
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A Language for Compositional Specification
and Verification of Finite State Hardware Controllers

E.M. Clarke, D.E. Long, K.L McMMan
January, 1989

CMU-CS-89-110-

Dept. of Computer Science
Carnegie-Mellon University

Pittsburgh, PA 15213

A Language for Compositional Specification and Verification
of Finite State Hardware Controllers

E. M. Clarke, D. E. Long, K. L. McMillan

Computer Science Department
Carnegie Mellon University

Pit tsburgh, PA 15213

1 I n t r o d u c t i o n

In several previous papers ([3,4,5]), we have described a programming language called SML (State
Machine Language) that provides a concise notation for specifying complicated finite state ma­
chines. Our language has many of the s tandard control structures found in modern high-level
imperative programming languages. Programs in SML may be compiled into s tate transition ta­
bles tha t can be implemented in hardware as PALs, PL As, or ROMs. The state transition tables can
also be used as input to a temporal logic verifier tha t allows various safety and liveness properties
of the program, expressed in the temporal logic CTL, to be verified automatically.

In this paper, we present an evolution of the SML language which we call compositional SML
(or CSML), which a t t empts to address the issue of modularity in finite-state controller design.
Although SML has a procedure mechanism, which allows a program segment to be inserted into
the flow of control using call-by-name semantics, there is no construct which corresponds to the
hardware designer's notion of a module—an encapsulated sub-system which runs concurrently with
other subsystems, communicating with them over a well-defined interface.

The importance of modularity from a design perspective is evident—it allows a large system to
be broken down into a hierarchy of smaller modules which can be designed separately. However,
there is another aspect of modularity which relates specifically to finite-state controllers. Any
designer of finite-state controllers recognizes tha t finding the right decomposition of the state space
into components will greatly reduce the complexity of the design (this is an aspect of the state

} This research was sponsored in part by the Defense Advanced Research Projects Agency (DOD), ARPA
Order No. 4976, Amendment 20, under Contract Number F33615-87-C-1499, monitored by the:

Avionics Laboratory
Air Force Wright Aeronautical Laboratories
Aeronoautical Systems Division (AFSC)
United States Air Force
Wright-Patterson AFB, Ohio 45433-6543

The National Science Foundation also sponsored this research effort under Contract Number CCR-8722633. The
second author is supported by an NSF graduate fellowship.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency
or the US Government.

1 University Libraries
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

assignment problem). The reason is a phenomenon known as the state explosion problem—in a
finite s ta te system composed of a number of concurrently executing processes, the number of states
can grow geometrically with the number of processes in the system. Since finite-state controllers
frequently coordinate a number of concurrent activities, it is important to be able to design them
as systems of coordinating finite-state machines instead of as single, monolithic state machines.

The state explosion problem has an important bearing on automatic verification of finite-state
systems, since the complexity of verification is related to the number of states in a system. We
use a model checker ([2,9]) to determine automatically the t ru th of CTL formulas with respect to
a given finite s tate system. In practice the model checker can verify properties of state machines
a t a rate of approximately 100 states/second. It has been successfully used to find subtle errors
in a fairly large number of examples—including a DMA controller with more than 500 states and
1300 transitions ([3,5,7]). In order to verify much larger systems, however, it is necessary to try
to reduce the s tate space. If a system is composed of coordinating modules, techniques exist to
accomplish this. One such technique makes use of a theorem called the interface rule. The interface
rule states a set of conditions under which a module in a system of coordinating processes may be
replaced by a reduced version called an interface process while still preserving the t ru th value of
the formulas in the logic.

To illustrate our new approach, we describe the design and verification of the controller for a
simple CPU with decoupled access and execute units. We give the implementation of the controller
in CSML and a formal specification (in CTL) of one module. We then describe the application of
the interface rule to reduce the complexity of automatically verifying the design. In our example,
we use the interface rule to reduce the number of states by approximately a factor of 6.

Our paper is organized as follows. Section 2 describes the logic CTL and the interface rule. The
SML language is described briefly in section 3, and the new language CSML is covered in section 4.
Finally, section 5 describes the C P U example and the results of the model checking procedure.

2 T h e logic

The logic we use for formal specification is a branching-time temporal logic called CTL [8]. Formulas
in C T L are built from atomic propositions (the signals of the system), boolean connectives (A , V ,
—> and ->), and temporal operators which are used to specify timing relationships. Each temporal
operator consists of a quantifier (V or 3) and a modality (F , G, X , or U). The quantifier indicates
whether the operator applies to all computation paths , or whether it specifies the existence of a
single pa th . The modalities denote the desired timing relationship along the paths and have the
following meanings:

i. F<p means t ha t <p is t rue a t some point in the future.

ii. G<p means tha t <p holds in the present and a t all points in the future.

iii. X<p means tha t <p is t rue a t the next s tate .

iv. <plltl> means tha t tp holds a t some point in the future, and tha t until t ha t point, <p is true.

As an example, we consider several C T L formulas and the relationships they express.

2

i. VG(req —• VFack) specifies that along every path, if the signal req occurs, then eventually
ack occurs also.

ii. ^3F(-*go A3X(go AVXdone)) says tha t there is no point where go occurs and where go must
immediately be followed by done.

iii. siG{send —• ^(sendllrcvd)) states that along every path, if send occurs, then rcvd must
eventually occur and send must remain asserted until rcvd occurs.

Given a finite s tate machine, the model checking program [2] can quickly determine whether
a CTL formula is t rue or false. When a desired property does not hold, the model checker will
also provide a counterexample if there is one. This counterexample can be of tremendous help in
pinpointing the source of the problem. Additionally, the model checker allows the specification of
fairness constraints. Fairness constraints are used to restrict the quantifiers in temporal operators
to certain paths. This is often necessary when checking properties of systems which have external
inputs; for example, in verifying our example CPU, one fairness constraint we specify is that when
the CPU executes a memory read, the external memory system must eventually present the desired
data .

One problem with the using CTL and the model checker to verify a system with many compo­
nents is tha t the s tate explosion problem may give rise to finite state machines which exceed the
capacity of the model checker. In order to deal with this problem, we can often use the interface
rule to reduce the number of states. The idea is to form simple abstractions of the modules in the
system and to use these abstractions when building a state graph for the model checker. Figure 1
illustrates the principle. In this figure, P\ and Pi represent the components of the system we wish
to reason about . The components are connected by a set of wires S. A\ and A 2 are interface
processes (abstractions) of Pi and Pi. Intuitively, A\ represents everything P2 can observe about
Pi via the wires S (and similarly for A 2) . The key point here is tha t A\ must be chosen so that
it is equivalent (=) to P\ on S in an appropriate sense. For the logic we are using, the ordinary
notion of Moore machine equivalence is sufficient; therefore we can apply the s tandard algorithms
for Moore machine minimization to obtain A\ and A 2 . The interface rule states that if:

i. P\ = Ai on the set 5 ,

ii. <p is a CTL formula whose atomic propositions denote signals of Pi, and

iii. <p is true in Ai \\ Pi (the composition of Ai and P 2) ,

then <p is t rue in P i || P 2 . In a loosely coupled system, Ai will almost always have far fewer states
than P i , and thus Ai || P2 will be much smaller than Pi || P 2 . Note tha t the interface rule can be
extended to handle boolean combinations of CTL formulas in a straightforward manner.

3 T h e S M L p r o g r a m m i n g l a n g u a g e

Since the SML language forms the basis of our new language, we give a brief and informal description
of it here. A full description is contained in [3]. Although SML was developed for specifying
complicated finite s ta te machines, it has many of the s tandard control structures found in modern
high-level imperative programming languages, including a while s ta tement , a conditional, a case

3

Ill A models P on these actions ^

Ai O O
Figure 1: The interface rule

31 at men t , and a parallel execution statement. There is even a simple mechanism for declaring non-
recursive procedures. However, the only da ta types allowed are booleans and fixed width integers.
Thus , any program writ ten in SML has only a finite number of states and can be compiled into a
s ta te transition table.

A number of other languages have been proposed for specifying complicated finite s tate ma­
chines. Most of these including AMAZE, CUPL, and SLIM [12] represent s tate machines a t a
very low level, and some even require an explicit description of the state-transition behavior of
the machine being specified. Clearly, if the number of states is large, this can be a tedious and
error-prone process. There has also been some work on high level languages for specifying state
machines. Apparently, the first such language was developed by Parnas [11]. Two recent languages
of this sort are Harel 's Statechar ts [10] and Berry's Esterel [1]. Esterel, in particular, has had a
significant influence on the design of our language. Of all these languages, however, only SML
allows various properties of the s ta te machine to be verified automatically.

All SML programs represent synchronous circuits. At a clock transition, the program examines
its input signals and changes its internal s tate and output signals accordingly. Since we are dealing
with digital circuits where wires are either high or low, the basic da ta type is boolean. Each boolean
variable my be declared to be either an input changed only by the external world bu t visible to the
program, an ou tpu t changed only by the program but visible to the external world, or an internal
changed and seen only by the program. The hardware implementation of boolean variables may
also be declared to be either active high or active low. A U .H" or a . L " suffix on the variable name
in its declaration determines which case applies. Internal non-negative integer variables are also
provided bu t are not discussed in this brief survey of the language.

An SML program has the following form:

program (identifier);
(declaration list)
(s ta tement list)

endprog

where (identifier) is the name of the program, (declaration list) is a sequence of variable and

procedure declarations separated by semicolons, and (statement list) is a sequence of statements
separated by semicolons. We refer the reader to [3] for the exact syntax of variable and procedure
declarations.

The semantics of SML programs are different from most programming languages, since we are
not only interested in what a statement does, but also how much time the statement takes to
execute. The basic idea in SML is tha t computation is instantaneous, but changing a variable
takes one clock cycle. When we refer to the "time" that a statement takes, we are referring to
the execution time of the finite state machine. Hence, it is possible for computation to take no
execution time since the computation is actually done at compile time.

Boolean input variables cannot be assigned new values, since inputs are changed by the envi­
ronment only. Boolean output and boolean internal variables may be changed by:

raise ((variable))
lower ((variable))
invert ((variable))

Each of these s tatements delays until the next clock transition, a t which time the value of (variable)
will be changed. The raise s ta tement will assert (variable) (make it active), lower will negate it,
and invert will force a change of value.

There are two types of looping statements in SML: the while s ta tement and the loop s tatement.
The while s ta tement has the following syntax:

while (boolean expression) do loop
(statement)

endloop

At the beginning of the while, the (boolean expression) is evaluated, and nothing is done (in zero
time) if the expression is false. If it is t rue, (statement) is executed. If (statement) completes
execution in no time, the while s ta tement delays until the next clock transition and then restarts
the loop. If (statement) completes execution after some delay, the while s ta tement is immediately
restarted. The exit s ta tement is used to j ump out of the smallest enclosing while or loop statement.
We will not discuss the syntax and semantics of the loop s tatement, since its behavior is similar
to the while. For essentially the same reason we will not discuss the conditional s tatement or the
switch s ta tement .

The parallel s ta tement provides a form of synchronous parallelism. This s ta tement has the form:

parallel
(s tatement 1) ||
(statement2) ||

endparallel

Each s ta tement in the parallel examines the inputs and the current s ta te and determines what
changes it should be make to the output s tate at the next clock transition. The semantics of the
parallel s ta tement determine which of these changes are actually made. The rules are as follows.

5

i. If one or more of the s tatements executes a break, the parallel does nothing and the break
causes a j ump to the statement following the parallel.

ii. If none of the s ta tements tries to change a variable, the variable remains unchanged.

iii. If exactly one s ta tement tries to change a variable, this change is made at the next clock
transition.

iv. If two or more s ta tements try to change a boolean variable and they all agree on the new
value, this change is made at the next clock transition.

v. If two or more s tatements try to change the same boolean variable and they do not agree on
the new value, the result is undefined.

The parallel terminates when all of the statements in the parallel have finished executing or a break
or exit is executed. The exit s tatement was discussed previously. The effect of the break statement
is to immediately j u m p out of the smallest enclosing switch or parallel s tatement . One of the major
uses of the break s ta tement is to stop normal processing when an "interrupt" occurs.

In some cases, the timing rules of SML prevent complicated relationships from being simply
described without delaying for more than one clock cycle. To alleviate this problem, SML has a
compress s ta tement of the form:

compress (statement) endcompress

The effect of the compress s ta tement is calculated as if variable assignment takes no time in
(s ta tement) . Then, after delaying one clock cycle, the changes made by the compress s tatement
actually take effect.

Although our description of the language has been quite brief, it should be sufficient to under­
stand the example in the next section. The compilation of SML programs in to Moore Machines
is described in more detail in [3]. Considerable effort has spent in making the compiler as fast and
efficient as possible. The s ta te transition tables produced by the compiler may be implemented
in hardware as PALs, PLAs, or ROMs. Various programs have been developed to make this last
phase largely automat ic . For example, a post-processor is available tha t produces output which is
compatible with the Berkeley VLSI design tools.

4 C o m p o s i t i o n a l S M L

4 . 1 L a n g u a g e i s s u e s for s y n c h r o n o u s finite-state m a c h i n e s

In this section we describe the extensions we have made to SML in order to allow modular design.
In defining the new language, we have a t tempted to address a number of issues relating to the design
of modular digital systems, the most impor tant being concurrency and communication. In SML,
the parallel s ta tement creates threads of control which run conceptually in parallel, even though
they are compiled into a single sequential machine. This technique is quite useful for describing
systems which control concurrent activities, in much the same way t h a t coroutines are useful in
describing the function of an operating system. In order to create modular designs, however, we will

6

need to describe the interaction of subsystems which truly run in parallel This has an important
bearing on our model of communication between processes.

The means of communication between threads of control in the SML language is shared vari­
ables. Although this is often a straightforward way of conceptualizing systems, it has a number of
drawbacks from the point of view of implementing modular systems. An obvious approach to the
hardware implementation of shared variables between modules would be to assign a register for
each shared variable, and a finite-state machine for each process. The difficulty with this approach
is that , in any given clock cycle, any or all of the registers may be written or read. Thus, the
complexity of the network interconnecting controllers and registers could quickly get out of hand.
The problem with shared variables in a modular system is that , although they are conceptually
simple, they do not correspond well to the the way communication occurs in digital systems.

For this reason, modules in CSML communicate via signals. Each signal is in the output set
of exactly one module, and in the input set of zero or more modules. A signal takes on a simple
boolean value of 0 or 1 for each clock cycle. Although using signals instead of shared variables
for coordination of processes can be conceptually more complex, it allows for a straightforward
implementation of modular designs, and yields a mathematically simple composition rule which
lends itself well to formal verification (as will be seen below). Shared variables are preserved in
CSML as the means of communication between parallel threads of control within a module.

4 .2 T h e C S M L p r o c e s s m o d e l

In order to define the semantics of CSML, we present a formal model of coordinating processes. A
process in this model is a Moore machine, which we define as a 6-tuple (7 , 0 , Q,?o ,^ ,0) where / is
the input set, O is the output set, Q is the set of states, qo £ Q is the initial s tate, <f>: Q x 21 —• Q is
the transition function, and 0 : Q —• 2° is the output function. The interpretation of this structure
is as follows: if q € Q is the current s tate and t C / is the set input signals which are currently
asserted, then the subset of outputs asserted by the machine is 9(q) and the next state is <f>(q,i).

We define Pi || P 2 , the parallel composition of processes P i and P 2 , as follows. If Opx nOp 2 = 0,
then

I P M « (/ft - o f t) u - o f t)
Oft II ft = Oft U Oft

9 f t 11 ft d = QPI x < ? f t

tfOft|| ft * = (? 0 f t , ? O f t)

4>px 11 ft ((f t , 93), 0 d= (M (ft, (»' u 0 f t («)) n /ft), <t>Pi {q2, (i u 0 f t (g x)) n lPl))

*ft||ft(ft>ft) d- *ft(ft) u*ft(ft)-

The intuitive interpretation of this definition is as follows. The input set of P x || P2 is the set
of signals which are inputs of P i or P 2 , but not outputs of the other. The output set is the set
of signals which are outputs of Pi or P2. For the obvious reason, we require tha t the output sets
of Pi and P2 are disjoint (i.e., we don ' t allow connecting outputs to outputs) . A state of P x || P2

is a s ta te of Pi combined with a s ta te of P2. The set of outputs of Pi || P2 which are asserted is

7

simply the union of those asserted by P i and Pi- To determine the next state, each component
examines its inputs, both those which are inputs of the composition, and those which are outputs
of the other component, and independently decides on its next state. The next state of Pi || Pi is
then the combination of the next states of Pi and P 2 .

We also define a restriction operator lout, which is used to hide outputs of a process. We define
P l 0 U i S (read a P with outputs restricted to S") to be identical to P except tha t

O P U I S D = o P n s

» f u , 5 (j) = M *) n s .

4.3 C S M L s y n t a x a n d s e m a n t i c s

We now describe the syntax and semantics of CSML. In addition to the s ta tements of the SML
language, CSML has three s tatements which are used for defining and interconnecting modules:
MODULE, DEFINE, and SYSTEM. The MODULE s ta tement is used to create a process. It
takes the place of the program s ta tement in SML. Its syntax is

MODULE ((input list) ; (output list))
(body)

ENDMODULE.

The input and output sets for the process are given by (input list) and (output list). The (body)
of the MODULE sta tement has the same syntax and semantics as a program in the SML language,
as described in section 3. The DEFINE s ta tement creates an abstract process from a concrete
process and gives it a name. A separate name space is created for the process, and its input and
output lists become formal parameter lists. The syntax of the DEFINE s ta tement is:

DEFINE (name) (module) or
DEFINE (name) (system)

The SYSTEM s ta tement creates a process which is the parallel composition of two or more pro­

cesses. Its syntax is:

SYSTEM ((input list) ; (output list))
(component)!
x componen t) 2

(component) n

ENDSYSTEM.

where each (component) is either a MODULE s ta tement , another SYSTEM s tatement , or an

instantiat ion of a definition, which has the form

(name) ((actual input list) ; (actual output list))

8

DEFINE Produce r MQDULE(request; acknowledge .produce)
i n p u t r e q u e s t ;
o u t p u t a cknowledge« fa l s e ;

l o o p
w h i l e (! r e q u e s t) d o loop s k i p end loop ;
r a i s e (p r o d u c e) ; l o w e r (p r o d u c e) ;
r a i s e (a c k n o w l e d g e) ;
w h i l e (r e q u e s t) d o loop s k i p end loop ;
l ower (ac knowledge)

end loop
ENDMDDULE

DEFINE Consumer MODULE(acknowledge; r e q u e s t , consume)
i n p u t acknowledge;
o u t p u t r e q u e s t " ! a l s e ;

l o o p
r a i s e (r e q u e s t) ;
w h i l e (! a c k n o w l e d g e) d o l o o p s k i p end loop ;
r a i s e (c o n s u m e) ; lower (consume) ;
l o w e r (r e q u e s t) ;
wh i l e (acknowledge)do l o o p s k i p end loop

end loop
ENDMDDULE

SYSTEM(;produc e , c onsume)
Produe e r (r e q ; ac k ,p roduc e)
Consumer(ack; r eq ,consume)

ENDSYSTEM

Figure 2: Producer-consumer program

If the lat ter form is used, a concrete process is created from the named abstract process by substitu­
tion of actual parameters for formal parameters. Semantically, if the components of the SYSTEM
s ta tement represent processes P i , P 2 , . . . , P n , then the meaning of the s tatement is:

(P 1 | | P 2 | | . . . | | P n) i o u t (o u t p u t l i s t) .

Since inputs cannot be hidden, we require tha t the (input list) contains precisely the input set of
^11| Pi || • • • II Pn- Figure 2 gives a simple example of a CSML program—a system composed of a
producer module and a consumer module which synchronize using a four-phase handshake.

9

/ r e a d

> writ

a c c e s s u n i t
c o n t r o l l e r

MA 3

MDB y
N — — — r

guan
• BQP

branch

c o n t r o l s

\ 7
^knowledges ^

/

\

/

\
PC

IDB

>

IDB

>

SP

IDB

>

IDB

>
IQ

IDB

>
IQ

TS
/ \

TS

Figure 3: CPU block diagram

5 A p p l i c a t i o n : a s i m p l e C P U

To illustrate to the use of CSML to describe modular controllers, we present the detailed design
and verification of the controller for a simple CPU. P a r t of the motivation for this exercise is to
guage how effective our tools and methodologies would be in doing real digital designs. We have
a t tempted to include enough detail so tha t the reader can judge how close our example CPU is in
complexity to a real C P U , and yet not enough to be overwhelming. On a first reading, the reader
might wish to skim subsections 5.1-5.4 to arrive at the conclusions in subsection 5.5.

5 .1 A r c h i t e c t u r a l d e s c r i p t i o n

A block diagram of the C P U is given in figure 3. The CPU is divided into two modules, the access
unit (AU) and execute unit (EU), in order to increase its performance by carrying out memory
accesses and instruction executions in parallel. The access uni t ' s function is to fetch instructions
and store them in the instruction queue (IQ), and to maintain a cache of the top location of the stack
in a special top-of-stack register (TS) . The execution unit 's function is to interpret instructions of
the C P U ' s machine code (which it stack based).

The machine instructions are 8 bits, and are packed two per 16 bit machine word. There are
two addressing modes: stack, and immediate. In order to implement a useful C P U , we would also
require, for example, direct and stack indirect modes. However, in order to simplify the design
and exposition, and to avoid such complications as fetching words on non-word boundaries, we
have not included them. There are three basic classes of instructions: control, one-operand, and
two-operand. Instructions tha t take one operand specify an addressing mode for both source and
destination. Instructions tha t take two operands specify bo th source addressing modes, and use
stack mode implicitly for the destination. The control instructions (branch, call, and return) specify

10

Signal Function
fetch PC +- PC+l {fetch = fetch-req A fetch-rdy)

PC-MAB MAB (memory address bus) «— PC
PC-IDB IDB (internal da ta bus) <— PC
branch PC «- IDB
push SP <— SP - \ (push = push-req A push-rdy)
pop SP *— SP + 1 (pop — pop-req A pop-rdy)

SP-MAB MAB «- SP
MDB-IQ IQ — MDB
IQ-IDB if P C is even, IDB «- 7 (? 8 _ 1 5

if P C is odd, 7Z?S — IQ0_7

TS-MDB MDB «- T5
TS-IDB

MDB-TS MDB
IDB-TS TS <- /£>B

Table 1: Access unit control signals

Signal Function
IDB-IR IR IDB0.7

IDB-OPR1 OPR1 <- IDB
IDB-OPR2 OPR2 i- IDB
RES-IDB IDB RESULT (of ALU)

Table 2: Execute unit control signals

one of eight conditions codes and select either direct or program counter relative addressing.

The access unit has four 16-bit registers: the program counter (PC) , stack pointer (SP), in­
struction queue (IQ) and top-of-stack register (TS) (see figure 3). The P C is equipped with an
incrementer, and the SP with an incrementer/decrementer. The control signals for these registers
and their functions are summarized in table 1.

The execute unit has two 16-bit operand registers (OPR1 and OPR2) , an 8-bit instruction
register (IR), a 3-bit condition code register (CCR), and a 16-bit ALU. There is a 16-bit internal
da ta bus (IDB) by which da ta are communicated between the EU and AU. A block diagram of the
ALU and the definition of its control signals are given in figure 4. The remaining control signals of
the execution unit are summarized in table 2.

The access and execute unit controllers communicate via three request signals, push-rcq, pop-req
and fetch-req, three corresponding ready signads, push-rdy, pop-rdy and fetch-rdy, as well as the
signal branch, which causes the P C to be loaded and the instruction queue to be flushed. The

11

0PR1 OPR2

I ALU-Aasr *
ALU-Aasl '

output

s h i f t e r true/compi

0 0 0PR1
0 1 20PR1
1 0 0PR1/2
1 2_ 0

yT— ALU-Bena — |
A ALU-Bcom—|

Cin
A

C i j

f u n c t i o n u n i t

CCR

0 0 o

0 1 0PR2
1 0 - 1
1 1 -0PR2

f u n c t i o n

0 0 A + B + Cin
0 1 A 0 B
1 0 A ^ B
1 1 A ^ B

t o IDB

Figure 4: ALU block diagram

execution unit signals its intention to perform a push, pop or (instruction) fetch operation by
asserting the appropriate request signal. If the ready signal is already asserted it proceeds, otherwise
it waits for the ready signal to be asserted.

The AU communicates with memory via two buses, the memory da ta bus (MDB) and the
memory address bus (MAB), and via three control signals: mem-rrf, mcm-wr and mem-ack. The
protocol for a memory access is as follows. First , the AU asserts one of the memory control signals
(mem-rd for a read, and mem-wr for a write), and simultaneously causes the appropriate address
to be driven onto the MAB (using signals PC-MAB or SP-MAB). On a write, the AU drives the
MDB with the contents of the top-of-stack register (using the signal TS-MDB). On a read, it loads
the MDB da ta into one of its registers (using signals MDB-IQ or MDB-TS). It then waits for
mem-ack to be asserted by the memory system, at which time it completes the access by lowering
its control signals.

5.2 I n f o r m a l s p e c i f i c a t i o n of c o n t r o l l e r s

In this section, we give an informal specification for the controllers, from which we derive a design
expressed in CSML. We will not give the entire CSML code (which is about five pages long), but
will i l lustrate the following discussion with fragments from the code. Our informal specification
will be used in subsection 5.4 to derive a formal specification in CTL for the access unit.

5 . 2 1 . T h e a c c e s s u n i t c o n t r o l l e r

We begin with the access unit controller. The AU controller has two functions, which it performs
conceptually in parallel. The first is managing the instruction queue (IQ). The controller must
keep track of the s ta tus of the IQ register, fetching a new instruction word when the IQ becomes
empty, and flushing the queue when a branch occurs. Figure 5 gives an abstract s tate diagram
tha t describes how the various operations coordinated by the AU controller affect the s ta tus of the

12

Figure 5: IQ manager state diagram

IQ register. An IQ-load operation (loading the IQ register from the value in memory pointed to
by the PC) results in the queue being full if the PC is even, or half full if the P C is odd, since
memory is only read on word boundaries. A fetch of an instruction byte by the EU results in a
full queue becoming half full, or a half full queue becoming empty. A branch always results in an
empty queue. Note tha t the AU controller can determine when the IQ is half full by examining
bit 0 of the P C , to see if it is even or odd. The CSML code in figure 6 computes the status of
the IQ and stores it in a variable called I Q - s t . It also manages an output called f e t c h - r d y which
signals to the EU tha t an instruction byte is ready in the queue. The code tha t actually carries
out the IQ-load operation will be discussed later.

The other function of the AU controller is to manage the top-of-stack cache. To do this,
it distinguishes three states of the TS register: INVALID, VALID, and MODIFIED. The TS is
in the VALID state when its contents match the value in memory pointed to by the SP, it is
MODIFIED when the TS has been writ ten, but the contents have not yet been copied back to
memory, and it is INVALID otherwise. In particular, we cannot perform a push operation when
the TS is MODIFIED, because previously pushed data would be lost, and we cannot perform a
pop operation when the TS is INVALID, because incorrect da ta would be read. Figure 7 gives an
abstract s ta te diagram tha t describes the effects of AU controller operations. The CSML code in
figure 8 computes the s ta tus of the TS and stores it in a variable called TS-s t . It also manages the
outputs p u s h - r d y and p o p - r d y which signal to the EU that the TS register is ready for a push or
pop operat ion respectively.

Finally, we define a third parallel thread of control, which acts like a monitor, insuring the
the TS manager and IQ manager do not a t t empt to access memory at the same time. Although
monitors per se are not a feature CSML, it is easy to effect this simple monitor using shared
variables within a module. It would also have been possible to make the TS and IQ managers
separate modules and have them communicate with a separate arbiter module using signals, but
the resulting program would have been more difficult to understand. The monitor thread waits in
a loop for either the IQ to become E M P T Y , or the TS to become MODIFIED or INVALID. It
then performs the appropriate memory access: IQ-load, TS-load, or TSstore, respectively. The
CSML code appears in figure 9. Note tha t when the TS register is in the INVALID state, we
allow a push request to take priority over a TS-load operation, but once the TS-load operation is

13

l o o p
compress

s w i t c h
ca se b r a n c h :

l o w e r (f e t c h - r d y) ; I Q - s t : - EMPTY; b r e a k ;
c a s e l e t c h :

i f (I Q - s t « FULL-OR-HALF-FULL) * PCO t h e n
I Q - s t :« EMPTY; l o w e r (f e t c h - r d y) ;
e n d i f ; b r e a k ;

c a s e I Q - l o a d - d o n e :
I Q - s t : - FULL-OR-HALF-FULL; r a i s e (f e t c h - r d y) ;

d e f a u l t : s k i p ;
e n d s w i t c h

endcompress
end loop

Figure 6: CSML code for the IQ manager. Note tha t the literals f e t c h and IQ- load-done ar
actually macro names which expand to conditional expressions. Their definitions can be found L
section 5.4. Also, note tha t the compress statement causes each excecution of the loop to occur i
one clock cycle.

Figure 7: TS manager s ta te diagram

14

l o o p
compress

s w i t c h
c a s e push :

l o w e r (p u s h - r d y) ; r a i s e (p o p - r d y) ;
T S - s t : - MODIFIED; b r eak ;

c a s e pop:
l o w e r (p o p - r d y) ; r a i s e (p u s h - r d y) ;
T S - s t : - INVALID; b reak ;

c a s e TS- load -done :
c a s e T S - s t o r e - d o n e :

r a i s e (p u s h - r d y) ; r a i s e (p o p - r d y) ;
T S - s t :« VALID; b r e a k ;

d e f a u l t : s k i p ;
e n d s w i t c h

endcompress
end loop

Figure 8: Code for TS manager

started, we lower p u s h - r d y to prevent push operations from interfering with the memory cycle. A
corresponding relationship exists between TS-store and pop.

The routine r e a d takes as its arguments a control signal to raise to drive the MAB bus, and a
control signal to raise to load the IQ or TS registers. It is defined in figure 10. follows: Since the
calls to r e a d appear inside compress statements, this routine only takes time if the wait loop has
to be executed.

The overall s t ructure of the AU controller code is a three-way parallel s tatement as shown in
figure 11.

5 .22. T h e e x e c u t i o n u n i t c o n t r o l l e r

The job of the execution unit is more straightforward. It has only one thread of control, and
proceeds as follows. It first loads an instruction from the IQ into the IR (i.e., performs a fetch
operation). I t then decodes the instruction, and jumps to an appropriate routine to interpret that
instruction. When the instruction is completed, it s tar ts again. The d o f e t c h routine (figure 12)
is used to load the instruction. The procedure takes a parameter c t l , which is a control signal
tha t loads a register from the IDB. This allows dof e t c h to be used to load the IR or an operand
register from the instruction queue.

The main loop of the EU controller has the structure of figure 13. Literals such as BR and CALL in
figure 13 are macros, defined as boolean expressions on bits 4-7 of the IR, which hold the operation
code field of the instruction. The actual instruction routines break down into three categories:
control instructions, one operand instructions, and two operand instructions. The instructions and
their functions are summarized in table 3. We take as an example the CALL instruction, which is

15

l oop
s w i t c h

ca se IQLst « EMPTY:
compress read(PC-MAB,MDB-IQ) endcompress ;
b r e a k ;

c a s e T S . s t « INVALID k ! p u s h - r e q :
compress l o w e r (p u s h - r d y) ; read(SP-MAB.MDB-TS) endcompress
b r e a k ;

c a s e T S . s t »» MODIFIED k ! p o p - r e q :
compress l o w e r (p o p - r d y) ; write(SP-MAB.TS-MDB) endcompress
b r e a k ;

d e f a u l t : s k i p ;
e n d s w i t c h

end loop

Figure 9: CSML code for memory access "monitor"

p r o c e d u r e r e a d (a d d r c t l . d a t a c t l)
r a i s e (m e m - r d) ; r a i s e (a d d r c t l) ; r a i s e (d a t a c t l) ;
wh i l e !mem-ack do l o o p s k i p e n d l o o p ;
lower (mem-rd) ; l o w e r (a d d r c t l) ; l o w e r (d a t a c t l) ;

e n d p r o c ;

Figure 10: Routine r ead .

DEFINE AU M O D U L E (. . . ; . . .)
. . . d e c l a r a t i o n s . . .
. . . p r o c e d u r e s . . .
p a r a l l e l
. . . memory a c c e s s mon i to r . . .
II

. . . TS manager . . .
II

. . . IQ manager . . .
e n d p a r a l l e l

ENDMODULE

Figure 11: Overall s t ructure of AU controller code.

16

p r o c e d u r e d o - f e t c h (c t l)
p a r a l l e l r a i s e (f e t c h - r e q) II r a i s e (c t l) e n d p a r a l l e l ;
whi le ! f e t c h - r d y do loop s k i p end loop ;
p a r a l l e l l o w e r (f e t c h - r e q) I I l o w e r (c t l) e n d p a r a l l e l

endproc ;

Figure 12: The procedure dof e t c h .

l oop
d o - f e t c h (I D B - I R) ;
s w i t c h

c a s e BR:
. . . e x e c u t e b r a n c h i n s t r u c t i o n . . .

c a s e CALL:
. . . e x e c u t e c a l l i n s t r u c t i o n . . .

. . . o t h e r i n s t r u c t i o n s . . .
c a s e XOR

. . . e x e c u t e e x c l u s i v e - o r i n s t r u c t i o n . . .
e n d s w i t c h

end loop

Figure 13: The structure of the EU controller code,

interpreted by the code of figure 14.

First, d o - f e t c h is called to load the branch target into the operand register O P R 1 . The
condition is then decoded (the literals C, NC, Z, NZ, N, NN, and T are defined as predicates on the
IR bits 0-2 which hold the condition field of the instruction). If the condition evaluates to true, the
routine do -push is called to push the current P C onto the stack (do-push is similar to d o - f e t c h) ,
and d o - b r a n c h is called to load the P C (note tha t the branch target flows through the ALU
unchanged, since all of the ALU controls are set to zero at the conclusion of each instruction-see
figure 4).

5.3 S o m e o b s e r v a t i o n s o n i m p l e m e n t i n g h a r d w a r e i n C S M L

When compiled as separate modules, the AU and EU controllers have 13 and 98 states respectively.
It is clear tha t there is no need to decompose the AU into modules, since the number of states
is quite small (although early, incorrect versions had as many as 60 states). On the other hand,
merging the AU and EU into one module would result in a very complex machine with 1274 states.
Although, obviously, the state-space of this large machine would have a simple decomposition, the
information about how to decompose it would be lost. As we will see in the next section, this
modular decomposition will be an advantage in automatic verification.

This example also illustrates the difference between true parallelism (between modules) and

17

case CALL:
do-fetch(IDB-OPRl);
i f (CJtcarry I NC*! carry

do-push(PC-IDB);
do-branch(RES-IDB)

endi f ;
break;

ZJrzero I NZ*!zero I Nfcsign I NNfclsign I T) then

Figure 14: Code for the CALL instruction.

Mnemonic | Function Mnemonic | Function

Control instructions

BR Branch on condition 1 CALL | Call on condition

R E T Return on condition ||
One-operand instructions

MOVE source —• dest INC source + 1 —• dest

DEC source — 1 —• dest C O M ~ source —• dest

NEG —source —* dest ASL 2source —• dest

ASR source/2 —• dest
Two-operand instructions

ADD srci + src2 —* stack SUB srci - src2 —* stacK

AND srci A src2 —* stack OR srci V src2 —• stack

XOR srci © src2 —* stack

Table 3: Instruction set summary

18

conceptual parallelism (between threads of control on the same module), and provides some mo­
tivation for the existence of two constructs for parallel execution in CSML: the MODULE and
parallel s tatements. Although we feel tha t it is important to break up large controllers into mod­
ules, this does not mean tha t every thread of control should be broken out into a separate module.
In the case of the AU, which has three tightly coupled threads of control, shared variables provide a
conceptually simple mode of interaction, and the resulting number of states is not large. Thus, we
feel justified, at the risk of seeming unparsimonious, in providing both mechanisms in the language.

Obviously, the C P U design presented here was not intended to be a practical one. From a
practical point of view, however, a t least one criticism of CSML should be made. The Moore-
machine semantics of CSML (and its predecessor SML) require tha t raising or lowering a signal
always involves one clock cycle of delay. The astute reader may have noticed tha t in the instruction
fetch routine of the EU, one clock cycle is simply wasted in order to raise the signal fetch-req. This
same consideration also made it necessary to use "ready" signals (essentially a pre-acknowledge),
since it is not possible to respond to a request with an acknowledge in the same clock cycle. One
advantage of the Moore-machine semantics is that all signals between modules effectively pass
through a pipeline register. This means tha t timing of modules can be verified independently.
Nonetheless, it seems to be a serious limitation for practical design.

5.4 F o r m a l spec i f i c a t i on for t h e access u n i t

In this section we present a formal specification of the AU in CTL. The formal specification for
the EU is not presented. It is extremely detailed (i.e., there are a large number of cases), but not
very interesting. Before proceeding we would like to define a few predicates which will simplify the
specifications and the following discussion. They are defined as follows:

fetch fetch-req A fetch-rdy
push push-req A push-rdy

pop pop-req A pop-rdy

IQ-load mem-rd A PC-MAB A MDB-IQ
IQ-load-done IQ-load A mem-ack

TS-load = mem-rd A SP-MAB A MDB-TS
TS-load-done = TS-load A mem-ack

TS-store mem-wr A SP-MAB A TS-MDB
TS-store-done = TS-store A mem-ack

PC-roll-over = fetch A PC0.

The predicate fetch indicates tha t an instruction is being loaded into the IR and the P C is being
incremented. Similar meanings are associated with push and pop. IQ-load is t rue when a memory
cycle is in progress which is loading the IQ, and IQ-load-done is t rue on the last clock cycle
of a memory cycle. Similar meanings are associated with TS-load, TS-load-done, TS-store and
TS-store-done. PC-roll-over is t rue when the P C is crossing a word boundary.

The basic safety requirement for the IQ manager is that , whenever a fetch occurs, the output
of the IQ matches the memory location pointed to by the PC . We assume tha t the stack does not

19

overwrite program memory. Thus, the only conditions which can violate the above requirement

are:

i. The P C rolls over to the next word boundary.

ii. A branch occurs.

iii. The system is reset to its initial state.

We would like to assert that , between the time one of these three things happens and IQ load is
completed, that a fetch never occurs. In order to express this in CTL, it is convenient to define a
macro-operator

(p BEFORE q) = {^qUp)
tha t is, p occurs BEFORE q if and only if ->q is t rue until p is true. Note tha t we intend the strong
until in this case - if p never occurs, it cannot be said to have occurred before q. Our requirement
for case (i) above can now be expressed in CTL as follows

VG{PC-roll-over — ^3X3(fetch BEFORE IQ-load-done))

tha t is, globally, if the P C rolls over to the next word boundary, then (beginning in the next state)
there exists no pa th along which an instruction fetch occurs before the instruction queue has been
loaded. We can state the requirement for case (ii) as follows

VG(6roncA — ^3X3{fetch BEFORE IQ-load-done))

and for case (iii) simply as

-<3(fetch BEFORE IQ-load-done)
This specifies tha t , from the initial s tate , there is no path along which a fetch operation occurs
before the first IQ-load operation completes (the t ru th value of all formulas is implicitly referenced
to the initial s ta te) . Of course, we also require tha t the IQ manager never drives the MAB or
overwrites the IQ spuriously. These conditions are expressed by the following C T L formulas:

VG{PC-MAB -+ IQ-load)
VG(MDB-IQ -* IQ-load).

The first formula s tates , for example, t ha t the P C is only driven onto the memory address bus
when an IQ-load operation is in progress.

The correctness conditions for the TS manager may at first seem more complex, however it
is relatively straightforward to derive them from the s ta te transition diagram of figure 7. In the
VALID sta te , any of the operations push, pop, TS-load and TS-store are allowable (the latter two
are not present in the diagram, but executing them in this s tate will cause no harm, since the
memory contents match the TS register). From the MODIFIED sta te , which is entered only by
a push operation, another push or a TS-load may not occur before either a pop or TS-store is
completed. We can express this condition with the following formula

VG(push -i3X3(push V TS-load BEFORE TS-store-done V pop))

20

From the INVALID state, which is entered only by a pop or a reset to the initial state, pop and
TS-store may not occur before either a push or TS-load is completed. Thus we have the following
formulas:

VG(pop — ^3X3(pop V TS-store BEFORE TlS'-load-done V push))
^3(popV TS-store BEFORE TS-load-doneV push)

Of course, we also require tha t the TS manager not spuriously drive the MAB or MDB buses or
overwrite the TS register:

WG(MDB-TS — TS-load)
VG(TS-MDB - TS-store)

VG{SP-MAB -+ {TS-load V TS-store))

The first of these, for example, states that the top-of-stack register is loaded from the memory data
bus only during a TS-load operation.

In order for memory cycles to operate correctly, we have the following requirements. First, the
address, da ta and control signals must remain stable during an entire memory cycle. This means
that , if an IQ-load, TS-load or TS-store condition occurs, tha t condition must persist up to and
including the clock cycle when mem-ack is asserted by the memory system. Further, as the address
must not change during a memory cycle, we require tha t during an IQ-load cycle, the program
counter not change words, and that during TS-load and TS-store cycles, the stack pointer not
change. These requirements are expressed in the following formulas:

VG(IQ-load -> ^{(IQ-load A ^(PC-roll-over V branch))U(IQ-load A mem-ack)))
VG(TS-load ^(TS-load A ^(push V pop)U{TS-load A mem-ack)))

VG(TS-store -> ^((TS-store A ̂ (push V pop))U{TS-store A mem-ack)))

Second, we allow no spurious memory accesses.

VG(mcm-wr —• TS-store)
VG(mcm-rd -> (TS-load V IQ-load))

The above formulas represent safety properties, i.e. they are characterized by the statement
"nothing bad ever happens." Unfortunately, they cannot form a complete specification, since a
controller which did nothing at all would satisfy all of the above assertions. Thus, we include the
following liveness requirement, which states, in effect, that the CPU always eventually executes
another instruction:

VGVFfetch

5.5 S u m m a r y of m o d e l checking resu l t s

Finally, we describe the application of the CTL model checker to automatically verify that our
controller meets the above specification. Since the composition of the AU and EU has 1274 states,
while the AU by itself has only 13 states, one might be tempted to check the formulas on the
AU in isolation, and then infer tha t their correctness holds in the composition. Unfortunately,

21

this inference would not necessarily be a valid one. The CTL properties of a module are not
always preserved when the module is composed with other modules. In any case, the correctness
of a module very probably depends in some part on properties of the modules with which it is
composed. It is possible, however, to apply the interface rule to replace the EU module with a
reduced module E U \ which has only 17 states (as opposed to the 98 states of the EU). We derive
EU' by first hiding the outputs of the EU controller which control the data path of the EU, then
applying a Moore machine minimization algorithm. The reason for the large reduction is that ,
while the EU interprets a large number of instructions, the memory access for these instructions
fall into a few basic pat terns. The interface rule guarantees that our specification will hold in the
composition of AU and EU if and only if it holds in the composition of AU and EU' . This latter
composition has only 221 states. This illustrates the point made earlier tha t modular design can
increase the efficiency of automatic verification.

In the process of verification, the model checker pointed out two bugs in the original design.
The first was tha t the d o - b r a n c h routine did not check to make sure tha t a IQ-load operation was
not in progress before modifying the PC . The second was tha t the TS-store code in the memory
access monitor incorrectly asserted MDB-TS instead of TS-MDB. Counterexamples produced by
the model checker made it a straightforward task to find and correct the errors. The total time
to verify the 16 formulas of the AU specification on our (corrected) 221 s ta te machine was 36.2
seconds, running on a Sun-3 workstation.

6 D i r e c t i o n s for F u t u r e R e s e a r c h

We should point out t h a t the task of verifying the C P U does not end with the verification of the
controllers. It is necessary, of course, to provide a formal specification of the CPU as a whole, and
to prove on the basis of the controller specification and a formal model of the da ta path circuitry
tha t the C P U specification is valid. Unfortunately, we do not have the machinery to do this in an
automated way. The s ta te space of the da ta pa th section is far too large to apply model checking
techniques, and in any case, C T L is most likely not expressive enough to specify the CPU as
a whole. One approach to this problem might be to integrate the CTL model checker with an
automat ic theorem prover (or proof checker), which could perform the final step. Bryant 's method
of symbolic simulation [6] would probably be of considerable use in this endeavor. We leave the
problem of integrating control and da t a as an open one here, and an area for future research.

Even with the module feature CSML has some limitations. Perhaps the most difficult issue
is how to deal with nondeterminism. Currently, SML processes are completely synchronous and
deterministic. In practice, however, it is important to be able to reason about processes tha t run
on different clocks or execute asynchronously. Another important use of nondeterministic processes
is to form an abst ract representation of a class of deterministic machines. Such a process can be
used to prove properties of the entire class, often with greatly reduced complexity. More research
is needed to handle this problem within our current framework.

Finally, additional research is needed on techniques for compositional reasoning about SML
processes. The interface rule handles formulas tha t are boolean combinations of temporal properties
of the individual processes. We are currently unable to handle more general properties involving
temporal assertions about several processes. Furthermore, in some verification problems it may be
necessary to combine the use of the interface rule with proofs of validity for certain C T L formulas.
In general, such proofs require a complicated decision procedure. Fortunately, we believe that it

22

will be possible to use the model checker together with informal manual reasoning to handle most
of these cases.

References

[1] G. Berry and L. Cosserat. The ESTEREL Synchronous Programming Language and its Math­
ematical Semantics. Technical Report, Ecole Nationale Superieune des Mines de Paris, 1984.

[2] M. C. Browne. An improved algorithm for automatic verification of finite state machines using
temporal logic. In Proceedings of the Conference on Logic in Computer Science, June 1986.

[3] M. C. Browne and E. M. Clarke. SML: a high level language for the design and verification
of finite s tate machines. In IFIP WG 10.2 International Working Conference from HDL
Descriptions to Guaranteed Correct Circuit Designs, Grenoble, France, IFIP, September 1986.

[4] M. C. Browne, E. M. Clarke, and D. L. Dill. Automatic circuit verification using temporal
logic: two new examples. In Formal Aspects of VLSI Design, Elsevier Science Publishers,
1986.

[5] M. C. Browne, E. M. Clarke, D. L. Dill, and B. Mishra. Automatic verification of sequential
circuits using temporal logic. IEEE Transactions on Computers, C-35(12), December 1986.

[6] R. E. Bryant . Two Papers on a Symbolic Analyzer for MOS Circuits. Technical Report 87-106,
Carnegie Mellon University, 1987.

[7] E. M. Clarke, S. Bose, M. C. Browne, and O. Grumberg. The Design and Verification of Finite
State Hardware Controllers. Technical Report 87-145, Carnegie Mellon University, 1987.

[8] E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branching time
temporal logic. ACM Transactions on Programming Languages and Systems, 8(2):244-263,
1986.

[9] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Transactions on Programming Languages
and Systems, 8(2):244-263, 1986.

[10] D. Harel. Statecharts: A Visual Approach to Complex Systems. Technical Report CS84-05,
The Weizmann Inst i tute of Science, February 1984.

[11] D. L. Parnas . A language for describing the functions of synchronous systems. Communica­
tions of the Association of Computing Machinery, 9:72-75, February 1966.

[12] J. D. Ullman. Computational Aspects of VLSI. Computer Science Press, 1984.

23

