
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Scheduler 1-2-3: An Interactive Schedulability Analyzer
for

Real-Time Systems
Hideyuki Tokuda and Makoto Kotera

June 15,1988

CMU-CS-88-178 ;

Computer Science Department
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Abstract

Advances in Software Engineering provided us a set of modern programming tools for building large,
complex software systems. Various toolsets can cover the wide range of the software development life
cycle from the requirement analysis phase to the debugging and the maintenance phases. However,
many of these modem tools are not quite effective for building and analyzing complex real-time systems.
An additional toolset such as a timing tool, a schedulability analyzer, and a real-time monitor/debugger
should be developed to reduce the complexity of real-time software. In this paper, we describe an
interactive analysis tool, called Scheduler)-2-3, which can perform the schedulability analysis for
development of real-time computing systems. The schedulability analysis can verify whether all hard
real-time tasks in a target system will complete by their deadlines or not at the system design phase.
Scheduler 1-2-3 is a window-based interactive standalone tool, and it can also be used as a synthetic
workload generator as a part of an integrated toolset that consists of a timing tool, a schedulability
analyzer, and a real-time monitor/debugger.

This research was supported in part by the U.S. Naval Ocean Systems Center under contract number
N66001-87-C-0155, by the Office of Naval Research under contract number N00014-84-K-0734, and by
the Federal Systems Division of IBM Corporation under University Agreement YA-278067. The views
and conclusions contained in this document are those of the authors and should not be interpreted as
representing official policies, either expressed or implied, of NOSC, ONR, IBM, or the U.S. Government.

I

Table of Contents
1 . Introduct ion 1

1.1. Timing tools 1
1.2. Schedulability Analysis Tools 2
1.3. Real-Time Monitoring/Debugging Tools 2

2 . Real -T ime Computat ional Model 3
3. T h e Schedulabi l i ty Analyzer 4

3.1. Objectives 4
3.2. Structure 5
3.3. Task Analysis 7

3.3.1. Schedulability Analysis 7
3.3.2. Integrated Schedulability Analysis with Aperiodic Tasks 8
3.3.3. Monitorabllity analysis 8

3.4. User Interface 9
3.4.1. Schedulability analysis 9
3.4.2. Context switching overhead 9
3.4.3. Integrated analysis 11
3.4.4. Monitorabllity analysis 11

3.5. Synthetic Workload Generator 11
4. Related W o r k 11

4.1 . Leinbaugh's Algorithm 13
4.2. Real-Time Euclid and Schedalyzer 13
4.3. Real-Time Temporal Logic 14

5. Future W o r k 14
6. S u m m a r y 14
Acknowledgment 15
References 15

University Libraries
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

ii

L is t of F i g u r e s
Figure 2 - 1 : The Real -T ime Computat ional Model 3
Figure 3 - 1 : System Conf igurat ion of the A R T Real -T ime Testbed 4
Figure 3 -2 : System Flow in the A R T Real -Time Testbed 5
Figure 3-3: Analysis S teps in Schedulert-2-3 6
F igure 3-4: T h e W i n d o w Layout of Scheduler1-2-3 9
Figure 3-5: The INS Task Set 10
Figure 3-6: T h e Effect of Context Swi tching Overhead 10
Figure 3-7: An Analysis wi th a Deferrable Server 11
Figure 3-8: Monitorabl l i ty Analysis 12
Figure 3-9: T h e Work load Table for the INS Task Set 12

1

1. Introduction
Advances in Software Engineering provided us with a set of modern programming tools for building

large, complex software systems. Various tool sets can cover the wide range of the software development
life cycle from a requirement analysis phase to the debugging and the maintenance phases [1,5].
However, we cannot simply reuse the existing tool set for designing and building complex real-time
computing systems without considering the time management capabilities. For instance, an interactive
debugging tool in Smalltalk-80 [6] allows us to track down a logical" bug in a program very well.
However, it is almost impossible to detect or fix a timing bug (error) for real-time programs.

What we are missing in real-time systems engineering is good real-time programming methodologies,
real-time specification methods, high-level real-time languages, and a real-time toolset which allows us to
manage real-time programs in a reliable and predictable fashion. For instance, Ada 1 [22] is a good high-
level language for managing a large, complex programs, however, there are many practical problems in
its tasking semantics for embedded hard real-time applications [4]. Classical linear time temporal logic is
also rather insufficient for expressing real-time systems safety or liveness properties. It cannot specify its
temporal property within a certain time bound. An extended model of the temporal logic such as a Real-
Time Temporal Logic (RTL)[16] is necessary to deal with the real-time programs. Similarly, many
existing software tools cannot provide support for detecting and eliminating a timing error in the target
program.

Recently, several attempts have been made to provide better real-time software tools for developing
complex real-time systems. At Carnegie-Mellon University, development of a real-time kernel, called
ARTS, is currently underway. The ARTS kernel provides a distributed real-time computing environment
based on an object-oriented computation model. This kernel cooperates with an integrated toolset which
consists of a timing tool, a schedulability analyzer and a real-time monitor/debugger. In this paper, we will
focus on our interactive schedulability analyzer, Schedulerl-2-3 2. First, we present the overview of the
real-time computational model we use. Then, we present the objectives of Scheduler 1-2-3 and its
internal structure. We also describe both techniques adopted for the schedulability analysis and its
interactive operations, and we compare our approach with other related approaches. We then summarize
our works and mention future extensions. First of all, let us review software tools which focus on the
prediction, detection, and elimination of the timing errors in real-time systems, before stepping into the
detail discussion of Schedulerl-2-3.

1 .1 . T iming tools

Unfortunately, most high-level programming languages do not treat "time" as a first class object, then
any timing constraint on a real-time activity must be imposed implicitly. This type of "implicit binding"
between a code segment and time causes many common timing errors. One way of avoiding the error is
to use "time" in the real-time program explicitly. Then, a timing tool which can estimate or measure the
average, the worst, and the best case of the timing characteristics of a given program module would be
very handy. The timing tool should be available at the design phase as well as the debugging phase.

1 A d a is a registered t r a d e m a r k of the U . S . G o v e r n m e n t , A d a Joint Program Off ice.

CoZr*ZS°' ^ ° f S c h G d U ' « r 1 - 2 - 3 — < ™ ^tus1.2-3 which is a registered t rade mark of Lotus Deve lopment

2

An example of such timing tools has been developed for the SARTOR Environment [15], and it can
estimate the timing information (i.e., cpu execution time) for a given code segment using a
microprocessor simulator. There is also a real-time programming language, called Real-Time Euclid
[7] which was designed with a set of schedulability analysis provisions built-in for the sake of

schedulability analysis.

1.2. Schedulability Analysis Tools
A schedulability analysis tool can verify whether a given real-time task set can meet their timing

constraints or not. The benefits of this tool is that it is possible to foresee the schedulability of the target
system in prior to the implementation phase. In general, the predictability of the analyzer heavily depends
on the scheduling policies the target system use. It is desirable that the analyzer can be applied to
various scheduling policies. Moreover, the analyzer should be able to take into account various types of
practical system overheads.

There are well-known schedulability analysis algorithms [10,11,14], however, practical interactive
analysis tools have not been demonstrated yet.

1.3. Real-Time Monitoring/Debugging Tools
By virtue of systematic programming paradigms like data encapsulation, modern debuggers fully

support to detect and eliminate logical errors in non-real-time programs; on the other hand, testing and
verifying timing correctness has been done only in ad hoc manner. It is very hard to track down the timing
bugs, since the. timing bug sometimes affect the system beyond the task boundaries. This makes it really
difficult to find out the origins of the timing errors.

Time encapsulation, the notion to capture timing error at the point where the problem originates, is
needed [21]. A powerful real-time monitoring/debugging tool should be able to capture a timing bug in
cooperation with the previously mentioned tools.

Furthermore, a monitor/debugger should be able to show the runtime system behaviors and is
hopefully noninvasive. Like non real-time debugging tool, a real-time debugger may also require ordinary
debugging features such as traces, breackpoints, and stack examiners. However, the difficult problem in
real-time debugging is that the system overhead due to the debugger might cause a new timing error in
the integrated testing stage. For instance, debugging statements seen in non-real-time programs are
likely to affect timing correctness, even though logical correctness can be verified with such features. In
this sense, the real-time monitor/debugger should minimize the system overhead.

A real-time monitoring tool has been built in the DCT (Distributed Computer Testbed) system [2]. In
DCT, a large amount of hardware is used for system instrumentation and it could achieve a high degree
of noninvasive monitoring. A global synchronized clock provided the system with the system-wide
monitoring activities. The ART Real-Time Monitor [21] employs a software approach to the runtime
monitoring. Many probes are embedded in a real-time kernel to capture interesting events, and collected
events are reported to a remote monitoring subsystem. A Distributed Program Monitor by Miller [13] is
also a software approach for monitoring system behavior in a distributed environment. Software oriented
approaches cannot be completely noninvasive; nonetheless, maximum interference caused by monitoring
activities should be predictable and minimized.

3

2. Real-Time Computational Model
The biggest difference between real-time systems and non real-time systems is time-critical nature.

Real-time systems must respond on external activities. Response must be done in time. Among various
types of real-time systems, we first classify the real-time computing tasks as hard real-time or soft
real-time. By the hard real-time task we mean that the task must complete its activities by its "hard"
deadline time, otherwise it will cause undesirable damage or a fatal error to the system. The soft real-time
task, on the other hand, does not have such "hard" deadline and it still make sense to the system to
complete the task even if it passed its "critical" (i.e. soft deadline) time. Suppose we use a "value function"
[12, 20] which represents the task's contribution (i.e., semantic value) to the system as a function of time,

we can illustrate the difference. The hard real-time task indicates a step function where the discontinuity
occurs at its deadline while the soft real-time has a continuous (linear or non-linear) decreasing function
after its critical time.

In both types, a task can be either periodic or aperiodic, A periodic task Pt is defined by the total
computation time Ct, period r , while an aperiodic task APi is defined by the total computation time C , its
distribution mean arrival time Af(, and standard deviation Sr In particular, when a hard real-time task is
an aperiodic, we call it a sporadictask where consecutive requests of the task initiation are kept at least Q
unit of time apart [14]. It should be noted that it is not our intention to limit the task execution time as a
constant. We can always incorporate a stochastic execution model, once we have a better analytical
result. The classification of the hard and soft real-time tasks is depicted in Figure 2-1.

Per iod ic)

(R e a d m e T a s k ^ " ^ ^ S P ° r a d l c >
* Iodic) Soft R e a l - T i m e) / * - ^

Aperiodic

Figure 2-1: The Real-Time Computational Model

In general, real-time systems do not consist of a specific type of real-time tasks. It often consists of a
mixture of hard and soft, and periodic or aperiodic (sporadic) activities. For instance, in the Inertia!
Navigation System (INS) experiment [3] , there are seven hard and periodic tasks: Attitude Updater
(0.9/2.5), Velocity Updater (4/40), Attitude Sender (10/62.5), Navigation Sender (20/1000), Status Display
(100/1000), Runtime BIT (5/1000), Position Updater (25/1250) where a pair of numbers indicates its
execution time over the period. There are also a few soft and aperiodic tasks such as a Keyboard
Command Processor, Console Keyboard Interrupt Service Routine, and Console Screen Interrupt Service
Routine. In some of embedded real-time systems, the majority of the task are hard and periodic real-time
tasks, while some of large, distributed real-time systems may have more soft and aperiodic activities due
to the use of distributed database systems or expert systems.

4

3. The Schedulability Analyzer

3.1. Objectives
The main objective is to provide an interactive design tool that makes it easy to design a complex

real-time system. For the existing systems, the Schedulerl-2-3 can be used to predict the timing effects
due to software and hardware modification. Another objective is to utilize Schedulerl-2-3 as a synthetic
workload generator, which can be integrated with the other test tools, the timing tool and the real-time
monitor/debugger. The objectives are summarized as following.

• Schedulability Analysis

The schedulability is verified for the given hard deadline task sets under the given scheduling
algorithm. Currently, we are interested in analysis on the the rate monotonic [11], the first-in
first-out (FIFO), the closest deadline first and the round robin scheduling. If a given task set is
not schedulable, the following information is reported, namely, when a deadline will be
missed first time and which task misses its deadline. Furthermore, Scheduler1-2-3 gives
some intelligent suggestions based on the period transformation method [18].

Display

Scheduler 1-2-3

Real-Time Monitor's
Visualizer

Real-Time Network (IEEE 802.5)

Objects/Processes
> Reporter
I Event Tap

Figure 3-1: System Configuration of the ART Real-Time Testbed

• Response Time Analysis for Aperiodic Tasks
Performance of the given sets of aperiodic tasks with soft deadlines is given under arbitrary
scheduling algorithms for aperiodic tasks. By means of a simulation, Schedulerl-2-3

estimates the average response times of those aperiodic tasks based on the given statistical
parameters, like mean arrival time, standard deviation and distribution.

Monitorabllity Analysis

5

Task Set Def. File

Display

jSynthetic Workload Table

ARTS Testbed
Test Run

inputParameters RemotaJ
Booting:

Scheduler 1-2-3
Feedback Information

ARTS Operating System

I

Figure 3-2: System Flow in the ART Real-Time Testbed

The interference of the monitoring and debugging activities in runtime should be not only
minimized but also predicted because real-time systems are time-critical. Our runtime
monitoring approach [21] adds a monotoring task in advance to the target task set so that
monitoring overhead can be analyzed by Schedulerl-2-3 before hand. In addition,
Scheduler 1-2-3 predicts the maximum capacity of the monitoring task under a given
scheduling policy so as not to have the monitoring capacity overwhelmed by too many event
occurrence. For the sake of simplicity, we call this analysis monitorabllity analysis in remider
of this paper.

• Easy-to-use Interface

An interactive user interface is provided on a window system of bitmap display for ease of
use. This interface makes it possible for users to enjoy schedulability analysis without precise
knowledge of internal analysis procedures.

• Synthetic Workload Generator

To confirm the schedulability of the given task set on a practical environment, Schedulerl-2-3
outputs a workload table on which a synthetic real-time task set can be generated. Synthetic
tasks with workload specified would be tested on the ART Real-Time Testbed as illustrated in
Figure 3-1.

3.2. Structure

Schedulerl-2-3 consists of three major modules. They are the Analysis module, the File interface
module and the User interface module, as depicted in Figure 3-2. It is easy to port Schedulerl-2-3 to
other hosts or to apply the analysis module to another purpose. Those major modules are structured
independently of each other.

Analysis Module

The analysis module performs schedulability analysis, response time analysis for aperiodic

6

tasks and monitorability analysis. The rate monotonic algorithm [11] is currently available for
schedulability analysis of hard deadline tasks. The scheduling algorithm for aperiodic tasks
is currently based on the deferrable server algorithm [9]. Analysis steps are explained in the
following section.

• File Interface Module

Generating a synthetic workload table and reading/writing a task definition file are done by
this module. As depicted in Figure 3-2, a test program is created from a synthetic workload
table to be executed on the ART Real-Time Testbed. A task set definition table is a collection
of binary data of the parameters of the given task set. This table is used to save the time to
re-input the task set definition.

• User Interface Module

This module provides an easy-to-use interactive user interface based on a window system.
The user interface is implemented independently of the analysis part. The current
implementation has been done on the window system on Sun3 workstation3. It is possible
both to use Scheduler1-2-3 on windlowless hosts and to port it on other window systems
4owing to the independent structure of major modules.

Console

Display User
Interface
Module

Schedulability Analysis Module

In case of schedulable

Step-1 Step-2 Step-3

Utilization Harmonic Critical
Bound Task Zone
Check Check Check

Task Set
Def. File

File
interface
Module

Workload
I Table

In case of non-schedulable

Figure 3-3: Analysis Steps in Scheduled-2-3

3 S u n 3 is t he t rademark of S u n Microsystems. Inc.

'Por t ing it onto X . 1 1 - w i n d o w is now underway .

7

3.3. Task Analysis
We will describe the task analysis techniques based on the rate monotonic scheduling algorithm in this

section. Although schedulability of real-time tasks is very difficult to predict, the rate monotonic scheduling
makes it possible to analyze the schedulability with the closed formula described in this section. Even if
the activities of the task set include interprocess communication or mutual exclusion among the task set,
the closed form analysis is still possible by using the priority inheritance algorithm [18]. Simulation part will
be added to deal with the other scheduling policies.

3.3.1. Schedulability Analysis

The rate monotonic scheduling gives higher priority in execution to more frequently executed periodic
tasks. The schedulability analysis is carried out along with the following three steps as shown in Figure
3-3. Suppose there are n periodic tasks whose periods and execution times are represented as Ti and C-
respectively, where 1 < i <n and Tx <T2< <Tn.
Stepl - Utilization Bound Check:

Under the rate monotonic scheduling, if processor (CPU) utilization is less than n (2 , / , l - l) with n
periodic tasks in the given task set, which is approximately equal to In 2 « 0.6935, it has been proved to be
schedulable [11]. Therefore, a task set with CPU utilization which is not higher than this limitation is
reported to be schedulable, and the subsequent steps are omitted.
Step2 - Harmonic Task Check:

Further research on the rate monotonic algorithm leads to a more sophisticated verification technique,
called the Task-Lumping Technique [17]. This technique is used to predict the schedulability if CPU
utilization by a given task set exceeds In 2. This Lumping technique tries to lump tasks together so that
schedulability test becomes easier and simpler. The Lumping technique is applied iteratively from the
most frequency task up to the least frequency task. If all tasks are successfully lumped together, the given
task set is proved to be schedulable. One lumping is described as below.

1. The first step tried to lump task,, and t a s k i + p where 1 <i < n-l. If TM is a multiple of Tv

those two tasks are called harmonic and lumped together into one task, x ; whose period is

2. CPU utilization of task x, is verified, if task, and task < + l are harmonic. CPU utilization of t ; ,
C-/T i + c M ITi+V is below 100 percent, schedulability is guaranteed up to task l + | .

3. If those two tasks are not harmonic, namely TM is not a multiple of Tit schedulability has to
be checked explicitly. In period of ri+l, if both tasks get allocated CPU time that are longer
than or equal to their execution times, those tasks turned out to be schedulable and those
two are lumped into x: whose period is set to the least common multiple of T- and TM.

4. If task, and t a s k + 1 are schedulable, x{ would be regarded as task, in the next lumping.
Step3 - Critical Zone Check:

Because the Lumping technique is slightly pessimistic, all schedulable task set cannot be found by the
lumping technique. In this case, the decision is made by the third stage test, which is a kind of numerical

5 l n a v e r a g e c a s e , the rate monotonic algorithm c a n schedule task sets with 0.88 or more C P U utilization [8J.

8

simulation of the critical zone as illustrated below.

1. Schedulability of task,, the highest frequent periodic task, is verified by confirming its
execution time is less than or equal to its period (C, <T{).

2. For every periodic task(2</<«), check points are set by calculating arrival points of all
periodic tasks that are higher frequent than task,

Sets of check points are represented as St = {£• Trf for 1 ^ k £ [j./r;J and 1 < / < i.

3. At every check point, CPU utilization is calculated and checked whether utilization is less
than or equal to 100 percent. If CPU utilization exceeds 100 percent at any check point, it is
reported that task/s Lr./rJ+ 1 s t arrival causes missed deadline, and the simulation failed;
otherwise, there is at least 1 way to schedule / tasks so that all of them will meet their
deadlines.

4. If this simulation finishes successfully for all n periodic tasks, the task set is schedulable.

An amendment - Context switching overhead:

Overhead caused by the context switching must be taken into account, because task creation and
elimination consume considerable processor time, and this overhead is not avoidable when periodic tasks
which repeat creation and elimination are handled. Schedulerl-2-3 can take context switching overhead
into its schedulability analysis by adding those overhead twice into the execution time of every periodic
tasks before an analysis begins.

3.3.2. Integrated Schedulability Analysis with Aperiodic Tasks
It is important to minimize the response time of aperiodic soft deadline tasks as well, because real-time

systems are often mixture of hard real-time tasks and soft real-time tasks. The deferrable server algorithm
[9] is a newly proposed algorithm which performs better than other algorithm for handling aperiodic tasks,

(i.e. the back ground or the polling) under the rate monotonic scheduling. Suppose a set of n periodic
tasks, this algorithm adds an extra periodic task, called the deferrable server, with Cs execution time and
Ts period with priority defined by Ts in the rate monotonic scheduling. If Ts is the shortest, the deferrable
server has the highest priority. The deferrable server uses preserved CPU time Cs to service to aperiodic
tasks which arrive by the end of period Ts. Because the highest priority is given to the deferrable server
and the maximum cpu time is reserved for the execution time for the server, namely, aperiodic tasks, this
algorithm improves response time of aperiodic tasks in hard real-time environment in comparison with the
back ground or the polling algorithms.

Scheduler1-2-3 sets the deferrable server's period to the highest period in the task set, when an
analysis includes aperiodic tasks. Then maximum slack time that may be allocated to the deferrable
server is found by means of a binary search. Nonetheless, it is possible to set the period arbitrarily by
hand and to see the schedulability.

3.3.3. Monitorabllity analysis
The analysis that verifies whether or not the runtime system behavior can be monitored is done by the

worst case analysis. First, if the monitoring task (Reporter) is not included in the task set, it reports that
the task set cannot be monitored. The Reporter task is in charge of sending event information over the
network to the "Visualizer", where event information is analyzed and visualized. If there is the Reporter,

9

the maximum number of events that can occur in one Reporter's period is estimated. If the number of
events taking place in one Reporter's period overwhelms the Reporter's capability of sending event
information over the network, event information will be lost eventually. In that case, this task set is not
"monitorable". The precise analysis steps are described in [21].

3.4. User Interface
Schedulerl-2-3 is characterized by its interactive user interface based on a window system of bitmap

display. As illustrated in Figure 3-4, the window of Schedulerl-2-3 is conceptually divided into 3
subwindows. To begin with, a user gives a set of parameters to Schedulerl-2-3 through the editing
window, and all input parameters is displayed on the display window where the task set under analysis
are displayed. Operations are triggered by clicking the buttons on the operation windowwith a mouse. For
instance, clicking the Cyclic button tells Schedulerl-2-3 to start schedulability analysis for periodic tasks.
The results would be printed on the message window, which appears and disappears as necessary. The
schedulability analysis, handling context overhead and integrated analysis including aperiodic tasks, are
operated in the following interactive manner.

Operation Buttons
Operation Window

Display Window

Editing window

Figure 3-4: The Window Layout of Schedulerl-2-3

3.4.1. Schedulability analysis

An analysis is performed for the INS task set [3], (see Section 2), in Figure 3-5. All necessary timing
parameters were already set through the editing window. By clicking the Cyclic button on the operation
window the analysis is started, and then as displayed in the message window, the result of analysis
shows this task set is schedulable with 0.86 CPU utilization.

3.4.2. Context switching overhead

Context overhead was taken through the editing window. The effect context overhead has on
schedulability is typically illustrated in Figure 3-6, which first shows the task set that used to be
schedulable in Figure 3-5 becomes non-schedulable when context overhead is added. Then, as a result
of the analysis, Schedulerl-2-3 reports that the Velocity Updater task will miss its deadline at its 4 t h

arrival.

10

l a b i l i t y Analyser

a'cTei
arcTo:
0*0783
&T CTQ4
grcTea
sycTee
Sf CT07
• CT88
• CT9Q
• CTtO

c y c l i c l
a'aloi
0* AT92
ST A TOO
• AT84

A t t i t u d e Updator
VMlnr l tyJ Inr iaLnr
A t t l t u d a Sandor
Nav Iga t lt*i_*afaawr
Statuo_01aplay
Huri_T »«m_RTT
•*oalt1on_Unalatar
Cii11«k«j»HM

S c M u H n g A t f o r l t n a : O Rata monotonic
»ty
CI0J1 9/ 25:

4fl/ inn
Itftf/ 825
1999/19999
259/125**
59/ 59"

« / * r
9/ 5y»«

C9]
cm? [4n]
C I W [1 9 9] |
ctiu i?**)
Cft6 [1999]
CTIW [25«]
CIS)/ [5 9]

CM

C«3
CI99
CT19

inks: *aan awacution/Waan A r r i v a l : Stdav
Ci.iHi.li* KA_T*R « / 5«9 9 N ATW1 [9]
Conoala~3cr*an_13K 9/ 599: 9 N AI ft? [9]

8/ 5*9: 9 N Aim [9]
9/ 599: 8: N A194 [9]

Hoaaaaa f n a tha Scrtadulaol I H y Anal year
Schadulabla w i t h 8 OSMH u t i l i s a t i o n I (2ED
Out c a n ' t ba r « i o f ne c o l l a c t o r a

CP1I l l l l l l r a t l n n
C y c l i c Unly : [8 0]
Airyr l l t : n n l y : [9]
lotaI : [9 0]

HiIm In F r i l l i n g wttaaaa Currant Taak C«:Tei

Contoat uwarhaad;
Tuna Naaat
Cycio l l cko
FsMinilliat Til** :
1»ro1r1ty

<Ptt»mt Tli*«

[0] 8 1 — | 599
da l*f

a • j 599
[«J » • i

[9] 8 1 j 199
" 1 J 599

Figure 3-5: The INS Task Set

9TCT87 Posi t ion Updatar 59/ 599
• CT08 9 / 590
• CT89 3' *W
• CT19 9̂9

CTt?
CT08
CT80
me

[59]
CO]
[91
[01 c

Acycl ic Taaaa: ",«»° axacution/Waan Arrival Stcjav
WAT81 Conaa1aJoj_I3l 9/ 589 0 N AT81 [9]
Wat82 Consols Scr
STAT83 K8 (M)_Proc
a AT84

599:
509
598

AT92
AT93
AT84

[«]
[9]
[9]

fro* rhs Schodulabinty Analyzar fT""|
Total U t i l i z a t i o n : 13238M
Mot achadulabla
W111 f a l l to acnaduia V a l o c l t y U a d a t a r ' • 3 U at a r r i v a l

CPU U t i l i z a t i o n
Cycl ic Only : [8] 9 1
Acycl ic Only: [9] 9 •
Total : [0] 9 •

TMa la Cdl t lng window ^ Q t J ^ o 2 _ _ J A g r a n t _ » a a * _

Cantaat uiiaitiaaa 5 [5] 1
Taak Naaa

] 198
] 109
] 198

Figure 3-6: The Effect of Context Switching Overhead

http://Ci.iHi.li*

11

3.4.3. Integrated analysis

Creation of the deferrable server and the result of analysis with the deferrable server task is depicted
by Figure 3-7 in case of the INS task set. Clicking the Acyclic button creates the deferrable server task
automatically and goes into the analysis steps. This example indicates that the schedulability is
maintained with 0.96 CPU utilization.

3.4.4. Monitorabllity analysis

Monitorability is analyzed simultaneously along with other analyses as shown in Figure 3-8, where the
INS task set can be monitored with maximum number of events coming up in a period of the monitoring
task being about 51.6.

3.5. Synthetic Workload Generator
This facility makes Schedulerl-2-3 an efficient integrated tool, which can work in the practical world.

For the purpose of testing on the ART Real-Time Testbed, Schedulerl-2-3 generates a workload table
after the schedulability analysis. The workload table would be included into a testing program that
generates synthetic workload, then the schedulability is practically tested on the ART Real-Time Testbed.
A workload table is shown in Figure 3-9, which would be an include file of a C program.

& T C T 3 7 P o s i t i o n U p o s t s r

I ^ C T 0 8 D s f s r r a M s S s r v s r
a 0 T 9 9

a c t i o

5 9 /

? /
9/
0/

590
25

599
5f?9

A c y c l i c T a s k s :

O ' A T O l C o n s o l s K B I S R

. ^ & T 9 2 C o n s o l s S c r s s n ISR

3 T A T 9 3 K& O D P r o c s s s o r
a AT94

Wsan s x s c u t t o n / M a i n A r r i v a l - S ' d a v

9/
9/
0/
9/

509
599-
599
599:

A T 8 1

A T 9 2

A T 8 3

AT94

W
[*]
[91
C8]

t h s Schsot j l a b i l i t y A n s l y z s r 0T\

S c h s d u l a b l s w i t h R RflC*J8* u t i l i s a t i o n (C y c l l c T ^

S c n s * j l a b 1 s w i t h 8 109999 u t l 1 1 z a t 1 o n (T o t a l)

B u t c a n ' t o s r s p o r t s d b s c a u s s o f n o c o l l e c t o r *

Figure 3-7: An Analysis with a Deferrable Server

4. Related Work
We introduced our approach to schedulability analysis based on an interactive analysis tool Our

approach can be classified as the "tool oriented" approach introducing an integrated toolset. Similar
approaches has scarcely attempted. On the other hand, some theoretical approaches and language
oriented approaches has been proposed. An strong point of the theoretical approach is its generality.
Theoretical approach is not limited to a specific scheduling algorithm, the host machine's architecture or
the language used to describe the target system. Meanwhile fewer constraints sometimes leads to a
pessimistic or oversimplified analysis. The language oriented approach uses real-time programming
languages. This approach takes advantage of precise analysis based on the language specification. By a
real-time programming language, we mean a high-level language which explicitly binds the timing

12

^ C T 8 7
STCT88
• CT89
• CT18

Position Upoatsr
Col1octor64

58/
5/
9/
9/

588:
298
588:
598:

C717
CT88
«:T9Q
CU8

C5]
[8]
CO]

]Acyclic Taafca: Msan axacutlon/Waan A r r i v a l : Stdav:

s T a t b i Conao1a_KD_I3R 8/ 566:
aa*AT82 Consola Scraon ISR 8/ 588:
STAT83 KB.CWD^ruf—or 8/ 589:
• AT84 8/ 580:

9: A TBI
AT02
AT83
AT84

C9]
cei
C9]
[•3

froa tho SchaduIability Amlyzar
Schadulabla with 8.8B51M ut i l i za t ion! QE3

Up to 31
reported with ColloctorfM

00007 •vanta/col1 actor' a pa

Figure 3-8: Monrtorabiiity Analysis

typadaf
char
char
char
unaignad int
unaignad int
unaignad int
unaignad int

> XL__S CH2DJELM ;

a t m e t {
t r a v a i l ;
t_nama [MXXTASKNAME] ;
t.typa;

t_pariod;
t_axac;
t_prio;
t_phaaa;

A 0 0 1
\001

' \ 0 0 1
' \ 0 0 1
' \ 0 0 1
, \ 0 0 1
' \001
' \ 0 0 0
' \ 0 0 0
' \ 0 0 0
' \ 0 0 1
' \ 0 0 1
, \ o o i
, \ o o o

Data atructura .

"AttitudaJOpdatar-, ' \ 0 0 0 ' , 2 5 , 9, 0 , 0 ,
"Valocity^qpdatar-, ' \ 0 0 0 ' , 400 , 40 , 0 , 0 ,
-Attituda_Sandar", ' \ 0 0 0 ' , 625, 1 0 0 , 0, 0 ,
MNavigation_SandarH, ' \ 0 0 0 ' , 10000, 200 , 0 , 0 ,
-StatuaJHaplay", , \ 0 0 0 ' , 10000, 1000, 0 , 0 ,
-Run_TimaJ&TT", ' \ 0 0 0 ' , 12500, 2 5 0 , 0 , 0 ,
"PoaitionJTpdatar", ' \ 0 0 0 ' , 500, 50 , 0 , 0 ,
MMa w, , \ 0 0 0 ' , 500 , 0 , 0 , 0 ,
- H a " , ' \ 0 0 0 ' , 500, 0 , 0 , 0 ,
-NA-, ' \ 0 0 0 ' , 500 , 0, 0 , 0 ,
-Conaola_KB_ISR", ' \ 0 0 1 ' , 500, 2 0 , 0 , 0 ,
"Conaola_Scraan_ISR-, ' \ 0 0 1 ' , 500 , 54 , 0 , 0 ,
-KB_OffiJ?roca«aor", ' \ 0 0 1 ' , 500 , 0 , 0 , 0 ,
-Ha-, ' \ 0 0 1 ' , 500 , 0, 0 , 0 ,

Fila format

Figure 3-9: The Workload Table for the INS Task Set

constraints with the code segment. However, a big drawback is that it is very hard to analyze systems

written in other languages.

In this section, we review two theoretical approaches: Leinbaugh's well known formula [10] and Real-
Time Temporal Logic. A real-time programming language (Real-Time Euclid) oriented is also discussed.

13

4.1. Leinbaugh's Algorithm
A formula well known for analyzing the schedulability of periodic tasks with hard deadline has been

given by Leinbaugh. The schedulability analysis technique introduced in this approach consists of the
following items.

ratet = TOTNi I (GTi - TOTRi - TOTDi - B-)

• rate;. The ratio of processor time allocated to perform non-critical sections of task. The
following constraint must be kept. ratei < 1

• TOTN;. Total processor time for performing non-critical sections, which implies task, can be
interrupted and taken over by task that begins non-interruptable execution.

• GTf. The Guaranteed response time of task ;, representing the period of task..

• TOTRr. Total execution time for critical sections included task/s execution. Critical sections
are non-preemptable. TOTRi may be called non-interruptable execution time.

• TOTD;'. Total time spent by task, on handling devices; the worst case should be known
precisely.

• Bt\ Blockage delay by other tasks due to preemption, queuing delay in handling device,
critical section and delay by time sharing policy. In the worst case, Bi is calculated with the
following formula.

* i = 2J.i TOTRj (TGT. / GTJ\ + 1) + BDp

where i*j and if tasky has possibility to interfere with the activity of task.. BDi represents
queuing delay in handling devices.

In other words, if TOTR-, TOTDi% TOTNit Bt and BDi are known for all task-, where 1 < / < „, and
schedulability can be verified by check whether or not the condition ratex<\ is kept. This approach
takes into critical sections in schedulability analysis. And it is scheduling algorithm independent.
However, the items above strongly depend on the scheduling policy, so the analysis results in scheduling
policy dependent; otherwise, the analysis is too pessimistic. For example, Bi can be reduced to
TOTRj;-(f~l + 1). The priority inheritance protocol provides us with another approach for handling critical
sections.

4.2. Real-Time Euclid and Schedalyzer
Stoyenko introduced Real-Time Euclid [19], which is designed with a set of schedulability analysis

provisions built-in for the sake of schedulability analysis. The worst case analysis is done by the closest
deadline first algorithm based on the Leinbaugh's approach. The Real-Time Euclid based Schedulability
Analyzer, called Schedalyzer consists of the front end and the back end. The front end is a sort of timing
tool which collects timing and task dependency information from target programs written in Real-Time
Euclid and informs them to the back end where schedulability is actually analyzed. With Schedalyzer, the
execution time of each task can be measured without relaying on a timing tool. Implication among tasks
can be also analyzed at the compilation time. However, the available scheduling policy is limited.
Besides, it is very hard to apply this approach to existing systems implemented in various languages

14

other than Real-Time Euclid.

4.3. Real-Time Temporal Logic
Real-Time Temporal Logic (RTL) is proposed by Ostroff [16] extending Extended State Machine (ESM)

with time bounded events. This approach models a Real-Time system such as a chemical plant with
ESMs, and specifies timing specifications of those systems in RTL. Then, system behaviors, i.e. including
schedulability, can be verified. Therefore, this approach might give us a scheme to analyze system
behavior more precisely, not only in the task level but the procedure or function level, if all timing
specifications of target systems can be represented completely in RTL.

5. Future Work
One of our primary objectives is to provide an interactive tool for a real-time system designer to modify

or upgrade the existing real-time systems. However, the current implementation of Schedulerl-2-3 can
analyze the rate monotonic algorithm for a hard and periodic task set. To analyze other scheduling
policies, Scheduler)-2-3 should be extended to be able to perform an efficient simulation of the given
policy. Another immediate extension is related to the response time analysis for aperiodic tasks. Not only
the deferrable server algorithm, but a background, polling, priority exchange algorithms should be
included to compare the effectiveness of the algorithms.

Two important extensions are also planned in more sophisticated capabilities for the analysis. One is
an extension for intelligent diagnostics which include intelligent suggestions (e.g. a result from a period
transformation method) to improve the schedulability. Another extension is related with the response time
analysis for aperiodic tasks. The current analysis for the aperiodic task set is to estimate their response
time under a given scheduling policy. However, a reversed analysis is also important. That is, for a given
response time requirement of the aperiodic task set, Scheduler)-2-3 should be able to estimate the
necessary specifications of the deferrable server or anything that can produce the given response time.
The goal of this reversed analysis would be to exploit a scheduling scheme for a mixture of periodic and
sporadic tasks. Finally, we are also planning to extend the domain of the real-time computational model
to a distributed environment, a stochastic execution model, as well as a cooperating task set using shared
variables or message passing by using the priority inheritance algorithm.

6. Summary
Despite advances in Software Engineering, a good programming tools for real-time systems are

missing. In particular, we need to develop a better tool set which can easily detect or eliminate nasty
"timing error" from a real-time program. In this paper, we described an interactive schedulability analyzer,
Scheduler)-2-3, which can analyze whether a given task set can meet their timing constraints or not at
the system design phase. Scheduler)-2-3 can also be used as a synthetic workload generator for the
ART testbed and can cooperate with a real-time monitor. It then allows us to verify our scheduling policy
on the testbed. We also demonstrated the practicability and ease of use of Scheduler)-2-3 illustrated by
a few examples of the INS task set. Our priority based scheduling analysis scheme is much effective in
the communication domain. Finally, various extensions of the analysis capabilities of Schedulerl-2-3 are
under way and soon it will be able to perform more sophisticated integrated analysis for the mixture of the
hard periodic and soft aperiodic tasks.

15

Acknowledgment
The authors would like to thank John Lehoczky, Lui Sha and Ragunathan Rajkumar for thoir

contnbutions to the analysis algorithms for Scheduler 1-2-3. We also are indebted to Cliff Mercer for
valuable comments on this paper.

References
[1] Barstow, D. R., Shrobe, H. E. and Sandweil, E. (editors).

Interactive Programming Environment
McGrow-Hill, 1984.

[2] Bhatt, D., Ghonami, A. and Ramanujan, R.
An Instrumented Testbed for Real-Time Distributed System Development.
In Proceedings of 8th IEEE Real-Time Systems Symposium. December, 1987.

[3] Borger, M. W.
VAXLEN Experimentation: Programming a Real-Time Periodic Task Dispatcher using VAXLEN Ada 1.1.
Technical Report CMU/SEI-87-TR-32(ESD-TR-87-195), Carnegie Mellon University, September, 1987.

[4} Cornhill, D., Sha, L , Lehoczky, J. P., Rajkumar, R. and Tokuda, H.
Limitations of Ada for Real-Time Scheduling.
In International Workshop on Real-Time Ada Issues. 1987.

[5] Dart, S. A., Ellison, R. J., Feiler, P. H. and Habermann, A. N.
Software Development Environment.
COMPUTER 20(11), November, 1987.

[6] Goldberg, A.
Smalltalk-80.
Addison-Wesley, 1984.

[7] Kligerman, E. and Stoyenko, A. D.
Real-Time Euclid: A Language for Reliable Real-Time Systems.
IEEE Transaction on Software Engineering SE-12(9), September, 1986.

[8] Lehoczky, J. P. and Sha, L.
The Average Case Behavior of The Rate Monotonic Scheduling Algorithm.
Technical Report, Computer Science Department, Carnegie Mellon University.
1986

[9] Lehoczky, J. P., Sha, L. and Strosnider, J. K.
Enhanced Aperiodic Responsiveness in A Hard Real-Time Environments.
In Proceedings of 8th IEEE Real-Time Systems Symposium. December, 1987.

[10] Leinbaugh, D. W.
Guaranteed Response Times in a Hard-Real-Time Environment.

IEEE Transaction on Software Engineering SE-6(1), January, 1980.

[11] Liu, C. L. and Layland, J. W.
Scheduling Algorithm for Multiprogramming in a Hard Real-Time Environment.
JACM 20(1), 1973.

[12] Locke, C. D., Jensen, E. D. and Tokuda, H.
A Time-Driven Scheduling Model for Real-Time Operating Systems.

Proc. IEEE Real-Time Systems Symposium , December, 1985.

[13] Miller, B. P., Secherest, S. and Macrander, C.
A Distributed Program Monitor for Berkley Unix.
Technical Report UCB/CSD 84/201, University of California, Berkley, 1984.

[14] Mok, A. K.
Fundamental Design Problems of Distributed Systems for the Hard-Real-Time Environment
PhD thesis, Massachusetts Institute of Technology, May, 1983.

16

[15] Mok, A. K., Amerasinghe, P. and Chen, M.
Synthesis of a Reai-Tlme Processing System with Data-driven Timing Constraint.
In Proceedings of 8th IEEE Real-Time Systems Symposium. December, 1987.

[16] Ostroff, J. S. and Wonham, W. M.
Modelling, Specifying and Verifying Real-Time Embedded Computing Systems.
In Proceedings of 8th IEEE Real-Time Systems Symposium. December, 1987.

[17] Sha, L , Lehoczky, J. P. and Rajkumar, R.
A Schedulability Test For Rate-Monotonic Priority Assignment.
Computer Science Department ART project, Carnegie Mellon University.
July, 1987

[18] Sha, L , Rajkumar, R. and Lehoczky, J. P.
Priority Inheritance Protocols: An Approach to Real-Time Synchronization.
Computer Science Department ART project, Carnegie Mellon University.
April, 1988

[19] Stoyenko, A. D.
A Schedulability Analyzer for Real-Time Euclid.
In Proceedings of 8th IEEE Real-Time Systems Symposium. December, 1987.

[20] Tokuda, H., Wendorf, J. W. and Wang, H.-Y.
Implementation of a Time-Driven Scheduler for Real-Time Operating Systems.
In Proceedings of 8th IEEE Real-Time Systems Symposium. December, 1987.

[21] Tokuda, H., Kotera, M. and Mercer, C. W.
A Real-Time Monitor for a Distributed Real-Time Operating System.
In Proceedings of ACM SIGOPS and SIGPLAN Workshop on Parallel and Distributed Debugging. May, 1988.

[22] Reference manual for Ada programming language
United States Department of Defense, 1983.
ANSI/MIL-STD-1815A.

