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ABSTRACT

In this paper marginal investment costs are assumed known

for two kinds of equipment stocks employed to supply telecom-

munications services: trunks and switching facilities. From

the supply viewpoint customer demands for service and quality

of service are specified probabilistically between pairs of

junctions in a network according to different hours of the day.

Traffic itself may flow over direct "high usage" routes or over

alternate routes according to a specified network routing hierarchy,

a structuring which has classically led to economies of equipment

in supplying customer service*

In this paper a network hierarchy is defined which includes

important cases occurring in the field and also appearing in the

literature. A different use of the classical concept of the

marginal capacity of an additional trunk at prescribed blocking

probability leads to a linear programming supply model which can

be used to compute the sizes of all the high usage trunk groups.

The sizes of the remaining trunk groups are approximated by the

linear programming model, but can be determined more accurately

by alternate methods once all high usage group sizes are computed.

The approach applies to larger scale networks than previously

reported in the literature and permits direct application of the

duality theory of linear programming and its sensitivity analyses

to the study and design of switched probabilistic communications

networks with multiple busy hours during the day. Numerical



Abstract 2

results are presented for two examples based on field data, one

of which having been designed by the multi-hour engineering

method.



1. Introduction; A, Design Synthesis Problem

In this paper we treat telecommunications networks where

customer demands for service are specified probabilistically

between pairs of junctions according to different hours of the

day. Telephone traffic may flow over the direct route which

joins two distinct junctions or over an alternate route which is

defined in a prespecified network routing hierarchy. Networks

which permit alternate routing of traffic are termed switched

because switching operations are required to alternately route

a call. The network routing hierarchy permits traffic which is

blocked on a direct route to be switched through other junctions

in further attempts to connect the original pair of junctions.

The switching process tends to smooth out the peaks of traffic

loads which occur throughout the network at different times of

the day. Consequently, less equipment may be required to service

the overall traffic load on the network than for a similar network

without alternate routings.

An example of a network routing hierarchy is given below in

Figure 1. It consists of junctions A through H and two

different kinds of links joining certain pairs of junctions. A

link is merely a dimensionless entity whose existence indicates

that telephone calls, collectively termed traffic, may flow in

either direction between the two junctions which it joins, without

involving any other junction than these two. A dashed line

designates a direct link while a solid line designates a final

link. If there is a direct link between a call-origination

junction and a call-destination junction, then a telephone



connection is first attempted on this link, the first choice route.

Should the first choice connection fail, then an attempt is made

to alternately route the call by way of final links, and in this

case the traffic is referred to as overflow traffic. Arrows in

Figure 1 indicate the overflow routing scheme. In case no direct

link exists between a call origin and destination, then the call

is also routed along the final links. Should a connection on

final routes fail, we say that the call is "lost", and the caller

must try to place the call again.

B

Figure 1. A Network Hierarchy with Direct ( ) and Final ( )
Links Where Overflow From a Direct Link Onto a Final
Link is Indicated by an Arrow.



The basic problem attacked in this paper is one of design

synthesis; solve for least-cost equipment charges in a given

network routing hierarchy which are sufficient to meet altered

point-to-point customer demands for service during different times

of day to within a prescribed blocking probability. The emphasis

is on the provision of a telecommunications service by an optimal

use of available equipment• The model we develop includes a

probabilistic specification of customer demand by time of day and

includes alternate routings, where each direct link has a uniquely

specified alternate route in the hierarchy. It is a nonlinear

integer program P, which takes as a basic "unit" of equipment the

concept of a "trunk". The terminology requires flLlucidation.

In this paper a trunk shall merely refer to a channel which

is required in order for a telephone call to transpire. As such,

it is a dimensionless quantity. The call carrying capacity of a

trunk depends on the probabilistic mechanism underlying customer

calling patterns. For example, during a fixed hour a trunk could

carry 60 one-minute serially placed telephone calls. Under this

discipline the total carried load during the hour is 3600 call-

seconds, denoted 36 CCS. Expressed another way, we observe that

the probability of a call being blocked is zero. On the other

hand should a demand for 60 one-minute calls occur simultaneously,

then the offered load is still 36 CCS, but only 0.6 CCS is actually

carried. The blocking probability is now 59/60.

A collection of trunks joining two distinct junctions is

merely referred to as a trunk group. It is convenient to view

a link as a trunk group. According to network engineering



principles, it is quite reasonable to assume that customer

originated calls.are generated by a Poisson process and are

assigned sequentially to a trunk group. These assumptions yield

an important property which is fundamental to our development

of a good linear programming approximation to the nonlinear

integer program P, namely, that the carried load on the last

trunk is monotonically decreasing with the number of trunks,

see Messerli [13]. The necessary results upon which the linear

programming construction is based are proved in an Appendix.

When the hours at which the final groups reach capacity

are in some sense stable and when the hour at which total network

switching reaches capacity is stable, then an optimal solution

to the linear program exists for which all direct group sizes

themselves are integers. This assumption has some practical

significance and has been employed in an example in Eisenberg [5].

The nonlinear and linear supply models of this paper employ

certain concepts of unit costs with respect to both trunking and

switching. The definition of "cost" shall be limited to the

incremental investment cost of providing a trunk on the direct

route between two junctions and the incremental investment cost

of providing a trunk along the uniquely specified alternate route

connecting these two junctions. In addition, we shall include

unit switching investment costs per CCS as a crude approximation

for switching investments stemming from switching calls from one

trunk group to another.



Finally, we present linear programming calculations for two

network hierarchies occurring in the field, one of which has

been designed using nonlinear steepest descent methods, see

Eisner [6].



2. Approaches to Determine Trunking and Switching Requirements

to Meet Demand for Service

Over the past 30 years it appears that there have been at

least two basic approaches to the design synthesis problem

discussed in the previous section.

The basic thrust of our paper proceeds according to what we

term the first approach to the design problem. It incorporates

specific probability distributions for each parcel of traffic,

where a parcel is merely that portion of traffic which follows

specific routes in the network. Different parcels experience

different blocking probabilities, even on the very same trunk

group. For example a given trunk group may accommodate customer

originated traffic governed by the Poisson probability distribution,

and the group may also accommodate over-flow traffic which is

"peaked" 9 in the sense that the mean of the distribution is less

than its variance. Investigations of the blocking probabilities

of individual parcels have been made by Wilkinson [20], Katz [12],

and more recently by Deschamps [4].

The pioneering work representing a probabilistic approach

which has had widespread use throughout the telecommunications

industry is the 1954 paper by Truitt [19]. The generally accepted

name of the method reflects the fact that economic considerations

are also an integral part. The method is termed the "ECCS

method", where the letter "E" stands for "economic". The method

was introduced by Truitt for the simplest of routing hierarchies

consisting of a triad of junctions with one overflow possibility,



and one specific time of day (single hour). The solved-for

variables are the specific sizes of all trunk groups.

Further important extensions of the ECCS-method occurred

in three directions. First, more accurate refinements of the

overflow distributions themselves were made following the

"equivalent random method" of Wilkinson [20]. Second, more

complicated network hierarchies were introduced, see for example

Rapp [15]. The third advance involved incorporating traffic over-

flows and constraints on blocking probabilities for more than

one time of day in the same cost minimization model, see Rapp [15]

and Eisenberg [5]. It appears that it is necessary to consider

overflow traffic for multiple times of day in order to determine

trunk group sizes which meet stated blocking probability constraints,

In addition, networks based on field data have been reported in

Eisenberg [5] and Eisner [6] where potential costs savings may

be realized by incorporating multiple times of day.

The second major approach to determine levels of tele-

communications equipment appeared in the 1956 paper of Kalaba

and Juncosa [11]. Their approach is based on a linear programming

model for a classical routing problem having variable link

capacities, and as such is a large scale one. Several contrasts

to the first approach (embodied in the ECCS method) are apparent.

First, the parcels of traffic in the Kalaba-Juncosa model

are deterministic. Traffic originating at junction i and

terminating at junction j is a given constant, a... Second,

demands are specified for each year (or other relevant time

period), in contrast to a specification for multiple "hours"
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within a fixed time period. Consequently, link capacities may

be specified for ensuing future periods, but the impact of

multiple busy periods within a given period has not been modeled.

In spite of severe deterministic assumptions the pioneering

linear programming model of Juncosa and Kalaba can theoretically

accommodate all conceivable routing possibilities, for their

traffic variables are indexed by an origin-destination point

pair and also a specific through-switched point, over all

possible triads.

About 5 years after the Juncosa-Kalaba paper, a series of

papers written by Gomory and Hu on communication network flows

appeared in the SIAM Journal [8], [9], [10]. Their work

occurred over a 4-year period and expanded significantly the size

of the linear programming network models that could be treated

computationally. They were able to combine features of generalized

linear programming decomposition techniques with efficient

Ford-Fulkerson methods for solving network subproblems. Gomory

and Hu also stressed the importance of including communications

demands indexed by time, such as time of day, t. They proceeded

under the reasonable assumption that the time value takes on only

a finite number of values. Alternatively, one could employ a

continuous load curve with time-of-day varying demand.

Gomory and Hu illustrated their computational approach on

a 10-node, 20-arc network with demands for two different time

periods, and a given set of unit capacity (expansion) costs.

Based on discussions with engineers in the field, principally

from the Long Lines Company of A.T. £ T., we have found that



both approaches have had significant impact in the actual design

of telecommunications networks. The completely deterministic

approach (the second approach) has been particularly important

in delineating first choice, second choice, etc. alternate routes

between pairs of junctions to be used in defining a network

hierarchy. Once a network hierarchy is established, economies

of scale are then achievable according to optimal use of the

underlying probability distributions of originating and alternately

routed customer traffic.

Defining a network hierarchy is an essential feature of our

approach, and we proceed now to this task using elementary graph

theoretic terminology.
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3, A Formal Specification of a. Network Hierarchy

3.1. Designation of Direct and Final Links

Let there be given N distinct junctions, termed points

p = 1,2,...,N, where N is a positive integer. When specifying

a pair of points, it shall always be understood that i is

distinct from j. An arc is defined to be the ordered pair of

points ij where i is the originating point and j is the

terminating point. Let there be specified a subset G of all

possible ordered pairs to be termed the collection of arcs of

the network. We say that the points i,j are joined by an arc

if (i,j)€G. In general, not all pairs of points are in G,

i.e. the network is typically not a complete graph. We say that

traffic is permitted to flow over only the arcs of the network.

If ran is in the arc set G, then we denote the special

route ft ^ bymn

ft = m; mn, n. (1)
mn

Routes having more than one arc are similarly defined as an ordered

list of s points for s an integer, s >. 1 which are pairwise

disjoint when s > 1 together with the corresponding arcs employed

to join i to j:

a notation which shall mean

l i 1 ' 1 ' 1 ^ ' ^
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when s - 1. In graph theoretic terminology a route is simply

a path of length s + 1.

Let there be specified a collection of arcs 3 having

the following property. For every pair of points (m,n), there

is a unique route ft consisting either of one arc as in (1)
m , n

o r c o n s i s t i n g o f a - n u m b e r o f p o i n t s [ r a n ] . , . . . , [mn] _ ,
1011 1 amn

a > 1 and the corresponding cr +1 connecting arcs, denoted
mn mn

by:

Si ^ = m; m[mn] ,; [mn],;...; [mn] n; n,m'n 1 X V
The notation, TT € ft shall mean that ij is one of the

m,n ——— — —— _ _ _— _
a +1 arcs of the unique route ft . The unicruely determinedmn — — h— m,n

positive integer-valued position of arc ij in the l i s t of arcs

in ft is denoted by
mn

Arcs in 3 shall be termed final arcs and indicated by

solid lines as in Figure 1 of Section 1. The collection 3

is the edge set of the given specific spanning tree of the network.

There is also given another collection of arcs denoted #,

none of which is in ?• These arcs are termed high usage arcs,

k£, and connect certain pairs of points (k,£). High usage arcs

are indicated by dashed lines in Figure 1. Since 5 itself is

a spanning tree, it follows that for any 111 e H there is a

unique route ft, . defined according to (2), where necessarily

a k i >^ 1, since k£ / 3. This uniquely determined route shall

be termed the alternate route for high usage arc k£. Thus,
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each high usage arc has an alternate route consisting solely of

final arcs,, and we shall say that traffic can overflow from a_

high usage arc to its alternate route. The relationships between

3 and # shall be termed a network hierarchy. Observe that

G = 3 U B.

According to the basic idea of a trunk discussed in Section 1

it follows that a trunk group joining point m to point n can

service calls from m to n or calls from n to nu In

particular, the trunk group should satisfactorily service the

total offered load arising from both traffic directions. These

engineering-based considerations motivate a simple graph theoretic

definition of link MN. Given any two distinct points m,n the

link MN shall be the union of the arcs mn and nm provided

of course, both arcs are in the arc set G. When k£ and 'Uc

are both in B, the link KL shall be identified with the trunk

group servicing total offered load from arcs k£ and -Uc«

Similarly, link IJ in 3 shall service traffic on both arcs

TJ and JL We shall say that each link MN consists of x^

number of trunks where x̂ -, is a non-negative variable to be

solved for.

The terminology of "high usage" and "final" corresponds

to telephone usage in the field and therefore we shall refer to

"high usage arcs or links" rather than "direct arcs or links".

Some of these definitions are illustrated in Figure 2 below

which is a portion of Figure 1 of Section 1.
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B

Figure 2. Portion of Figure 1 Indicating the Alternate Route

for 5; "53; 3, where c 5 3 = 2, [53] x = 2, [53J2 =

and TI(2T,"53) = 2.

3.2. Classifying Point-to-Point Offered Loads

For each pair (m,n) there is a non-negative demand for

traffic denoted a 3 from ra to n termed originating traffic.
mn 1—__—

Traffic is usually stated in units of erlangs, or in hundred call

seconds per hour [CCS] as discussed in Section 1.

Let ij be a fixed final arc, ij e 3. Traffic parcels

offered to ij consist of three types.

Type 1 Parcel: The originating traffic parcel a.. is called

type 1 parcel of traffic.

Type 2 Parcels; Traffic overflowing from high usage arcs onto

final ij is called type 2 traffic. Formally, there exists

ki £ & such that ij e ^v^* W e saY originating traffic on high

usage arc k£ overflows to Tj\ Introduce,
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}. (3)

For example, in Figure 1, with i,j = 1,2

H12 = (IS, 35,41,^,?5,72,75,85} .

Type 3 Parcels; Type 3 traffic occurs between points m,n

where mn £ G, but where nevertheless demand a is positive.
mn F

In this case demand is serviced by a route consisting only of

final arcs in G. For this case we assume ij € R and say
mn •*

that originating traffic a requires final arc TJ for

completion* Introduce

For example, from Figure 1,

F1 3 = {16,17,18,21,43} .

Having established a particular network hierarchy, we are

now in a position to specify probability distributions for

customer originated traffic and to determine the expected over-

flow traffic from a high usage group to a final group in its

uniquely specified alternate route. These specifications together

with the network hierarchy then lead to a nonlinear supply model

formulation, a task we address in the next section.
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4. The Formulation of a. Nonlinear Supply Model

4.1. Blocking Probabilities and Overflow Traffic

The call discipline is one of the factors in determining

the relationship between the offered load to a trunk group and its

carried load. Another key factor in determining carried loads

is the assumption that customer originated traffic is Poisson

distributed with arrival rate denoted by A, see Messerli [13].

Fortunately, there is strong evidence to suggest that the number

of calls occurring in a fixed, small time interval can be adequately

modeled as a Poisson probability distribution. With these

assumptions the distinction between a trunk group1s offered load

and carried load can now be made precise.

Assume that calls are assigned sequentially to a trunk group

consisting of n trunks. Let A denote the average customer

arrival rate according to the Poisson distribution. The only

assumption required on customer calling time is that it has

finite mean /i. Otherwise, it may be arbitrarily distributed.

Under these conditions the probability that all of the n trunks

in the group are busy is given by the classical Erlang B-formula:

B(n,a) = (an/nl)/ S (ak/ki), (5)
k=0

for n = 0,1,..., where a = A/x with its units termed erlangs.

The history of the original Erlang formula and its important

generalizations may be found in Gnedenko-Kovalenko [7] and

Syski [18].
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An erlang is thus a measure of the flow of traffic per

unit time. In the traffic engineering literature an erlang is

one call-hour per hour, or equivalently 36 CCS per hour. The

"hour" as the unit of time is so standard, it is usually dropped,

and one says an erlang is 36 CCS. The value "a" in the Erlang

formula is termed the offered load to the given trunk group. The

expected overflow traffic is then aB(n,a).

4.2. An Assumption on Marginal Capacities

The important benefits of being able to compute changes in

equipment stock to meet changes in demand were recognized much

earlier by Kalaba and Juncosa [11], Gomory and Hu [8], [9], [10]

and others. Fortunately, incremental studies on the network

hierarchy introduced in Section 3 permit certain simplifying

assumptions that make computations attractive. These assumptions

relate to the concept of the marginal capacity of an additional

trunk at a prescribed blocking probability. The resulting

supply model is an optimization which is much simpler than would be

possible when constructing a network ab initio. The assumptions

and model are now presented.

When traffic intensity a^. is offered to a given high

usage arc TJ consisting of xi- number of trunks, then the

expected amount which overflows to arc i[ij]1 in 3 is

a..B(x..,a±.), according to (5) above- On a final arc, however,

the three types of traffic parcels introduced in Section 3.2

comprise the offered load: originating traffic, overflows from
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high usage arcs, and originating traffic on other final arcs

which require the particular final arc for completion. The

basic model seeks optimal sizes of links, rather than arcs, as

defined in Section 3.1 to accommodate two-way traffic. The

following definition and key assumption emphasizes this approach.

Definition. For each final link or trunk group IJ consisting

of x-- number of trunks let P(x_-,Qx-(t)) denote the blocking

probability at time t, where the offered load QIJ(
t) consists

of types 1 through 3 traffic parcels (Section 3.2), Define

The quantity p = l-pf is termed the quality of service of the

network.

Marginal Capacity Assumption

For each final link IJ, there exist two positive constants

Y-r-r and b T T such that if T > 0, then

max PJJCXJJ + <T+/YIJ>iQIJ(t) + S) 1 p1 (6a)

and if 0 < T" < b--, then

max PjjfXjj - tT"/YIJ]iQIJ(t) - T") < p
1 , (6b)

where <x> is the smallest integer greater than or equal to x,

termed the integer round-up of x and where [x] is the largest

integer less than or equal to x termed the integer part of x.

Y i^ termed the marginal capacity of an additional trunk at,

blocking probabilitv p1.
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Inequality (6a) states that when < T /YI4J> number of trunks

are added to the trunk group servicing final arcs ij and ji,

then at least an additional amount of traffic pr is carried.

Inequality (6b) states that when t^/Yjjl number of trunks are

removed from the trunk group, then the decrease in carried traffic

is at most pf"".

We assume throughout that each high usage group KL consists

of x̂ -. (integer) number of trunks, and that each final group IJ

consists of x̂ .- number of trunks, establishing what we term
IJ

the existing network. It is further assumed that the existing

network can supply all service demanded a
m n(

t) f o r a 1 1 P^i^s

(m,n) and all times of day t with the provision of a quality

of service p.

4.3. A Nonlinear Integer Programming Formulation for the Network

Hierarchy of Section 3

The first task is to develop an expression for the sum of

the traffic parcels of Section 3.2 offered to a final link IJ

of the existing network. The type 1 parcel is simply a^j(t) + a

4.3.1. Sum of All Type 2 Parcels Offered to IJ

For any TJ € 3 it follows from the marginal capacity

assumption that the overflow from k£ e H^. is at least

aki(t)B(xKL,aki(t) +a%(t))p<1<
I7>*Z'-1) (7a)

providing H. . is non-empty. Likewise for the final arc in the

opposite direction, "Ji, the overflow from k£ € H-i is at most
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+» < U c(t))p
( i i ( 3 i' k 4 )- 1 ).

Summing the overflows in (7a) over all k£ € H. ., then summing

the overflows in (7b) over all kl e H.^ and adding these two

sums yields a lower bound for the total type 2 traffic parcels

offered to trunk group IJ. Let this sum be denoted by L J J

i. e.

j i (8)

for each final trunk group IJ. For the case that H. . is emptyy

we automatically take the appropriate summand in (8) to be zero.

This case does not occur in Figure 1. An upper bound on the

total overflow traffic, type 2, to IJ is obtained by deleting

both p-terms in expression (8).

4.3,2. Sum of All Type 3 Parcels Offered to IJ

For any mn e P.. it follows from the marginal capacity

assumption that the expected portion of originating traffic

parcel a
m n (

t ) * mn / G^ offered to trunk group IJ is:

provided that F. . is non-empty. Trunk group IJ is also

offered the same expression for the load stemming from mn e F..,

again providing F.. is non-empty.
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Siomming all these parcels of traffic over mn € F. . U P..

yields the type 3 sum:

XD J i (9)

again with the proviso that a sum over an empty set is defined

to be zero.

4,3.3. A Constraint on the Sum of All Traffic Offered to

Final IJ

The maximum total expected offered load E J J > which final

group IJ of the existing network can service at blocking

probability 1-p is the maximum, over all times of day t, of

the sums of the three types of expected offered load parcels.

Accordingly,

XJ ai (t) + a ̂ ( t ) + L^ (t) + L ^ ( t ) } . (10)

Our modeling approach is concerned with (1), modified offered

loads a (t) for all pairs (m,n), (2), modifications of the numbermn

of trunks X™ and x--, respectively of high usage group KL

and final group IJ, and (3), a modification in the network service

quality p. Under these three kinds of modifications, we may

define quite analogously to (8) and (9) the expressions

(t) and

and analogous to (10) write
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(t) + L<^(t)}. (11)

If E__ - E T_ > 0, then according to the marginal capacity

assumption, case (6a) 3 only [(Ê -j - Eu^ / /Y I J] number of trunks

need be added to final group IJ, where YTJ is the marginal

capacity of an additional trunk at blocking probability 1-p.

Let y__ denote the integer number of trunks required in group

IJ in order to service initial demand E__ at the new service
u

quality p. Hence we obtain a feasibility requirement on the

modified IJ trunk group size, x__,
Id

where x-- is integer.

If E T T - E-- < 0, then we invoke a stronger version of

the marginal capacity assumption regarding case (6b)• We require

that T" = | E-- - E-rjl > a q^antity which depends on the x-

and certain x— variables, lie within the 0 to b-- range

required in order for (6b) to hold. In other words, when

[|E-j - ETJ1//YIJ-' n u mt ) e r of trunks are removed from YTJ>

resulting modification

may be offered the modified load at blocking probability (1-p).

It follows that the same feasibility requirement as (12) holds

for this case too.

The system of inequalities (12), one inequality for each
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final group IJ, shall determine a set of constraints for the

nonlinear supply model, and we shall write these constraints

in greater detail when actually specifying the model. But,

first we need to take account of the total switched traffic

in the network.

4.3.4, Accounting for Total Switched Traffic

Let us work with the modified loads a\^(t), modified number
mzi

of trunks x— and x-rj* and modified service quality p.

Let S(t) denote the total switched traffic throughout

the network at time t« We shall now show that

S(t) « __L _E (a k/(t)B(^,a_(t) +a (t)) E. p*

(13)

— 2 (a (t) £. p*).
mn€F. . q=0

The amount of overflow traffic from high usage arc

destined for final arc TJ is ak^(t)B(xKL,ak^(t) + ^^

However, before this particular parcel reaches ij it must be

consecutively switched at points k, [k^] ̂ ,. . . , [k£] ̂/"JJ kT)-l

comprising the alternate route 9^^ of icZ, if Ti(ij,k<C) ^ 2.

Therefore, in this case the total amount of switched traffic is:

The same analysis applies to type 3 traffic. The total
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traffic switched due to originating loads a
m n (

t ) * mn n o t

in the arc set G, requiring ij € 5 for completion is

We now sum (14) over all k£ € H. . and then

over all ij € 3, with the convention that the summation

is zero whenever H.. is empty. Similarly, (15)

is summed over all mn € F^. and then over all ij € 3, with the

convention that the respective term is zero when P.. is empty.

Finally, summing these two sums yields (13). •

4.3.5. Cost Assumptions and the Nonlinear Model

Analogous to Eisenberg [5] and Eisner [6] we shall invoke

simplifying cost assumptions for trunks and switching. We shall

employ unit marginal investment costs per trunk and shall use

the same cost for augmenting a trunk group as for diminishing a

trunk group. We shall denote the marginal cost per trunk for

trunk group MN by c ^ > 0.

Changes in switching investment costs shall be approximated

by using a marginal switching investment cost c per CCS of

switched traffic, as for example in Eisenberg [5].

In the absence of real data and analogous to Eisenberg [5]

we can merely set c-- = c ^ = #1000 for each final trunk and

high usage trunk, and also set c = #62 (per CCS) .

In practice, one rarely takes away existing equipment, but merely
waits until the normal growth in message volume takes up the
current slack.
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We are now ready to state the basic nonlinear programming

supply model.

Program P. Assume an existing network. Section 3 has demands

a
m n(

t) for all pairs (m,n) s integer trunk group sizes x^ and

X T J ^ o r high usage and final groups respectively, and an overall

network service probabilitv p with marginal capacities YTJ*

Let modified positive demands be denoted by a (t), and let p

denote ai modified service probability with marginal capacity

7Xj. Assume c^ and c-.j are costs per trunk on high usage

group KL and final group IJ and that c denotes the switching

cost per CCS. Let E-- be defined according to (10) . Compute

M- = min £ c T Tx T T + £ ĉ rT̂ rr + ^
^ Finals IJ IJ High Usages ^ ^ ^

IJ KL

from among non-negative integers xTT, Sc_ for all finals IJ

and high usages KL and real S which satisfy:

..

for each final IJ and each t, where y is the required

number ojE trunks in IJ for a_ p service probability, the
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B-function given in (5), and

. .

+ I I ^ ( t ) ^ ^ 1 ^ ^ - " IS (16c)

for each t. (This completes Program P.)

Observe that the system of inequalities (16b) is merely

(12) with full detail of the terms £L showing the x™ and

5L_ as variables. On the other hand (16c) merely defines the

maximum switched traffic in the network according to (13).

It is obvious that Program P is consistent because the x__

variables may be taken arbitrarily large as well as the S

variable, P must have a finite minimum. Otherwise some x__

or x_ necessarily become arbitrarily large and since all cost

coefficients are positive, the objective function would

arbitrarily increase which is a contradiction.

Program P is a nonlinear integer programming problem which

can be well approximated for practical purposes by a continuous

convex program. In fact, even more can be done. Program P can

be approximated by a finite linear program based on the special

convexity property and monotonicity property of the Erlang B-

function,see Messerli [13]. We focus now on how the linear

programming approximation is constructed.
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5* A Linear Procrrannning Approximation to the Nonlinear Program P

5,1. The Convexity Properties of the Blocking Probabilities

In engineering practice the definition of the "load on

last trunk" with respect to a trunk group of size n + 1 which is

offered the load "a" is defined by:

D(n,a) = B(n,a) - B(n + l,a) (17)

where the Erlang B-function is defined in (5), for n » Qyl3...}

where B(O,a) » i. Observe that D(n,a) > 0 for each non-

negative integer n. Messerli [13] gives a proof that for any

fixed a > 0, D(n,a) is strictly decreasing in the non-negative

integer variable n,

D(n + l,a) < D(n,a) (18)

for n - 0,1,••.,.

For "a" fixed define the polygonal function B(*,a) from

the non-negative reals to the non-negative reals by

£(x,a) = -D(n,a)x + (n + l)B(n,a) - nB(n + lfa), (1.9)

where n is the integer part, [x], of x. Note that

£(r,a) = B(r,a) for each non-negative integer r.

The graph of the polygonal function £(-,a) reveals its

convexity and monotonicity properties, which are basic for the

construction of the linear program.
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B(O,a)-B(l,a)

B(l,a)-B(2,a)

(O,B(O,a))

n

Figure 3. The Polygonal Function Determined by the Erlang

B-Function on Non-Negative Integers

For each non-negative integer n the left-hand side of

(19) defines an affine function on the non-negative reals. The

following cumulative-type expression for this affine function

follows from Charnes-Cooper [1], pages 352-353.

For a. fixed non- negative integer n

n
-D(n,a)x + (n + l)B(n,a) - nB(n + l,a) = 1 + L (c -c ,)(x-r)

r=0 r r" x

(20)

for every real non-negative x, where c -, = 0 and c = -D(r,a)

for r = 0,1,..••

As strongly suggested by Figure 3, the following proposition

yields a uniquely determined system of supporting hyperplanes



28

for the epigraph K of the function £(-,a). The proposition

and its three corollaries shall be proved in an appendix.

Proposition 1. Let K be the epigraph of

K = { ( z , x ) e ] R 2 | x ^ O and z ^ £ ( x , a ) } . Let L be the s e t
2

of all (2,x) in IR which satisfy the semi-infinite system of

l inear inequa l i t i e s

n
2-1 ^ L (c - c J U - r ) (21)

for x ^ 0 and n = 0,1,2,....

Then K = L and K is non-empty.

Corollary 1. Let x be non-negative real. Then (B(x,a),x)

satisfies each inequality of (21) strictly except for (i), the

inequality indexed by [x] i.e., the inequality

2-1 ̂  £ (Cr-
Cr i><X-*)i

i=O

which it satisfies as an equality, and (ii) possibly the inequality

indexed by [x]-l when x ^ 1. The latter inequality is satisfied

as an equality if and only if x is a positive integer.

Corollary 2. Let V be a positive integer and set

K! = K n {(z,x)J0 £ x £ V}. Let L! be the set of all (2,x)

which satisfy

n
z-1 ^ ^ (<2r"cr-l ) ( x ~ r > > X ^ °r=0

for n = 0 , 1 , . . . ,V-1. Then KT = Lf .
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Corollary 3. (z,x) e K! is an extreme point of K! if and only

if x is a non-negative integer and z = B(x,a).

In view of Figure 3, which reflects the basic integer

convexity property (18), these results are intuitively clear.

They are formally proved in the appendix.

5.2. The Key Approximation and the Linear Program

We now replace in Program P the B-function by the polygonal

B-function, and the integrality conditions on the 5 L , x__

variables are removed. Finally, upper bounding constraints

SL. £ V are imposed, where the v_ are large positive

integers.

The next step replaces each term a^( ̂  ̂ * K L ' ^ k ^ ^ +

in (16b) and (16c) with the new variable Zj. and requires that

The new approximation program so obtained, denoted Pf, is the

following.

Program P1 . Same assumptions as in P. Let V.-. be large positive
_ Ĵ Ĵ  —

integers for high usage links. Compute

, = mm I ex + L CXTJ
XICT + cS

Finals I J I J High Usages ^ ^ L

IJ KL

from among reals xX J , x^^, z^jtj an<i S which sat i s fy :
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XIJ(t) , where XZJ(t)

(a (t) + a* (t) + __
13 jx k

(22b)

mneF.. m n ____
mneF..

" EIJ

for each final IJ, and time t, and S(t) <± S

where

(22c)

S(t) - _ I _
3 U

for each t, and

for each high usage arc k£, and time t

and 0 1 x^ 1 V^ , for each

high usage link KL.

( 2 2 d )

(22e)

It is obvious now in view of Corollary 2 that Pr is

equivalent to the finite linear program denoted LPr , obtained

by replacing (22i?) with the finite system of linear inequalities:
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( 2 3 )

for v = O,1,...,VRL - 1, and each kT € Ji5 and each t. It

is equally obvious that Program LP1 is consistent and has a

finite minimum since the x..- variables are bounded and all

cost coefficients are positive. Hence Pf itself has optimal

solutions.

An important observation about optimal solutions to LPf

is best made in the following formal terms.

Proposition 2. Let [ (^j) , (x* ) , (z^) ,§*} be an optimal solution

to Program Pf. Then

(i) for each final group IJ, (22b) is satisfied exactly

for some t — denote the set of such t! s by T ^ ,

(ii) (22c) is satisfied exactly for some t! — denote the

set of such tT s by T,

(iii) for each k-t € tt and IJ there is at least one

t e TJJ such that (22d) is satisfied exactly, and there

is at least one tf € T such that (22d) is satisfied

exactly, and

(iv) Uxjfcj) ,(%L)^k^(t)^(^L,ak^(t) +a-Uc(t)),S*} is also

an optimal solution to P! •

Proof; Since each c« is positive, (22b) cannot be satisfied

strictly for every t. Otherwise, x-- can be decreased without

affecting any other variables while maintaining feasibility, and



32

with a lower total cost. Let TXJ = [t\ { (2^) , (5^) , (z£*) ,S*}

satisfies (22b) exactly}.

Similarly, since c > 0, (22c) must be satisfied exactly

for some t, and we denote this set of tfs by T.

To prove part (iii), let kT be any member of 3i and IJ

be any final group. If to the contrary (22d) were satisfied

strictly, with respect to k-t, for each t e T_ , then zJ".

may be decreased for each t € T X J without violating (22d) and

hence feasibility. But a^^(t) > 0 for every t, and therefore

the term a^^^ ̂ i *** t h e left-hand side of (22b) decreases

strictly9 and this decreases the entire left-hand side of (22b).

Therefore x* itself can be decreased giving a lower total

cost since c..-. > 0 and no other variables in the cost function

are altered. This is a contradiction, and therefore (22d) is

satisfied exactly for at least one t € T_-.

An identical argument proves the last statement of part

(iii).

Part (iv) follows from the fact that for all those t for

t*which (22d) is strictly satisfied, z^ may be decreased to its

lower bound without affecting feasibility. ||

We now use Corollary 1 of Proposition 1 to discuss the cost

effects due to using an optimal solution of P1 as a solution

to the integer program P. If x-j^ is not an integer, then

^>,ak^(t) + a^(t)) jOc*^) is in the epigraph of

,ak<t(t) ja^ft)) for each t, where < % L > is the integer

round-up. The round-up introduces an increase in the total cost
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associated with high usage KL, (<XJQ> " *KJ) CKL*
 w h e r e

0 <^ O% T> - x* < !• An off-setting cost effect from final

groups IJ and switching S* occurs because from the monotonicity

of $(' ̂ ^ ( t ) + ^-tk^^ ' each z^ does not increase.

Finally, in order to insure quality of service p, non-

integer final group sizes xL- should be rounded up, thereby

increasing total costs. Numerical estimates of these various

off-setting cost effects due to round up of trunk group sizes

determined by Program Pf have not been obtained. It appears

to us that such estimates must stem from numerical experiments

on field data. Certainly, as strongly suggested by Figure 3

and Proposition 1 and its Corollaries, integer programming

pathologies from straightforward rounding processes do not occur.

There are special assumptions that can be placed on Program

P1 which guarantee the existence of an optimal solution to PT

such that all of the high usage group sizes (xjU) a r e integers.

These do not necessarily comprise high usage group specification

of an optimal solution to the nonlinear integer program P.

Nevertheless, they provide a starting point for determining

final group sizes by other methods which do not depend on the

marginal capacity assumption, such as Wilkinson1s Equivalent

random method [18], [20].

One of the special assumptions is the following.

Definition. A final group IJ is said to have a stable busy

hour t-̂ j if and only if for any specification (^

satisfies (22e) for all those kT € Hi. U H.^ [see (3), Section 3]
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and (z£^) which satisfy (22d) exactly,

XIJ ( tIJ } = m a x X U ( t ) - ( 2 4 )

The entire network is said to have a stable switching busy hour

t if under the conditions above
G

S(ta) - max S(t) . (25)

Proposition 3. Assume that each final group IJ has a stable

busy hour t-- and that a stable switching busy hour t

exists• Then there exists an optimal solution to Program Pf

such that all high usage group sizes are integers.

Proof: By Proposition 2 an optimal solution to P1 exists of

the form

where

= {xljjall final groups IJ},

= {x* | all high usage groups KL}

and z£* - ^ ^ ^ ^ ( ^ L ^ T C ^ ^ + 5 i k ( t ) ) f o r a 1 1 ^ € * a n d

times t. For any non-negative integer v define

Then by Proposition 1 and its Corollaries

t'VKTJ
+1

< 2 6 )
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for each ki € Ji and time t, where v^ = £%iJ a n d ° £

Assume now that some high usage size x* is not an integer-

For each t define

rs rs sr sr

_
ki€H,.

where the Tt..." denotes the remaining terms of the expression

which do not involve any of the subscripted z- variables,

2 1
Let XTT(t) be defined exactly as XIJ(t) above, except

andRS RS
that z and z are replaced by z

sr
, respectively. This notational specification is

repeated with respect to the inequalities (22c), obtaining

respectively: S (t) and S (t) for each t«

Define for each t:

(27a)

and

S*(t) (27b)

where now 0 <

Let X * ,

1 2
XIJ(t) , and XJ

course X* = ^

< 1 since x* is not an integer.

, and X^T denote the maxima of X* (t),

respectively with respect to t. Then of

^Y t h e e^istence of a stable final group
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busy hour tTT, it follows by definition that X* = X* (t__) ,
-LvJ XJ XJ XJ

X T T = XT (t ), and X_ » X (t_,). Hence by (27a), we have

Similarly, defining S* = max S(t), S = max S (t) 5 and
t

2 2
S = max S (t) , the existence of a stable network switching busy

t

hour t implies

We now consider total costs associated with the three

feasible solutions to Pf , indexed with "*rf, " 1" , and "2". Let

C denote the portion of total cost which is common to these

three feasible solutions. Then

T
L

T
 G I J % + CRS%S +

 T T
1J Xu

[ E. c ^ j + Cggd.jjg + 1) + cS2 + c]. (30)
XJ

But from optimality of the "*"-solution the sum to the left of

the equality sign of (30) is less than or equal to each of the

bracketed terms to the right of the equality sign. Therefore3

by (30) itself it follows that both " lrt-solution and the lf2lf-

solution are in fact optimal solutions for Program P1 . Either

one of them may be chosen, and the process repeated, namely

taking any remaining non-integral x* and purifying it to an

integer. Since no high usage group sizes which are already

integer are affected, it follows that the process terminates in

a finite number of steps with an optimal solution to P1 all of
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whose high usage group sizes x ^ , are integers, ||

The assumptions of Proposition 3 were employed in one of

the examples in Eisenberg [5], pp. 13-14.

Because of the-linear inequality system (23)3 Program LP
!

may be quite large and for practical purposes it would be useful

to be able to solve a smaller problem in place of LPf. The

monotonicity of the s-function, essentially Corollary 1 of

Proposition 1 suggest a useful procedure.

5* 3. Solving the Linear Program LPf Through Bounded Variable

Reductions

Let LPl~ be the bounded variable version of LPf obtained
all

by replacing (22e) with

for each high usage group, and in (2 3) restrict u to:

v = **Trr'9mm>fijrr ~ 1 where i™. and ]3L̂  are non-negative

integers such that &_ - 1 - £ >. 2.

Proposition 4. Under the above bounded variable assumptions

(i) any optimal solution {(£*L),(£*j),(zfy ,S*} of

is feasible for LP!

and

(ii) if for each KL
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then this optimal solution is also optimal for Program LP! .

Moreover, there exist l^, J^ and an optimal solution of LP1

such that with respect to x* of that solution, (31) holds.

Proof: By the argument used in the proof of (iv) of Proposition

2, ((x^) , (x*j) ,(zk^) ,S} is optimal for L P ^ where

f o r e a c h k<t € ** Bv Corollary 1,

for each KL, (ZV£>*KI^ satisfies (23) for every non-negative
|- t- W

integer. Since z^ £ z^ and (22b) and (22c) are already

satisfied, it follows that t (*fa) s^jAz^) ,S*} satisfies all

the constraints of LPf. This proves (i)-

The first part of (ii) follows from linear programming

duality theory. Because of (31) the two dual variables stemming

respectively from the two bounding constraints on x— are both

zero* Hence one may delete these constraints in L£iD
 a^d the

same dual optimal solution prevails. Therefore by duality

C (S&-) , (x|.) , (zT^) ,S*} is optimal for the relaxed-variable

constrained program LP1 . The remaining statement of part (ii)

follows from Corollary 1 and the fact that the non-negative

integers t^ ^ satisfy ^ - 1 - ^ * 2 . ||

In the next section we present results of numerical experiments

on two examples, one of which has been previously solved and

published, see Eisenberg [5] and Eisner [6].
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6. Numerical Experiments on Two Examples

6.1. First Example: A Network Based on California Field Data

We apply Program P of Section 4.3.5 to the network given

in Eisenberg [5] and Eisner [6], which in turn is based on

Gardena, California field data. The hierarchical structure of

the network is given in Figure 4 below.

Tandem Switch

Tandem Completing

Final A

0ga=-
Figure 4. A Network Hierarchy Based on Gardena, CA Data,

Eisenberg [5].

In this network there is only one originating office, labelled

0, and 43 terminating offices labelled 1 through 4 3. Traffic

flow on each trunk group is one way as indicated, and there are

two times of day, t 1 (hour 1) and t2 (hoar 2). The overflow

hierarchy is indicated in Figure 4.

Base Demand

We assume that the network is constructed jib initio. namely

all the initial demands between pairs of offices are zero and all

initial trunk sizes are zero. According to (10) then, it follows
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that E Q^ 4 4 = E 4 4 ^ =0 for -t » 1,2,...,43.

Incremental Demand

Following Eisenberg [5], but in the notation of Section 4

we set a0 44(t) =* 0 and a 4 4 ^(t) =0 for t = tx,t2 and

* = 1,2,...,43. The rest of the positive incremental demands

(aQ ^(t)) in CCS are given in columns 2 and 3 of Table 1 below.

Following Eisenberg we take a marginal capacity of 30 CCS for

all final groups and a quality of service, 0.99. Unit costs are

#1000 per trunk and #62 switching cost per CCS, With these

specifications Program P of Section 4.3.5 becomes the following

one.

44
Find M « min 1000[xQ^44 + Z (x44 ^ + xQ J + 62S]

subject to

43

and t

and

fl *• S J2£ t - tx,

where the x^. are all non-negative integers.

The above nonlinear integer program was approximated by the

linear program derived by the methods of Section 5,2, which was

then solved using suitable bounded variable reductions based on
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Section 5.3, The bounds of the high usage group sizes were

chosen by our prior knowledge of Eisenberg1s [5] and ElsnerTs

[6] solutions. An optimal linear programming solution so obtained

is termed the incremented network. Table 1 presents an incremented

network and includes the overflows from the high usage trunk

groups to the final trunk group 0,44.

Table 2 compares the sizes of the high usage trunk groups

occurring in our incremented network with those computed in

Eisenberg [5] and those computed in Eisner [6]. Finally, Table

3 gives some overall comparisons between the three solutions.
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Table 1. Specification of Incremented Offered Load Demands for
Example 1 and an Optimal Linear Programming Solution
with all Overflows from High Usage Groups

Trunk
Group

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
2 1
22
2 3
24
2 5
26
27
28
29
30
31
32
33
34
35
36
37
38
39
4 0
4 1
42
4 3

Totals

Offered Loads

Hour 1

60
119
82

305
30
59

102
256
366
469
115
144
206
310
284

9 3
17
74

102
137
222
252
4 4 5
176

8 3
98

158
124

54
38
31

140
96

122
163
163
296

33
240
136

54
52

2 0 6
6712

(CCS)
Hour 2

«

140
9

20
76

0
7

56
161
2 3 0
310
115

34
335
650
319
152

24
325
158
322
247
390
194

86
29
21
74
36
2 5

1
17
4 6
30
62
57
72

238
28

3
7
4

35
9

5154

Overflow
(CCS)

Hour 1

3.75
16.27
10.26
20.00
4.78
9.18
9.80

21.31
22.41
20.26
14.60
16.87
0.00
0.00

13.72
7.07
5.45
0.00
4.43
1.41

10.74
6.82
0.00

19.99
10.64
17.15
13.24
0.00
7.25
8.10
5.15

15.29
16.20
17.59
14.96
14.96
17.13
5.93
0.00

13.78
7.25
6.55
0.00

430.30

Hour 2

41.98
0.00
0.05
0.00
0.00
0.01
0.90
1.63
0.84
0.60

14.60
0.01

27.72
86.14
24.99
33.26
9.60
0.00

23.04
71.33
18.10
59.39
0.00
0.70
0.23
0.06
0.29
0.00
0.70
0.00
1.20
0.08
0.26
1.41
0.06
0.25
4.75
4.07
0.00
0.00
0.00
2.06
0.00

430.31

High
Usage
Trunks

3.99
4.99
4.00

11.99
1.99
3.00
4.99

10.00
13.99
17.99
5.00
5.99

12.04
19.07
12.00
5.00
1.00

12.01
5.99
8.99
9.99

12.00
19.25
7.00
4.00
4.00
6.79
7.12
3.00
2.00
2.00
6.00
4.00
5.00
7.00
7.00

12.00
1.99

11.65
5.99
3.00
2.99

10.47
318.46

Tandem-
Completing

Trunks

1.40
. 0.54

0.34
0.67
0.16
0.31
0.33
0.71
0.75
0.68
0.49
0.56
0.92
0.88
0.83
1.11
0.32
0.00
0.77
2.38
0.60
1.98
0.00
0.67
0.35
0.57
0.44
0.00
0.24
0.27
0.17
0.51
0.54
0.58
O.5O
0.50
0.57
0.20
0.00
0.46
0.24
0.22
0.00

25.76
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Table 2. Comparison of High Usage Trunk Group Sizes Computed by
the Multi-Hour Method, A Descent Method, and Linear
Programming for the Gardena Network (Rounded to Nearest
Integers)

Trunk
Group

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Totals

High

From Multi-
Hour Method

[5]

4
3
4
6
0
1
4
8
12
18
5
7
10
16
12 •
5
1
6
5
8
10
12
17
8
4
5
7
6
3
2
2
6
5
6
7
7
12
2
10
6
3
3
9

287

Usage Group Sizes

From Descent From Linear
Method Programming
[6]

4
5
4
12
1
3
5

10
14
18
5
6
11
19
12
5
1
9
6
9
10
13
17
7
4
4
7
5
3
2
2
6
4
5
7
7
12
2
10
6
3
3
8

306

4
5
4
12
2
3
5

10
14
18
5
6
12
19
12
5
1

12
6
9
10
12
19
7
4
4
7
7
3
2
2
6
4
5
7
7
12
2
12
6
3
3
11

319

Tandem-Completing
oiOli_p O12co riuul

Linear Programming

1
1
0
1
0
0
0
1
1
1
1
1
1
3
1
1
0
0
1
2
1
2
0
1
0
1
0
0
0
0
0
1
1
1
1
1
1
0
0
1
0
0
0

29
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Table 4. Comparisons of Total Number of Trunks, Switching Costs,
and Total Costs for the Multi-Hour, Descent, and
Linear Programming Solutions of the Gardena Network

Network
Characteristics

# High Usage Trunks

# Final Trunks

# Tandem Compl.

Switching Cost

Total Cost

Multx-
Hour [5]

287

39

NA

#44,640

#405,315

Descent
[6]

306

NA*

NA

NA

#38 5,500

Linear
Programming

319

14

29

#26,000

#385,400

*NA - not available
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6.2. The Second Example: Figure 1T s Network Hierarchy

We solve Program LPf of Section 5,2 applied to the network

hierarchy of Figure 1 of Section 1 with the following specification

of input data.

Base Demand

Traffic demand is assigned to all 56 pairs of points of

Figure 1 by daytime, evening, and nighttime according to three

basic kinds of pairs:

(1) each of the pairs 13 and 31 receive 500 CCS during

daytime and 0 during the other two periods,

(2) each pair which includes exactly one of the nodes 1

or 3 receives 100 CCS during daytime and 0 during

the other two periods,

and

(3) each pair which excludes both nodes 1 and 3 receives

75 CCS during daytime, 200 CCS during evening, and

100 CCS during nighttime.

These choices were imagined upon viewing nodes 1 and 3

as "commercial" nodes and viewing all other nodes as "residential".

They represent particular choices of the inputs a\ . (t),

a, .(t), and a (t) of Program LPT. Analogous to the first

example we assume that the cost per trunk is #1000, that the

switching cost is #62 per CCS, and that the quality of service

is 0.99. Using these inputs and the hierarchy of Figure 1, an

optimal solution to LP! was obtained termed the base network.
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Incremented Demand

Assume that an increase in demand of 20$ occurs uniformly

among all of the 56 calling pairs* With all other inputs to LP!

remaining unchanged an optimal solution was obtained, termed
»

(as before) the incremented network.

Moreover, Program L?! was solved under three additional

restrictions on the time t, namely, all high usage links be

sized according to: (a) daytime loads, (b) evening loads, and

(c) nighttime loads, respectively. These restricted solutions

result from the requirement that the network be "engineered"

according to a fixed single hour, respectively. This is in

contrast to the multi-hour solutions of the base and incremented

networks, and provides a test of reasonableness of the multi-

hour solutions.

For purposes of computer usage, the size of LP! was

reduced by the bounded variable restrictions of Proposition 4

of Section 5.3. For example, setting the V^ bounds in (33)

at 25 for each high usage group yields a 64 variable linear

program with 1232 constraints. This program was solved by solving

a finite sequence of much smaller bounded variable programs.

The results are given in Table 4 below.



47

Table 4. Computer Results of Four Solutions of Program LP1,
Section 5,2: Base and Incremented Networks3 and
Network Single Hour Designs, Base Demand Incremented
20$ Uniformly, #1000 Cost/Trunk, #62 Switching Cost/CCS,
and 0.99 Quality of Service

Final
Groups

12
13
14
2 5
36
37
38

High
Usage
Groups

15
26
27
35
4 5
56
57
58

Total
Switched
Traffic

(ERL)

Total
Cost
(000)

Base
Network

34.7
91.9
58.3
2O.5
46.6
46.7
58.6

2
17
17

7
18
18
18
18

135.9

£775.5

Incremented
Network

39.9
109.0
68.1
23.4
54.2
54.2
69.2

3
2 0
2 0

8
2 0
2 1
2 1
2 1

162.6

£915.2

Sincrle
Da yt dune

76.0
108.6
74.7
74.2
66.5
66.6
75.0

11
9
9

12
9

10
10
10

262.3

£1,180.1

Hour Designs
Evening

49.9
115.8
68.0
28.3
54.1
54.1
69.3

0
2 1
2 1

0
2 1
2 1
2 1
2 1

161.6

£926.2

Nighttime

62.9
115.9
72.0
39.2
62.1
62.1
73.2

0
12
12

0
12
12
12
12

227.0

£1,065.8
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Discussion

We have observed that in both the base and incremented

networks each final group has a stable busy hour, introduced in

Section 5.2. Final groups 12 and 13 have daytime stable busy

hours and all other final groups have evening stable busy hours,

and this pattern is identical for both networks. Stable busy

hours also occurred in the single hour designs. Consequently

according to Proposition 3 all high usage group sizes of any of

the 4 linear programs must be integers, and this has been

verified in Table 4 . Observe also that the multi-hour (incremented

network) solution has a total cost which is less than each of

the single hour design total costs, although the single evening

hoar solution is only 1.2$ larger than the multi-hour solution.

Apparently, the opportunity of engineering final groups 12 and

13 at another time, namely daytime, permits a slight savings

in total costs.
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7. Conclusions

It is suggested in this paper that linear programming be

used to solve for changes in equipment requirements necessary

to provide for altered demands for telecommunications services

and altered demands for service qualities. Obtaining solutions

to this basic problem is a major goal of a supply model which

seeks to minimize total incremental investments subject to these

constraints.

The linear programming model distinguishes high usage trunk

groups from final trunk groups according to the role each plays

in the network hierarchy. Solutions to the model yield incremental

investments in both of these categories of equipment and also

additional switching investments. Caution must be exercised

however in the final selection of the sizes of the final trunk

groups because of the use of the marginal capacity concept in the

linear programming model.

The integrality question settled in Proposition 3 of Section

5 shows that an important subset of the variables of the approximate

program P! can be solved for as integers by elementary linear

programming. In practice, the actual values of the remaining

variables, namely the final group sizes, should be determined

by methods that do not depend on the marginal capacity assumption,

principally Wilkinson's Equivalent Random Method [18], [20].

This approach is needed because of various peakedness effects

that occur in the probability distributions of alternatively

routed traffic parcels. Program P1
9 under special assumptions,

provides integral numbers of high usage groups to which the



50

Wilkinson method applies. In general, the costs due to straight-

forward integer rounding of high usage groups tend to be off-

setting, and round-off procedures easily maintain feasibility

and hence overall network quality of service.

A related class of nonlinear integer programs which are

solvable as linear programs is treated in Meyer [14], where

various unimodularity assumptions are made* These assumptions

do not apply in general to the class of network problems treated

in this paper. However, the column-generation procedures of

Meyer might be very useful for solving the linear programs with

bounded variable reductions treated in Section 5.3.

We shall leave the linear programming duality developments

for a later paper, where we shall pursue our conjecture that

sensitivity and post-optimality analyses will be indeed useful

for network design synthesis. Fortunately, by Proposition 1

and its Corollaries it appears that a much smaller list of active

dual variables will be forthcoming than the total number of

constraints in program LP!.

Future work should also incorporate more than one alternate

route in the network hierarchy, even though for many networks in

the field the first and second choice routes are preeminent.

Many networks given in the literature are included within the

linear programming models of this paper. Large scale network

optimizations made available through the modeling approach of

this paper should enhance an effective integration of the supply

model with a disaggregated econometric demand model for tele-

communications services.
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We conclude with an observation shared by Edward A. Silver

and Stephen A. Smith, expressed in personal correspondence, that

there is an interesting equivalence between telephone engineering

and replenishment inventory systems, see [16] and [17]. Perhaps

the design of more complex telecommunications network hierarchies

may have application to the design of more complex replenishment

inventory systems.
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APPENDIX: Proof of Proposition 1 and Its Three Corollaries

Proposition 1. Let K be defined as,

K = ((z,x) e IR2|x ̂  0 and z ^ £(x,z)}.

2
Let L be the set of all (z,x) in 2R which satisfy the

semi-infinite system of linear inequalities

n
z - 1 ^ 2 (c - c J (x-r) and x 2 0 (D

r=0 r r - x

for n » 0^1,....

Then K * L, and K is non-empty.

Proof: Nonemptiness of K is most easily seen by observing

that (1,0) € K since £(0,a) = B(0,a) = 1.

Let (z^x) be an arbitrary point in K. Assume throughout

that ii = [x], the integer part of x. Applying (19) of Section

5,1 gives

~z 2. -D(ri,a)x + (ri + l)B(n,a) - nB(ii + l,a),

and hence from (20) we have

I - U 2 (c - c^ J(x-r). (2)

Thus, (7,x) satisfies the particular inequality of (1) indexed

by the non-negative integer n.

Consider now any integer n,n ^ n + 1 and write

£(x,a) - 1 + A? * I (c - cr ,)(x-r)
L r=0
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n _
where A? = L_ (c - c ,)(x-r). Now for any integer z,

1 r=n+l r r" x

ii + 1 <^ r £ n. it follows that 3c-r < 0 because , n < £ x < n + l<£r.

In addition, cr - c ^ > 0 for each non-negative integer r,

and therefore A^ < 0 for each integer n, n ^ n + 1. Hence

— " A — A — n —

z - 1 2 B(x,a) - 1 > B(x,a) - 1 + AT = 21 (cr - c ..) (x-r) ,
L r=0 x

(3)

for each integer n, n >. n + 1.

(2) and (3) together show that (z,x) satisfies all those

inequalities of (1) indexed by n, n ̂ > n. We now check that (z,x)

also satisfies those inequalities indexed by non-negative integers

n, n <£ n-1.

If n = 0^ there is nothing to check for there are no such

n. For n >, 1, let n satisfy 0 <^ n £ n-1 and write
A — n —

£(x,a) - 1 = Z (c - c ) (x-r) + A?
r=0 r r"x z

n _
where A9 = S (c - c n) (x-r). For each integer r,

^ r=n+l r r"x

n + l ^ r ^ n , it follows that x-r ̂  0 and c - cr , > 0

as before. Hence A^ ̂ . 0 and hence

— A — n —
z - 1 >. £(x,a) - 1 > L (c - c ) (x-r) (4)

r=0 r r"x

for each integer n, 0 £ n £ n-1. The latter finite system of

inequalities <13) together with (2) and (3) show that (z^H)

satisfies (1), implying K jz L and in particular L is non-empty.

The other inclusion L c K is trivial because any (z",x)
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in L satisfies in particular

I - 1 2. L (c - c J(x-r).

Using (19) and (20) again shows z" ̂  £(x,a) i.e. ("z,x) € K.

Corollary 1. Let x be non-negative real. Then (£(x,a) ,x)

satisfies each inequality of (1) strictly except for (i), the

inequality indexed by [x]3 which it satisfies as an equality,

and (ii) possibly the inequality indexed by [x]-l when

[>c] ;> 1. The inequality [x]-l is satisfied as an equality if

and only if x is a positive integer•

Proof: Let z * B(x,a) . Application of (3) shows that (z,x)

satisfies each inequality indexed by n, n^>n + l, strictly,

where ii * [x]. By (19) and (20) of Section 5.1, it follows

that (z,x), satisfies the inequality determined by n as an

equality.

It only remains to prove that the inequalities indexed by

non-negative integers n, n £ n-2 are satisfied strictly. There

is nothing to check if n <£ 1. For n ^ 2, let n be any

integer 0 £ n £ n-2. Then

A _ n _
H(x,a) - 1 = L (c - c .) (x-r) + [A + (c_ - c_ ) (x-n) ]

r=0 r r~ x n n-1

n-1 _ _ _ _
where A = £ (c - c ,) (x-r) • Since n £ x £ n + 1, it

r r - i

follows that (c_ - c_ ) (x-n) 2. ° a n d A > °* Hence
n n-1
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,a) - 1 > I (c - c ) (x-r)
r=0 r r"x

for each integer n, 0 <^ n £ n-2.

The last assertion follows from examining

n-1 _
ff(x _

- 1 = L (c - c .) (x-r) + (c_ - c_ ) (x-n)
r=0 r r~i n n-1

where n = [x] > 1, for the inequality indexed by n-1 is

satisfied as an equality if and only if x-n = 0, jj

It will be useful later to include upper bounds on the x-

variables in the set K. The following Corollary states that

in this case one only needs a finite number of the inequalities

of (1).

Corollary 2. Let V be a positive integer and set

K1 = K fl ( (z,x) | 0 £ x £ V}. Let LT be the set of all (z,x)

which satisfy

n
z - 1 ̂  L (c - c ) (x-r), x > 0

r=0 r r"-

for n = 0,1,. . . ,V-1. Then K! = LT .

Proof: Let L" = L fl ((z,x)|o <L x £ V}. Then by Proposition 1,

K! = Ltf. Since L" incorporates the semi-infinite system (1),

it follows immediately that Ltf c L! . On the other hand, let

(z,x) be arbitrary in L1 . Then, 0 £ x £ V and n" ̂  V, where

n = [x]. If n <£. V-l, then membership in LT implies

_ n __
z - 1 1 L (c - c ) (x-r).

r=0 r r"x
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Using (20) followed by (19) we find that z 2. $(x,a) implying

(z",x) € K1 .

On the other hand, if ri = V, then necessarily x = V,

Moreover,

_ V-l
z - 1 2 £ (cr - c .) (V-r).

r=0 r r~x

But the right-hand sum equals by (20),

-1 - D(V-l,a)V + VB(V-l,a) - (V-l)B(V,a),

which is merely -1 + B(V,a) . Therefore, in this case

and (z,x) € KT also. Thus, in either case (z>x) € K1 which

implies (z,x) satisfies the entire inequality system (1) by

Proposition 1. Hence, (z,x) € Lff, and hence L1 c L". Therefore,

L! « Ltf which yields K1 * LT •

Corollary 3. (z,x) is an extreme point of K1 if and only if

x is a non-negative integer and z « B(x,a).

Proof: There are only two variables z and x in the linear

inequality system (1), Hence extreme points can only occur on

the boundary of K1 at the intersection of a pair of linearly

independent equations. By Corollary 1 a pair of linearly

independent equations arise if and only if x is a non-negative

integer, and moreover, each non-negative integer does satisfy two

(adjacent) linearly independent equations. This includes the

special cases of the endpoints where for (1,0), the additional
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inequality x £, 0 is used and at (B(V,a),V) the inequality

x £ V is used.
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