NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

k TRANSFORMATI ON PACKAGE FOR THE
BEHAVI ORAL LEVEL OF THE CMJDA SYSTEM

by
Robert A\l ker
Decanbsr, 19)2
DRC- 01- 14- 32

.A Transformation Package -.
for the Behavioral Level

of the CMU-DA System

Robert A. Walker

11 October 1982

Department of Electrical Engineering
CarnegieMédlon Universty
Pittsour gh, Pennsylvania

Copyright ® 1982 Robert A. Walker

This research project was funded in part by Digital Equipment Corporation, and by die National
Science Foundation under grant ENG 78-25755.

University Libraries
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Table of Contents Pagei

Table of Contents

Acknowledgements 1
1. Introduction 2
1.1. Motivations 3
L1.I. Motivations for the Transformations 3

1.1.2. Mativationsfor theMetrics 4

12. PreviousWork 4

L 3.Conclusion. 6

2. The Transformations 7
11. Sructuresofthe Value Trace 7
12. Trandormationsof Operators 8
12.1. Congant Folding 8

112. Redundant Operator Elimination 8

12J. Activity Splitting 10

12.4. |dentity Insertion 10

US. Bit Read Insertion : 10

13. Trandormationsof SELECTS 11
13.1. SELECT Motion ' 11

232. SELECT Factoring/Combination, Seector Reduction 12

14. Trandormations of Vtbodies : 14
14.1. Vtbody Inline Expansion, Vtbody Formation - 14

142. Dead Vtbody Elimination : IS

14J. Loop Unwinding 16

15. Conclusion 17

3. Tools for Evaluation : 18
3.1. Choosing T odsfor Evaluation 18
3*1 Metricsfor Measuring the Char acterigicsof the Final Design 21
3.11. TheDataPart 21
3.1LI.LeiveWork on Predictors : . 21

3212. Edimating Leve'sParameters 22

322. The Control Part ' 24

3.111. Microseguencer with IFC 24

3.2.11 Microsequencer withEFC 25

323. Othe Metrics - 26
33.Conclusion 26

MS. Project Report ’ Robert A. Walker

Table of Contents

4. Design Examples

4.1. SELECT Factoring and Motion in the AM2903
4.1.1. Intcrpreting the Results
4.1.2. Comments on the Results

4.2. Vtbody Inline Expansion in the Intcl 8080
4.2.1. Interpreting the Results
4.2.2. Comments on the Results

4.3. Loop Unwinding
4.3.1. Interpreting the Results
4.3.2. Comments on the Results

4 4. Redundant Operator Elimination and Inline Expansion in the AM2901

4.4.1. Interpreting the Resulfs
4.4.2. Comments on the Results
4.5. Conclusion '

5. Analysis of Resuits

5.1. Exploring the Design Space

5.1.1. SELECT Factoring and Motion

5.1.2. Loop Unwinding

5.1.3. Comparison with Barbacci and Siewiorek’s Work
5.2. Guiding the transformation Process ~

5.2.1. Problems Associated with Iterative Transformation and Allocation

5.2.1.1. Preservation of Allocation Information while Optimizing
5.2.1.2. Availability of Data for Transformation Guidance
5.2.2. Current Guides for Transformation
5.2.2.1. Manual or Semi-Automatic Guides
5.2.2.2. Automatic
5.3. Conclusion

-6. Synopsis and Future Work

6.1. Synopsis and Conclusmns
6.2. Future Work .
6.2.1. Views on the Global Optumzer
6.2.1.1. Snow’s Views
6.2.1.2. McFarland’s Views
6.2.2. Should our View of the Global Optimizer be Changed?
6.2.2.1. The Iterative Design Process
6.2.2.2. A Proposal for the CMU-DA System
6.2.2.3. Advantages of this Proposal
6.2.2.4. Problems with this Proposal
~ 6.3. Conclusion)

~ MS. Project Report

Page ii

28

33
kKX]

39

41
41
42
42

43

47
49

51
52
52
53
53

55
55

22RBBBLYYY

Robert A. Walker

Lig of Figures

Figure 2-1:
Figure 2-2:
Figure 2-3:
- Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure2-7:
Figure 3-1:
Figure3-2:
Figure4-1:
Figure4-2:
Figure4-3:
Figure4-4:
Figure 4-5:
Figure4-6:
- Figure5-1:
Figure5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 6-1:
Figure6-2:
Figure 6-3:

MJS Project Report

List of Figures

Congant Folding

Redundant Operator Elimination and Activity Splitting

Control SELECT Before Downward SELECT Motion

Control SELECT After Downward SELECT Motion

Data SELECT Before SELECT Factoring

Data SELECT After SELECT Factoring

Data SELECT After Sdector Reduction _
The Upper Levelsof the CMU-DA Sysem with External Congraints
Microsequencer with IFC _

Function Calculation in the AM 2903 - The I SP Description
Function Calculation Before Transformation - A Partial VT Diagram
Function Calculation After Transformation- A Partial VT Diagram
Ingruction Decodingin the Intel 8080

L oop to be Executed ThreeTimes

A VT Diagram of the Inner Loop Before Transformation

Sdlect Factoring and M otion-Cost vs. Power Tradeoffs

Sdect Factoring and Motion - Cost vs. Delay Tradeoffs

Select Factoring and Motion - Bindable Nodesvs. Control Steps

L oop Unwinding - Cost vs. Power Tradeoffs

Loop Unwinding - Codt vs. Delay Tradeoffs

Loop Unwinding - Bindable Nodes vs. Contral Steps

The Upper Level ofthe CMU-DA System as Envisoned by Snow
The Upper Leve ofthe CMU-DA Sysem asEnvisioned by McFariand

Proposed New Organization for the Upper Level of the CMUA-DA Sysem

Pageiv

N B = e
Son=2HR oo

25
29

31

BEEIEEHELYR

59
61

Robert A. Walker

List of Tables

Table4-1:
Table4-2;
Table4-3:
Table4-4:
Table4-5:
Table4-6:
Table4-7:

List of Tables

Results of Sdlect Factoring and Mation in the AM 2903
Results of Inline Expansion in the Abbreviated 8080
Results of Inline Expangon in the Full 8080

Results of Loop Unwinding -Short ACTION
Results of Loop Unwinding-Medium ACTION
Results of Loop Unwinding -Long ACTION

Results of Optimizing the AM 2901

M S. Project Report

Pagev

BE8RE

39
41

Robert A. Walker

Acknowledgements Page 1

Acknowledgements

1 would like to thank my advisor, Professor Don Thomas, for his patient encouragement and
guidance of this project Wereit not for him, this work would not have been possible. Thanks also

go to Professors Steve Director and John Shen for serving on my committee and reviewing my work.

| also owe a great deal to Drs. Edward Snow and Michad McFarland for developing the Value
Trace, and toall those othersin the CMU-DA group whose work | have built upon.

| would alsolike to than die membersof the CM U-DA group with which | have beeen associated,
epecially Ted Kowalski, Jayanth Vasanthargjan, and John Nestor, whose comments and suggestions
were invaluable during the implementation phase of this project | also owe a great deal to Charlie
Hitchcock, not only for theabove, but also for hisfriendship and histeriffic enthusasm for our work.

A vey goecial vote of thanks goes to my fiancte, Ellen Lowenfdd for giving me the moral support
tomake thiswork possible, for being there when | needed her, and for truly caring about the reults
of thiswork.

Finally, 1 would like to thank my family, my friends in both die Electrical Engineering and
Computer Sciences Departments here in Pittsburgh, and anyone else that | may have forgotten to
mention. '

MS. Project Report o : Raobert A. Walker

Introduction) Page 2

Chapter 1
Introduction

Two dry Stickswill burn onegreen One.

-BenFranklin, Poor Richard' sAlmanac

The CarnegieMdlon Universty Design Automation sysem (CM U-DA) [Director 81] consstsof a
set of computer programs whose goal is to produce a complete design in a user-specified device
technology, given asinput a behavioral description of die piece of hardware to be designed and a set
of congraints. The programs themsdlves are organized in a hierarchical fashion, with individual
programs or groups of programs working on the design at different levels of abstraction. The highest
level, the | SP Behavioral Level repfesentsdie behavior of the design in a formal, sructured language
called |SPS[Barbacd 80]. Thislevel is completdy independent of the target technology in which die
desgn will be implemented The ISP levd is trandated into die VT Behavioral Lével which
representsthe behavior of the design as a sat of directed acydic graphs called the Value Trace (VT)
[Show 78]. Thislevel is also indépendent of the implementation technology, and represents the’
dedgn in a form well suited for optimization and hardware design. The feature of the CMU-DA
sysem which digtinguishes it from other design automation systemsis die level of abstraction of the

input

There are a number of advantages to die Value Trace format Because it uses data-flow principles
to represent the behavior of die design, paralld execution of operations may be realized where the
designer had specified sequential operations. By using carriersthrough which values flow, rattier
than by using registers for holding variables* the number of gorage eements at the VT levd is
reduced. The graphical representation of the Value Trace is well suited to optimization, and
trandormations Smilar to inline expanson of subroutines (as well as formation of subroutines) may
be performéd to diminate possible arbitrary divisons in the desgn at die ISP level Other
trandormations may be done to Improve the performance of the final desgn, making die VT a

powerful tool on which to baseahigh level design aid.

M S. Project Report - ' Robert A. Walker

Introduction Page 3

This Mager's project explored the use of a st of trandormations based on the VT. A oftware
package was implemented to perform transformations at die Value Trace level, and methods were
determined to measure the changes caused by these trandormations Design examples were chosen
and evaluated, and general conclusions were drawn about die transformations where possible. The
feagbility of automatically guiding the transormation process was also explor ed.

1.1. Motivations

= .

As conceived by Show [Show 78], one of die mgjor criteria of the Value Trace representation was
that it be easy to manipulate by optimizing tranormations, and another that die feasibility and
auitabflity of these trandformations be easily evaluated. These criteria imply die existence of both a
useful set of trandformations and a useful set of metrics to evaluate the results of applying these
tranformations. These transformations and metrics comprise the bass of this Mader's proj ect

1.1.1. Motivations for the Transformations

One of the major goals of die current generation of the CMU-DA sysem is the production of
optimal designs. A problem involved with this pfodudion of designs is die dimination (or, mem
redligically, die reduction) of die biases inherent in die ISP description. It is fdt that the ISP
behavioral description of a piece of hardware should make absolutdy no assumptions about the
implementation technology of die finished design. |f several différent people are to write different
ISP behavioral descriptions of die same piece of hardware, aI‘I of these |SP descriptions might
eventually be transformed into die same Value Trace. While die VTs resulting from die |SP-to-VT
trandator are aready equivalent in behavior, each is organized according to the coding style of the

designer.

One major artifact of the designer's coding style is die breaking up of die design into vtbodies at
procedural boundaries as spedfiéd in die 1SP: behaviorél description. By using vtbody' inline
expansion to remove these boundaries, and vtbody formation to form othersat win, these boundaries
may be moved to other, more desirable places. Another artifact of the designer's coding style is die
use of temporary variables Code in which there are duplicated calculations in successve gatements
may be rewritten to perform die calculationsonce and sore dieresultsin atemporary variable The
behavior of the two representations is the same, but the first form requires additional computation

Tlic vtbody 5t Vahic Trace congtruct Smilar tot subroutine or procedure

M S. Project Report Robert. A. Walker

Introduction Page 4

when represented as a Value Trace. Using redundant operator dimination (sec Section 2.2*2), the
fird may be trangformed into die representation of the second.

Further motivation for the transformations liesin their use for improving the performance of the
design while maintaining itsoriginal behavior. For ingtance, inline expansion might be performed on
all vtbodics which arc only referenced once, diminating the operators and control sepsinvolved in
calling and returning from Ithat vtbody. In the example in the preceding paragraph, dimination of
the duplicated calculations not only diminates the operators and control seps involved with these
calculation, but might diminate a redundant piece of hardware. Perfonnance factors which might be
increasad by trandormations include: die cost of die design, the execution speed of the design, the
power consumption of die design, the amount of microcode needed in the design's microsegquencer,,
and the complexity of the design.

1.1.2. Motivations for the Metrics

Sncethereare nec&érily tradeoffsinvolved in any design process, there must be some means for
evaluating the results of any specific trandformation. Once a given transformation has been applied,
any or all of the perfonnance factors lised above may have changed, and it would be desrable to

_know which ones have changed, and by how much. In evaluating the results of these
transformations it isappropriateto vary the external congraintson die die sysem, and seehow these
results change. A set of metrics can be developed to aid in this evaluation of the reaults of the
transformations. These metrics are measurementsthat can be performed on the Value Trace and that
can beinterpreted in such amanner asto give reasonable information on die dianges effected by the
transformations '

1.2. Previous Work

The original idea for die Value Trace was firg proposed by Show in his Ph.D. diesis[Show 78].
ThisVaueTracewasa Directed Acydic Graph (DAG) smilar in nature to those used in optimizing
compilers. The nodes of the graph, called activities or operators, represented an operation to be
performed. Thearcsof the graph, called carriers, represented dieflow of data from one operator to
another. The primary difference between die DAGs created by Show and those used in optimizing
compilerswas the addition of contral congtructs to allow conditionals and subroutines, something not
present when DAGs are used by optimizing compilers Major criteria for the new representation
were that it should be easy to manipulate, and it should lend itself well to optimization. Once this

M.S. Project Report : Raobert A. Walker

Introduction ‘ Page 5

representation was cstablished, Snow identified a set of transformations that could be performed on
the VT to optimize its representation while leaving its behavior unchanged. These transformations
were the basis of the transformations irhplémémcd as part of this Master’s project.

An ISP-to-VT translator and structures for the Value Trace were implemented by McFarland as a
Master’s project [McFarland 78). The VT originally envisioned by Snow had abstracted away all
control information except the required ordering of operator execution resulting from data
dependencics. McFarland reevaluated this Value Trace and added structures for maintaining control
information. These additions made it possible to assign control steps to the operators of the Value
Trace, and changed the role of the SELECT operator and the transformations which operated on it.
While the SELECT operator had previously served only as a data multiplexor, McFarland’s changes
expanded the SELECT s role to include control branching. These changes in the role of the SELECT
forced the recvaluation of the SELP;CI’ transformations developed by Snow.

With the advent of McFarland’s ISP-to-VT translator, the third generation of the CMU-DA
system came into existence in mid-1981. The overall framework for the upper levels of the system
was developed as a joint effort, and is described in [Gatenby 81] and [Lertola 81]. This framework
included a graphics system, basic measurements package, automatic control step allocator, and
interactive data allocator, and it was into this framework that the programs written as part of this
Master’s project were placed.

" While not yet finished, the third generation of the CMU-DA system contains many elements
which did not exist in the previous generations. Rather than existing as a collection of separate
programs, the present "core” of the behavioral level portion of the system exists as a single program
with separate "modes™ for each function. Hitchcock [Hitchcock 82] is currently developing an
automatic data-path allocator based on an algorithm developed by McFarland, Tseng [Tseng 82] is
developing an automatic allocator based on a bus-style approach, and Kowalski [Kowalski 81] is
developing a knowledge-based allocator using an expert-system approach. Pieces still lacking and
needed to complete the system are a control allocator and a module binder. The system will soon be
capable of producing a design with control-step allocation and data-path allocation, but is not yet
capable of producing a finished design.

M.S. Project Report Robert A. Walker

Introduction Page 6
1.3. Conclusion

In the course of this Magter's project, a number of areas were explored A software package was
built to implement many of the transormations developed by Show, and these transfonnations were
changed where necessary due to die addition of contral information by McFarland To measure the
changes brought about by these trandormations, metrics were chosen and implemented Design
examples were sdected, optimized, and evaluated usng these metrics The desgn space was
characterized for some of these examples, and new information was derived Finally, (he feasibility

of usng information derived in thisproject to guide the trandormation processwasexplored

Theremainder of thisreport isorganized as follows:

* Chapter 2 provides a brief overview of the dructures of the Value Trace and the
trandormations implemented in this project Where McFarland's changes in the Value
Tracehave necessitated changesin the transormations, these changesare described

» Chapter 3 discusses the choosing of tools to evaluate die results of die transfonnations.
Thischapter also discusses the role of external condraints on the sysem, and how these
congraints can be varied to determine ther effect on the reaults of die transformations.
Previouswark by Le ve on etimating the performance of the final design is explained, as
well as how this work can be adapted to the pressnt CMU-DA system. Methods of
varying the control style of the design are also discussed

* Chapter 4 provides a number’ of examples of the magjor classes of transformations. Each
of these dedgns are evaluated usng die tools developed in Chapter 3, and generd
conclusonsaredrawn wherepossble.

* Chapter 5 provides further analysis of some of the results from Chapter 4. Design space
plotsare drawn, and Yurther characterization of the effects of some of the transfonnations
is determined The possbility of using the information developed in this and the
previouschapter isexplored, and a description isgiven of theissuesinvolved

» Chapter 6 provides a synopsis of the work done in this Magter's project, and some of the

information derived from it A proposal for a new organization of die upper level of the
CMU-DA sygemisalsogiven.

MS. Project Report Robert A. Walker

TheTrandormations Page 7

| Chapter 2
The Transformations

Where we cannot invent, we may at least improve;, we may give somewhat of a novety
to that which was old, condensation to that which was diffuse, and currency to that which
wasr econdite.

-Cotton

Asdexribed in Show'sthess[Show 78], there arethree major groups of tranformations operator
trandormations SELECT trandormations, and vtbody transformations The operator
trandormations are transormations on individual operators or groups of operators. The SELECT
trandormations are transformations to act on the SELECT congruct, individually or in groups. The
) vtbody trandformations are transformations for woricdng with whole vtbodies or groups of vtbodies at
atime. Since these trandormations are described in detail in Snow's thesis, they are only briefly
described here. Where die additionsto the structure of die Value Trace by McFarland have changed
the transformations, die additionsand changes are discussed. ' '

2.1. Structures of the Value Trace

Before discussing dieresultsof the transformations, it is necessary to undersand the sructureson
which these trandormations will be performed At the highest level, die Vaue Trace isdivided into
individual groups of operationscalled vtbodies. Thisdivision of vtbodiesis determined from the |SP
behavioral level, and occursat procedural boundariesand at labels. Each of these vtbodiesis further
subdivided into individual operationscalled operatorsor activities. The operatorsare of threetypes:
ISP arithmetic and logical operators, 1SP control operators, and VT-gpedific operators The ISP
arithmetic and logical operators, asthe nameimplies, are the operators defined in the | SPS language
which perform such activities asaddition and testing for equivalence. The ISP control operatorsare
those operators which invoke other vtbodies, resart the current vtbody, and control the conditional

M.S. Project Report : Robert A. Walker

The Trangformations ' Page 8

choice of data multiplexing or coﬁtrol branching. VT-specific operators are operators specific to the
Value Trace and its needs as a representation for hardware synthess. Examples of VT-spedific
o_perat'ors are those reQuired for rééding é'specific fiedd of a carrier, or performing Sgn extension

when reading from asmaller carrier into alarger one.

2.2. Transformations of Operators

2.2.1. Constant Folding

Constantfolding is a dassical example of an optimizing transformation, and one of the smplest
Shown in Figure 2-1, congant folding conssts of replacing an operator which acts on one or more
congants with a new constant It may be applied to any activity, and is always beneficial, possibly
resulting in the dimination of a hardware operator. Other benefits indude a possible reduction in
total number of control steps and a reduction in the complexity of the Value Trace. While it is
doubtful that congtant folding may be applied'to a newly generated Value Trace, it might be usgful
after other transformations have been applied. An example of repeated applications of congtant
falding in this context isshow in Section 4J.

Congant folding may also be aipplied to a SELECT (see Section 13 for a description of the
SELECT operator), in which casethe appropriate branch of die SELECT isretained, and the others
diminated. Again, this will probably not occur in a new VT, but may come ub in other
drecumgtances. Section 43 shows an example of congtant -foIding applied to a SELECT.

2.2.2. Redundant Operator Elimination

Redundant opérator elimination is another dasscal transormation, dImilar to common
subexpresson dimination in optimizing compilers. 1t may be used when two or more operators of
die same type have the same inputs, and consists of diminating one of the operatorsand replacing all
references to its outputs with references to the outputs of the operator to be retained. Figure
2-2 shows an example of this trandformation. like congtant folding, redundant operator dimination
is always beneficial. Although die amount of hardware required to implement die final desgn may
not change if a good allocator is used, die total number of control steps may il be reduced. In all
caxs, die complexity of die Value Trace will be reduced. Examples of redundant operator

dimination may be seen in Section 4.4.

M.S. Project Report ' - Robert A. Walker

The_Transfor mations Page9

—N

\ _~

Figure2-1. Condant Folding

Redundant

Operator
\ R Elimination

—>
X X X
é .
Activity
] Splitting 1
f f
C D ' C D

Figure2-2: Redundant Operator Elimination and Activity Splitting

M S. Project Report Robert A Walker

TheTrandormations Page 10

2.2.3. Activity Splitting

~ Activity splitting is the inver se of redundant gperator elimination, and may be used to make other
trandormations possible. In applying it, the operator is duplicated and its outputs split betweén the
two reaulting operators. An example of activity splitting is shown in Figure 2-1 By itsdf, activity
splitting is never beneficial. The total number of control steps may be increased, the complexity of
the Value Trace is aways ihcreased, and the amount of hardware might be increasd if the dafa path
alocator isnot very efficient

2.2.4. ldentity Insertion

I dentity insertion is another trandformation which, used by itsdf, will have a-negative effect
I dentity insertion condsts of inserting a null activity into a data path, often an arithmetic or logical
operator whose other input iéthe identity element for that operator. The total number of control
geps'may be increased, the complexity of the Value Trace will always be increased, and the amount
of hardware might be increased. The only positive effect of this transformation is to make other
trandormations possible.

_2.2.5. Bit Read Insertion

Bit readinsertion* conceived by L ertola[L ertola81], consistsof dieinsertion of abit read operator?
into a data path. Because die bit read isnot an allocatable operator, the amount of hardware is not
increaséd, nor isthe tatal number of contral seps, but the complexity of the Value Traceis increased.
The major use of this trandormation is to aid in allocation, where a bit read may be needed for
congtant gorage, multiple gorage of the same value, value sorage, or dimination of implicit Sorage.

Lertola'sthesis shows several pages of examples of these uses.

2\Wtread operator isa VT congdruct for readinga given subfield of one carrier into ancther orrier. Itsinputsconss oft
fkid to beread from, and a congant o n ~ fram theright of this fiedd to specify the sppropriate subfiedd. Bit readsoften occur
after arithmetic operatorsto diminatethe cany bk ami n”~ ihe results the openukm intoalumaad carrier.

M S. Project Report : Robert A. Walker

e E e M T

The Transformations ' ' Page 11

2.3. Transformatioﬁs of SELECTS

Since its original conception’ by Snow, the role of the SELECT operator was changed by die
addition of contral information to the Value Trace by McFarland. As envisoned by Show, die
SELECT was amply a data multiplexor. Figure 2-5 shows an example of this use, with a two bit
sdector, S, choosing the value in carrier A if the value of S is0Q, the valuein carrier B if the value of S
is1, and so on. Along with the addition of contral information to the Value Trace by McFarland, die
role of the SELECT was expanded to include the capability of choosing one of a number of different
execution paths (i.e,, it performsa "branch” operation). Figure 2-3 shows an example of this use,
with the SELECT operator choosing of one of three branches based on the value of the sdector.
When the SELECT was thought of as a data multiplexor (referred to as a data SELECT), Show's
trangormations were gill valid in all cases. When die SELECT was used for branching of control
(rferred to asacontrol SELECT), many of Snow's SELECT trandormations had to be reconddered.
Thisreevaluation wasdue to die control SELECT S having both a beginning and end to each branch,
with only one branch being executed, while data SELECTS may be though of as acting only on die
ends of branches, with all branches-being executed. The SELECT mation transformations were
epecially affected by thischange.

LK

2.3.1.SELECT Motion

SELECT motion consists of replacing similar activities within the branches of a SELECT with a
sngle activity outdde the SELECT, and vice-versa. When moving activities out of a SELECT, the
activitiesmust be of the same type and must occur in all brandies. SELECT motion may be applied
to either control SELECTS or data SELECTS and an example of downward SELECT motion with a
control select isshown in Figures 2-3 and 2-4. Show had just consdered motion at die bottom of die
brandies, but die brandiesof control SELECTS now have both a beginning and an end, so SELECT
motion for control SELECTS hasto be extended to aDow for mation at both the top and bottom of
the branch. In Figure 2-3, if die three bit reads have die same congtant input, they could be moved
above the SELECT. Of all die trandormations, the results of SELECT motion are the hardes to
evaluate (see Section 4.1). With a "gmart" data path allocator, the amount of hardware required
remains approximatdy die same before and after SELECT moation, as the allocator effectively
perfonnsthe transformation before the SELECT motion. The number of control stepsvaries, and is
affected by the contentsof the branches, contral step allocation, and the type of micr osequencer used.
Theonly improvement which alwaysoccur isareduction in die complexity of the Value Trace dueto

die dimination of r epeated operators.

M S. Prgject Report Robert A. Walker

The Transformations Page 12

Selector A -B C

SELECT 0 1 2
L] -~ . S
0 1 2
T 'R Y ¥
<R> 00 °
i r
NOT : NOT NOT
ENDSEL

] F-L $-J--1 _si 1

Figure 2-3: Control SELECT Before Downward SELECT Motion

2.3.2. SELECT Factoring/Combination, Selector Reduction

SELECT factoring consists of removing brandies from a given SELECT and using these branches
to form anew SELECT which is cascaded with the old one. SELECT combination is the inverse of
SELECT factoring. Figures 2-5 and 2-6 show an exampl'e of SELECT factoring applied twice to a
data SELECT. When factoring a SELECT, the same selector is maintained for both levels of
SELECTS, resulting in multiple activation values for each branch. Using bit reads to reduce the
selector as necessary, the example can be reduced to Figure 2-7. Had the firg and thirdJoranch of the

M.S. Project Report Robert A. Walker

The Transformations Page 13

SELECTOR A _ B C

Figure 2-4: Control SELECT After Downward SELECT Motion

original SELECT been grouped together, and the second and fourth as well, the fields of the selector
inputs would have been reversed in the final figure. For this reason, SELECT combination may be
used in conjunction with SELECT factoring to rearrange trees of SELECTs. Section 4.1 gives
another example of SELECT factoring.

M.S. Project Report : Robert A. Walker

The Trangformations ' Page 14

S<1:0> _ '

i* 13 ¢ >

SELECT I I I 1 _
] ey —

Figure2-5." Data SELECT Before SELECT Factoring

2.4. Transformations of Vtbodies

2.4.1.Vtbody Inline Expansion, Vtbody Formation

Vibody inline expansion is analogous to the inline expansion of a subroutine, and consists of
replacing acall to a vtbody with a copy of that vtbody. Almost any vtbody may be expanded inline,
except those which are RESTARTed?, these may not be expanded because the RESTART construct
only retarts vtbodies at the beginhing, and there is no provison in the CMU-DA envirbnment to
resart vtbodies at any other place. When vtbody inline expansion is applied to a vtbody which is
called only once, that vtbody is subsequently a candidate for dead vtbody dimination (see Section
142), and the spéed and complexity of the Value Trace are improved by the dimination of the
operators which call and return from the diminated vtbody. An example of inline expanson as
applied to the Intd may be found in Section 42. Vtbodyformation, the inverse of vtbody inline
expanson, consigts of removing a section of code ffom one vtbody, forming a new vtbody condsting
of that code, and adding acall to this new vtbody in the original one.

:h”n eRESTART operator isa VT flow control operator which resam theajrrént vtbody. or anather vtbodly.

M S. Project Report _ Robert A. Walker

The Transformations PagelS

§<1:0> A B
|
SELECT [r l I r I
- == 0,2)=-< _13 Y)

S<1:00 C D

¥
SELECT | _ l I - I
~B

S<1:0>

SELECT

Figure2-6: Data SELECT After SELECT Factoring

2.4.2. Dead Vtbody Elimination

Dead vtbody elimination is analogous to dead code dimination in optimizing compilers, and
consists of removing ffom the Value Trace those vtbodies which are no longer referenced. These
dead vtbodies will come about primarily as a result of inline expanson, and ther eimination is
always performed when applicable. Section A2 shows the use of dead vtbody dimination after
vtbody inline expansion, and Section 43 shows the uée of dead vtbody dimination after loop

unwinding.

M.S. Project Report Robert A. Walker

The Transformations Page 16

S<0> i\ ']

SELECT
|
S<0> C D
_ SELECT ' 1 | [
¢ —C 0 >--< 1
S<1> 1 '
SELECT i |
— _(; Q S —

Figure 2-7: Data SELECT After Sdector Reduction

2.4.3. Loop Unwinding

Loop unwinding congigs of inline expanding ingantiations of a looping vtbody so that congtant
folding and other transformations might be applied. In this manner, a loop counter may be
eiminated and replaced with a finite number of calls to a given subroutine. By diminating or
reducing these loop counting operators, the amount of hardware needed is decreased, as are the
number of control stepsand the execution time. Section 43 givesan example of loop unwinding.

M S."Project Report : Robert A. Walker

The Trangformations ' _ Page 17

2.5. Conclusion

As part of this Master's project, the transformations described in this chapter were implemented .
These trandfor mations comprise most of those defined in Snow's thesis; others were not implemented
dueto time condraints, but will beadded later. Thetrangormationsthat were not implemented were
those for moving operators into and out of vtbodies (vtbody motion), and the composite operator of
pipelining. Thistrandformation package waswritten in the C programming language [K ernighan 78],
and comprised the major portion of the code written for thisproject '

Exiging as a sgparate function in the framework described in Section IX the transformation
commands are manual in nature, rather than automatic Thisisin keeping with the current view of
the "core' of the behavioral level portion of the sysem existing as a set of tools which are intended
for use by either a human res;eardwer, or, more likely, an automated design assistant. To avoid
improper use, all commands check for applicability before beginning the actual transformation. The
commands are manual in nature, and are used in conjunction with a set of metrics and initial
assumptionsto explor e the design spacein such a way that data may be obtained which will oneday
allow automation of the syssem. It isthese metricsand initial assumptions which are discussed in the
next chapter.

MS. Project Report Robert A. Walker

Toolsfor Evaluation _ Page 18

| Chapter 3
Tools for Evaluation

| dolovetonoteand toobserve.
- Ben Johnson, VVolpone

| am gready of getting infor mation.
- Callimachus, lambi

Many of the transfor mations catalogued in Chapter 2 involve a tradeoff in the performance of die
" final design. The application of these transformations may improve some performance factors while
hindering others, making it necessary fo have a st of metrics for measuring the effects of these
trandormations on the final desgn. With these metrics, not only can Ac effects of a particular
trandormation be measured, but information might be found which can predict these effectsand aid
the designer in choosing which transformations to apply. In order to further characterize the results
of the trandformations, it may be useful to explore their results while varying die external congraints
on the sysem. It isthe development of these metrics and the varying of these condraints that this

chapter isconcer ned with.

3.1. Choosing Tools for Evaluation

In evaluating the results of die transformations described in the previous chapter, many levels of
the CMU-DA sysem must be consdered. Shown in Figure 3-1, the upper levels of this sysem
consist of a number of program modules, each of which is constrained by external factors These
factorsinclude:

M S. Prgject Report : Rabert A. Walker

Toolsfor Evaluation ' Page 19

» Design gyle (control and data) - This information reflects a global decison affecting the
design as a whole. Data gtyles identified in [Thomas 77] include 8-bit microprocessor
syle, bit-dice microprocessor style, didributed style, pipdine syle, bus syle, and paralld
gyle. Contrd styles incdude the type of microcontroller used and the method of
organizing the microwords. This information is top-down information; it involves die
sdection of an overall approach for the design process, which in turn affects die lower
levels. :

* Module data base information - Thisinformation reflects the chosen target technology. It
is a ummary of al the logical and physcal parameters (function, cost, power
consumption, etc.) of the given devices in that technology, and is essentially bottom-up
information. The operator delay information from this data base is further summarized
and presented to die upper levels of the system.

* Thecurrent Value Trace - Thisrepresentsthe current " date' of thedesign in progress. It
must be consdered-since not all vtbodiesare candidatesfor all transformations.

* Designer specified condraints - This information reflects the physical congraints placed
on the design by thededgner. For example, he may choose to maximize speed at the cost
of chip area, or minimize power consumption at die cost of all eke.

In order to characterize die trandformations it is appropriate to vary as many of these congraints
aspossiblein order to determine their effect on die results. While it is not be possble to vary all of

these congtraints it isgtill possible to vafy a number of them.

~In consdering the different data design gyles the mgjor variable involved is the data path
-alocator. In die current generation of die CMU-DA sysem, there are two aIIocéIors under
congruction: adigributed data path allocator being developed by Hitchcock [Hitchcock 82], and a
knowledge-based allocator being déveloped by Kowalski [Kowalski 81] which currently designsin a
gylized bus-oriented mode, but is capable of being expanded to allow designing with other styles.
Nether of these allocatorsis yet available, 0 it isnot possibleto vary the design style at thistime. In
the cour se of this project, the prdiminary information from [Hitchcock 82] was used when allocator -

specific information wasrequired.

It is possble to vary the control design style somewhat The two maor seps in die
implementation of diecontrol portion of die design are control step allocation and control allocation.
The control gep allocator has the regpongbility of partitioning die design into sets of operations
(called control steps) which arc invoked together and require a fixed amount of time to execute. The
control alocator isresponsble for allocating hardware to control the data paths of the design. While
thereisno contral allocator in the current generation of die CMU-DA system, a control step allocator
does exist Altering the contral style affects the control sep allocation, which in turn affects the

M.S. Project Report Robert A. Walker

Toolsfor Evaluation Page 20

ISP Behavioral Description

v

- C Trar;lator >

Value Trace Behav. Descr. (Optimizer >

Design Style

i
@trol Step AIIocm— Controller Style

Operator Delays <
Designer Constraints
(Data Path Alfocator =
Design Style
¥ Designer Constraints
Functional Description
- Summary
J, B - A
<Module Binder>_.
I | Detailed Technology-
Functional Description ¥—| (Module Data Base)
7 | Designer Constraints
Control Allocator
Module Binder
I —-| Controller Style

Logical/Physical Descr. .

Figure 3-1: The Upper Levesof the CM U-D A Sysem with External Congraints
reults of the transformations. This altering of the control style is accomplished by varying the type

of microcontroller used with die design, and isdiscussed later in thischapter.

Thereisno module binder or control allocator in the current generation of the CMU-DA system,
s0 the module database information can not be varied at those levels. However, the operator ddays
for aparticular implementation technology are summarized and passed to the control step allocator,

M.S. Project Report Robert A. Walker

Tools for Evaluation Page 21

and are varied at that level. The operator delay of the flow control instructions (CALLS, SELECTs,
etc.) is modificd at this level while varying the control style of the design. Changing the target
technology docs not changc the effect of the transformations, and is not done as part of this project.

In considering the current VT, different Value Traces must be cxamined, because not all Value

Traces are candidates for all transformations. A number of example Value Traces are shown in

Chapter 4.

The designer specified constraints can be varied at some levels but not at others. These constraints
can not be varied at the module binder level or at the control allocator levels because these levels do
not exist in the current system. The constraints can be varied at the upper levels of the system by
varying the data and control style of the design.

3.2. Metrics fér Measuring the Characteristics of the Final Design

In evaluating the final design, the most important considerations are the style of the design, and
mcthods for evaluating the results of the transformations for the different styls. One way to evaluate
these results would be to examine both the data part and the control part of the design, and find ways

_of measuring the changes in each part. The rest of this chapter is concerned with the measurement of
these changes in the design. '

3.2.1. The Data Part

Three important performance factors of the final design are its cost, its power consumption, and its
execution time. Since the current generation of the CMU-DA system has no means for producing a
final design, these factors must be predicted from either the ISP behavioral level or the VT behavioral
level. Drawing on information developed in the second generation of the CMU-DA system, an
estimation of this data may be produced.

3.2.1.1. Leive’s Work on Predictors

As part of the second generation of the CMU-DA system, a module binder was devcloped [Leive
81] which took as input the functional level description produced by the current data path allocator
[Hafer 81], and produced as output a description of the design at the logical/physical level. This
module binder was capable of producing final designs in one of two target technologies: SN74xx
TTL modules, and Sandia CMOS Standard Cell modules. Choosing three relatively small designs,

M.S. Project Report . Robert A. Walker

Toolsfor Evaluation ‘ Page 22

L cive performed 64 sparate runé of the module binder, varying the congraints and transormations
for each run. From the output of the module binder, he plotted three graphs of cost, power
consumption, and delay for the different runsof each design, and developed a set of equations(called
predictors) which characterized the design space of these three performance factors. The input
parametersto these predictors were obtained from the bound data path graph, and consisted of the

following:
* Number of bindable nodes
* Length of longest control path .

» Width of major data path

The actual equations, which may be found in Leive'sthesis, predict die basc performance factors
from the parameterslisted. The pe_rformanoefédorsareasfollcws
» Codt in dallars - Thisvaries directly with the number of bindable nodes and die width of
the mgjor data path, and is the lump sum of all the manufacturing costs associated with a

particular module. In his thesis, Lcve also argues that the area of the chip is directly
related to the cost

* Power consumption - Thisalso varies directly with the number of bindable nodesand the
width of themajor data path. .

 Delay - Thisvariesdiredfy with the length of the longest control path.

3.11.1 Edimating Leve's Parameters

When he obtained the neoessary' parameters for his equations, Leive had available a fully bound
data path graph produced by Hafer's allocator. Because the current generation of the CMU-DA
system did not have a working allocator, it was necessary in this project to etimate the results of the
alocation processin advanbe assuming a generic distributed-style allocator. Thisestimation process
did not always yied the precise, quantitative results that could have been obtained from a working
alocator, but it is fdt that the results obtained neverthdess provided a qualitative “fed" for the
rwltsofthetrans‘ormatidﬂs and in some cases produced quantitative values.

The number ofbindable nodesisthe most difficult parameter to estimate. Thisquantity isthe sum
of the number of operatorsto be bound, the number of registers needed, the number of multiplexors
needed, and the number of memoriesin die sysem. The number of operatorsto be bound is heavily
dependent on the data path allocator to be used. It is esimated by determining the number of
operators that might possibly require allocation, and modified as necessary using the preiminary

M.S. Prgect Report Robert A. Walker

Toolsfor Evaluation Page 23

information from [Hitchcock 82]. The number of registers needed is also highly allocator dependent,
and iscurrently estimated by routines provided by Hitchcock. The number of multiplexors needed is
esimated by determining the number of individual SELECT outputs, since each of these will require
the multiplexing of the outputs of each branch of the SELECT. The number of memories in the
sysem can be determined directly from the Value Trace. Egimating the number of bindable nodesis
adifficult propodtion at best, and sldom yields quantitative results, but itsinteligent use should 4ill
provi.de qualitative information on the results of particular transformations. The metrics developed
sofar arethus: ‘

* Maximum number of aDocatable operators - The maximum number of operators that
might requireallocation.

* Regigder edimate * The etimated number of regiders needed, as determined by
Hitchcock'sroutines.

» Multiplexor egimate - The* etimated number of multiplexors needed, as determined
from the outputs of the SELECTS ’

« Number of bindable nodes - The sum of the three guantities above, plus the number of
memoriesin die sygem. This is the etimated number of dements that will actually be
bound to hardware, and isdetermined fromthe Value Trace.

The next of Leive's parameters, the length of die longest control path, is easer to determiné asit
depends on the reaults of the control sep allocator. There currently existsan automatic control step
alocator in die CMU-DA system, and it isrdatively Smple to assign control sepsto agiven- vtbody
and determinethelongest control path. To determinethe contrdl path for the completeValue Trace,
some hand analyss must be performed because no software currently exists for calculating the
longest control path through multiple vtbodies. Most of the transfor mations take place only on a
single vtbody or on a pair of vtbodies, so thisanalyssis usualy sraightforward. Themetricisthus

 Length of the longest contral path - The length of the longest contral path, as etimated
from theValueTrace

Thethird parametd of Leive's the width of themajor data path, isdie easiest to computefrom the
Value Trace. Using Leive's criterion for measurement of this parameter (counting the number of
path links of each bit width in the design, multiplying the number of lengths by ther bit width, and
selecting the width corresponding to the largest product), it can easly be computed. While it is
computed from the Value Tracerather than a data path graph, it isfdt that the resultswill usually be
die same, because most paths that exist in the Value Trace also exig in die data path graph. The
metric isdefined asfollows .

M S. Project Report Robert A. Walker

Toolsfor Evaluation Page 24

* Mgor data path width * The width of the major data path, as esimated from the Value
Trace ’

3.2.2. The Control Part

In varying the control portion of the design, there are two related items which may be changed:
the microcontroller style, and the operator delays. The operator delays, in turn, arc dependent on die
microcontroller style, as well ason the implementation technology. Assuming die implementation
technology to be fixed, the major variable is the microcontroller style, which may have a deflnite
effect on the reaults of die trandormations, and is well suited to variation. The remainder of this

section discusses how thischangeis accomplished.

3.111. Microsequencer with IFC

Asdexcribed in [Mano 76] and [Mick 80], a typical microcontroller with implicit flow control (I1FC)
in all instructions is of the form shown in Figure 3-1 The word to be read from the control memory
isselected by the ROM addressregiger, and ismaintained at die output of that regiser until another
valueisproduced. Each of the wordsread from the control memory iscalled amicroinstruction, and

containsthe following fields.

e Data operations - Th&e,bits represent an operation to be performed by the
microsequencer . '

* Addresscontrol - After thecurrent microingtruction hasbeen executed, the ROM address
regiser must be supplied with the address of the next ingruction. This ingruction may
be in one of two places. it may be in the next sequential location, or it may be located
dsawhere. Ifthisingruction isin the next sequential location, the address generator can
samply increment a counter, but if it islocated sewhere, some means must be provided
for specifying this information. With implicit flow contral, this next address (or possible
next address, in the case of conditional satements) is specified in a predefined fidd in
each ingruction. These addresscontral bits specify whether or not the next ingruction is
to be determined sequentially, and also specify control conditions for conditional
ingructions.

» Next address - These bits specify the next address for the control memory, and areused in
conjunction with the addresscontral field asdefined above.

Using a sequencer with IFC, CALLs and SELECTS will take zero time, or, more precisdy, the
same amount of time as sequentially accessing the next ingructions.

US. Project Report . : Robert A. Walker

Tools for Evaluation ' Page 25

External Conditions

Address |=
Generator Jm

1

ROM Address Register

Control Memory
(ROM)

I |

Nep Address

DataOperations

iAddress Control

Figure>2: Microsequencer with IFC

322.2. Microsequencer with EFC

Another type of microsequencer is that with explicit flow control (EFQ instrudions While die
IFC controller encodes the flow control information implicitly in every word, the EFC controller has
explicit instructions for flow control. Implementation details may vary, but a method described in
[Agrawda 76] uses one field of die microinstruction to control the interpretation of the remainder of
the fields. This method adlows for aset of instructions analogous to assembly language instruction
sets. Using this scheme, the microsequencer assumes sequential execution of al instructions, except
on encountering an explicit flow control (EFQ instruction. For example, the Burroughs B1700 has a

NiS. Project Report Robert A. Walker

Toolsfor Evaluation Page 26

digtinct sat of 31 microingructions, with a variable number of initial bits specifying the ingruction,
and the remainder used to supply whatever data is needed by the ingruction. When used as a
controller in conjunction with the Value Trace a microscquencer with EFC will require a non-zero
~ amount of time to execute flow control congructs likethe CALL and SELECT. Another example of
a controller with EFC was the control allocator congtructed by Cloutier [Cloutier 80] and Nagle
[Naglc 81] in the second generation of the CMU-DA system.

3.2.3. Other Metrics L

In addition to the metrics provided by Leive's equations, two other metrics were identified as
providing worthwhile information on the results of the trandormations The firg of these metrics,
the total number of control steps, is essentially the number of words of microcode in the
mkrosequencer. Whileit is dependent on the control step alocator, thismetric is also dependent on
the type of microcoding used by tk;e mkrosequencer, aswill be shown in the next chapter. Itiseasly
determined from a Value Trace with control step allocation information.

The second of these metrics, the total number of operators, provides a reative measure of die
complexity of the Value Trace. Thisisameasure of complexity because a design with alarge number
of operators is more complex and takes more time to process than one With_ a smaller number of
operators. While the dimination of a non-allocatable operator like a bit read may not improve die
performance of the design as measured by the parameters defined o far, it isimportant to note that
its dlimination’issignificant, if for no other reason than that subsequent processing of the vtbody win
befager dueto itsabsence. Theadditional metricsarethus:

* Number of control steps - The number of contraol seps in the Value Trace, after control
step allocation hasbeen performed.

* Number of operators- The number of operatorsin the Value Trace.

3.3. Conclusion

As part of this Mader's project, most of the metrics described in this chapter have been
implemented. The portion not implemented is the I nside knowledge® required to correctly apply
Leive's equations to the Value Trace, since a full characterization of this insde knowledge would
condtitute a working allocator. Nevertheless, the metrics implemented can provide a useful measure
of die results of the trandformations. Thiswill be shown in the next chapter, which consists of a scries

M S. Project Report Robert A, Walker

Toolsfor Evaluation Page 27

of large examples showing the use of the trandormations The metrics and variations on the

microcontroller discussed in this chapter will be used to evaluate the reaults.

M S. Project Report : Robert A. Walker

Design Examples ' Page 28

Chapter 4
Design Examples

One exampleismore valuable... than twenty preceptswritten in books.
' - Raobert Ascham, TheScholemaster

To evaluate die ussfulness of the transformations and metrics developed as part of this Mager's
project, four examples of different classes of transfor mations are selected and examined. In assgning
control steps to the designs, it is assumed that die design will be implemented as a digributed-syle '
TTL design with a controller based on the AM 2910 microsequencer. For each example, the results of
the trandormation as shown by die metrics of the previous chapter are given, and the design is
evaluated for both IFC and EFC microcontrollers. '

‘4.1. SELECT Factoring and Motion in the AM2903

The ISP description shown in ﬁigure4—1 and the VT diagram shown in Figure 4-2 is the function
calculation section of the Advanced Micro Devices AM2903 bit dice microprocessor, with the firg
branch simpliﬁedf‘. As can be seen in the figure, the second and third branches of the DECODE
satement are essentially the same, with the only difference being the computation involving R and
S. These two branches may be moved from this SELECT into a new one using SELECT factoring,
and the common oper ationsmoved below thisnew SELECT using downward SELECT motion. The
final VT diagram is shown in Figure 4-3, and the results of the transformations are summarized in
Table 4-L Appendices B.1 and B.2 contain a liing of the Value Trace before and after these

operationsare performed.

‘l‘his branch contains the decoding for multiplication, divisk” and normalization, but the full contents were not shown for
reasonsof smplicity. :

M.S. Project Report : Robert A. Walker

Design Examples Page 29

l'....‘.................‘...‘O‘.O...“‘......“..““........l..‘

SELECT :=
begin

eepC.Statee®
R<3:0>, ! R inputs to ALU
S<3:0> 1 S inputs to ALU

. *sExternal.State**

Cne>, ! Carry in)
Fed: 0>, ! Output from ALU
1<8:0> ! Instruction inputs

**Instruction.Execution®*{us}

exec :=

begin

DECODE I<4:1> =>
begi
"0 := no.op().
"1 :=F = ((S-R)-1)+Cn,
"2 := F s ((R-S8)-1) + Cn,
"3 :«= F = (R +S8) +Cn,
"4 := F =S + Cn,
“5 := F = (not S) + Cn,
"6 := F =R + Cn,
"7 := F = (not R) + Cn,
"8 := F =0,
"9 := F = (not R) and S, .
“A := F =R eqv S,
"8 := F =R xor S,
"C := F =R and S,
"D := F = not (R or §),
"E := F = not (R and S),
"F :=F=RorsS
end

end

end

l.‘.‘...".‘.....‘O‘.‘.......“.".‘.‘....‘.O..............‘....‘

Figure 4-1: Function Calculation in the AM2903 - The ISP Description

4.1.1. Interpreting the Resuits

As can be seen from the table, the maximum number of allocatable opcrators will decrease
somewhat. With a smart data-path allocator, the actual number of operators that will be allocated
hardware will probably not change. While this will depend on the design style and optimizing
capability of the allocator, most allocators will realize that operators common to all branches of a
SELECT can be implecmented with the samc piecc of hz;rdware, since only one of the branches will
be active at a time. In this case, the amount of hardware required will be the samc before and after
SELECT motion downward.

M.S. Project Report Robert A. Walker

Design Examples Page 30

K4:0- SFt on RS5 Cn
—_—— - —_—— — _——
SEL @_ B- f a |J_
- A4
—Y -
NOOP - PADO - PADO I

L b

¢ ¥
EN:H 1‘ --1 1 |--—_'--|_Ll—'

P

Figure4-2: Function Calculation Before Trangormation - A Partial VT Diagram

Using the criterion established in the last chapter for estimating the number of multiplexors, this
number will increase due to the addition of the new SELECT required by the SELECT factoring.
Becausethis new SELECT has only one output, die number of multiplexorswill increase by one (the
number of etimated multiplexorsis the number of outputs of SELECTSthat do not go to memories).

With the addition of the SELECT, the number of registers needed will also increase. Because the
sector input to the old SELECT win now be used asan input for two SELECTS aregiger will be
required to hold the value from die time it is computed until it isrequired for die second SELECT.
This extra regiger was not needed before because die value was used immediately after it was

M.S. Project Report Robert A. Walker

Desgn Examples

Page31

I K&:0> SR RS Cn
seL | | G‘] E PADO
- L

S

K4:0>

=g

il NS [S g

Figure4-3. Function Calculation After Trandformation- A Partial VT Diagram

computed, but win now be required because die value mugt be retained through die computationsin
and below the new SELECT.

The number of bindablc nodes will thus increased dightly due to the addition of the new

SELECT. This is because die number of multiplexors will increase and because die number of

M.S. Project Report Robert A. Walker

Design Examples ' Page 32

I ETC bontroller IFCODntroUer l
Before § After Change Before { After Change

MaxAlloc.Ops. 24 2| 2 -8.3% 24 2] -2 83% {
Reg. Est. 5 7 +2 +40.0% 5 7 +2 +40.0%
Mux.Est. 1 2 +1] +50.0% 1 2 +1[+50.0%
Bindabte Nodes 30 31 +1 +3.3% 30 31 +1 +3.3%

| Longest Path 5 7 4-2 +40.0% 4 5 +1 +25.0%
Major Path Width 4 4 +0 +0.0% 4 4 +0 +0.0%
Control Steps 35 35 +0 +0.0% 19 18 -1 *5.3%
Operators 42 39 -3 -7.1% 42 39 -3 -7.1%

Table4-1: Resultsof Sdect Factoring and Motion in the AM2903

regigers will increase. As mentioned earlier, this assumes that the data allocator is capable of
recognizing common operations in adjacent brandies of SELECTS and uses the same piece of
hardwarefor each. .

The length of the longest control path will increase for two reasons. The extra SELECT will be
added, and extra control steps will be required for it if an ETC controller is used. The number of
control geps will also increase with the shifting of control steps émong the SELECTS Before
optimizing, the longest path through the SELECT itsdlf will betwo sepsin length. After optimizing,
the longest path through the old SELECT will be only one step in length, but an additional step will
be required through the new SELECT, and ancther wiII-berequired for the operations moved out of
thenew SELECT. :

The number of control steps will remain approximatdy the same, for Smilar reasons. An extra
control sep will now be required by the SELECT if an EFC controller isused, and the total number
of control gepsfor the rest of the design will decrease by one. Thisis due to the replacement of two
control steps per branch prior to downward SELECT modam with one control step per branch and
one control step below the SELET after downward SELECT motion. If die branches had been
longer, thisdecrease would have been mor e pronounced.

The total number of operators will be reduced because of die replacement of multiple operators
above the SELECT with a single operator below the SELECT. Due to the addition of the new
SELECT, thetotal number of operatorswill also increase by one.

M.S. Prgject Report _ Robert A. Walker

Design Examples Pege 33

4.1.2. Comments onthe Results

Asenvisioned by Snow, SELECT factoring was atrar_msformation for breaking a complex SELECT
up into a number of smaller SELECTS, for facilitating SELECT motion, or for making other
transformations possible, and it had no negative side effects In the course of this evaluation, the
following negative side effects were discovered:

* The creation of a new SELECT will usualy require the addition of an extra register, so
that die old selector will now be available to both the old and the new SELECT. _

* For each output of the SELECT not going to a memory element, an extra multiplexor
may be required.)

 The longest control path and the total number of control steps will dways increase if an
ETC controller isto be used, because the SELECT itsalf will require anew control step.

* The number of bindable nodes will aso be increased by the addition of die new
SELECT. : '

From the results obtained in this section, it appears that the desirability of SELECT factoring and
SELECT moation depend both on data and control style of the design. The number of alocatable
operators is afected by the data alocator used and by the type of microcontroller used, and the
length of the control path and the number of control steps is affected by the microcontroller stI.e. It
also appears that SELECT motion by itsaf has the positive results of reducing the number of
operators and possibly the number of control steps, without having the negative side efects
associated with SELECT factoring. .

4.2. Vtbody Inline Expansion in the Intel 8080

The ISP description shown in Figure 4-4 is the instruction decoding section of the Intel 8080. The -
only instruction cal explicitly sho{1vn is that of die RRC instruction; the cals to instructions in die
other branches have been replaced by no-ops. Because the RRC subroutine is only called once, it
may be expanded inline and the old vtbody eliminated The results of this operation are shown in
Table4-1 The Vaue Trace before and after these operations are performed is given in Appendices
Cl and C2. Since dl of die instructions in die Intel 8080 are only cdled once, they may al be
expanded. Table 4-3 shows the resuilts of these expansions. The question marks (72 represent
information that is not available at tfds time, but which should become available when the work in

[Hitchcock 82] iscompleted.

MS. Project Report Robert A. Walker

Design Examples Page 34
ll....l.‘.‘l‘tf.o.t..li..-...t.....-.tﬂ'.tt.l..ltll"‘!‘t.tt.t...ﬂ

INLINE :-
begin

o PC State e+
pSW<7: 0>,

CYo ¢ ps«<0>,
A<T: 0>

oo |nstructi on'. Foraat e

| R<7: 0>,
group<l: 0> . * |R<T: 6>,
df 1e1d<2: 0> ¢ [R<5: 3>,
sflel d<2: 0> :¢ |R<2:0>

ee |nstruction. Execution e

Exec: -
begin
DECODE group >
. begin
0 :« DECODE sfieid «>
begin
[0:6] :¢ no.op(),
.7 :- DECODE dfieid ->
begin
[0,2:7] :- no.op();
1 .- RRC() 1 RRC instruction
end
end.
[1:3] :+ no.op()
end
end,
RRC: e
begin
CY » A<O> next
A- Asrr 1l
end
end

Figure4-4: Indruction Decodingin the Intel 8080

4.2.1. Interpreting the Results

Because the only operators affected by inline expanson are the CALL to die vtbody tq be
expanded and the LEAVE from this vtbody* the number of bindable nodes will not change. The
operators themsdves are not allocatable, being purdy flow contral ingructions, and no multiplexors

or regigerswill bediminated by their removal.

By eliminating-ihe CALL and the SELECT, two contro steps will be éiminated for an EFC

M S. Project Report ' Robert A. Walker

Design Examples ' Page35

_ -
I ETC Controller " IFCOantroUer
Before 7 After Change Before g After Change
| MaxAflocOps. 1 1 +0 4-0.0% 1 1 +0 4-0.0%
| Reg. Est. 7? 27 7. 7? 72 7 7? 4-039%
MuxEst. 6 6 0 -t-0.0% 6 6 4-0 4-0.0%
I Bindable Nodes 7? 7? 7? 7 7? 7? ? 4-039%
Longest Path 10 8 -2 +20.0% 6 5 -1 -16.6%
I Major Path Width 8 8 40 4-0.0% 8 8 4-0 +0.0%
I Control Steps 16 14 -2 -12.5% 9 8 -1 -11.1%
Operators 15 13 -2 -13.3% 15 13 -2 -13.3%
e S

Table4-2: Resultsaof Inline Expangon in the Abbreviated 8080

EFCController IFCODntroller
Before g After Change Before 1y After Change
Control Steps 542 390 *152 +28.0% 361 226 -135 -37.4%
Operators 730 578 -152 «20.8% 730 578 -152 -20.8%
_—

Table4-3: Resultsof Inline Expangon in the Full 8080

~ controller and onefor an IFC cbntroller. With the ETC controller, thiswill occur beaaus_eeach of the
‘two operators hasits own distinct control step before transformation, and these two control sepsare
eliminated. With the IFC contraller, although the CALL and LEAVE will not be required to each
have an unshared control sep sim;ily because they are flow control ingructions, the CALL will have
an unshared control step in this example because it is the only operator in its branch and can not
shareacontrol step with other operators. Thelength of the bngest control path will be reduced by 2
for the EFC controller and by 1 for the |FC controller for exactly the same reasons.

The total number of operators will always be reduced because of the dimination of die CALL to
the vtbody which isto be expanded inline, and die LEAVE at the end of thisvtbody.

M.S. Project Report ' Robert A. Walker

Design Examples Page 36

4.2.2. Comments on the Results

Although Snow listed a couple of beneficial results of vtbody inline expansion, he did not list the
reduction in the length of the longest control path, the number of control steps, and the number of
operators resulting from the dimination of CALLs and LEAVESwhen expanding inline all vtbodies
which are only called once. Many | SP descriptions, especially those of processors, have some sort of
indruction decoding loop which decodes the ingruction codes and calls sgparate subroutines to
perform the appropriate operation, so the inline expansion of these subroutines is not uncommon.
While it isampler to write (and much smpler to understand) a one-page ingruction decoding loop
which calls four pages of subroutines for the execution of the ingructions than it is to write a five
page loop which handlesall of this, the latter would be represented much more eflkiendy at the VT
level. The CMU-DA system isattempting to abstract away such biasesimposed on the design by the
desgner's programming gyle, and inline expanson may be used to convert the internal
representation of thefirst style into that of the second. In the Intd 8080, this reduction of the biases
imposed by the designer's coding style reduces the number of control steps, and thus the amount of
microcoderequired for implementation, by 28to 37 per cent

4.3. Loop Unwinding

The ISP description shown in Figure 4-5 isan example of a looping congtruct which executes the
subroutine ACTIONO three times. A VT diagram of the inner loop (containing the loop count
mechanism) isshown in Figure 4-6. Astheloop isunwound, the following occurs:

» The CALL totheinner loop from the main loop isexpanded inlinein the main-loop.

~ «The + operator now hasas inputs the constant zero (the initial value of COUNT) and the
congant one (theincrement), so constant folding may be applied.

« After this congant folding, the bit read following the + operator now has as inputs the
congant one (from the 4- operator) and the congtant zero (the fidd offst it isto read
from), so congtant folding may beapplied again.

« After thiscongtant folding, the LSS operator now has asinputs the congtant one (from the
bit read) and the congant 3 (the maximum loop count), so congant folding may be

applied again.

o After this congant folding, the SELECT operator has as its input the congant 1
(9gnifying TRUE), and congtant folding may be applied again.

« The SELECT is now eliminated, and all that remains of the expanded inner loop isacall
to ACTIONO, and a RESTART operator which redarts the loop with a new value for
COUNT. ‘

M S. Project Report Robert A. Walker

Design Examples Page 37

LOOP :-
begin

e Loop. State ee

Count XLoop. Count er <2: 0>

oo Setup oo
MIAMain.Loop :e
begin
Count * 0 next
L)
end

o \Nhat.V111. Be. Unwound e
| LMner. Loop :e

begin

ACTIOM) next

Count « Count + 1 next

1f Count Lss 3 >

restart IL

end
oo Exanple. OF. Action. To. Be. Performed e
ACTI OM Act Lon :-

begin

no. op

end

end

l SRR PR RN R RN RPN RR RN PR R RS AR RS RN R ARRF RN ANER RN NNRR N

Figure4-5: Loop tobeExecuted Three Times

At thispoint, the main loop is the same as before, with the addition of a call to ACTIONO and an
initial Ioob value of one. After two more applications of loop unwinding and congtant folding like
that above, the main loop consgs of three callsto ACTIONO. and the unused vtbody representing
the inner loop may be diminated. Because the results of trandormation are affected by the
parameters of the subroutine ACTIONO, the results are computed for short, medium, and long
vergons of this subroutine. For the short ACTIONO, the longest control path length is assumed to
be 5, the maximum number of bindable nodes 10, the number of operators 1S, and the number of

-control geps 10. For the medium ACTIONO, these numbers are doubled, and for the longest
ACTIONO, they aretripled. The Value Trace before and after these trangformations are performed
isgiven in AppendicesD.l and D.1

M S. Project Report ' Robert A. Walker

Design Examples ' ' Page38

COUNT

CALL +

— COUNT

LSS

SEL 1

L3

RES

=] T

Figure4-6: A VT Diagram of the Inner Loop Before Transformation

e _
EFCControfler IFCDsntroiter
Before g After Change Before | After Change
Bindable Nodes 13 10 -3 -23.1% 13 10 -3 -23.1%
Longest Path 35 19 *16 -45.7% 32 19 -13 -40.6%
I Major Path Width 3 3 +0 +0.0% 3 3 +0 +0.0%
[control steps 22 15 7 *313% 24 20 -4 | e16.7%
I Operators 25 20] 5§ -200% 25 20 5 | +20.0%

Table4-4: Results of Loop Unwinding - Short ACTION

M S. Project Report “ Robert A. Walker

Design Examples Page39

EFCController IFCODntroller
Before { After Change Before § After Change
Bindable Nodes 23 20 -3 -13.0% 23 20 -3 +13.0%
Longest Path 50 34 16 *32.0% 47 34 -13 -27.7%
Major Path Width 3 3 +0 +0.0% 3 3 +0 +0.0% I
Control Steps 32 25 o7 -21.9% 39 35 -4 -10.3% 4'
l Operators 40 35 5 -12.5% 20 | 35 5 -12.5% i

Table4-5: Reaultsof Loop Unwinding - Medium-ACTION

EFCController IFCODotroiler
Before 1 After Change Before § After Change
Bindable Nodes 33 30 -3 -9.1% 33 30 |- -3 -9.1%
Longest Path 65 49 -16 *24.6% 62 49 -13 -21.0%
Major Path Width 3 3 +0 --0.0% 3 3 «0 +0.0%
Control Steps 42 35 -7 -16.7% 54 50 -4 -7.4%
Operators 55 50 -5 -9.1% 55 50 -5.I -9.1% J

Table4-6: Resultsof Loop Unwinding - Long ACTION

4.3.1. Interpreting the Results

With file dimination of the + and LSS operators, the number of maximum alloeatable operators
will decrease. Unlike the previous examplesin this chapter, the number of operatorsin thisexample
that will require binding to hardware will decr ease because there are no other alloeatable operatorsin
the vtbody with which the hardware could be shared prior to optimizing. The data path allocator
currently under congruction by Kowalski [Kowalski 81] does aDow sharing of hardware between
vtbodies, so there might be a smaller decrease in the number of alloeatable operators when this
alocator isused.

The number of registers required will also decreased, dueto the dimination of the regiger used to
hold the value of COUNT after die bit read operator in the inner loop. This regiger is required to
hold this value after it is produced until it is needed by die RESTART operator, but is diminated

with theeliminatiqn ofthe Ioop count mechanism.

M S. Prgject Report Robert A. Walker

Design Examples Page 40

The number of bindablc nodes will décrease due to the decrease in allocatablc operators and the
decreasein regigersrequired. No multiplexorswill be diminated because the SELECT in the inner
loop hasno outputs. The decrease in the number of bindablc nodes will be due solely to the decrease
in allocatablc operatorsand regigers.

With the dimination of al the operators in the loop count mechanism and the amount of
repetitions of thisloop, theiength of the longest control path will be reduced consderably, aswill the
total humber of contral geps. The length of the longest contral path is also a function of the number
of timestheloop isrepeated, and will be decreased by alarger amount

Because all of the operatorsin the inner loop are diminated by the full unwinding process, the
number of operatorswill be decreasad by exactly that amount

4.3.2. Comments on the Results

Themethod of loop urwinding used in this project differs somewhat from that defined by Snowin
histheds. Asenvisoned by Snhow, loop unwinding conssts of splitting off a sparate vtbody for each
ingantiation of a loop, while in this Mader's project, loop unwinding condsts of expanding die

ingantiations inline. Snow's form may be converted into the form used in this project by inline
-expansion, and the fdrm used in this project may be converted into Snow's form by vtbody
formation. There are advantages and disadvantages to both forms. With the multiple vtbody form,
the major disadvantage is that new vtbodies mus be created, necesstating additional CALLs and
LEAVES and time involved with the procedure call. With this same form, the magjor advantage
occurswhen the action performed by the loop does not exist in a separate vtbody, but is reproduced
inline. In this case, unralling with the method used in this project results in multiple copies of die
same code reproduced inling, and a tradeoff between the number of operators diminated by die
removal of the loop count mechanism and the amount of operators duplicated by the inline
expansion of theloops. Loop unrolling by inline expanson should be used only when die number of
operatorsdiminated isgreater than die number of operatorsin the action to be performed.

MS. Project Report : Robert A. Walker

Design Examples ' Page 41

4.4. Redundant Operator Elimination and inline Expansion in the
AM2901

The ISP dexription shown in Appendix El is the description of the AM2901 bit dice
microprocessor. In five of the eight vtbodies resulting from the ISP-to-VT trandation, redundant
operator dimination may be performed, elimihating 7 bit read operators, 6 NOT operators 6 OR
operators, 3 AND operators, and 1 EQL operator. Because they are only called once, three of the
vtbodies (SOURCE, DEST, and EXEC) may be expanded inline. No figures are shown because
these trandormations are spread across five separate vibodies. The results of these operations are
summarized in Table4-7. The question marks (??) represent information that is not available at this
time, but which should become availabe when die work in [Hitchcock 82] iscompleted. Appendices
E.2 and E3 contain a liging of the Value Trace before and after these operations are performed.

EFCControUer' IFCC<xrtroUer
Before ¢ After Change Before p After Change
MaxAllocOps. 78 62 -16 -20.5% 78 62 *16 -20.5%
Reg.Est. 63 r> 7> 7? 63 7? Vs 7?
B Mux.Es* 16 167 +0 +0.0% 16- 16 0 +0.0%
Bindable Nodes 157 7? 7> 7? 157 7 e 7
Longest Path . 20 12 8 -40.0% 15 9 6 -40.0%
Control Steps 91 83 -8 -8.8% 62 56 -6 T -9.7%
Operators 163 134 «29 -17.8% 163 134 =29 -17.8%
- Only for vtbodies RUN, SOURCE, DEST, and EXEC -
i N I

Table4-7: Results of Optimizing the AM 2901

4.4.1. Interpreting the Results

Asa reault of the redundant operator eimination, the maximum number of allocatable operators
will decrease. This reduction does not include the dimination of redundant bi-t read operators
because bit reads are not allocatable operators. The number by which the allocatable operators will
decrease will probably be much less, and will depend on how well the data allocator being used

shar es har dwar e among redundant operators.

The longest path for the SOURCE, DEST, EXEC and RUN vtbodieswill be reduced by dieinline
expansion of the first three vtbodies into the last, which will result in the eimination of three sets of

M.S. Project Report Robert A. Walker

Design Examples Page 42

CALLs and LEAVEs As in the example in Section 42, the results will vary with the type of
controller used, although the per centage of improvement will remain the same for thisexample.

Thetatal number of control steps will be reduced. Thisreduction has two components. part of it
is because of the dimination of the arithmetic and logical operators during the redundant operator
elimination, and part is due to the dimination of the CALLs and LEAVEs during the inline
expanson. Inthe firg case, the reduction will come about due to the reduction of all operatorsother
than bit read operators. ‘ .

The total number of operators will also be produced, because of both the dimination of.the
arithmetic and logical operatorsaswdl asthe dimination of the CALLsand LEAVES. It will alsobe
reduced by the dimination of the bit reads operators.

4.4.2. Comments on the Results

Redundant operator dimination remains much as originally defined by Snhow, with potential for
reduction in both the number of control steps as wel as the amount of hardware required for
implementation. The degree of benefit obtained ffom its use is heavily affected by the data style of
the design, and particularly by the individual data path alocator. It should alwaysbe performed, asit

will result in areduction in die complexity of the Value Traceby the elimination of operators.

4.5. Conclusion

Aspart of this Mager's project, design exampleswer e chosen ascandidates for transformation, and
evaluated before and after these trandfor mations were performed. From this evaluation process, new
information was derived about the rdationship between the trandormations and the data and control
gyle of the design, effécts were noted that were not catalogued by Snow, and the metrics developed
earlier were shown to be useful in measuring changesin the design. Thisinformation will be usgful
for providing heurigticsfor aiding the desgner in choosing what transformationsto apply and when,
and provides new questions regarding die role of trandformations in the CMU-DA sysem. These
Issuesand other swill bediscussed in the next chapter.

M S. Project Report Robert A. Walker

g - ——

Analyss of Results Page 43

| Chapter 5
Analysis of Results

In thislife we want nothing but facts, Sir, nothing but facts.
- Dickens, Hard Times

Facts, or what a man believesto be facts, are ddightful... Get your facts firgt, and then
" you can digort them asmuch asyou please.

- Mark Twain

After evaluating a number of design examples, die design space resulting from die trandformations
involved with these examples was éxplored. Aspart of thisexploration, general conclusonsbased on
the trandormations in question were drawn when possible. With the evaluation of this data, the
feadbility of automatkally guiding the process of choosing when to apply the various transfor mations
wasalso explored. Theseissuesareaddressed in thischapter.

5.1. Exploring the Design Space

Once the metrics described in Chapter 3 have been used to find the necessary parameers it is
possible to use Leve s equations[L eive 81] asdescribed in Section 3.2.1.1 to characterize the design
space of the final design. Plots of this design gpace for the SELECT factoring/motion example of
Section 4.1 and the loop unwinding example of Section 4.3 are shown in the following sections.

For these same examples, plots are also shown of the tradeoff between the number of bindable
nodes and the number of contral stéps The number of bindable nodes provides a measure of die
amount of hardware operators required in the design, and the number of control steps provides a
measure of the amount of microcode required by die controller, so these plots might be viewed as

M.S. Project Report ' Raobert A. Walker

Analysis of Results ' Page 44

showing the tradeoffs between -implementing a part of the design in microcode firmware and

implementing this sme part of thedesign in hardware

In all of these plots, the symbol " 0" represents the original, unoptimized design, and the symbal
T the final desgn. All other symbols represent the intermediate desgns most of these are
represented by M+, but intermediate d&signsdfspecial interest are represented by integers for ease
of reference. It ispossible for more than one gep in the design to be represented by the same point,

asmultiple gepsin the trandormation process might have the same performance char acterigics

In order to more fully characterize the design space reulting from the trandformations, the results
ofthework in this Magter's project are compared to earlier work by Barbacd and Siewiorek [Barbaca
75]. Although this earlier work was of a somewhat different nature, there are enough parallds and

contragsinvolved to warrant discussion.
«

5.1.1. SELECT Factoring and Motion «

Figures 5-1 and 5-2 are the L eive design space plots showing the perfor mance changes during the
trandormation of the SELECT factoring/motion example from Section 4.1 (with EFC controller).
Beginning at point "O", cod, power .cc')nsumption, and delay are’increased subgtantially by the
SELECT factoring, resulting in the performance shown by point T\ As the bit read and PLUS
operators are moved bdow the SELECT, power consumption and cost worsen, and dday improves,
‘reaching the performance shown by point "2". SELECT motion is then applied to the PADO and
MINUS operators, and power consumption and cost improve while delay remainsconstant, resulting
in the performance shown by point " F*. The points of the design spacein Figure5-1 fall in agraight
line because L eive spredictorsrdate both the cost and the power consumption directly to the number
of bindable nodes and the width of the major data path. If the cost and power consumption could
have been determined from afinal design these points would not have fallen in such a graight line, as
-die cogt and power consumption would vary for die individual types of hardware operators. Leive's
predictors necessarily rdy on an " average' cost and power consumption per operatdr, and thus force

alinear digribution of pointsin the cost-power design space.

Figure 5-3 is a plot of the tradeoffs during the trandformation occurring between the number of
bindable nodesin the design and die number of control steps. Asin die previousexample, point " 1"
representsdie performance of die design after SELECT factoring isapplied, and point " 2" represents
die performance after SELECT motion has been applied to die bit read and PLUS operators. This

M S. Project Report | ~ Robert A. Walker

Analysis of Results ' Page 45

10000,

9800}

9400}
- 9200}
9000} F

8800}

Power Consumption (in MilliWatts)

8600 A R .) R
160 . 165 170 175 180 185
Cost (in Dollars)

Figure 5-1: Select Factoring and Motion - Cost vs. Power Tradeoffs

NN
8§38
-
+

Delay (in Nanoseconds)
-l

ﬂa‘
g 8

140}

130I o g 2 2 2 2
160 165 170 175 180 185
Cost (in Dollars)

Figure 52: Select Factoring and Motion - Cost vs. Delay Tradcoffs

plot is similar in shape to that of Figure 5-2 (Cost vs. Dela)"). because the values being plotted in each
are related. Those values on the abscissas of the graphs, number of bindable nodes and cost, are
related by Leive’s predictors and are directly proportional to each other. The values on the ordinates,
the number of control steps and the delay, are related in the sense that both are measurcs of time.

M.S. Project Report Robert A. Walker

Analysis of Results Page 46

q g

Nu= rvof Q> Steps
w
()]

w
a1
o
-
+
N

34 A A . " . :

- 29 30 31 32 33 34 35
Number of Bindable Nodes

Figure5-3: Select Factoring and Motion - Bindable Nodesvs. Control Steps

The number of contral steps is the total number of discrete time steps through which the controller
will pass at some point, and die dday is the actual execution dday of the sygem. The two are not

directly proportional because in execution a sngle path may be traver sed morethan once, increasng
- the dday but not the amount of control seps.

As dated in Section 4.L2, SELECT -factoring by itself has aimost all negative effects, with the
exception of allowing SELECT motion, and SELECT motion coupled with SELECT factoring may
not improve the design. In this example, SELECT factoring causes a rdatively large decrease in
performance (from point " O" to point "1"), and SELECT motion does improve the design (from
point™r to point T"), although not enough to overcome the decrease in performance caused by the
SELECT factoring. As seen in the figures, this example of SELECT factoring/mation resultsin the
cogt of the design being increased by 3%, the dday by 41%, and the power consumption by 3%, 0 it
would nat pay to perform this trandormation unlessit is part of a larger set qftrana‘ormations This
view of SELECT factoring/mation is in conflict with Snow's belief that SELECT factoring has no
harmful side effects.

MS. Project Report ' Robert A. Walker

Analysis of Results ' Page47

5.1.2. Loop Unwinding

The Lcive design space plots shown in' Figures 54 and 55 arc those of the loop unwinding
example from Section 4.3 (with ETC controller and short ACTION). The performance of the
original design begins at point "O", and immediatdy falls to that of point "1" as the loop is
expanded Congant folding isapplied, and performance improves, moving downward and to the |eft
on the plats. It eventually resultsin the same cogt asthe original design, but with more dday (at this
point, the design is the same as before, with the exception of a different constant going to the next
ingantiation of theloop and an extra CALL to the action being performed). Astheloop isexpanded
once mor e, the performance of the design isagain at the point shown by " 1" in Figure 5-4, and at the
point shown by "2" in Figure 55. Once more, cost, power consumption, and delay improve as
congant folding is performed, athough not surpasing that of the original design. The fina
expangon of the loops resultsin point " 1" in Figure 54 and point " 3" in Figure 5-5, and congtant
folding improves the performance as before. When this final unwinding is complete, the vtbody
containing the loop count mechaniam is no longer needed and may be diminated, resulting in the
dramatic improvement shown by point * P. Asseen in the figures, thisloop unwinding resultsin a
23% improvement in cost and power consumption, and a46% decreasein delay.

-, 3600

it
-

g 340
-+
IESZOO .
£.3000F Co*
£
9 0
A2800F
ks 2600
£
&2400¢
L]
% 2200), -
£ oo
ZOO A 2 ' 2 1
40 45 50 55 60 65
Cost(InDallars)

—

Figure5-4: Loop Unwinding - Cogt vs. Power Tradeoffs

The plot of die number of bindable nodes versus the number of control steps is shown in Figure

5-6, with paints" 1", "2",and " 3" representing the same intermediate designsasin Figure5-1 Asin .

M S. Project Report Raobert A. Walker

Analysis of Results Page48

n00

1000¢

O H+++ -
++4
+++

b=t N

anosegw

900}
800}
& 700

60

SO E " L i A '
40 . 45 SO 55 60 65

Cost (in Dollars)

Figure5-5: Loop Unwinding - Cogst vs. Delay Tradeoffs

the previous example, it issimilar to the plot of cost versus delay, and also shows the benefits of loop
unwinding.

30, 3
+ + 2
I_ + * + 1
+ * *
+
Q 24}
- +
%22} 0
18}
16} F
14

9 10 11 12 13 14 15 16
NumberofBindableNodes

Figure5-6: Loop Unwinding - Bindable Nodesvs. Control Steps

M S. Project Report ‘Robert A. Walker

Analyss of Results ' Page 49

5.1.3. Comparison with Barbacci and Siewiorek's Work

In the firg generation of die CMU-DA system, Barbacd and Sicwiorck [Barbacd 75] explored the
tradeoffs involved between serial and paralld implementations of sections of a design. A program
called EXPL [Barbacd 73] was written which took the output of the ISPS compiler and a set of
user-pecified condraints and generated a behavioral graph. It then performed various serial-to-
parald and parallel-to—seriél conversions, and allocated hardware for each of the resulting designs.
The reaults of this allocation, along with a smple set of heurigics, were used to guide the next
iteration of the procedure‘ No trandormations of the sort used in thisMagter's project were applied,
as it was fdt by Barbacd and Scwiorck that these type of trandormations were best left to the
individual technology-dependent allocators in use. With this sysem, Barbacd and Sewiorek
achieved time savings ranging between 10 and 40 per cent, and a cor responding cost increase between

1 and 160 per cent

It isinteregting to explore the implications of these findings, and to compare ther work to the work
done as part of thisMagter'sproject Although both of these projects are concerned with altering die
implementation of the desgn while maintaining the behavior, two entirdy different methods of
approach to the trandormation process are used. The wark done by Barbacd was intended to
explor e the tradeoffs involved with making a desgn more serial or more paralld, and improved one

' performance factor at thecost of another. The work donein this project was with a different type of
transformation; it avoided entirdy the serial-paralle tradeoffs’, and attempted to improve one or
mor e performance factors while maintaining the gatus quo of the others. Adde from the different
views of this trandformation process, other differences between Barbacd and Sewiorek's sysem and
the current CM U-DA system include:

* The role of the ISP description was different The current generation of the CMU-DA
gysem treststhe | SP description solely asa behavioral description of the design. Barbacd
and Sewiorek's sygem did use the ISP decription as a behavioral description, but this

system also used the ISP description as an initial specification of the hardware dements
involved, often mapping | SP variables directly into hardware sorage dements.

» The design syles were different The current generation of the CM U-DA sysem will be
capable of generating digributed-syle designs and bus-style designs when the allocators
currently under congtruction are completed. Barbacd and Siewiorek'ssysem used avery
sylized type of design, with all data operators and operands connected to a bus. With
thissystem, die amount of concurrency in the design waslimited by the number of buses.

sI n thecurrent CMU-DA wsterﬁ, the serial-paralld tradeoffsare decided by thecontrol step and data path allocators.

MS. Project Report : Robert A. Walker

Analysis of Results ' Page SO

* The data allocation methods were different The current generation of the CMU-DA
system will be capable of allocation in many ways, and is limited only by the allocation -
algorithms implemented by the designers of the allocators. Barbacci and Siewiorek's
system was much more restricted, using a set of templatesto specify the regiser-transfer
level operationsto be performed for each data operation in the I SP language.

» Barbacc and Siewiorek's system was a completed system, whereas the current CMU-DA
system is not yet completed. Any evaluation of the results of the transformations given in
thisMaster's project can only be estimated, since the final design can not yet be generated
for analysis. Barbacci and Siewiorek not only had finished designs from which to work,
but also performed more detailed analysis of the results. Asan example of this analysis,
ther calculations for the execution times of the designs were much more precise,
including such factors as the probability of executing a particular path in a multi-way
branch.

Although there were differences between these two systems and the differences between the types
of transformations used, the two systems produced improvements that were similar in scope. An
important difference between the two systems is that Barbacci and Siewiorek's system was truly
exploring tradeoff$* and would improve one factor at the cost of another, while the system
implemented for thisproject seldom worsened die other factorsin thismanner.

5.2. Guiding the transformation Process

One of die goals of this Mader's project was to explore the possibility of automatically or semi-
automatically guiding die transformation process, based on information determined in the course of
this project as to the nature of the transformations. Some of the problems involved with this
guidance were explored, and some work was done in implementing automatic and semi-automatic
guides. Thissection discusses these problemsand the resulting guides.

5.2.1. Problems Associated with Iterative Transformation and Allocation

As f)reviously envisioned, die optimizer, control step allocator, and data allocator of the CMU-DA
system were to be independent functions of the system, with die optimizer performing die
transformations discussed in this report and acting in conjunction with the control step allocator /
data allocator pair. It washoped that there could be an iterative design process, with repeated use of
die optimizer and allocators in an iterative manner. |f this had been possible die optimizer would
have had full accessto the control step and data path allocation data, and could have used thisdata to
guide the transformation process. There were a number of previoudy unforseen problems which
hindered thisiterativeuse.

MS. Project Report Robert A. Walker

Analysis of Results Page S

5.11.1. Presarvation of Allocation Information while Optimizing

In order to use the optimizer and the two allocators in any sequence, there must be some method
of preserving the control sep allocation and data allocation information through the application of
the optimizing trandormations. Because this control gep information and the hardware data
gdructures required for data allocation were not part of the Value Trace when it was conceived by
Snow, he did not explore these issues. The examples beow show the problems involved with the
preservatioh of this information.

In performing condant folding, a single operator, usually arithmetic or logical in nature, is
diminated and is replaced with a congant value (see Section 12.1). Ifthisisthe only operator that
usesthe control step of which it isa part, the control step allocation may be preserved, because the
dimination of acontrol step smply implies decrementing the control step number of all those control
deps larger than the current one* If more than one operator uses the same contral step as this
operator, die dimination of this operator may decrease the efficiency of the control sep " packing*®
If hardware is allocated for this operator, the dimination of the operator invalidates the data-path
alocation asxociated with it While i-t would be possible to smply deallocate this operator, this
solution does not condder any decisons made which led to its allocation, and may cause
inconsgenciesin the allocation. If no hardware is aII&)caIed for this operator, the allocation is ill
valid. :

In performing redundant operator eimination, two operators of the same type are replaced with a
single operator (see Section 222). If the control seps for the two operators are the same, the
resulting single operator can be assigned these same control steps, and the contr(;I gep allocation
pressrved If, as is more likey, the two operators have different control steps, die action to be
performed is more difficult The smples solution would be to assign die new operator the control
sepsof one of the original operators, and decrement the control sep number of other control gepsas -
necessary to fin up die " hal€' left by the dimination of those control steps associated with the other
original operator. Thisis not entirdy graightforward, because die choice of which control steps to
retain and which to diminate depends on the algorithm used by die control step allocator, and should
be made by thisallocator. If hardware is allocated for both of the original operators, dimination of
one of these operators will invalidate die hardware allocation as in the congant folding example
above. Ifhardware isallocated for only one operator, the resulting single operator could receive this
hardware allocation, and the allocation preserved. If no hardware is allocated at all, die allocation is
asopreserved

MS. Project Report Robert A. Walker

Analyds of Reaults ' Page 52

The problems above are representative of those involved with trying to preserve alocation
information through the trandormation process. While it may be possble tb presrve this
information in somecases, it isnot possbleto preserveit in others, epecially in accordance with the
original allocation algorithms. It appears that, with our current views on the role of the optimizer in
the CM U-DA system, transformation must be completed beforeallocation is begun, unlessthe whole
allocation process is to be repeated after every trandormation. Further discusson on this subject,
and aproposal for anew role for the global optimizer, will be given in Section 622.

5.11.1 Availability of Data for Transformation Guidance

In order to guide the trandormation process, certain data mug be provided. In terms of the
metrics discussed in Chapter 2, the computation of the regiser esimate, the length of the longest
control path, and the number of control geps all depend on the reaults of the control step allocation.
While the number of bindable nodes (and its individual components), the Iengtﬁ of the longest
contral path, and themajor data path width are currently being esimated from the Value Traceleved,
these should be determined from the completey allocated path graph, as discussed in Section 32.12.
In keeping with the viewsestablished in the last section, that trangormation should take place before
control step and data path allocation, the derivation of this information ffom the Value Trace level
while trandormation is being performed is not possible. Any guidance of the transformation process
" must be done without Ac benefit of this data. Section 622 also raises these issues.

5.2.2. Current Guides for Transformation

To explore the feaghility of implementing guides for the transformation process, a number of
manual or semi-automatic guides and automatic guides were implemented. All of these guides use
information directly available at the Value Trace level before control sep and data path allocation
have been performed. The semi-automatic guidesare used to search the entire current vtbody for the
applicability of particular transormations, which are then performed manually. The automatic
guides are used to automatically perform this search, applying the tr_ansformation wherever

appropriate.

M S. Project Report : _ Robert A. Walker

Analysis of Results ‘ Page 53
5.2.2.1. Manual or Semi-Aut;bmatic Guides

The manual or semi-automatic commands implemented as part of this Master’s project arc all
commands which look for the applicability of certain transformations on individual vtbodies or
groups of vtbodies, and print out the appropriate information so the designer can manually perform
the transformation if he wishes. Specific commands implemented arc as follows:

e Look for constant folding - Searches the current vtbody for all applications of constant

folding, and prints out a list of the operator numbers and operation type for all those
activitics to which constant folding may be applied.

e Look for redundant operator elimination - Searches the current vtbody for all
applications of redundant operator elimination for pairs of operators, and prints out a list
of the opcrators numbers and opcration type for all those activities to which redundant
opcrator elimination may be applied.

o Look for dead vtbody elimination - Searches the Value Trace as a whole for all vtbodies
which are not referenced by any other vtbodies and which are not explicitly declared as
the MAIN vtbody, and prints out a list of those vtbodies as being candidates for dead
vtbody elimination.

o Look for downward SELECT motion - Searches the current vtbody for all applications of
downward SELECT motion, and prints out a list of the numbers of the SELECTs
involved and the output of each SELECT into which the operator will be moved.

5.2.2.2. Automatic

To explore the possﬂailitiés of automatically guiding the transformation process, one command was
implemented to automatically perform vtbody inline expansion. This command is conditional in that
it expands inline all vtbodies which are called only once. The command works as follows:

o All vtbodics in the Value Trace are scanned.

o If the vtbody is called more than once, it is not a candidate for expansion.

o If the vtbody is RESTARTed from any vtbody, it is not a candidate for expansion. This is
duc to the lack of any sort of labeling mechanism in the Value Trace environment. If this
vtbody were expanded inline, there would no longer be any way to refer to the point

which was the beginning of the vtbody before expansion, since the only labels inherent in
the CMU-DA system are the implicd labcls at the beginning of each vtbody.

M_S. Project Report Robert A. Walker

Analyss of Results Page 54

5.3. Conélusion

As part of this Magter's project, die design space of some of the examples from the preceding
chapter was explored, and the results of the transformations implemented for this project compared
with earlier work by Barbacd and Sicwiorek. The feagbhility of semi-automatic and automatic
guidance of the trandormation process was explored, and problems which would hinder this
guidance evaluated A small number of semi-automatic and automatic guides were implemented
which were not affected by these problems. _ ' L

M S. Project Report Robert A. Walker

Synopsisand Future Work Page 55

| Chapter 6
Synopsis and Future Work

Remember this also, and be well persuaded of itstruth. The future is not in the hands
of Fate, butinours.

- Jules Juss=rand

In"order to provide a concise ummary of the work performed in thié Made'sproject, a synopsisis
presented in thefirg hal'fofthisd”lapter. Since the wort: donein thisproject has pointed out some of
the fallaciesin role of the optimizer as originally defined by Show and McFarland, a new role for the
optimizer and a new organization for the upper level of die CMU-D A sygem is propbsed. Thisnew
_ roleand organization isdiscu-ssed in the second half of this chapter.

6.1. Synopsis and Conclusions

In the course of this Mader's project, a number of rdated areas in the high level design process
wereexplored. An software package wasimplemented to perform transormationsat the Value Trace
behavioral level. A sat of metrics to evaluate the reaults of these tranformations on the performance
of die final design were designed and implemented. These transformations and metrics were written
in the C programming language [Kernighan 78], and comprise some 6000 lines of code. After these
packages were written, a number of design examples were chosen and evaluated in an attempt to
more fully characterize the effects of the transformations on the design in progress. The feasibility of
automatically guiding the transormation process was explored, and a ssveral semi-automatic and

automatic guidesimplemented

The trandormation package which was congructed implemented the transformations described in
Chapter 2 of thisreport, most of which were described earlier by Snow in his Ph.D. thess[Show 78].
This transformation package was an interactive, menu-driven sysem which fits into the framework

M.S. Project Report : ' Robert A. Walker

Synopsisand Future Work - Page 56

for the CMU-DA sygem describéd in [Gatcnby 81] as a ssparate function, and comprises the bulk of
the codewritten for this project In some cases, changes which have been made to the basic Sructure
of the Value Trace since it was defined by Show forced the re-cvaluation of the transformations.

A st of metrics was developed to perform the evaluations described in Chapter 3. In choosing
these metrics, the congraintson theindividual eementsof the CMU-DA sysem were examined, and
those appropriate for being varied to explore the results of die trandormations were determined. In
order to measure changesin the data part of die design, metrics were designed and implemented to
estimate those parameters required by Leive's predictors[Leve 81] to estimate the speed, cost, and
power consumption of the final design. To measure changes in the contral part of the design, two
different types of microcontrollers were examined, and examplés in subsequent chapters were
evaluated for each of these controllers. For those metrics which were not already computed by the
CMU-DA sygtem, commandswer e added to the transfor mation mode packageto do so.

Some work was also done in exploring the feasbility of automatically or semi-automatically
guiding the transformation process. Since part of this process included the gathering of datafrom die -
control step allocation and the data path allocator, the problems involved with an iterative
transformation and allocation process were explored, and it was determined that, with the current
view of die system, this iterative process-did not work. Without this infonnation there was no longer
agreat deal of infonnation to-guide the trandormation process, but a small number of commands
‘wereimplemented based on the infonnation available at the unallocated Value Tracelevel

In addition to the coding and implementation, the following new inf(_)Hnation was discovered in

the cour se of this project:

* ELECT factoring has many negative sde-effects, none of which were catalogued by
Snow. '

» The desrability of SELECT factoring/motion depends largdy on the data and control
dyle of the design, especially the latter.

* Inline expansion can be used to reduce biases imposed on the design by the designer's
coding style, and to reduce the amount of delay in the design.

 Loop unwinding can also be done through inline expansion, and can be converted from
thisform into Snow'sform through vtbody formation.

* The reaults of the types of transformations implemented in this project are smilar in
rangeto the earlier work by Barbacc and Siewiorek.

MS. Project Report Robert A. Walker

Synopsisand Future Work Page 57

e In many cases, it is impossible to preserve control step and data path alocation data
during the transformation process, especidly if it is desired to remain consistent with the
allocation algorithms.

* |f the iterative transformation/allocation process is not alowed because of the preceding
point, there is no control step or data path information available at the time of
transformation to guide the transformation process.

6.2. Future Work

In die course of this Master's project, new information has been discovered about the relationship
between the transformations at the Vaue Trace level and the other levels in the CMU-DA g-/stem,
particularly the alocation levels. The lack of information from these other levels has made the
guidance of the transformations more difficult that previoudy imagined, and has raised questions
about the role of the Global Optimizer in the CMU-DA environment Previous views on the role of
the Global Optimizer are discussed in the next section, and are followed by aproposal for anew view
of its role and a new organization of the upper level of the CMU-DA system.

6.2.1. Views on the Global Optimizer

In the past, it has been envisioned that one of the elements of the upper-level of die CMU-DA
system would be a Global Optimizer. This Global Optimizer would be responsible for the 1SP-to-VT
trandation, as well as die execution of any optimizing transformations. It was originaly conceived by
Snow [Snow 78], and its role was later expanded by McFariand [McFarland 78]. It wasthis definition
of the Global Optimizer which was used as the basis for this project '

6.2.1.1. Snow'sViews

In hisPh.D. thesis[Snow 78], Snow envisioned the upper level of the CMU-DA system existing as
shown in Figure 6-1. The major component at this level is die Global Optimizer, which he saw
congisting of both an I1SP-to-VT trandator and a package to perform die transformations which he
defined. The output of this component was a Vaue Trace which was optimal with respect to die
designer's criteria. It was only after this transformation was performed that control steps were
assigned, and data path allocation started. With this straight line of execution, it was not possible for
the Global Optimizer to properly evaluate die applicability of those transformations which were
conditional in nature (Le., those which involve a tradeoff between two performance factors). Snow's

solution to this problem was to always perform the transformations, even if the transformation might

M S. Project Report : Robert A. Walker

Synopsisand Future Work Page 58

add extra operators or control steps to the design. He expected the partitioncr and data path allocator
to detect this anomaly and inform the global optimizer so that it "may repair the defect and flag it to
avoid redoing the damage in the future.”

ISPS Parse Tree I
Global
Optimizer
l l
Design Style '
Selector
y
¢ _ » Control Step
Allocator
' T
To Allocators To Allocators

Figure6-1: The Upper Level of the CM U-DA Systemas Envisioned by Snow

6.2.1.1 McFariand's Views

In hisMaster's thesis [McFarland 78], McFarland envisioned the top level of the CMU-DA system
exiging as shown in Flgure 6-1 With his addition of control information to the Vaue Trace, it
became possible to assign control steps directly to the VT, rather than having to do so on some
paralel structure. This alowed the control flow shown in the figure, with the unconditional
transformations performed, the Vaue Trace assigned control steps, and the control step information
used to provide information to the optimizer and guide it in the application of the conditional

MS. Project Report : Robert A. Walker

Synopsis and Future Work: Page 59

transformations®. In order to alow this guidance of the conditional transformations, McFarland
suggested that the Global Optimizer perform "preliminary” control step alocation, which would be
"improved by later stages of the design.”

ISPS Parse Tree

!

Unconditional
Optimizations

Specifications ,If Specifications
and and
Constramtsi Constralntsp

Control Step

A.IIocator
Measurements and
Design Style Selection Measurements
‘r
Conditional
H *___

Optimizations

¥ y¥
To Allctcators To Allctcators

Figure6-2: The Upper Leve of die CMU-DA System as Envisioned by McFarland

TI||s is essentially the gate of the CMU DA sysem at the present, athough not all of the guidance of the conditional
trandformations is mK unatif.

M.S. Project Report Robert A. Walker

Synopsisand Future Work Page 60

6.2.2. Should our View of the Global Optimizer be Changed?

6.111. Thelterative Design Process

In the CMU-DA sysem, a desrable characterigic, and one which is currently unavailable, isthe
ability to perform fully iterative design. With the current sysem it is not possible to move at will
between the five functions of design style sdection, optimization, metrics, control step allocation, and
data path allocation. The present assumption is that these functions will be used in a mogly
predefined order (with the exception of metrics),' and there is no feedback mechanigh to allow for

iterationsin thedesign.

If such a fully iterative design system could be developed, it would have a number of advantages.
These advantages would include the sharing of information between levels, and better exploration of
the design pace.

Each of the functions of die sysem could possibly benefit ffom information obtained at other
levels. Asseen before, it would be very dedrable for the trandformation package to have access to
control step information, asit could much better guide the trandformation process if this information
was available. It might also be possble for the daign syle sdlector to use information from die
alocation process to vary the desgn style, and it might be possible for the control step allocator- and
data path allocator to work togethé in an iterative fashion to explore serial-paralld tradeoffs smilar
to those examined by Barbacd and Siewiorek. -

In general, such afully iterative sysem should allow for better exploration of the design space. In
the current sysem, decisons made at one levd limit those made at lower levels, (e.g., design style
sdlection limits die choices made by the data path allocator). With the fully iterative sysem, this
would no longer true, asthere would be a"treg' of decisions, with decisons made at an upper leve
smply affecting Oat branch, and alternate choices being represented by die other branches. This
method of exploration, since it rﬁore fully covers the désign space, should also allow the better
realization of any congraintsimposed upon the sysem by die designer.

6222. A Proposal for the CMU-DA System

A proposal for a new view of die Global Optimizer, énd organization of die upper levd of die
CMU-DA sysgem asawhale, isshown in Figure 6-3. With diisorganization, die five packagesshown
" (dedgn style selection, optimization, metrics, control step allocation, data path allocation) are capable
of acting in arelated but independent manner. Each package may require information provided by

M S. Project Report Robert A. Walker

Synopsis and Future Work

Page 61

another package, as in -the case of the (;ptimization/mnsfonnation package requiring control step
allocation information, and each package should be consistent in its trcatment of the effects of the
other packages. For example, it is acceptable, and in fact necessary, for the data path allocator to

refuse to allocate hardwarc until control stcp allocation has been performed. As another example, the

optimizer must cither refuse to do transformations once control stcp and data path allocation is

performed, or some mecthod must be found to handle the problem of optimizing an allocated design

without changing the allocation strategy.

ISPS Parse Tree

Constraints

Design
Style Optimization
Selection |-

v

Metrics

A 4
Control Data
Step Path

Allocation Allocation

A 4
To Allocators

Figure 6-3: Proposed New Organization for the Uppei Level of the CMUA-DA System

M.S. Project Report

Robert A. Walker

Synopsisand FutureWark Page 62
6.123. Advantages of this Proposal

A major advantage to this proposed organization of the CMU-DA system would be the availability
of data for the guidance of the trandformations. As was discovered in die course of this Mage's
project, guidesfor the optimizaton process need information both from the control step and data path
allocators. Since this information (particularly the data path allocation information) is not available
with the current organization, the guides are limited to usng information from the unallocated Value
Trace, and thar ussfulness is limited. If both the control sep and data path information were
available, a wider varigty of guides could become available With the data path allocation
information, Leve's predictors could be applied, and transformations could be chosen with a
particular performance objectivein mind, asin increased throughput or lower cost With the control
sep allocation information, the feaghility of applying such conditional transformations as SELECT
factoring/motion could be predicted.

«

Another advantage to this proposal would be the potential for exploring serial-paralld tradeoffs
gmilar to thoseexplored by Barbaca and Sewiorek [Barbacd 75]. Whilethiswork was concentr ated
on one veay sylized form of data-path allocation, wark might be done exploring the tradeoffs
involved with other types of allocators. As a result of this exploration, the different types of
alocation might be more fully characterized, and some genera® conclusons on serial-paralle
tradeoffs derived. With both. this type of serid-parald trandormation and the transormations
implemented in this Mager's project, the design space could be more fully explored, and better
improvementsin performance might result

In the present generation of the CMU-DA system, there does not exist an automatic design style
sdector, or a data path allocator capable of allocation in a wide varigty of syles, but work was done
on this problem in. an earlier generation of the CMU-DA sysem. Thomas discussad the concept of
the Design Style Sdector in hisPh.D. thess[Thomas 77], and identified methods for choosing the
design syle. Lawson [Lawson 78] implemented this sysem as a Made's project, and added an
assumed control style for each data style. To implement this sort of Design Style Sdector in die
CMU-DA sysem would -require an iterative desgn sygem, as the information required by the

sdector must come from anumber of different areas. This information includes:

M.S. Project Report Robert A. Walker

Synopsisand FutureWork - Page 63

+ External condraints imposed on the performance and physical characterigtics of the
design by the designer.

« Database information on the performance characterigicsinherent in each design style.

» Measurements made from the VT leve, incuding such factors as degree of paralldiam
and intcrconncctivity, number of regigers, etc. The firs factor requires control step
information, and the second requires data path allocation information, o if this
information isto be usad by the design style sdlector, a fully iterative design sygem must
exist :

6.114. Problemswith this Proposa

There ill exists die problem discussed in Section 5.11.1, of trying to preserve allocation
information during die trandformation process. In a fully iterative sysem, it must be possible to
perform transfonnations at any point in the allocation process, so some solution to this problem must
be found. Thissolution might takeon one of the following forms:

* Both contraol sep allocation and data path allocation might be completely redone after
every sesson of optimizing.

* The optimizer might signal each allocator when it is doing something to render that
dlocator's work invalid, and that allocator can then be called after the trangormation
sesson tocompletely redoitsallocation. :

* Theallocators might be made " smarter” , and called as above when their work isrendered
invalid, but only redoing the portions of the allocation affected by the trandformations. -

In order to determine which of these solutionsto apply, some work needsto be done exploring die
feadhility of the third choice. If this choice is indeed possble to implement, it would be die most
efficient of aL If nat, the fird or second choice could be implemented, but might use subgantially

mor e computation time.

6.3. Conclusion

A concise ummary of the work performed as part of thisMader's project wasprovided. Since, in
die course of this project, views on die rede of die Global Optimizer have changed, the original views
on this component were presented, and a new view of die upper levd of the CMU-DA sysem
proposed.

M S. Project Report Robert A. Walke

