage  Completing
Group Hour 1 Hour 2 Hour 1 Hour 2  Trunks Trunks
(<4
1 60 140 3.75 41.98 3.99 1.40
2 119 9 16.27 0.00 4.99 . 0.4
3 82 20 10.26 0.05 4.00 0.34
4 305 76 20.00 0.00 11.99 0.67
5 30 0 4.78 0.00 1.99 0.16
6 59 7 9.18 0.01 3.00 0.31
7 102 56 9.80 0.90 4.99 0.33
8 256 161 21.31 1.63 10.00 0.71
9 366 230 22.41 0.84 13.99 0.75
10 469. 310 20.26 0.60 17.99 0.68
11 115 115 14.60 14.60 5.00 0.49
12 144 34 16.87 0.01 5.99 0.56
13 206 335 0.00 27.72 12.04 0.92
14 310 650 0.00 86.14 19.07 0.88
15 284 319 13.72 24.99 12.00 0.83
16 93 152 7.07 33.26 5.00 1.11
17 17 24 545 9.60 1.00 0.32
18 74 325 0.00 0.00 12.01 0.00
19 102 158 4.43 23.04 5.99 0.77
20 137 322 1.41 71.33 8.99 2.38
21 222 247 10.74 18.10 9.99 0.60
22 252 390 6.82 59.39 12.00 1.98
23 445 194 0.00 0.00 19.25 0.00
24 176 86 19.99 0.70 7.00 0.67
25 83 29 10.64 0.23 4.00 0.35
26 98 21 17.15 0.06 4.00 0.57
27 158 74 13.24 0.29 6.79 0.44
28 124 36 0.00 0.00 7.12 0.00
29 54 25 7.25 0.70 3.00 0.24
30 38 1 8.10 0.00 2.00 0.27
31 31 17 5.15 1.20 2.00 0.17
32 140 46 15.29 0.08 6.00 0.51
33 96 30 16.20 0.26 4.00 0.54
34 122 62 17.59 1.41 5.00 0.58
35 163 57 14.96 0.06 7.00 050
36 163 72 14.96 0.25 7.00 0.50
37 296 238 17.13 4.75 12.00 0.57
38 33 28 5.93 4.07 1.99 0.20
39 240 3 0.00 0.00 11.65 0.00
40 136 7 13.78 0.00 5.99 0.46
41 54 4 7.25 0.00 3.00 0.24
42 52 35 6.55 2.06 2.99 0.22
43 206 9 _0.00 0.00 1047 0.00
Totals 6712 5154 430.30 430.31 318.46 25.76
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Table 2. Conparison of H gh Usage Trunk G oup Sizes Conputed by
the Multi-Hour Method, A Descent Method, and Linear
Programming for the Gardena Network (Rounded to Nearest

I nt egers)
H gh Usage G oup Sizes Tandem Conpl eti ng
From Mul ti- From Descent From Linear 0 Qi_p Ol2co riuul
Tr unk Hour Met hod Met hod Pr ogr anm ng Li near Progranmm ng
G oup [ 5] [ 6]
1 4 4 4 1
2 3 5 5 1
3 4 4 4 0
4 6 12 12 1
5 0 1 2 0
6 1 3 3 0
7 4 5 5 0
8 8 10 10 1
9 12 14 14 1
10 18 18 18 1
11 5 5 5 1
12 7 6 6 1
13 10 11 12 1
14 16 19 19 3
15 12 - 12 12 1
16 5 5 5 1
17 1 1 1 0
18 6 9 12 0
19 5 6 6 1
20 8 9 9 2
21 10 10 10 1
22 12 13 12 2
23 17 17 19 0
24 8 7 7 1
25 4 4 4 0
26 5 4 4 1
27 7 7 7 0
28 6 5 7 0
29 3 3 3 -0
30 2 2 2 0
31 2 2 2 0
32 6 6 6 1
33 5 4 4 1
34 6 5 5 1
35 7 7 7 1
36 7 7 7 1
37 12 12 12 1
38 2 2 2 0
39 10 10 12 0
40 6 6 6 1
41 3 3 3 0
42 3 3 3 0
43 9 8 11 0
Totals 287 306 319 29
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Table 4. Conparisons of Total Nunmber of Trunks, Sw tching Costs,
and Total Costs for the Multi-Hour, Descent, and
Li near Programm ng Sol utions of the Gardena Network

Networ k Multx- Descent Linear
Characteristics Hour [5] [6] Programming
# High Usage Trunks 287 306 319
# Final Trunks 39 NA* 14
# Tandeam Compl. NA .. NA 29
Switching Cost #44,640 NA #26,000

Total Cost #405,315 #38 5,500 #385,400

*NA = not avail abl e
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6.2. The Second Example: Fiqgure 1's Network Hierarchy

W solve Program LP' of Section 52 applied to the network
hierarchy of Figure 1 of Section 1 with the follow ng specification

of input data.

Base Demand -

Traffic demand is assigned to all 56 pairs bf poi nts of
Figure 1 by daytime, evening, and nighttinme according to three
basi ¢ kinds of pairs: |

(1) each of the pairs T3 and 3I receive 500 CCS during

daytime and O during the other two periods,

(2) each pair which includes exactly one of the nodes 1

or 3 receives 100 CCS during daytime and 0O during
the other two peri ods,
and
(3) each pair which excludes both nodes 1 and 3 receives
75 CCS during daytime, 200 CCS during evening, and
100 CCS during nighttime.

These choices were inagined upon view ng nodes 1 and 3
as "commercial" nodes and view ng all other nodes as "residential"
They represent particul ar choices of the inputs aVIJ(t),

a, . (t), and "a .(t) of ProgramLP'. Analogous to the first
exanpl e we assume that the cost per trunk is #1000, that the
switching cost is #62 per CCS, and that the quality of service
Is 0.99. Using these inputs and the hierarchy of Figure 1, an

opti mal solution to LP' -was obtained terned the base network.
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| ncrenented Denmand

Assunme that an increase in demand of 20% occurs uniformy
anmong all of the 56 calling pairs* Wth all other inputs to LP

remai ni ng unchanged an optinmal sol ution was obtained, terned
»

(as before) the +rRerereni-ed ﬁe+#wﬁ4é

Moreover, ProgramL?' was solved under three additiona
restrictions on the tinme t, nanmely, all high usage |inks be
sized according to: (a) daytine |oads, (b) evening |oads, and
(c) nighttime |oads, respectively. These restricted solutions
result fromthe requirenent that the network be "engineered"
according to a fixed single hour, respectively. This is in
contrast to the multi-hour solutions of the base and increnented
networ ks, and provides a test of reasonabl eness of the nulti-
hour sol uti ons.

For purposes of conputer usage, the size of LP  was
reduced by the bounded variable restrictions of Proposition 4
of Section 5. 3. For exanple, setting the VA bounds in (33)
at 25 for each high usage group yields a 64 variable Iineaf
program w th 1232 constraints. This programwas sol ved by sol ving
a finite sequence of nmuch smaller bounded variabl e prograns.

The results are given in Table 4 bel ow.
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Table 4. Conputer Results of Four Solutions of Program LP!,
Section 5, 2: Base and | ncrenented Networkss; and
Net wor k Si ngl e Hour Designs, Base Demand I ncrenented
20% Uniformy, #1000 Cost/ Trunk, #62 Switching Cost/ CCS,
and 0.99 Quality of Service

Final Base I ncremented Sincrle Hour Designs

Groups Network Network Daytdure Evening Nighttime
12 34.7 39.9 76.0 49.9 62.9
13 91.9 109.0 . 108.6 115.8 115.9
14 58.3 68.1 74.7 68.0 72.0
25 205 23.4 74.2 28.3 39.2
36 46.6 54.2 66.5 54.1 62.1
37 46.7 54.2 66.6 54.1 62.1
38 58.6 69.2 75.0 69.3 73.2

High

Usage

Groups
15 2 3 . 11 0 0
26 17 20 9 21 12
27 17 20 9 21 12
35 7 8 12 0 0
45 18 20 9 21 12
56 18 21 10 21 12
57 18 21 10 21 12
58 18 21 10 21 12

TOtacl:hed

Swit

Traffic 135.9 162.6 262.3 161.6 227.0
(ERL)

Total
Cost £775.5 £915.2 £1,180.1 £926.2 £1,065.8

(000)
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Di scussion

W have observed that in both the base and increnented
networ ks each final group has a stable busy hour, introduced in
Section 5.2. Final groups 12 and 13 have daytinme stable busy
hours and alf ot her final groups have evening stable bdsy hour s,
and this pattern is identical for both networks. Stable busy
hours al so occurred in the single hour designs. Consequently
according to Proposition 3 all high usage group sizes of any of
the 4 linear prograns nust be integers, and this has been
verified in Table 4 . (oserve also that the multi-hour (incremented
network) solution has a total cost which is less than each of
the single hour design total costs, although the single evening
hoar solution is only 1.2% larger than the multi-hour solution.
Apparently, the opportunity of engineering final groups 12 and
13 at another tine, nanely daytinme, permits a slight savings

in total costs.
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7. Concl usi ons

It is suggested in this paper that |inear programm ng be
used to solve for changes in equipnent requirenents necessary
to provide for altered demands for tel ecomunications services
and altered denmands for service qualities. (Cbtaining solutions
to this basic problemis a mgjor gdal of a supply nodel which
seeks to minimze total increnental investnments subject to these
constraints.

The linear programm ng nodel distinguishes high usage trunk
groups from final trunk groups according to the role each plays
in the network hierarchy. Solutions to the nodel yield increnenta
i nvestnments in both of these categories of equi pnment and al so
additional switching investrments. Caution nust be exercised
however in the final selection of the sizes of the final trunk
groups because of the use of the marginal capacity concept in the
| i near progranm ng nodel .

- The integrality question settled in Proposition 3 of Section
5 shows that an inportant subset of the variables of the approximte
program P can be solved for as integers by elenentary |inear
progranmng. In practice, the actual values of the renaining
vari abl es, nanely the final group sizes, should be determ ned
by nmethods that do not depend on the marginal capacity assunption,
principally WIkinson's Equi val ent Random Met hod [ 18], [20].
Thi s approach is needed because of various peakedness effects
that occur in the probability distributions of alternatively
routed traffic parcels. Program P's under special assunptions,

provides integral numbers of high usage groups to which the




50

VVIkinsbn met hod appli es. In general, the costs due to straight-
forward integer rounding of high usage groups tend to be off-
setting, and round-off procedures easily maintain feasibility
and hence overall network quality of service.

A related class of nonlinear integer prograns which are
solvable as linear prograns is treated in Meyer [14], where
various uninodul arity assunptions are nmade* These assunptions
do not apply in general to the class of network problens treated
in this paper. However, the col umm-generation procedures of
Meyer m ght be very useful for solving the linear prograns with
bounded variable reductions treated in Section 5.3

W shall leave the linear progranm ng duality devel opnents
for a later paper, where we shall pursue our conjecture that
sensitivity and post-optinality analyses will be indeed usefu
for network design synthesis. Fortunately, by Proposition 1
and its Corollaries it appears that a nuch snmaller list of active
dual variables will be forthcomng than the total nunber of
constraints ih program LP'.

Future work should also incorporate nore than one alternate
route in the network hierarchy, even though for many networks in
the field the first and second choice routes are preem nent.
Many networks given in the literature are included within the
l'i near progranm ng nodels of this paper. Large scale network
optim zations made available through the nodeling approach of
this paper should enhance an effective integration of the supply
nodel with a disaggregated econonetric demand nodel for tele-

conmmuni cati ons servi ces.
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We conclude with an observation shared by Edward A. Sil ver
and Stephen A. Smith, expressed in personal correspondence, that
there is an interesting equiVaIence bet ween tel ephone engi neering
and repl eni shnent inventory systenms, see [16] and [17]. Perhaps
the design of nore conplex tel econmunications network hierarchies
may have application to the design of nore conpl ex replenishment

i nventory systens.
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APPENDI X: Proof of Proposition 1 and Its Three Corollaries

Proposition 1. Let K be defined as,

K= ((z,x) e IR x~0 and z ™ £(x,2)}.

2
Let L be the set of all (z,x) in 2R which satisfy the
sem-infinite systemof linear inequalities
n
z - 1"~ 2 (c. - c. J(x-r) and x 20 (D
r:0 r r-X ’

for n » 0"1,....

Then K=* L, and K is non-enpty.
Proor: Nonenptiness 'of- K is npbst easily seen by observing
that (1,0) _€ K since £(0,a) =-B(0,a) = 1.

Let (z"x) be an arbitrary point_in K  Assune throughout
that ii = [x], the integer part of x. Applying (19) of Section
5 1 gives |

- — ——— — — — —

~z 2. -O(ri,a)x + (ri +1)B(n,a) - nBii +1,a),

and hence from (20) we have

—

|- U 2(c - cr IFr). (2

r=0

Thus, (7,X) satisfies the particular inequality of (1) indexed

by the non-negative integer n.

Consider now any integer n,n”“n + 1 and wite

(G - Croy)(xr)

£(X,a) - 1 +A?*
L 0

n
|

r
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n

where A? = L_ (c - c--,)(x_-r). Now for any integer z,
1 r:n+| r rn X

ii +1°<~r £nh. it follows that 3c-r < 0 because , A<f£x<n + | <fr.
In addition, ¢ - c¥=" >0 for each non-negative integer r,
and therefore A~< 0 for each integer n, n” n + 1. Hence

n

2. 12Bxa) - 1>Bxa) - 1 +ATI:: ?io(cr.- c x-) (X-1)
e | (3)
for each integer n, n> n + 1. -

(2) and (3) together show that (z_,X‘) satisfies all those — =
inequalities of (1) indexed by n, n”>n. W now check that (z, x)
al so s.at‘i"sfi es those inequalities indexed by non-negative integers
n, n <€ n=1. '

If m= 0" there is nothing to check—for there are no such

n. For n> 1, let n satisfy 0<*n£n1 and wite
A_ n

£(x,a) - 1= Z(c - ¢ ) (;-r) + A?

r:O r rn X z
n n — :
where Ag’= S fc - C n) (x-r). For each integer r,
N or=ndl T i
n+1A2ArAn, it follows that x-r A0 and Cg- Croy > O

as before. Hence A ~. 0 and hence

— A — n —
z- 1= £(x,a) - 1= L(c - ¢ 7) (xr) (4)
r:O r rn X

for each integer n, 0 £n £ n-1. The latter finite syst em of
Inequal ities <13) together with (2) and (3) show t hat (;‘FD
satisfies (1), inplying Kz L and in particular L is non-enpty.

The other inclusion L ¢ K is trivial because any (Z',%X)
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in L satisfies in particular

I - 12

Usi ng (19) and (20) again shows Zz" * £(X,a) i.e. (zX € K

Corollary 1. Let X be non-negative real. Then (£(X,a) ,X)
satisfies each inequélity of (1) strictly except for (i), the
i nequal ity indexed by [Y]g which it satisfies as an equality,
and (ii) possibly the inequality indexed by [X]-I when
[;c] 2> 1 The inequality Tx]-l is satisfied as an equality if
and only if X is a positive integers
Proof: Let z* B(x,a) . Application of (3) shows that (Z,X)
satisfies each inequality indexed by n, n~>n + |, strictly,
where 11 * [x]. By (19) and (20) of Section 5.1, it follows
that (Z,X), satisfies the inequality determined by n as an
equal i ty.

It only remains to prove that the inequalities indexed by
non-negative integers n, n £n-2 are satisfied strictly. There

is nothing to check if m<£ 1. For n”"2 let n be any

integer 0 £n £n-2. Then

A _ n —
H(x,a) - 1= L(c - ¢ .)(x-r) +[A+(c_- c_ ) (x-n]
r=0 ' F~x n n-1
n-1 _ o
where A= £ (¢ - ¢ ,) (x-r)e Since nf£x£n+ 1, It
r=n+l r-i

follows that (c_- c_ 1) (x-n) 2. ° and As ox  Hance
n n-
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— n —
B(x,2) - 1> (e, - o ) (%0

for each integer n, O < n < n-2.

The last assertion follows from examining

A — n-1 _ -
B(x,a) - 1= IZ (cr - cr_l)(x-r) + (c_ - c_ ){(x-n)
r=0 n n-1
where n = [x] > 1, for the inequality indexed by n-1 is

satisfied as an equality if and only if x-n = O. ||

It will be useful later to include upper bounds on the x-
variables in the set K. The following Corollary states that
in this case one only needs a finite number of the inegualities

of (1).

Corollary 2. Let V be a positive integer and set
K' =R N{(z2,x)]0 < x<V}. Let L' be the set of all (z,x)
which satisfy
n

z - 12> rzg(cr - cr_l)(x—r), x>0
for n=0,1,...,V-1. Then K!' = L',
Proof: Let L" =L N {(z,x)|0 < x < V}. Then by Proposition 1,
K' = L", Since L" incorporates the semi-infinite system (1),
it follows immediately that L" < L'. On the other hand, let

(z,x) be arbitrary in L'. Then, O g,i'g vV and E’g V, where

n [x]. If n < V-1, then membership in L' implies

— n —
z - 12> rfg(cr - cr_l)(x-r).
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Using (20) followed by (19) we find that =z 2. $(X,a) inplying
(Z'x) € K.
On the other hand, if 1 =V, then necessarily X =V,

Mor eover,

V- |
z-12 f:&crf' c r~).(.) (V-1).

But the right-hand sum equals by (20),
-1 - D(V-1,a)V+ VB(V-1,a) - (V-1)B(V,a),

which is merely -1 +B(V,a) . Therefore, in this case

z > B(v,a)

and (Z,X) € K' also. Thus, in either case (z>x) € K' which
inplies (Z,X) satisfies the entire inequality system (1) by
Proposition 1. Hence, (Z,X) € L', and hence L' cL". Therefore,
L' « L' whichyields K * LT.

Corollary 3. (z,x) is an extreme point of K' if and only if

X 1S a non-negative integer and z « B(x,a).

Proof: There are only two variables z and x in the |inear

i nequality system (1), Hence extrene points can only occur on
the boundary of K' at the intersection of a pair of linearly

i ndependent equations. By Corollary 1 a pair of linearly

i ndependent equations arise if and only if X is a non-negative
i nteger, and noreover, each non-negative integer does satisfy two
(adjacent) linearly independent equations. This includes the

speci al cases of the endpoints where for (1,0), the additional




inequality x £, O. is used and at (B(V,a),V) the inequality

X £V is used.

S/
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