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1 I n t r o d u c t i o n 

In several previous papers ([3,4,5]), we have described a programming language called SML (State 
Machine Language) that provides a concise notation for specifying complicated finite state ma­
chines. Our language has many of the s tandard control structures found in modern high-level 
imperative programming languages. Programs in SML may be compiled into s tate transition ta­
bles tha t can be implemented in hardware as PALs, PL As, or ROMs. The state transition tables can 
also be used as input to a temporal logic verifier tha t allows various safety and liveness properties 
of the program, expressed in the temporal logic CTL, to be verified automatically. 

In this paper, we present an evolution of the SML language which we call compositional SML 
(or CSML), which a t t empts to address the issue of modularity in finite-state controller design. 
Although SML has a procedure mechanism, which allows a program segment to be inserted into 
the flow of control using call-by-name semantics, there is no construct which corresponds to the 
hardware designer's notion of a module—an encapsulated sub-system which runs concurrently with 
other subsystems, communicating with them over a well-defined interface. 

The importance of modularity from a design perspective is evident—it allows a large system to 
be broken down into a hierarchy of smaller modules which can be designed separately. However, 
there is another aspect of modularity which relates specifically to finite-state controllers. Any 
designer of finite-state controllers recognizes tha t finding the right decomposition of the state space 
into components will greatly reduce the complexity of the design (this is an aspect of the state 
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assignment problem). The reason is a phenomenon known as the state explosion problem—in a 
finite s ta te system composed of a number of concurrently executing processes, the number of states 
can grow geometrically with the number of processes in the system. Since finite-state controllers 
frequently coordinate a number of concurrent activities, it is important to be able to design them 
as systems of coordinating finite-state machines instead of as single, monolithic state machines. 

The state explosion problem has an important bearing on automatic verification of finite-state 
systems, since the complexity of verification is related to the number of states in a system. We 
use a model checker ([2,9]) to determine automatically the t ru th of CTL formulas with respect to 
a given finite s tate system. In practice the model checker can verify properties of state machines 
a t a rate of approximately 100 states/second. It has been successfully used to find subtle errors 
in a fairly large number of examples—including a DMA controller with more than 500 states and 
1300 transitions ([3,5,7]). In order to verify much larger systems, however, it is necessary to try 
to reduce the s tate space. If a system is composed of coordinating modules, techniques exist to 
accomplish this. One such technique makes use of a theorem called the interface rule. The interface 
rule states a set of conditions under which a module in a system of coordinating processes may be 
replaced by a reduced version called an interface process while still preserving the t ru th value of 
the formulas in the logic. 

To illustrate our new approach, we describe the design and verification of the controller for a 
simple CPU with decoupled access and execute units. We give the implementation of the controller 
in CSML and a formal specification (in CTL) of one module. We then describe the application of 
the interface rule to reduce the complexity of automatically verifying the design. In our example, 
we use the interface rule to reduce the number of states by approximately a factor of 6. 

Our paper is organized as follows. Section 2 describes the logic CTL and the interface rule. The 
SML language is described briefly in section 3, and the new language CSML is covered in section 4. 
Finally, section 5 describes the C P U example and the results of the model checking procedure. 

2 T h e logic 

The logic we use for formal specification is a branching-time temporal logic called CTL [8]. Formulas 
in C T L are built from atomic propositions ( the signals of the system), boolean connectives ( A , V , 
—> and ->), and temporal operators which are used to specify timing relationships. Each temporal 
operator consists of a quantifier (V or 3) and a modality ( F , G, X , or U). The quantifier indicates 
whether the operator applies to all computation paths , or whether it specifies the existence of a 
single pa th . The modalities denote the desired timing relationship along the paths and have the 
following meanings: 

i. F<p means t ha t <p is t rue a t some point in the future. 

ii. G<p means tha t <p holds in the present and a t all points in the future. 

iii. X<p means tha t <p is t rue a t the next s tate . 

iv. <plltl> means tha t tp holds a t some point in the future, and tha t until t ha t point, <p is true. 

As an example, we consider several C T L formulas and the relationships they express. 
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i. VG(req —• VFack) specifies that along every path, if the signal req occurs, then eventually 
ack occurs also. 

ii. ^3F(-*go A3X(go AVXdone)) says tha t there is no point where go occurs and where go must 
immediately be followed by done. 

iii. siG{send —• ^(sendllrcvd)) states that along every path, if send occurs, then rcvd must 
eventually occur and send must remain asserted until rcvd occurs. 

Given a finite s tate machine, the model checking program [2] can quickly determine whether 
a CTL formula is t rue or false. When a desired property does not hold, the model checker will 
also provide a counterexample if there is one. This counterexample can be of tremendous help in 
pinpointing the source of the problem. Additionally, the model checker allows the specification of 
fairness constraints. Fairness constraints are used to restrict the quantifiers in temporal operators 
to certain paths. This is often necessary when checking properties of systems which have external 
inputs; for example, in verifying our example CPU, one fairness constraint we specify is that when 
the CPU executes a memory read, the external memory system must eventually present the desired 
data . 

One problem with the using CTL and the model checker to verify a system with many compo­
nents is tha t the s tate explosion problem may give rise to finite state machines which exceed the 
capacity of the model checker. In order to deal with this problem, we can often use the interface 
rule to reduce the number of states. The idea is to form simple abstractions of the modules in the 
system and to use these abstractions when building a state graph for the model checker. Figure 1 
illustrates the principle. In this figure, P\ and Pi represent the components of the system we wish 
to reason about . The components are connected by a set of wires S. A\ and A 2 are interface 
processes (abstractions) of Pi and Pi. Intuitively, A\ represents everything P2 can observe about 
Pi via the wires S (and similarly for A 2 ) . The key point here is tha t A\ must be chosen so that 
it is equivalent (= ) to P\ on S in an appropriate sense. For the logic we are using, the ordinary 
notion of Moore machine equivalence is sufficient; therefore we can apply the s tandard algorithms 
for Moore machine minimization to obtain A\ and A 2 . The interface rule states that if: 

i. P\ = Ai on the set 5 , 

ii. <p is a CTL formula whose atomic propositions denote signals of Pi, and 

iii. <p is true in Ai \\ Pi ( the composition of Ai and P 2 ) , 

then <p is t rue in P i || P 2 . In a loosely coupled system, Ai will almost always have far fewer states 
than P i , and thus Ai || P2 will be much smaller than Pi || P 2 . Note tha t the interface rule can be 
extended to handle boolean combinations of CTL formulas in a straightforward manner. 

3 T h e S M L p r o g r a m m i n g l a n g u a g e 

Since the SML language forms the basis of our new language, we give a brief and informal description 
of it here. A full description is contained in [3]. Although SML was developed for specifying 
complicated finite s ta te machines, it has many of the s tandard control structures found in modern 
high-level imperative programming languages, including a while s ta tement , a conditional, a case 
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Ill A models P on these actions ^ 

Ai O O 
Figure 1: The interface rule 

31 at men t , and a parallel execution statement. There is even a simple mechanism for declaring non-
recursive procedures. However, the only da ta types allowed are booleans and fixed width integers. 
Thus , any program writ ten in SML has only a finite number of states and can be compiled into a 
s ta te transition table. 

A number of other languages have been proposed for specifying complicated finite s tate ma­
chines. Most of these including AMAZE, CUPL, and SLIM [12] represent s tate machines a t a 
very low level, and some even require an explicit description of the state-transition behavior of 
the machine being specified. Clearly, if the number of states is large, this can be a tedious and 
error-prone process. There has also been some work on high level languages for specifying state 
machines. Apparently, the first such language was developed by Parnas [11]. Two recent languages 
of this sort are Harel 's Statechar ts [10] and Berry's Esterel [1]. Esterel, in particular, has had a 
significant influence on the design of our language. Of all these languages, however, only SML 
allows various properties of the s ta te machine to be verified automatically. 

All SML programs represent synchronous circuits. At a clock transition, the program examines 
its input signals and changes its internal s tate and output signals accordingly. Since we are dealing 
with digital circuits where wires are either high or low, the basic da ta type is boolean. Each boolean 
variable my be declared to be either an input changed only by the external world bu t visible to the 
program, an ou tpu t changed only by the program but visible to the external world, or an internal 
changed and seen only by the program. The hardware implementation of boolean variables may 
also be declared to be either active high or active low. A U .H" or a . L " suffix on the variable name 
in its declaration determines which case applies. Internal non-negative integer variables are also 
provided bu t are not discussed in this brief survey of the language. 

An SML program has the following form: 

program (identifier); 
(declaration list) 
(s ta tement list) 

endprog 

where (identifier) is the name of the program, (declaration list) is a sequence of variable and 



procedure declarations separated by semicolons, and (statement list) is a sequence of statements 
separated by semicolons. We refer the reader to [3] for the exact syntax of variable and procedure 
declarations. 

The semantics of SML programs are different from most programming languages, since we are 
not only interested in what a statement does, but also how much time the statement takes to 
execute. The basic idea in SML is tha t computation is instantaneous, but changing a variable 
takes one clock cycle. When we refer to the "time" that a statement takes, we are referring to 
the execution time of the finite state machine. Hence, it is possible for computation to take no 
execution time since the computation is actually done at compile time. 

Boolean input variables cannot be assigned new values, since inputs are changed by the envi­
ronment only. Boolean output and boolean internal variables may be changed by: 

raise ((variable)) 
lower ((variable)) 
invert ((variable)) 

Each of these s tatements delays until the next clock transition, a t which time the value of (variable) 
will be changed. The raise s ta tement will assert (variable) (make it active), lower will negate it, 
and invert will force a change of value. 

There are two types of looping statements in SML: the while s ta tement and the loop s tatement. 
The while s ta tement has the following syntax: 

while (boolean expression) do loop 
(statement) 

endloop 

At the beginning of the while, the (boolean expression) is evaluated, and nothing is done (in zero 
time) if the expression is false. If it is t rue, (statement) is executed. If (statement) completes 
execution in no time, the while s ta tement delays until the next clock transition and then restarts 
the loop. If (statement) completes execution after some delay, the while s ta tement is immediately 
restarted. The exit s ta tement is used to j ump out of the smallest enclosing while or loop statement. 
We will not discuss the syntax and semantics of the loop s tatement, since its behavior is similar 
to the while. For essentially the same reason we will not discuss the conditional s tatement or the 
switch s ta tement . 

The parallel s ta tement provides a form of synchronous parallelism. This s ta tement has the form: 

parallel 
(s tatement 1) || 
(statement2) || 

endparallel 

Each s ta tement in the parallel examines the inputs and the current s ta te and determines what 
changes it should be make to the output s tate at the next clock transition. The semantics of the 
parallel s ta tement determine which of these changes are actually made. The rules are as follows. 
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i. If one or more of the s tatements executes a break, the parallel does nothing and the break 
causes a j ump to the statement following the parallel. 

ii. If none of the s ta tements tries to change a variable, the variable remains unchanged. 

iii. If exactly one s ta tement tries to change a variable, this change is made at the next clock 
transition. 

iv. If two or more s ta tements try to change a boolean variable and they all agree on the new 
value, this change is made at the next clock transition. 

v. If two or more s tatements try to change the same boolean variable and they do not agree on 
the new value, the result is undefined. 

The parallel terminates when all of the statements in the parallel have finished executing or a break 
or exit is executed. The exit s tatement was discussed previously. The effect of the break statement 
is to immediately j u m p out of the smallest enclosing switch or parallel s tatement . One of the major 
uses of the break s ta tement is to stop normal processing when an "interrupt" occurs. 

In some cases, the timing rules of SML prevent complicated relationships from being simply 
described without delaying for more than one clock cycle. To alleviate this problem, SML has a 
compress s ta tement of the form: 

compress (statement) endcompress 

The effect of the compress s ta tement is calculated as if variable assignment takes no time in 
(s ta tement) . Then, after delaying one clock cycle, the changes made by the compress s tatement 
actually take effect. 

Although our description of the language has been quite brief, it should be sufficient to under­
stand the example in the next section. The compilation of SML programs in to Moore Machines 
is described in more detail in [3]. Considerable effort has spent in making the compiler as fast and 
efficient as possible. The s ta te transition tables produced by the compiler may be implemented 
in hardware as PALs, PLAs, or ROMs. Various programs have been developed to make this last 
phase largely automat ic . For example, a post-processor is available tha t produces output which is 
compatible with the Berkeley VLSI design tools. 

4 C o m p o s i t i o n a l S M L 

4 . 1 L a n g u a g e i s s u e s for s y n c h r o n o u s finite-state m a c h i n e s 

In this section we describe the extensions we have made to SML in order to allow modular design. 
In defining the new language, we have a t tempted to address a number of issues relating to the design 
of modular digital systems, the most impor tant being concurrency and communication. In SML, 
the parallel s ta tement creates threads of control which run conceptually in parallel, even though 
they are compiled into a single sequential machine. This technique is quite useful for describing 
systems which control concurrent activities, in much the same way t h a t coroutines are useful in 
describing the function of an operating system. In order to create modular designs, however, we will 
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need to describe the interaction of subsystems which truly run in parallel This has an important 
bearing on our model of communication between processes. 

The means of communication between threads of control in the SML language is shared vari­
ables. Although this is often a straightforward way of conceptualizing systems, it has a number of 
drawbacks from the point of view of implementing modular systems. An obvious approach to the 
hardware implementation of shared variables between modules would be to assign a register for 
each shared variable, and a finite-state machine for each process. The difficulty with this approach 
is that , in any given clock cycle, any or all of the registers may be written or read. Thus, the 
complexity of the network interconnecting controllers and registers could quickly get out of hand. 
The problem with shared variables in a modular system is that , although they are conceptually 
simple, they do not correspond well to the the way communication occurs in digital systems. 

For this reason, modules in CSML communicate via signals. Each signal is in the output set 
of exactly one module, and in the input set of zero or more modules. A signal takes on a simple 
boolean value of 0 or 1 for each clock cycle. Although using signals instead of shared variables 
for coordination of processes can be conceptually more complex, it allows for a straightforward 
implementation of modular designs, and yields a mathematically simple composition rule which 
lends itself well to formal verification (as will be seen below). Shared variables are preserved in 
CSML as the means of communication between parallel threads of control within a module. 

4 .2 T h e C S M L p r o c e s s m o d e l 

In order to define the semantics of CSML, we present a formal model of coordinating processes. A 
process in this model is a Moore machine, which we define as a 6-tuple ( 7 , 0 , Q,?o ,^ ,0) where / is 
the input set, O is the output set, Q is the set of states, qo £ Q is the initial s tate, <f>: Q x 21 —• Q is 
the transition function, and 0 : Q —• 2° is the output function. The interpretation of this structure 
is as follows: if q € Q is the current s tate and t C / is the set input signals which are currently 
asserted, then the subset of outputs asserted by the machine is 9(q) and the next state is <f>(q,i). 

We define Pi || P 2 , the parallel composition of processes P i and P 2 , as follows. If Opx nOp 2 = 0, 
then 

I P M « (/ft - o f t) u - o f t ) 
Oft II ft = Oft U Oft 

9 f t 11 ft d = QPI x < ? f t 

tfOft|| ft * = ( ? 0 f t , ? O f t ) 

4>px 11 ft ( ( f t , 93), 0 d= (M (ft, (»' u 0 f t ( « ) ) n /ft), <t>Pi {q2, (i u 0 f t ( g x)) n lPl)) 

*ft||ft(ft>ft) d- *ft(ft) u*ft(ft)-

The intuitive interpretation of this definition is as follows. The input set of P x || P2 is the set 
of signals which are inputs of P i or P 2 , but not outputs of the other. The output set is the set 
of signals which are outputs of Pi or P2. For the obvious reason, we require tha t the output sets 
of Pi and P2 are disjoint (i.e., we don ' t allow connecting outputs to outputs) . A state of P x || P2 

is a s ta te of Pi combined with a s ta te of P2. The set of outputs of Pi || P2 which are asserted is 
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simply the union of those asserted by P i and Pi- To determine the next state, each component 
examines its inputs, both those which are inputs of the composition, and those which are outputs 
of the other component, and independently decides on its next state. The next state of Pi || Pi is 
then the combination of the next states of Pi and P 2 . 

We also define a restriction operator lout, which is used to hide outputs of a process. We define 
P l 0 U i S (read a P with outputs restricted to S") to be identical to P except tha t 

O P U I S D = o P n s 

» f u , 5 ( j ) = M * ) n s . 

4.3 C S M L s y n t a x a n d s e m a n t i c s 

We now describe the syntax and semantics of CSML. In addition to the s ta tements of the SML 
language, CSML has three s tatements which are used for defining and interconnecting modules: 
MODULE, DEFINE, and SYSTEM. The MODULE s ta tement is used to create a process. It 
takes the place of the program s ta tement in SML. Its syntax is 

MODULE ((input list) ; (output list)) 
(body) 

ENDMODULE. 

The input and output sets for the process are given by (input list) and (output list). The (body) 
of the MODULE sta tement has the same syntax and semantics as a program in the SML language, 
as described in section 3. The DEFINE s ta tement creates an abstract process from a concrete 
process and gives it a name. A separate name space is created for the process, and its input and 
output lists become formal parameter lists. The syntax of the DEFINE s ta tement is: 

DEFINE (name) (module) or 
DEFINE (name) (system) 

The SYSTEM s ta tement creates a process which is the parallel composition of two or more pro­

cesses. Its syntax is: 

SYSTEM (( input list) ; (output list)) 
(component)! 
x componen t ) 2 

(component) n 

ENDSYSTEM. 

where each (component) is either a MODULE s ta tement , another SYSTEM s tatement , or an 

instantiat ion of a definition, which has the form 

(name) ((actual input list) ; (actual output list)) 
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DEFINE Produce r MQDULE(request; acknowledge .produce) 
i n p u t r e q u e s t ; 
o u t p u t a cknowledge« fa l s e ; 

l o o p 
w h i l e ( ! r e q u e s t ) d o loop s k i p end loop ; 
r a i s e ( p r o d u c e ) ; l o w e r ( p r o d u c e ) ; 
r a i s e ( a c k n o w l e d g e ) ; 
w h i l e ( r e q u e s t ) d o loop s k i p end loop ; 
l ower (ac knowledge) 

end loop 
ENDMDDULE 

DEFINE Consumer MODULE(acknowledge; r e q u e s t , consume) 
i n p u t acknowledge; 
o u t p u t r e q u e s t " ! a l s e ; 

l o o p 
r a i s e ( r e q u e s t ) ; 
w h i l e ( ! a c k n o w l e d g e ) d o l o o p s k i p end loop ; 
r a i s e ( c o n s u m e ) ; lower (consume) ; 
l o w e r ( r e q u e s t ) ; 
wh i l e (acknowledge )do l o o p s k i p end loop 

end loop 
ENDMDDULE 

SYSTEM(;produc e , c onsume) 
Produe e r ( r e q ; ac k ,p roduc e ) 
Consumer(ack; r eq ,consume) 

ENDSYSTEM 

Figure 2: Producer-consumer program 

If the lat ter form is used, a concrete process is created from the named abstract process by substitu­
tion of actual parameters for formal parameters. Semantically, if the components of the SYSTEM 
s ta tement represent processes P i , P 2 , . . . , P n , then the meaning of the s tatement is: 

( P 1 | | P 2 | | . . . | | P n ) i o u t ( o u t p u t l i s t ) . 

Since inputs cannot be hidden, we require tha t the (input list) contains precisely the input set of 
^11| Pi || • • • II Pn- Figure 2 gives a simple example of a CSML program—a system composed of a 
producer module and a consumer module which synchronize using a four-phase handshake. 

9 



/ r e a d 

> writ 

a c c e s s u n i t 
c o n t r o l l e r 

MA 3 

MDB y 
N — — — r 

guan 
• BQP 

branch 

c o n t r o l s 

\ 7 
^knowledges ^ 

/ 

\ 

/ 

\ 
PC 

IDB 

> 

IDB 

> 

SP 

IDB 

> 

IDB 

> 
IQ 

IDB 

> 
IQ 

TS 
/ \ 

TS 

Figure 3: CPU block diagram 

5 A p p l i c a t i o n : a s i m p l e C P U 

To illustrate to the use of CSML to describe modular controllers, we present the detailed design 
and verification of the controller for a simple CPU. P a r t of the motivation for this exercise is to 
guage how effective our tools and methodologies would be in doing real digital designs. We have 
a t tempted to include enough detail so tha t the reader can judge how close our example CPU is in 
complexity to a real C P U , and yet not enough to be overwhelming. On a first reading, the reader 
might wish to skim subsections 5.1-5.4 to arrive at the conclusions in subsection 5.5. 

5 .1 A r c h i t e c t u r a l d e s c r i p t i o n 

A block diagram of the C P U is given in figure 3. The CPU is divided into two modules, the access 
unit (AU) and execute unit (EU), in order to increase its performance by carrying out memory 
accesses and instruction executions in parallel. The access uni t ' s function is to fetch instructions 
and store them in the instruction queue (IQ), and to maintain a cache of the top location of the stack 
in a special top-of-stack register (TS) . The execution unit 's function is to interpret instructions of 
the C P U ' s machine code (which it stack based). 

The machine instructions are 8 bits, and are packed two per 16 bit machine word. There are 
two addressing modes: stack, and immediate. In order to implement a useful C P U , we would also 
require, for example, direct and stack indirect modes. However, in order to simplify the design 
and exposition, and to avoid such complications as fetching words on non-word boundaries, we 
have not included them. There are three basic classes of instructions: control, one-operand, and 
two-operand. Instructions tha t take one operand specify an addressing mode for both source and 
destination. Instructions tha t take two operands specify bo th source addressing modes, and use 
stack mode implicitly for the destination. The control instructions (branch, call, and return) specify 
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Signal Function 
fetch PC +- PC+l {fetch = fetch-req A fetch-rdy) 

PC-MAB MAB (memory address bus) «— PC 
PC-IDB IDB (internal da ta bus) <— PC 
branch PC «- IDB 
push SP <— SP - \ (push = push-req A push-rdy) 
pop SP *— SP + 1 (pop — pop-req A pop-rdy) 

SP-MAB MAB «- SP 
MDB-IQ IQ — MDB 
IQ-IDB if P C is even, IDB «- 7 ( ? 8 _ 1 5 

if P C is odd, 7Z?S — IQ0_7 

TS-MDB MDB «- T5 
TS-IDB 

MDB-TS MDB 
IDB-TS TS <- /£>B 

Table 1: Access unit control signals 

Signal Function 
IDB-IR IR IDB0.7 

IDB-OPR1 OPR1 <- IDB 
IDB-OPR2 OPR2 i- IDB 
RES-IDB IDB RESULT (of ALU) 

Table 2: Execute unit control signals 

one of eight conditions codes and select either direct or program counter relative addressing. 

The access unit has four 16-bit registers: the program counter (PC) , stack pointer (SP), in­
struction queue (IQ) and top-of-stack register (TS) (see figure 3). The P C is equipped with an 
incrementer, and the SP with an incrementer/decrementer. The control signals for these registers 
and their functions are summarized in table 1. 

The execute unit has two 16-bit operand registers (OPR1 and OPR2) , an 8-bit instruction 
register (IR), a 3-bit condition code register (CCR), and a 16-bit ALU. There is a 16-bit internal 
da ta bus (IDB) by which da ta are communicated between the EU and AU. A block diagram of the 
ALU and the definition of its control signals are given in figure 4. The remaining control signals of 
the execution unit are summarized in table 2. 

The access and execute unit controllers communicate via three request signals, push-rcq, pop-req 
and fetch-req, three corresponding ready signads, push-rdy, pop-rdy and fetch-rdy, as well as the 
signal branch, which causes the P C to be loaded and the instruction queue to be flushed. The 
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Figure 4: ALU block diagram 

execution unit signals its intention to perform a push, pop or (instruction) fetch operation by 
asserting the appropriate request signal. If the ready signal is already asserted it proceeds, otherwise 
it waits for the ready signal to be asserted. 

The AU communicates with memory via two buses, the memory da ta bus (MDB) and the 
memory address bus (MAB), and via three control signals: mem-rrf, mcm-wr and mem-ack. The 
protocol for a memory access is as follows. First , the AU asserts one of the memory control signals 
(mem-rd for a read, and mem-wr for a write), and simultaneously causes the appropriate address 
to be driven onto the MAB (using signals PC-MAB or SP-MAB). On a write, the AU drives the 
MDB with the contents of the top-of-stack register (using the signal TS-MDB). On a read, it loads 
the MDB da ta into one of its registers (using signals MDB-IQ or MDB-TS). It then waits for 
mem-ack to be asserted by the memory system, at which time it completes the access by lowering 
its control signals. 

5.2 I n f o r m a l s p e c i f i c a t i o n of c o n t r o l l e r s 

In this section, we give an informal specification for the controllers, from which we derive a design 
expressed in CSML. We will not give the entire CSML code (which is about five pages long), but 
will i l lustrate the following discussion with fragments from the code. Our informal specification 
will be used in subsection 5.4 to derive a formal specification in CTL for the access unit. 

5 . 2 1 . T h e a c c e s s u n i t c o n t r o l l e r 

We begin with the access unit controller. The AU controller has two functions, which it performs 
conceptually in parallel. The first is managing the instruction queue (IQ). The controller must 
keep track of the s ta tus of the IQ register, fetching a new instruction word when the IQ becomes 
empty, and flushing the queue when a branch occurs. Figure 5 gives an abstract s tate diagram 
tha t describes how the various operations coordinated by the AU controller affect the s ta tus of the 
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Figure 5: IQ manager state diagram 

IQ register. An IQ-load operation (loading the IQ register from the value in memory pointed to 
by the PC) results in the queue being full if the PC is even, or half full if the P C is odd, since 
memory is only read on word boundaries. A fetch of an instruction byte by the EU results in a 
full queue becoming half full, or a half full queue becoming empty. A branch always results in an 
empty queue. Note tha t the AU controller can determine when the IQ is half full by examining 
bit 0 of the P C , to see if it is even or odd. The CSML code in figure 6 computes the status of 
the IQ and stores it in a variable called I Q - s t . It also manages an output called f e t c h - r d y which 
signals to the EU tha t an instruction byte is ready in the queue. The code tha t actually carries 
out the IQ-load operation will be discussed later. 

The other function of the AU controller is to manage the top-of-stack cache. To do this, 
it distinguishes three states of the TS register: INVALID, VALID, and MODIFIED. The TS is 
in the VALID state when its contents match the value in memory pointed to by the SP, it is 
MODIFIED when the TS has been writ ten, but the contents have not yet been copied back to 
memory, and it is INVALID otherwise. In particular, we cannot perform a push operation when 
the TS is MODIFIED, because previously pushed data would be lost, and we cannot perform a 
pop operation when the TS is INVALID, because incorrect da ta would be read. Figure 7 gives an 
abstract s ta te diagram tha t describes the effects of AU controller operations. The CSML code in 
figure 8 computes the s ta tus of the TS and stores it in a variable called TS-s t . It also manages the 
outputs p u s h - r d y and p o p - r d y which signal to the EU that the TS register is ready for a push or 
pop operat ion respectively. 

Finally, we define a third parallel thread of control, which acts like a monitor, insuring the 
the TS manager and IQ manager do not a t t empt to access memory at the same time. Although 
monitors per se are not a feature CSML, it is easy to effect this simple monitor using shared 
variables within a module. It would also have been possible to make the TS and IQ managers 
separate modules and have them communicate with a separate arbiter module using signals, but 
the resulting program would have been more difficult to understand. The monitor thread waits in 
a loop for either the IQ to become E M P T Y , or the TS to become MODIFIED or INVALID. It 
then performs the appropriate memory access: IQ-load, TS-load, or TSstore, respectively. The 
CSML code appears in figure 9. Note tha t when the TS register is in the INVALID state, we 
allow a push request to take priority over a TS-load operation, but once the TS-load operation is 
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l o o p 
compress 

s w i t c h 
ca se b r a n c h : 

l o w e r ( f e t c h - r d y ) ; I Q - s t : - EMPTY; b r e a k ; 
c a s e l e t c h : 

i f ( I Q - s t « FULL-OR-HALF-FULL) * PCO t h e n 
I Q - s t :« EMPTY; l o w e r ( f e t c h - r d y ) ; 
e n d i f ; b r e a k ; 

c a s e I Q - l o a d - d o n e : 
I Q - s t : - FULL-OR-HALF-FULL; r a i s e ( f e t c h - r d y ) ; 

d e f a u l t : s k i p ; 
e n d s w i t c h 

endcompress 
end loop 

Figure 6: CSML code for the IQ manager. Note tha t the literals f e t c h and IQ- load-done ar 
actually macro names which expand to conditional expressions. Their definitions can be found L 
section 5.4. Also, note tha t the compress statement causes each excecution of the loop to occur i 
one clock cycle. 

Figure 7: TS manager s ta te diagram 
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l o o p 
compress 

s w i t c h 
c a s e push : 

l o w e r ( p u s h - r d y ) ; r a i s e ( p o p - r d y ) ; 
T S - s t : - MODIFIED; b r eak ; 

c a s e pop: 
l o w e r ( p o p - r d y ) ; r a i s e ( p u s h - r d y ) ; 
T S - s t : - INVALID; b reak ; 

c a s e TS- load -done : 
c a s e T S - s t o r e - d o n e : 

r a i s e ( p u s h - r d y ) ; r a i s e ( p o p - r d y ) ; 
T S - s t :« VALID; b r e a k ; 

d e f a u l t : s k i p ; 
e n d s w i t c h 

endcompress 
end loop 

Figure 8: Code for TS manager 

started, we lower p u s h - r d y to prevent push operations from interfering with the memory cycle. A 
corresponding relationship exists between TS-store and pop. 

The routine r e a d takes as its arguments a control signal to raise to drive the MAB bus, and a 
control signal to raise to load the IQ or TS registers. It is defined in figure 10. follows: Since the 
calls to r e a d appear inside compress statements, this routine only takes time if the wait loop has 
to be executed. 

The overall s t ructure of the AU controller code is a three-way parallel s tatement as shown in 
figure 11. 

5 .22. T h e e x e c u t i o n u n i t c o n t r o l l e r 

The job of the execution unit is more straightforward. It has only one thread of control, and 
proceeds as follows. It first loads an instruction from the IQ into the IR (i.e., performs a fetch 
operation). I t then decodes the instruction, and jumps to an appropriate routine to interpret that 
instruction. When the instruction is completed, it s tar ts again. The d o f e t c h routine (figure 12) 
is used to load the instruction. The procedure takes a parameter c t l , which is a control signal 
tha t loads a register from the IDB. This allows dof e t c h to be used to load the IR or an operand 
register from the instruction queue. 

The main loop of the EU controller has the structure of figure 13. Literals such as BR and CALL in 
figure 13 are macros, defined as boolean expressions on bits 4-7 of the IR, which hold the operation 
code field of the instruction. The actual instruction routines break down into three categories: 
control instructions, one operand instructions, and two operand instructions. The instructions and 
their functions are summarized in table 3. We take as an example the CALL instruction, which is 
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l oop 
s w i t c h 

ca se IQLst « EMPTY: 
compress read(PC-MAB,MDB-IQ) endcompress ; 
b r e a k ; 

c a s e T S . s t « INVALID k ! p u s h - r e q : 
compress l o w e r ( p u s h - r d y ) ; read(SP-MAB.MDB-TS) endcompress 
b r e a k ; 

c a s e T S . s t »» MODIFIED k ! p o p - r e q : 
compress l o w e r ( p o p - r d y ) ; write(SP-MAB.TS-MDB) endcompress 
b r e a k ; 

d e f a u l t : s k i p ; 
e n d s w i t c h 

end loop 

Figure 9: CSML code for memory access "monitor" 

p r o c e d u r e r e a d ( a d d r c t l . d a t a c t l ) 
r a i s e ( m e m - r d ) ; r a i s e ( a d d r c t l ) ; r a i s e ( d a t a c t l ) ; 
wh i l e !mem-ack do l o o p s k i p e n d l o o p ; 
lower (mem-rd) ; l o w e r ( a d d r c t l ) ; l o w e r ( d a t a c t l ) ; 

e n d p r o c ; 

Figure 10: Routine r ead . 

DEFINE AU M O D U L E ( . . . ; . . . ) 
. . . d e c l a r a t i o n s . . . 
. . . p r o c e d u r e s . . . 
p a r a l l e l 
. . . memory a c c e s s mon i to r . . . 
II 

. . . TS manager . . . 
II 

. . . IQ manager . . . 
e n d p a r a l l e l 

ENDMODULE 

Figure 11: Overall s t ructure of AU controller code. 
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p r o c e d u r e d o - f e t c h ( c t l ) 
p a r a l l e l r a i s e ( f e t c h - r e q ) II r a i s e ( c t l ) e n d p a r a l l e l ; 
whi le ! f e t c h - r d y do loop s k i p end loop ; 
p a r a l l e l l o w e r ( f e t c h - r e q ) I I l o w e r ( c t l ) e n d p a r a l l e l 

endproc ; 

Figure 12: The procedure dof e t c h . 

l oop 
d o - f e t c h ( I D B - I R ) ; 
s w i t c h 

c a s e BR: 
. . . e x e c u t e b r a n c h i n s t r u c t i o n . . . 

c a s e CALL: 
. . . e x e c u t e c a l l i n s t r u c t i o n . . . 

. . . o t h e r i n s t r u c t i o n s . . . 
c a s e XOR 

. . . e x e c u t e e x c l u s i v e - o r i n s t r u c t i o n . . . 
e n d s w i t c h 

end loop 

Figure 13: The structure of the EU controller code, 

interpreted by the code of figure 14. 

First, d o - f e t c h is called to load the branch target into the operand register O P R 1 . The 
condition is then decoded ( the literals C, NC, Z, NZ, N, NN, and T are defined as predicates on the 
IR bits 0-2 which hold the condition field of the instruction). If the condition evaluates to true, the 
routine do -push is called to push the current P C onto the stack (do-push is similar to d o - f e t c h ) , 
and d o - b r a n c h is called to load the P C (note tha t the branch target flows through the ALU 
unchanged, since all of the ALU controls are set to zero at the conclusion of each instruction-see 
figure 4). 

5.3 S o m e o b s e r v a t i o n s o n i m p l e m e n t i n g h a r d w a r e i n C S M L 

When compiled as separate modules, the AU and EU controllers have 13 and 98 states respectively. 
It is clear tha t there is no need to decompose the AU into modules, since the number of states 
is quite small (although early, incorrect versions had as many as 60 states). On the other hand, 
merging the AU and EU into one module would result in a very complex machine with 1274 states. 
Although, obviously, the state-space of this large machine would have a simple decomposition, the 
information about how to decompose it would be lost. As we will see in the next section, this 
modular decomposition will be an advantage in automatic verification. 

This example also illustrates the difference between true parallelism (between modules) and 
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case CALL: 
do-fetch(IDB-OPRl); 
i f (CJtcarry I NC*! carry 

do-push(PC-IDB); 
do-branch(RES-IDB) 

endi f ; 
break; 

ZJrzero I NZ*!zero I Nfcsign I NNfclsign I T) then 

Figure 14: Code for the CALL instruction. 

Mnemonic | Function Mnemonic | Function 

Control instructions 

BR Branch on condition 1 CALL | Call on condition 

R E T Return on condition || 
One-operand instructions 

MOVE source —• dest INC source + 1 —• dest 

DEC source — 1 —• dest C O M ~ source —• dest 

NEG —source —* dest ASL 2source —• dest 

ASR source/2 —• dest 
Two-operand instructions 

ADD srci + src2 —* stack SUB srci - src2 —* stacK 

AND srci A src2 —* stack OR srci V src2 —• stack 

XOR srci © src2 —* stack 

Table 3: Instruction set summary 
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conceptual parallelism (between threads of control on the same module), and provides some mo­
tivation for the existence of two constructs for parallel execution in CSML: the MODULE and 
parallel s tatements. Although we feel tha t it is important to break up large controllers into mod­
ules, this does not mean tha t every thread of control should be broken out into a separate module. 
In the case of the AU, which has three tightly coupled threads of control, shared variables provide a 
conceptually simple mode of interaction, and the resulting number of states is not large. Thus, we 
feel justified, at the risk of seeming unparsimonious, in providing both mechanisms in the language. 

Obviously, the C P U design presented here was not intended to be a practical one. From a 
practical point of view, however, a t least one criticism of CSML should be made. The Moore-
machine semantics of CSML (and its predecessor SML) require tha t raising or lowering a signal 
always involves one clock cycle of delay. The astute reader may have noticed tha t in the instruction 
fetch routine of the EU, one clock cycle is simply wasted in order to raise the signal fetch-req. This 
same consideration also made it necessary to use "ready" signals (essentially a pre-acknowledge), 
since it is not possible to respond to a request with an acknowledge in the same clock cycle. One 
advantage of the Moore-machine semantics is that all signals between modules effectively pass 
through a pipeline register. This means tha t timing of modules can be verified independently. 
Nonetheless, it seems to be a serious limitation for practical design. 

5.4 F o r m a l spec i f i c a t i on for t h e access u n i t 

In this section we present a formal specification of the AU in CTL. The formal specification for 
the EU is not presented. It is extremely detailed (i.e., there are a large number of cases), but not 
very interesting. Before proceeding we would like to define a few predicates which will simplify the 
specifications and the following discussion. They are defined as follows: 

fetch fetch-req A fetch-rdy 
push push-req A push-rdy 

pop pop-req A pop-rdy 

IQ-load mem-rd A PC-MAB A MDB-IQ 
IQ-load-done IQ-load A mem-ack 

TS-load = mem-rd A SP-MAB A MDB-TS 
TS-load-done = TS-load A mem-ack 

TS-store mem-wr A SP-MAB A TS-MDB 
TS-store-done = TS-store A mem-ack 

PC-roll-over = fetch A PC0. 

The predicate fetch indicates tha t an instruction is being loaded into the IR and the P C is being 
incremented. Similar meanings are associated with push and pop. IQ-load is t rue when a memory 
cycle is in progress which is loading the IQ, and IQ-load-done is t rue on the last clock cycle 
of a memory cycle. Similar meanings are associated with TS-load, TS-load-done, TS-store and 
TS-store-done. PC-roll-over is t rue when the P C is crossing a word boundary. 

The basic safety requirement for the IQ manager is that , whenever a fetch occurs, the output 
of the IQ matches the memory location pointed to by the PC . We assume tha t the stack does not 
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overwrite program memory. Thus, the only conditions which can violate the above requirement 

are: 

i. The P C rolls over to the next word boundary. 

ii. A branch occurs. 

iii. The system is reset to its initial state. 

We would like to assert that , between the time one of these three things happens and IQ load is 
completed, that a fetch never occurs. In order to express this in CTL, it is convenient to define a 
macro-operator 

(p BEFORE q) = {^qUp) 
tha t is, p occurs BEFORE q if and only if ->q is t rue until p is true. Note tha t we intend the strong 
until in this case - if p never occurs, it cannot be said to have occurred before q. Our requirement 
for case (i) above can now be expressed in CTL as follows 

VG{PC-roll-over — ^3X3(fetch BEFORE IQ-load-done)) 

tha t is, globally, if the P C rolls over to the next word boundary, then (beginning in the next state) 
there exists no pa th along which an instruction fetch occurs before the instruction queue has been 
loaded. We can state the requirement for case (ii) as follows 

VG(6roncA — ^3X3{fetch BEFORE IQ-load-done)) 

and for case (iii) simply as 

-<3(fetch BEFORE IQ-load-done) 
This specifies tha t , from the initial s tate , there is no path along which a fetch operation occurs 
before the first IQ-load operation completes (the t ru th value of all formulas is implicitly referenced 
to the initial s ta te) . Of course, we also require tha t the IQ manager never drives the MAB or 
overwrites the IQ spuriously. These conditions are expressed by the following C T L formulas: 

VG{PC-MAB -+ IQ-load) 
VG(MDB-IQ -* IQ-load). 

The first formula s tates , for example, t ha t the P C is only driven onto the memory address bus 
when an IQ-load operation is in progress. 

The correctness conditions for the TS manager may at first seem more complex, however it 
is relatively straightforward to derive them from the s ta te transition diagram of figure 7. In the 
VALID sta te , any of the operations push, pop, TS-load and TS-store are allowable (the latter two 
are not present in the diagram, but executing them in this s tate will cause no harm, since the 
memory contents match the TS register). From the MODIFIED sta te , which is entered only by 
a push operation, another push or a TS-load may not occur before either a pop or TS-store is 
completed. We can express this condition with the following formula 

VG(push -i3X3(push V TS-load BEFORE TS-store-done V pop)) 
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From the INVALID state, which is entered only by a pop or a reset to the initial state, pop and 
TS-store may not occur before either a push or TS-load is completed. Thus we have the following 
formulas: 

VG(pop — ^3X3(pop V TS-store BEFORE TlS'-load-done V push)) 
^3(popV TS-store BEFORE TS-load-doneV push) 

Of course, we also require tha t the TS manager not spuriously drive the MAB or MDB buses or 
overwrite the TS register: 

WG(MDB-TS — TS-load) 
VG(TS-MDB - TS-store) 

VG{SP-MAB -+ {TS-load V TS-store)) 

The first of these, for example, states that the top-of-stack register is loaded from the memory data 
bus only during a TS-load operation. 

In order for memory cycles to operate correctly, we have the following requirements. First, the 
address, da ta and control signals must remain stable during an entire memory cycle. This means 
that , if an IQ-load, TS-load or TS-store condition occurs, tha t condition must persist up to and 
including the clock cycle when mem-ack is asserted by the memory system. Further, as the address 
must not change during a memory cycle, we require tha t during an IQ-load cycle, the program 
counter not change words, and that during TS-load and TS-store cycles, the stack pointer not 
change. These requirements are expressed in the following formulas: 

VG(IQ-load -> ^{(IQ-load A ^(PC-roll-over V branch))U(IQ-load A mem-ack))) 
VG(TS-load ^(TS-load A ^(push V pop)U{TS-load A mem-ack))) 

VG(TS-store -> ^((TS-store A ̂ (push V pop))U{TS-store A mem-ack))) 

Second, we allow no spurious memory accesses. 

VG(mcm-wr —• TS-store) 
VG(mcm-rd -> (TS-load V IQ-load)) 

The above formulas represent safety properties, i.e. they are characterized by the statement 
"nothing bad ever happens." Unfortunately, they cannot form a complete specification, since a 
controller which did nothing at all would satisfy all of the above assertions. Thus, we include the 
following liveness requirement, which states, in effect, that the CPU always eventually executes 
another instruction: 

VGVFfetch 

5.5 S u m m a r y of m o d e l checking resu l t s 

Finally, we describe the application of the CTL model checker to automatically verify that our 
controller meets the above specification. Since the composition of the AU and EU has 1274 states, 
while the AU by itself has only 13 states, one might be tempted to check the formulas on the 
AU in isolation, and then infer tha t their correctness holds in the composition. Unfortunately, 
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this inference would not necessarily be a valid one. The CTL properties of a module are not 
always preserved when the module is composed with other modules. In any case, the correctness 
of a module very probably depends in some part on properties of the modules with which it is 
composed. It is possible, however, to apply the interface rule to replace the EU module with a 
reduced module E U \ which has only 17 states (as opposed to the 98 states of the EU). We derive 
EU' by first hiding the outputs of the EU controller which control the data path of the EU, then 
applying a Moore machine minimization algorithm. The reason for the large reduction is that , 
while the EU interprets a large number of instructions, the memory access for these instructions 
fall into a few basic pat terns. The interface rule guarantees that our specification will hold in the 
composition of AU and EU if and only if it holds in the composition of AU and EU' . This latter 
composition has only 221 states. This illustrates the point made earlier tha t modular design can 
increase the efficiency of automatic verification. 

In the process of verification, the model checker pointed out two bugs in the original design. 
The first was tha t the d o - b r a n c h routine did not check to make sure tha t a IQ-load operation was 
not in progress before modifying the PC . The second was tha t the TS-store code in the memory 
access monitor incorrectly asserted MDB-TS instead of TS-MDB. Counterexamples produced by 
the model checker made it a straightforward task to find and correct the errors. The total time 
to verify the 16 formulas of the AU specification on our (corrected) 221 s ta te machine was 36.2 
seconds, running on a Sun-3 workstation. 

6 D i r e c t i o n s for F u t u r e R e s e a r c h 

We should point out t h a t the task of verifying the C P U does not end with the verification of the 
controllers. It is necessary, of course, to provide a formal specification of the CPU as a whole, and 
to prove on the basis of the controller specification and a formal model of the da ta path circuitry 
tha t the C P U specification is valid. Unfortunately, we do not have the machinery to do this in an 
automated way. The s ta te space of the da ta pa th section is far too large to apply model checking 
techniques, and in any case, C T L is most likely not expressive enough to specify the CPU as 
a whole. One approach to this problem might be to integrate the CTL model checker with an 
automat ic theorem prover (or proof checker), which could perform the final step. Bryant 's method 
of symbolic simulation [6] would probably be of considerable use in this endeavor. We leave the 
problem of integrating control and da t a as an open one here, and an area for future research. 

Even with the module feature CSML has some limitations. Perhaps the most difficult issue 
is how to deal with nondeterminism. Currently, SML processes are completely synchronous and 
deterministic. In practice, however, it is important to be able to reason about processes tha t run 
on different clocks or execute asynchronously. Another important use of nondeterministic processes 
is to form an abst ract representation of a class of deterministic machines. Such a process can be 
used to prove properties of the entire class, often with greatly reduced complexity. More research 
is needed to handle this problem within our current framework. 

Finally, additional research is needed on techniques for compositional reasoning about SML 
processes. The interface rule handles formulas tha t are boolean combinations of temporal properties 
of the individual processes. We are currently unable to handle more general properties involving 
temporal assertions about several processes. Furthermore, in some verification problems it may be 
necessary to combine the use of the interface rule with proofs of validity for certain C T L formulas. 
In general, such proofs require a complicated decision procedure. Fortunately, we believe that it 
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will be possible to use the model checker together with informal manual reasoning to handle most 
of these cases. 
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