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Finite El enent Methods of the Least Squares Type
for Regions Wth Corners*
G- J. Fix* Carnegie-Mellon Uniyéfs[py;

E. Stephan, Carnegie-N@IIon'University and . ¥
Techni sche Hochschul e- Dar st adt
Federal Republic of Germany s

81* Introduction. Least squares nethods have been usef ul

for approximating solutions to elliptic systens which are not
strictly coercive. The Helmholtz equation is perhaps the nost
i mportant exanple ([1] - [2]). The main advantage of the |east
squares fornulation in this context, as conpared with a standard
Gal erkin~fornmulation, is the fact that it.almaysfproducés a
Herhitian positive definite system of algebraic equations. .
This is particularly attractive for threé di mensional problens
where storage considerations nmake iterative nethods like S.QR
.desirable. The Stein-Ostrowski Theorem [3] states that for
Herm ti an systens this iterative method converges if and only
if the systemis positiVe definite. |
The | east squares fornul ati on does however have one gl aring
defect, nanely the extrene regularity on the solution that is
needed to obtain optimal convergence. For exanple, the usual
| east squares approximation to
A> + o> =f in fl (1.1)
$=0 on an (1.2)

*This work was supported in part by ARO Contract No. DAAG 29-80-C-0081.




IS to require that

f{lgrad 4 - u|? + |divu+g> - {2 (1.3)
: |

be mininized as $ and u vary over appropriate finite

- di mensi onal .spaces. For such an approach to lead to optinma

approxinations one needs, anong other things, the follow ng
regularity property [1]. There is a nunber 0 < C < « such

; |
that for any function f in the Sobolev space H (0)

thefé is aunique solution $ of (1.1) - (1.2) such that

Hell s o) Scl[fily | d. 4)

This result is valid for only snmooth regions ft, and in particular
it is not validif Q has corners. Mor eover, nuneri cal experinments
indicate that something like (1.4) may actually be necessary.

For exanple, a series of nunerical experinents [4] wth regions

~with cracks have shown that this approach produces substandard

results even with a rather extrene nesh refinenment near the .
corner.

In this paper we consider amalternate |east squarés appr oxi -
mation in weighted spaces. These are spaces where the analogs
of (1.4) arevalid if the appropriate weights are used. Mreover,
our analysis shows that this wll |ead fo optimal results in
unwei ghted L, norms. Numerical confirmation of these results

are reported el sewhere [4].




For sinplicity we shall consider planar regions ft wth
only one corner having interior angle 6; as shown in Figure 1.
Qur results are restricted to the case 0 £ 89 < 4r Dbecause
of the crucial role played in the analysis by the Hardy-Littlewood
inequal ity and conti nuous enbeddi ng in wei ghted Sobol ev spacese
The latter is known to be valid only when 'FI has the cone
properf&[li.e.f 6 4* 2«. Moreover, the regularity results used
for the wei ghted Sobol ev spaces have only been devel oped for planar
or conical regions in [6], hence our restriction to the planar

case. Neumann and m xed probl ens could be treated anal ogously.

For brevity we consider here only the Dirichlet problem

Figure 1. The planar region &




§.. Formulation of the approximation. For the number o > O
define _
[yl f? - [re2divel]? o+ [v]2 A (2.1)
1,a | LZ(ZQ) [ LZ(ZQ 3_2
and let w(fl) be the closure of [c"(%)]2 inthis norm Let
sy B yew (f) (2.2)

be finite dinensional spaces. W seek

W \ih o (2.3

which mnim ze

I{lgrad *® - y"| 2 + r3div v" + g*® - £} (2.4)

0 ’

over $8ex;, WIfh Where r is an gistance to the vertex (Fig. 1) .
Appropriate choices for a > 0 will be discussed dn the next section.

An equival ent statenent of this variational principle involves

- the bilinear form

B, ((v,¥),(E,w)) = jI(grad *-y) * (grad £.wW) +7(divy+gt) (di vwq?)  (2.5)

and the functional

FU W) - |rof (divw+ qO) | (2.6)

In particular, the mninmmof (2.4) is characterized by the follow-

ing variational principle. Find functions (2.3) such that
By (5,2}, 08 ,v")) = Fa(H 5" (2.7)

holds for all $% and gh'ekh.




Observe that Ba("') and Fa(') are continuous on

X = B1(2) x Wl(2). Indeed, taking

: 1/2
Me,w Il = (Il graa ¢l12 , + el +lullf 3, (2.8)

L2 (212 L2[q]

as the norm on X, then as an easy consequence of the Schwarz

inequality we obtain with a > 0 and q ¢ L® (Q)
|B ((¢,u),(¥,v))] < clil o, il M, v (2.9)

and for £eL?(Q) in (2.6).

IF, (v, 1 < clll (v, ¥ I - - (2.10).

Thus (2.7) has a meaning, and in fact, is eéuivalent to a
Hermitian nonnegative definite system of algebreic equations once
a basis 1—.; chosen for 8, x U,- If we assume that (1.1) - (1.2) |
has a unique solution for each feL (Q) . then the algebralc
system is positive definite. This will be the case, for example,

if q is never equal to an eigenvalue of the Laplacian with

Dirichlet boundary conditions.




§3. Analysis of errors. Because of the singularities

in the solution to (1.1) - (1.2), piecewise linear functions
are perhaps the most practical choices for 86 and Yh’

and in this section we shall restrict attention to this case.
The grids for the space 86 of scalars need not coincide
with the grids for the space E of vectors, and as we shall

see subsequently, there will be important reasons for this.
We recall that approximation theory asserts that there is a
positive number C satisfying the following ([5].

. 4 o1 A
i}ven any E.E,E§ and ¢ € H (Q) N H(Q) there are u, € W
and ég € 8, such that
A : L] a :
a4 € Chullgﬂk'a B = min {k-t,-a-o-l + 3 (3.1)

A .
lo-4ll, o < c8*Flsl, o (3.2)

for 0 t<k: 2, t<4 and 0 < h < hyr 0 < 8 < b,. The goal

of this section is to develop similar estimates for the errors
e=u-uw, €=b-1d; (3.3)

in the least squares approximation.

Crucial to our error analysis is the regularity of the
solutions to (1.1) - (1.2) in appropriate Sobolev spaces. For

simplicity we shall assume that the interior angle is re-entrant,

(l)Here ﬂ-ﬂk’a denotes the norm associated with Eﬁ. In

addition, H‘Ht 0 denotes the (unweighted) norm on Ht(Q).
. ’




i.e., %< ey<2w Dueto [5 for given f €L%(Q and ¢ not

bei ng an ei genval ue there exi st s_' exactly one solution h of

(1.1) - (1.2 in OH"Q) a 1)), 9*_10’\ Therefore due to

Kondratiev [6] the following inportant regularity result hol ds.

Theor em 1; Let g be not a_Q__ei genval ue of (1.1), (1.2). Then |

~ there are

a>2t +2- 2sq Sq=£, €Cp>0 (3.4)
0 | =

such that for_any f 6w, (Q (t =0,1) the solution 4> of

(1.1 - (1.2 satisfies

Ublesz,q < Crlilt g 1°07 0 - e

Moreover, for 1 <s < 1 + sg

ubus,o i cRl‘lf'«O, 0 <3«

It is an easy consequence of (2.7) that {u® *} is a best

. approximation to {grad &3 in the normgenerated by Ba(«,")-

Thus we have the fol | owing consequence of Theorem 1 and the

approxi mation properties (3.1) - (3.2) together with (2.9).

Lemma 1. Therelg,_a constant C >.0 _dependi ng_only on G and

a4 1 . (3_7)
v

such t hat

Ba((€,€), (€,6))"" -111.(&a) I, ¢ Clh+ 6 °)lely o43-8)




Qur next estimate is in the weighted dual normdefined as

fol | ows |
| fr“'lm

[UL* - s#p("Sn K B | (3.9)

M ,a+4

Lemva 2. There is a constant C > O depending only on a# 1

“which satisfies (3.4),(3.8) and G > 0 such that

fidive + g€y < C(6s° +h) HI (€¢) IIIa; | (3.10)
Proof. Let r\ 6 W., be given, and consider the solution 8§ to
A8 +9g8 - T) in.Q ? 0 on T ' | (3.11)
Letting |
p =grad §

we have from (3.5 with a satisfying (3.4) and (3.7)

lpls,aes & USH3, guq S Crlinlly geq- (3.12)




Al so

Ba((e,€),<E, £)) = |r®n(div e + ge).
' ft

Using orthogonality this becomes

B, (. (5_—(5j-rE—3’\))- = ren(div e + qo) (3.13)

| ft
Thus

Ml (e.e) [|lo Il U-ig/E-Eh) 111, 1 I|r®n(div e + ge) | (3.14)

Usi ng the approxi mati on properties (3. 1) - (3.2) and taking the

sup over n with Il nil 1 we obtain (3.10) from (3.14)

X»a+4:<
since the solution € of (3.11) satisfies

Il 511 s < cl| nil < ell nlly,i
HT(“J"Q)S_ < clim Q) - Iv“’Vclri-4

The latter inequality holds due to the continuity.of the inbedding

of w into Li(<x*l) ([7] , p. 287) The cone property for ft

is needed for this result.

Lemma 3. There i_gg constant C.> O depending only on_ aj> 4 -
Mgl o and C' such Jfchat -

[l ell 20

i C(|| div e+qel|*+ 6%°[|I(e,e)HI. )  (3.15
o 1 C(]| div e+qel| °|[I(e;)HI. ) (3.15)

Proof. " The first step is to solve for e in Lz(ft)

An + gqfl = einft,n=0o0nr. (3.16)
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| ]
~ For this systemwe have from (3. 4)- and (3.5)
11n||2.,,c /\C|le|lo’a/\ Cilellg o (3  »17)
provided 2 §~B< a for IT £ 95 1* 2r. Alsoit follows from.
(3.16) that
el -« fetan + gn)/
Q
which after integrating by parts becones
Hellf, = }{-grad et grad n +gsn}. (3.18)
N

But

Ba((e,€e),(n, Q) = J'l(grad _e-- e).grad n # ¥ divet+qge)qn}. (3.19)
Q .

Thus combining (3.18) - (3.19) and using orthogonal ity we obtain

Il El |5Q = |[-e;grad n ¥qén| +Jré(dive +qe) qn - By (;é, e) , (n‘-'ﬁf},O))..

Int‘e_grating the first termon the right by parts gives the sinpler
form |
11 ellj » Jf(reg+1)(dive+age)n] - By((e,e), (n-1")0)  (3.20)
3 |
The second termon the right hand side of | (3. 2'0') gives the
-second termin (3.15). Thus our task is to estimte the first
term To do this we use the Hardy-Littlewood inequality [7, p.286].

This inequality states wth D = grad that
: a2
Cl|r?'? D’nllo o 2. lIr * Dnllgo - (3.21)
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provided 2-|£ <0 - . Note that
0
"|I-(raq+1)(div e+ge)nl i_cjldivet+ gel In!
=clridive+agel [r°n. (3.2

a .
Thus using (3.9) we see that the right-hand side of (3. 22> is
bounded above by : |
o axd
Wdiv e+ qgel~ || ?grad(r"®n) Il 4

which in turn is bounded above by

_9-4 .
Il div_e + qe|lo* ||, ¢ grad nilgg .

To use (3_,_..17') we nust bound the second termin the above by || nllzﬂ .

and to do this we take
4- 0 =0 - 2 (3.23)
in the Hérdy-LittIeV\ood inequality. This gives

I (rfg+l)(div e + ge)nl iQldiv e + gell+ H2Dtill *g  (3.24)

But a satisfies (3.7); and.thus-by (3.23) and (3.17)

Il r?’2 D?nli, g CJ €llo | " (3.25)
provided
2-2<ag2+F | (3.26)
o) . « 0

Conbi ning (3.24)-(3.25) we obtain (3.15) from (3. 20).
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.

Note that the approximation properﬁy (3.1) for k=2,‘t=1 is
only quasi-optimal if ‘a satisfies (3.8).

Inserting (3.8) and (3.10) into (3.15) we obtain an

: Lz-e_stimate. for €.

Theorem 2. There is a constant C depending only on

llq"Lb,a 2 4 - 21(60 and Cp such that

0

v. s -
e-ogllg g™+ n) 21l £11 . (3.29)

Remark. For optimal accuracy we take

1l/s
§=h 9, | (3.28)

since Sy = n/eo, ™ < eb < 27, the grid for the scalar field ¢
— - must be finer than that for the vector field u.

We now use Lemma 1 to estimate e = u - u,. To do this we

shall need for $§ to have an inverse-préperty. More precisely,.

8
we shall assume there is a number 0 < C < @@ independent of

8§ such that

-1 :

Theorem 3: Let (3.28) and (3.29) hold. Then for a > .4 - %I

0
| g—-_g_hllo & chll£ll : (3.30)
Proof. Let VsE3s satisfy
l+s_-r :
o -pgllgcs 707" I oll 1, ¢ (3.31)

e

for r = 0 and r = 1. Then from
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lell - llgrad el ¢ lle- grad cli2

we obtain

|.| gllo < C(".grad ellg+ I.II (e, lll)) . (3.32)
But '
Il grad ellgg |l gr#d(¢-w6) o+ Il grad(yg-o ) 1l 4 (3.33)
We use (3.31) to estimate the first tgrm, and apply the inverse
inequality (3.29) to the second term to get .
s ’ .
Il graa ell, ¢ cs Ol L +C87 gm0l oo (3.38)
But 7 ‘ }
Wys-oslly < 10511+ llo- vl g < csl+s°||f||0. | \'(3.-35)
Combining these estimates we oi:tain (3.30) WJ.th '(3.28)}, !
(3.27)

Remark (i). For given feHl(Q) and mesh-sizes 6§ = nl/so

(3.30) yield ll ell, = 0(h?) and [l elly= 0(h). Thus the least

squares solution (¢6,_gh) of (2.4) converges with same order

1+
SO(Q) . so = .é"— ’

towards the exact solution (¢, grad ¢) where ¢cH

of (1.1)-(1.2), as in the regular case which is considered in

[11:




14

(it) For m xed boundary conditions

-l .
4>=0 on Tp, 15*0 on Ty . (3. 36)
wher e V denotes the outer nornal at ghe boundary F :'ED UTA. The -
- */2
solution ¢ of (1.1) behaves like r° °i(gp) at the collition points,

where * is anayltic. Therefore the above anal sysis holds as wel |
for the m xed boundary Value prdblenl(l.l), (3.36) by chooéing t he
wei ght

az4- 1~

. . . 26 -
in the | east squares schenme (2.4) and refining the nesh as 6 » h Ol.w

(iti) Since the sol utions of crack probl ens behave |ike the
solutions of m xed boundary val ue probl ens wi t h snoot h boundary, our
wei ghted | east squares nethod can al so be applied to crack problens*-

. 2 : . . : .
Choosing a > 3t 5 =h we obtain with piecewise |inear test and

trial functions
li€llo = 0(h?), Itello = 0(h). ‘(3:37)

The standard Gal erkin procedure gives for € the sanme error
2

estimate if. 6 =h . But inorder to obtain (3.37) for e wth the
Gl erki n procedure, one has to use special singularity functions as
test and trial functions.

(iv) The results in this paper do not apply to t he gener al
three di nensi onal case because the regularity results used are not

known for three dinensional domains with arbitrary corners.
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