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Abstract 

When computer speech recognition is used for problem solving or any plan based task, 
predictable features of the user s behavior may be inferred and used to aid the recognition of the 
speech input. The MINDS system generates expectations of what will be said next and uses 
them to assist speech recognition. Since a user does not always conform to system expectations, 
MINDS handles violated expectations. We use pragmatic knowledge to dynamically derive 
constraints about what the user is likely to say next. Then we loosen the constraints in a 
principled manner. We generate layered sets of predictions which range from very specific to 
very general. To enable the speech system to give priority to recognizing what a user is most 
likely to say, each prediction set dynamically generates a grammar which is used by the speech 
recognizer. A different set of grammars is created after each user utterance. The grammars are 
tried in order of most specific first, until an acceptable parse is found. This allows optimal 
performance when users behave predictably, and displays graceful degradation when they do not. 

Submitted to UCAI-89 

We wish to acknowledge Edward T. Smith, Philip Werner and D. Raj Reddy. This research would not 
have been possible without their assistance. 

This research was supported by the Defense Advanced Research Projects Agency (DOD), ARPA Order 
No. 5167, under contract number N00039-85-C-0163. The views and conclusions contained in this 
document are those of the authors and should not be interpreted as representing the official policies, either 
expressed or implied, of the Defense Advanced Research Projects Agency or the U.S. Government. 



Layered Predictions 

T a b l e of C o n t e n t s 
1. Overview \ 
2. Prior Use of Constraints in Speech Recognition 1 
3. Plan Based Constraints 2 

3.1. Layered Predictions 3 
4. Derivation of Predictions 4 
5. Results 5 

5.1. Test and Training Sets 6 
5.2. Reduction in Search Space 6 
5.3. Recognition Performance 7 
5.4. Layers Used g 

6. Summary g 

18 January 1989 at 17:03 
University Libraries 

Carnegie Mellon University 
Pittsburgh, Pennsylvania 15213 



Layered Predictions 

List of F igures 
Figure 1: Example Goal State Schema 
Figure 2: Example Control Schema 

18 January 1989 at 17:03 



Layered Predictions 

1. Overview 
One of the biggest problems in computer speech recognition is coping with large search spaces. 
As search space size decreases, recognition performance increases. Most current speech 
recognizers use some form of syntactic and semantic knowledge to constrain the search space. 
Only utterances that are semantically and syntactically acceptable are searched for in the input 
speech signal. In a structured task such as problem solving, additional pragmatic knowledge 
sources are available for constraining search spaces. In these applications, predictive use of 
constraints derived from problem solving plans and context have been shown to significantly 
reduce search space and improve recognition [29, 28, 11,27]. To allow for diverse and 
unconventional user behavior, we need a principled manner for relaxing contextual constraints 
when they are violated. In order to do this, we organize constraints into sets that are successively 
more restrictive, called "layers". When some constraints are violated, we use the non-violated 
constraints from a less restrictive layer to reduce search space. Additionally, the flexible use of 

Eredictions allows us to derive constraints from less reliable knowledge sources. Users that 
ehave consistent with the dynamically derived expectations can benefit greatly from enhanced 

recognition and the system will show a graceful degradation for those who do not. Finally, the 
flexible application of constraints derived from pragmatic knowledge sources will become 
increasingly important as we move toward larger domains and spontaneous speech recognition 
where search space size increases exponentialy. 
In this manuscript we describe an approach for using layered contextual constraints to 
dynamically circumscribe the search space for words in a speech signal. The implemented 
system (MINDS) uses these layered constraints to guide the search for words in our speech 
recognizer. For our recognizer, we use a modified version of the SPHINX [15]large vocabulary, 
speaker independent, continuous speech recognition system. We describe our algorithm for 
creating layered predictions and report the results of an experiment to evaluate search space 
reduction and recognition performance improvements. 

2 . Prior Use of Constraints in Speech Recognition 
Large search space is a pressing problem in speech recognition. Essentially, speech recognition 
systems attempt to recognize pnonemes or words in a digitized speech signal. Phoneme 
recognizers must also store patterns for combining the phonemes into words. There are many 
reasons this is difficult. The same phoneme can be compressed or expanded in time. Its pattern 
is influenced by the surrounding phonemic context. Words themselves have alternate 
pronounciations. When one considers connected speech, the above problems are further 
componded by problems in identifying word boundaries and difficulties dealing with word 
juncturine effects. Word oronounciations are influenced by context and frequently phonemes are 
combined and omitted. Speaker independent speech recognition further compounds the pattern 
recognition problem because different speakers display different accents, different rates of 
speech and have different vocal tract characteristics. Thus, the signal patterns of different words 
are occasionally more alike than the patterns associated with a single word pronounced by 
different people. Thus, recognition accuracy decreases as the search space the recognizer must 
analyze increases. 

Knowledge can be used to constrain the exponential growth of a search space and hence increase 
processing speed and recognition accuracy [19,6,13] . For example, the HARPY system 
[19] achieved a six order of magnitude search space reduction by using a finite state grammar 

which ensured that no syntactically or semantically inaccurate word sequences were matched in 
the speech signal. 

Currently, the most common approach to constraining search space is to use a grammar. The 
grammars used for speech recognition dictate legal word sequences. Normally they are used in a 
strict left to right fasnion and embody syntactic and semantic constraints on individual sentences. 
These constraints are represented in some form of probabilistic or semantic network which does 
not change from utterance to utterance [14, 3 ,13] . A variant on this approach is to emphasize 
semantic structure over syntactic constraints, as exemplified in caseframe parsing of speech [12]. 
The work on caseframe parsing provides two important insights into the speech recognition 
problem. First, the work demonstrates that semantic constraints alone enough constraint to 
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significantly improve speech. Like other systems emphasizing semantic structure over syntactic 
constraint [9] this system leaves too much ambiguity in the syntactic combination possibilities 
and consequently snows poor recognition results. Secondly, the work demonstrates the need to 
apply constraints earlier in the recognition process than at the parsing level. These system 
generate word hypotheses (usually in the form of a word lattice) and then use semantic and 
syntactic constraints to select meaningful sequences of words from the set of all hypothesized 
words. The bottom up processing of the speech signal input results in the generation of too 
many word hypotheses for effective parsing. In general, those systems applying knowledge 
early in the recognition process (to guide the word search) have shown better results. 
There are many other knowledge sources besides syntax and semantics. Typically, these are 
clustered into the category of pragmatic knowledge. Pragmatic knowledge minimally includes 
inferring plans, using context across clausal and sentence boundaries, determining local and 
global constraints on utterances and dealing with definite and pronominal reference. Work in the 
natural language community has shown that pragmatic knowledge sources are important for 
understanding language. People communicate to accomplish goals [22], and the structure of the 

f>lans to accomplish them are well understood [20, 21,7] . Goals, plans and context are important 
or understanding implied information, understanding unexpected information and for providing 

helpful responses [24, 25, 5 ,1 ,18 ,10] [4]. 
In the past, pragmatic, dialog level knowledge sources were used in speech to either correct 
speech recognition errors [8, 2] or to disambiguate spoken input and perform inferences required 
for understanding [17,16,14,23, 26]. In these systems, pragmatic knowledge was applied to the 
output of the recognizer. 
More recently, pragmatic knowledge sources have been used predictively to circumscribe the 
search space for words in a speech signal [11,27,28]. The MINDS system used an elaborate 
dialog model to infer plans, perform plan tracking, deal with clarification subdialogs and 
dynamically compute constraints using local and global focus. These knowledge sources were 
used predictively to dynamically restrict the sequences of words which could be matched in a 
speech signal. However, the first version of the MINDS system required users to act according 
to one of the plans known to the system. This worked well as long as the user conformed. There 
was no strategy for detecting and recovering from violations of these plan based constraints. We 
have made the system more robust with respect to these violations by introducing the mechanism 
of "layered predictions". 
In the next section we describe the use of plans to limit search space and the algorithms which 
enable the MINDS system to use a layerea set of predictions to dynamically modify the search 
space for words. 

3. Plan Based Constraints 
The idea underlying the MINDS system is that tracking all information communicated (user 
questions and database answers) enables a system to infer a set of user goals and possible 
problem solving plans for accomplishing these goals. Additionally, dialog history enables a 
system to track goal and plan modifications. In the convention of Newell and Simon (1972) 
these goals and plans are represented as hierarchically organized goal states. For example, in the 
domain of dealing with disabled ships, a goal state would be finding a replacement ship. As 
each new input sentence is spoken, the system analyzes the utterance to determine the concepts 
expressed and uses these concepts to activate goal states. To derive constraints on future 
utterances, active goal states are assessed to determine legal next states. For example, when 
finding a replacement ship, some of the legal next states which follow a question about the ships 
in some region are questions about more ships in the region, questions about availability of 
these ships, and questions about the ships' equipment. Because speech systems use grammars to 
guide word transitions, we associated a list or required and optional concepts with each goal state 
(e.g. concepts associated with a goal state for ship equipment include equipment, weapons, 
aircraft, electronics, etc.). The list of possible next states is used to generate a set of possible 
concepts which could be spoken in the next utterance. This set is then limited by local and 
global focus which takes into account prior context, rules about reference, etc. The speech 
recognizer only searches for surface forms expressing concepts in this set. 
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3.1. Layered Predictions 
The constraints described above were quite effective in reducing search space and improving 
speech recognition performance (Young, Hauptmann and Ward, 1988; Hauptmann, Young and 
Ward, 1988). However, there were two problems with the approach: 

1. The system could not deal with unexpected behavior 
2. As domain size increased, the number of posible goals and plans increased and the 

constraint decreased. 
To deal with these shortcomings, we instituted two system modifications: 

1. we enabled the system to loosen its constraints by generating layered predictions 
2. we incorporated additional, less reliable knowledge sources into the predictions 

mechanism 

To overcome the problem of having multiple active goals and plans, we instituted three 
procedures. First, since it is not possible to uniquely determine which goal state has been 
'activated" from an incoming utterance, we designed an algorithm to select the most probable" 

goal state. Here we preferred goal states that were both complete and most likely to follow given 
the previous goal states activated, particularly those that were consistent witn active goals at 
higher levels of the hierarchy. Secondly, we maintained a list of all incomplete active goals, 
including those which were not hierarchically embedded. These active goals were used to 
generate some alternate predictions about what the user could say. Finally, we used all of our 
domain knowledge to generate a set of layered predictions about the content of the following 
utterance. The predictions ranged from very specific to very general. These layered predictions 
were rank ordered to reflect both amount of constraint as well as what the system felt the user 
would most likely say. It should be noted that the least constraining prediction layer allowed all 
domain concepts. This means that the system could cope with any statement the user might say 
even if its not included in the system grammar1. 
By layering predictions, we allow the system to reparse a speech signal with a different grammar 
until such time as a good parse is received. The ability to reparse an utterance also enables us to 
use less reliable knowledge sources to further constrain our predictions. Hence, we added two 
additional knowledge sources to the system: user domain expertise models and preference 
orderings for conjunctive goals. 
Observing that system users with significant domain expertise solved problems using very 
different plans than novice users, we attempted to model the effects of expertise by constructing 
domain knowledge models of novice, intermediate and expert system users. Our user models 
were represented as subsets of the domain knowledge base. The models differed primarily by the 
existence of relations between domain objects. For example, an expert user would know that 
each class of ships has a set of default equipment and is suited for particular types of tasks, while 
a novice user might not be aware that shiptypes are divided into ship classes. The user models 
were then used to construct control schemas which specified which goal states were exclusive. 
To further the last example, a control schema for an expert user would show that if the user 
asked about a shipclass they would not ask about default equipment. These models were hand 
coded from the training set data. 

Similarly, we used the training data to derive probabilitistic orderings on conjunctive subgoals. 
These orderings told us which conjunctive goals would be executed first, second, etc The 
orderings were computed across individuals (although our training data only came from two 
people). However, there is no reason why these could not be automatically obtained for 
individual system users in future systems. 
Thus, the MINDS system used the following knowledge sources to derive predictions about the 
content of a user's next utterance: 

1. knowledge of problem solving plans and goals represented hierarchically, 
2. semantic knowledge about the application domain's objects, attributes and their 

however, the system cannot cope with words which are not included in the system lexicon 
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interrelations (a domain knowledge base), 
3. domain independent knowledge about methods of speaking, appropriateness of 

references and partial utterances (local and global focus) 
4. dialog history knowledge about information previously communicated, 
5. discrete models of user domain expertise as described above, and 
6. information about user preferences for ordering conjunctive subgoals 

These knowledge sources were used by the prediction module to perform iterative analyses of 
the dialog after each input/database response pair and generate sets of restrictions on the next 
utterance. The predictions generated are layered. Each successive layer is less constraining than 
the prior layer. The most constraining prediction set is generated using all knowledge sources 
listed above. The next set does not use user models and uses a larger non-overlapping set of goal 
states. Further sets are generated by moving upward in the goal hierarchy, allowing more goals 
and plans to be executed. The prediction sets become successively more general, hence the term 
"layered". Ultimately, the entire system grammar will be used. If this fails, an "allword" 
recognition is attempted where any word sequences are allowed (providing of course that the 
words are in the system lexicon). As described before, the predictions are used to restrict the 
surface forms searched for by the recognizer. The system uses these layers by first trying to 
parse at the most constraining layer. Should the parse fail to exceed a predetermined goodness 
score, the system reanalyzes the utterance using the next layer of predictions. 

4. Derivation of Predictions 
Each goal state is represented as a schema, which can be seen in Figure 1. 
Figure 1: Example Goal State Schema 
[ Shipclass 
:Concepts-Required ((Shipclass single-use Child-restrictions* 

(knoxclass perryclass))) 
Concept Times-used Restriction-pointers 

:Optional-Concepts ((Region single-use Child-restrictions* 
(Persian-gulf))) 

:Optional (Mot for expert-user) 
TruelNWUser-consideration 

:Next-states (Find-Replacement) goal-state 
:Parent (Find-Replacement) 
:Children (none) 
:Control (none) 

] 
* s Confuted by local and global focus 

Figure 2: Example Control Schema 
[Control00030 - for Find-replacement 
:Bxclusive ((Shipclass Equipment)) 
:Omit (Shiptype) 
:Order ((.90 Shipclass .10 Mission-Info) 

(.90 Mission-Info .10 Shipclass)) 
1 

The concepts-required and optional-concepts slot values are used to specify the concepts 
relevant when a user transits to the goal state. The number of concepts oer goal state and the 
number of goal states a user could progress to next determine the size of the lexicon the speech 
recognition system must analyze. The control slot contains a pointer to a control schema 
wherever the child slot is not empty. 
Control schemas predict whether any child states are likely to be omitted and any preferred 
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orderings on the states for a specific system user. They are used to generate the most constraining prediction layers. 

As seen in Figure 2, there are three slots in a control schema. The order slot stores information 
about preferred orderings among non-optional, conjunctive subgoal states. The exclusive slot 
stores pairs of goal states which are exclusive because the information in the first allows the user 
to infer the information in the second. The omit slot store a list of goal states the user omits 
because they are unaware of the domain concepts. 
Control schemas are attached to parent goal states to predict which child states will be visited. 
Hence, they are also used to dynamically compute the value of the optional slot for each child 
schema. When a state is predicted to be omitted, the optional slot value becomes true for that 
cycle of input and database response. The optional ana concepts-required slots are important 
for determining when a goal state is complete. 
These structures are used to derive predictions by the following process. When an incoming 
utterance and database response are processed, we select the most likely set of goals being 
executed. If a goal is not complete, then our most constraining prediction set reflects the 
assumption that the user will complete the goal. The other prediction layers do not change. If 
one or more goals are complete, we identity the next goal states to which a system user could 
transit. Identifying possible next states is the basis for each layer of predictions. Next, we take 
all of the possible next plan step and goal which would follow from tne just completed goal and 
store them. Following this, we apply our less reliable knowledge sources to further prune the set 
of next, most likely steps. To do this, we first use any and all knowledge of user ordering 
preferences and states which could be omitted. Then we back off first on the ordering 
information and then on the states which could be omitted. Then, since all goals and possible 
problem solving plans are represented in a hierarchical manner, we progressively move up a 
layer in the hierarchy of active goals to determine the state to which the user could next progress. 
2 Once we have determined the next states, we can take the concepts associated with the states 
and compute restrictions on their expansions, restrictions on references given the state and the 
context, and restrictions on partial utterances. A more precise summary of the algorithm for 
generating predictions once a goal node is complete is presented below. 

1. Find goal's next state (a goal node, usually a parent state), say Gj 
2. Assess Gj to determine which of its subgoals (Hj) are incomplete and store the 

incomplete subgoals in a list (L^) 
3. Assess Gj's control schema to determine if any of the Hi 's in list are to be 

omitted or are mutually exclusive with already complete subgoals. If so, create list 
Lj^, eliminating the appropriate Hj's and reformulate Lj^ so that it does not 
intersect with L ^ . 

4 . If there is more that one subgoal in the remaining list (either if it exists, else 
L^) create list 1 ^ 3 by determining which of the Hj's is predicted to occur prior to 
the others. Eliminate this H: from the appropriate list. 

5. For each list, beginning with if it exists, collect all concepts associated with the 
state and compute any restrictions on these concepts. Then find the associated 
grammar networks associated with these concepts and generate a layer of 
predictions. 

6. Find Gj's parent state and its Hj's, exclusive of Gj and repeat step 5. 
7. Repeat step 6 until the tree's root node is found. 

2The algorithm is somewhat simplified for purposes of this discussion. A forthcoming paper will discuss 
predictions re: clanfication subdialogs and multiple non-hierarchically embedded active goals 
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5. Results 
The above described use of plans in speech recognition is currendy embodied in the MINDS 
multimedia interactive dialog system. Users can speak, type or point to input information and 
both the system and the user can initiate clarification dialogs when appropriate. It uses an 
adapted version of the SPHINX [15] speech regognition system with a 1000 word vocabulary. 
Its task domain is naval resource management. Here users must query a relational database to 
determine whether a disabled vessel should be replaced with another vessel, scheduled for a later 
repair, or whether the mission should be delayed. 
To test the ability of our layered predictions to both reduce search space and to imporve speech 
recognition performance, we used an independent test set. This means that the utterances 
processed by the system were not used to tram either the speech recognition system or the dialog 
model, user models or oidering preferences. Furthermore, the test set did not include any 
clarificiation dialogs. 

5.1. Test and Training Sets 
Our test data (10 scenarios) were adapted versions of three problem solving sessions taken from 
the TONE database. The TONE database is a set of speech transcripts from Naval personnel 
solving problems about what to do with a disabled vessel. The personnel must determine 
whether to delay a mission, find a replacement vessel or schedule a repair for a later date. They 
use a database to find necessary problem solving information. In addition to the three scenarios 
from the TONE database, we created seven additional sessions by paraphrasing the original 
three. These scenarios were not used to train upon. 
Our training data were five different problem solving scenarios from the TONE database. The 
training scenarios were used for writing grammars and developing user models. Domain goals 
and problem solving plans were derived from an abstract description of die stages and options 
available to a problem solver. The abstract plan descriptions were provided by the Navy. 
Our database was different from the one used in gathering the TONE transcripts. While it 
contained the same fields, the information about particular ships differed across the two 
databases. To enable testing with the TONE transcripts, we had to adapt the test scenarios. Our 
adaptations consisted of the following: 

• Shipnames were changed to correspond to those in our database. 
• Lexical entries not in our lexicon (such as 'employment schedule') were replaced 

with equivalent concepts from our lexicon (such as 'mission' and 'mission 
importance'). 

• Database inconsistencies were resolved in favor of the CMU database. For 
example, if in the naval database, ship X required capability Y for its mission but in 
the CMU database ship, X required mission capability Z, all references in a scenario 
to Y were replaced with references to Z. 

These adaptations were necessary to evaluate the system without creating a new database and 
should have minimal impact on the integrity of the data. 

5.2. Reduction in Search Space 
To measure the constraint imposed by the knowledge sources, we use an index called perplexity. 
This is an information theoretic measure that is widely used in speech systems to characterize the 
constraint provided by a grammar. Perplexity represents the geometric mean of the number of 
alternative words at any point. Search space size tor a given test sentence is computed by raising 
perplexity to the number of words in the sentence. 
To measure the reduction in perplexity and search space it was necessary to collect test set 
perplexity measurements for each of the parsed sentences in two conditions: 

• Total domain grammar alone 
• Using predictions 
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Test set perplexity is the perplexity of the actual sentence parsed. It is different that total 
grammar perplexity because it takes into account only those alternatives which are legal next 
words given the grammar. 

To measure the test set perplexity of all the sentences in each of the test scenarios using the 
entire system grammar is relatively straight forward. However, measuring the test set perplexity 
of sentences which are parsed with layered predictions is not. Since prediction layers fail, we 
must report the perplexity of the layers which were sucessful. However, since some layers are 
non-overlapping, the number we report is the perplexity of the sucessful prediction layer merged 
with all the unsucessful layers attempted. 
As seen in Table 1, test set perplexity was reduced from 279.2 to 17.8. 

Reduction in 
Branching Factor and Search Space 

Constraints used: grammar layered predictions 
Test Set Perplexity 279,2 17.8 

5.3. Recognition Performance 
To evaluate the effects of using layered predictions on recognition performance we used ten 
speakers (8 male, 2 female) who had not been used to traing the recognizer. Each speaker read 
20 sentences from the adapted version of the three original test scenarios provided by the Navy. 
Each of these utterances was recorded. The speech recordings were then run through the 
SPHINX recognition system in two conditions: 

• using the system grammar (all legal sentences) 
• using the grammar from the sucessful prediction layer merged with all unsuccessful 

layers 
The results can be seen in Table 2. 

Recognition Performance 
Constraints used: grammar layered predictions 

Test Set Perplexity 242.4 18.3 
Word Accuracy 82.1 96.5 

Semantic Accuracy 85% 100% 
Insertions 0.0% 0.5% 
Deletions 8.5% 1.6% 

Substitutions 9.4% 1.4% 

As can be seen, the system performed significantly better with the predictions. Error rate 
decreased by a factor or five. Perhaps more important, however, is the nature of the errors. In 
the "layered predictions" condition, 89 percent of the insertions and deletions were the word 
"the". Additionally, 67 percent of the substitutions were "his" for "its". Furthermore, none of 
the errors in the "layered predictions" condition resulted in an incorrect database query. Because 
both our database and the Navy's database shared the same fields and were implemented using 
Informix™, we could directly assess the accuracy of the SQL database queries to Informix. 
Hence, semantic accuracy, defined as a correct database query, was 100% in the "layered 
prediction" condition. 
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5.4. Layers Used 
Since the results reported above rely upon a small sample of dialogs, we decided to further 
further evaluate the robustness of our layered predictions using a much larger set of dialogs. 
Here we employed an independent test set of 20 additional scenarios gathered from 20 different 
people. These scenarios were collected by a dissertation student using a different population of 
naval personnel. The transcripts contained spontaneous speech utterances. Since we could not 
reasonably expect grammatical coverage of this data, we used only the semantic parser output 
and compared the concepts in the semantic parse with the concepts predicted by the layered 
predictions. The results are divdied into three categories: 

• Semantic content of utterances predicted by knowledge sources above the layer of 
the most likely next goal states, 

• Semantic content of utterance predicted by the most likely goal states 
• Semantic content of utterances predicted by user model knowledge sources which 

further restrict the goal based predictions. 
The results can be seen in Table 4. 

Percent of Correct 
Parses by Prediction Layer 

User Level 75% -?? 

Best Goal Level 95% -?? 

Other Active Goals 100% -?? 

6. Summary 
The use of layered predictions derived from pragmatic knowledge sources is a very powerful 
technique for improving speech reocngition. Layered predictions allow the recognition system 
to capitialize upon pragmatic knowledge sources without impairing their ability to recognize less 
liekly utterances. The more consistent the users behavior, the better the recognition. As user 
behavior deviates, recognition accuracy degrades gracefully and the system is capable of 
recovering and generating further pragmatic predictions based upon both the users expected and 
less expected behavior. 
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