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Abstract 
Current state-of-the art speaker-independent continuous speech recognizers are able to achieve word 
recognition rates well above 90 percent with lexicons or 1000 words or less using grammars with 
perplexity 60 or less. Performance of these systems decreases rapidly as the perplexity of the grammar 
increases. As we allow users more flexibility in interacting with recognition systems, the size of the 
lexicons and perplexity of the grammars increase greatly. Allowing spontaneous speech instead of read 
speech compounds the problems even more. Other sources of knowledge may be available to help 
constrain the ever more complex search spaces in such systems. When recognition systems are used in 
performing problem solving tasks, predictable features of the user's behavior can be used to aid 
recognition. We describe a system (MINDS) which uses additional constraints based on dialog 
interactions. The constraints are applied in a manner that allows optimum performance when users 
behave predictably, and degrades gracefully when they do not. We also present an evaluation of the 
system's performance to show the utility of the additional knowledge sources. 

Appeared in The Second Symposium on Advanced Man Machine 
Interface Through Spoken Language, Oahu, Hawaii, Nov. 19-22,1988 

This research was supported by the Defense Advanced Research Projects Agency (DOD), ARPA Order 
No. 5167, under'contract number N00039-85-C-0163. The authors wish to thank Alexander Hauptmann, 
Edward T. Smith, Philip Werner and D. Raj Reddy for their contributions to this research. The views and 
conclusions contained in this document are those of the authors and should not be interpreted as 
representing[thet official policies, either expressed or implied, of the Defense Advanced Research Projects 
Agency or the U S Government. J 



1 

1. Overview 
One of the biggest problems in computer speech recognition is coping with large search spaces. 
The search space for speech recognition contains all the patterns associated with words in the 
lexicon as well as all the legal word sequences. The most widely used recognition systems are 
hidden Markov model (HMM) based. In these systems, typically, each word is represented as a 
sequence of phonemes, and each phoneme is associated with a sequence of markov states. As 
search space size decreases, recognition performance increases. Knowledge can be used to 
constrain the exponential growth of a search space and hence increase processing speed and 
recognition accuracy [17, o, 11]. Currently, the most common approach to constraining search 
space is to use a grammar. The grammars used for speech recognition dictate legal word 
sequences. Normally they are used in a strict left to rignt fashion and embody syntactic and 
semantic constraints on individual sentences. These constraints are represented in some form of 
probabilistic or semantic network which does not change from utterance to utterance [12, 3, 11]. 
As we move toward habitable systems and spontaneous speech, the search space problem is 
greatly magnified. Habitable systems permit system users to speak naturally. Grammars which 
try to cover even naturally elicited syntactically accurate sentences have perplexities that are an 
order of magnitude larger than the perplexities of grammars typically used by speech 
recognizers. Spontaneous speech grammars will have even larger perplexities. Spontaneous 
speech is unerammatical ana contains much editing. These edits can occur anywhere within a 
sentence and are often preceeded by interjections. Additionally, spontaneous speech exhibits 
human noise in the form of filled pauses. Finally, the above phenomena are compounded by the 
presence of multiple sentences uttered without pausing at sentence boundaries and silent pauses 
within incomplete phrases. Hence, the notion of a well formed sentence exhibiting typical 
syntactic regularities is not applicable when processing spontaneous speech. These problems 
point to the need of using knowledge sources beyond typical syntax and semantics to constrain 
the pattern matching process in speech recognition. 
There are many other knowledge sources besides syntax and semantics. Typically, these are 
clustered into the category of pragmatic knowledge. Pragmatic knowledge minimally includes 
inferring plans, using context across clausal and sentence boundaries, determining local and 
global constraints on utterances and dealing with definite and pronominal reference. Work in the 
natural language community has shown that pragmatic knowledge sources are important for 
understanding language. People communicate to accomplish goals, and the structure of the plans 
to accomplish them are well understood [18 ,19 ,7 ,20 , 21] [5, 1, 16,9] [4]. When speech is used 
in a structured task such as problem solving, pragmatic knowledge sources are available for 
constraining search spaces. 
In the past, pragmatic, dialog level knowledge sources were used in speech to either correct 
speech recognition errors [8,2] or to disambiguate spoken input and perform inferences required 
for understanding [12, IS, 14]. In these systems, pragmatic knowledge was applied to the output 
of the recognizer. 
In this manuscript we describe an approach for flexibly using contextual constraints to 
dynamically circumscribe the search space for words which can oe matched against a speech 
signal. We use pragmatic knowledge to derive constraints about what the user is likely to say 
next. Then we loosen the constraints in a principled manner. Hence, we generate sets of 
predictions which range from very specific to very general ("layered predictions"). To enable 
the speech system to give priority to recognizing what a user is most likely to say, each 
prediction set dynamically generates a grammar which is used by the speech recognizer. The 
prediction sets are tried in order of most specific first, until an acceptable parse is found. This 
allows optimum performance when users oehave predictably, and displays graceful degradation 
when they do not The implemented system (MINDS) uses these layered constraints to guide the 
search for words in our speech recognizer. For our recognizer, we use a modified version of the 
SPHINX (Lee, 1988) large vocabulary, speaker independent, continuous speech recognition 
system. 
The following section places the research described in the context of the overall MINDS system 
architecture. The following two sections describe the methods used to generate predictions and 
use them to guide recognition. We then present the results of two studies which illustrate both 
perplexity reduction and performance improvements resulting from the use of predictions. 
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Finally, we describe our current work in progress. 

2. MINDS System Architecture 
The MINDS system uses pragmatic knowledge sources predictively to circumscribe the search 
space for words in a speech signal [10, 22]. The pragmatic knowledge sources are embodied in 
an elaborate dialog model. Tne dialog model inters plans, performs plan tracking, deals with 
clarification subdialogs and dynamically computes constraints using local and global focus, or 
contextual information propagated from prior information seeking stages. To allow for diverse 
user behavior, MINDS uses a principled, general algorithm for relaxing constraints. Constraints 
are organized into sets that are successively more general, called "layers". When some 
constraints are violated, we use the non-violated constraints to reduce search space. 
Additionally, the flexible use of constraints allows the use of knowledge sources that are less 
certain to be true. Users that behave consistently can benefit gready from enhanced recognition 
and the system will show a graceful degradation on those who do not. 
To enable the MINDS system to generate predictions and use them to guide the speech 
recognizer, we have partitioned the system into five interacting modules, as seen in Figure l. 

Figure 1: MINDS System Modules 

DATABASE 

DISPLAY 

DIALOG COMPLETION SPEECH 

The speech module is composed of a modified version of the SPHINX speaker independent, 
continuous, large vocabulary speech recognizer. This version of SPHINX uses finite state 
grammars to constrain search. The grammars are dynamically generated after each utterance by 
the dialog module and sent to the completion module. Hence, tne speech module receives input 
from the completion module and the speaker. It sends its output to ooth the completion module 
and the display module. 
The completion module is composed of a semantic parser, representations of the domain, the 
database, and the finite state grammar. The completion module communicates with the speech 
module, the database, and the dialog module. It takes the speech output, parses it and performs 
any necessary disambiguation. Then it takes its semantic representation and communicates it to 
the dialog module and generates a database query. Once the predictions are generated, the 
completion module indexes them into precompiled portions of the finite state, semantic grammar 
and places restrictions on the expansions of tne rewrite rules embedded in die finite state nets. 
The nets are then merged 
The dialog module is composed of a domain knowledge base, a hierarchical representation of 
possible domain problem solving plans, and a set of heuristics for propagating constraints, 
inferring plans ana tracking plans. The dialog module receives input from both the completion 
module and the database module so that it can track all information communicated. The dialog 
module is responsible for generating layered sets of predictions. It communicates these to the 
completion module so they can be expanded into potential surface forms. 
The database module is composed of the Informix™ relational database management system 
filled with a domain database, an "expert" interface to the database, and a natural language 
generator. The database module receives input queries from the completion module. If these are 
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either ambiguous or computationally expensive, the "expert" interface has the option of querying 
other system modules or the user for clarification / further specification. The expert" interface 
translates query inputs into a form necessary for the database. Additionally, it translates the 
output into a semantically meaningful form. The output is then sent to the dialog module while 
the natural language generator produces sentential output which is then communicated to the 
display module. 
The display module is composed of four displays. Two displays are maps which display the 
current version of the world and can zoom into areas of interest to the system user. Tne third 
display depicts detailed information previously communicated in the dialog, while the fourth 
display is devoted to communicating with the user and all the system modules. The fourth 
display contains a type in window which also displays the generated natural language database 
response as well as the spoken utterance. Additionally, it contains windows for displaying 
clarifications requested by other system modules, and a window for displaying the test set 
perplexity of the just parsed utterance. This module communicates with all other modules and 
knows the complete system state. 
When spoken information is input to the system, it is first processed by the speech module using 
the predictions generated earlier. Its output is sent to botn the display module (where it can be 
corrected if necessary) and the completion module. The completion module performs a semantic 
parse on the information and generates a database query. The semantic parse is sent to the dialog 
module and the database auery is sent to the database module. The dialog module then 
determines which possible plan steps were activated by the input and uses the database response 
to gather further context. It then generates a new set or layered predictions and passes these back 
to the completion module for expansion and use by the speech module. Each of the system 
modules described above run in a distributed environment 
In the next section we describe the use of plans to limit search space and the algorithms which 
enable the MINDS system to generate layered sets of predictions. 

3. Plan Based Constraints: Prediction Generation 
The idea underlying the MINDS system is that tracking all information communicated (user 
questions and database answers) enables a system to infer a set of possible problem solving plans 
and to track progress through these plans, in the convention of Newell and Simon (1972) these 
plans are represented as hierarchically organized goal states. For example, in the domain of 
dealing with disabled ships, a goal state would be finding a replacement ship. As each new 
input sentence is spoken, the system analyzes the utterance to determine the concepts expressed 
and uses these concepts to activate goal states. To derive plan based constraints on future 
utterances, active goal states are assessed to determine legal next states. For example, when 
finding a replacement ship, some of the legal next states which follow a question about the ships 
in some region are questions about more ships in the region, questions about availability of 
these ships, and questions about the ships' equipment. Because speech systems use grammars to 
guide word transitions, we associated a list of required and optional concepts with each goal state 
(e.g. concepts associated with a goal state for ship equipment include equipment, weapons, 
aircraft, electronics, etc.). The list of possible next states is used to generate a set of possible 
concepts which could be spoken in the next utterance. This set is then limited by local and 
global focus which takes into account prior context, rules about reference, etc. The speech 
recognizer only searches for surface forms expressing concepts in this set. 

3.1. Layered Predictions 
Plan based constraints are quite effective in reducing search space by delimiting the types of 
information likely to be communicated [10,22]. But plan based constraints are based upon 
inferring user plans. Usually it is not possible to either definitively select a single plan step 

S'ven an input utterance. Similarly, users may exhibit unexpected behavior by either violating 
e hierarchical nature of a plan or leaving plan steps incomplete. As both domain size increases 

and spontaneously generated speech is used for generating queries, these problems become 
magnified. 
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To overcome the problem of multiple active plans and unexpected user behavior, we instituted 
three procedures. First, we designed an algorithm to select "the best" plan step or goal state from 
the list of possible goal states activated by the preceeding utterance and database response. Here 
we preferred goal states that were both complete and most likely to follow given the previous 
goal states activated. Second, we maintained a list of all other active goal states, including those 
which were not hierarchically embedded. These activated states were used to generate some 
alternate predictions about what the user could say. Third, we generated sets of layered 
predictions about the content of the following utterance. The predictions ranged from very 
specific to very general. These layered predictions were rank ordered to reflect both amount of 
constraint provided as well the reliability of the knowledge sources used to generate them. It 
should be noted that the least constraining prediction layer allowed all domain concepts. This 
means that the system could cope with any statement the user might say even if its not included 
in the system grammar. However, the system cannot cope with words which are not included in 
the system lexicon. 

By layering predictions, we allow the system to reparse a speech signal with a different grammar 
until such time as a good parse is received. The ability to reparse an utterance also enables us to 
use less reliable knowledge sources to further constrain our predictions. Hence, we added two 
additional knowledge sources to the system: user domain expertise models and preference 
orderings for conjunctive goals. 
Observing that system users with significant domain expertise solved problems using very 
different plans than novice users, we attempted to model the effects of expertise by constructing 
domain knowledge models of novice, intermediate and expert system users. Our user models 
were represented as subsets of the domain knowledge base. The models differed primarily by the 
existence of relations between domain objects. For example, an expert user would know that 
each class of ships has a set of default equipment and is suited for particular types of tasks, while 
a novice user might not be aware that shiptypes are divided into ship classes. The user models 
were then used to construct control schemas which specified which goal states were exclusive. 
To further the last example, a control schema for an expert user would show that if the user 
asked about a shipclass they would not ask about default equipment. These models were hand 
coded from the training set data. 
Similarly, we used the training data to derive probabilistic orderings on conjunctive subgoals. 
These orderings told us whicn conjunctive goals would be executed first, second, etc. The 
orderings were computed across individuals (although our training data only came from two 
people). However, there is no reason why these could not be automatically obtained for 
individual system users in future systems. 
Thus, the MINDS system used the following knowledge sources to derive predictions about the 
content of a user's next utterance: 

1. knowledge of problem solving plans represented as a hierarchical goals, 
2. semantic knowledge about the application domain's objects, attributes and their 

interrelations (a domain knowledge base), 
3. domain independent knowledge about methods of speaking, appropriateness of 

references and partial utterances (local and global focus) 
4. dialog history knowledge about information previously communicated, 
5. discrete models of user domain expertise as described above, and 
6. information about user preferences for ordering conjunctive subgoals 

These knowledge sources were used by the prediction module to perform iterative analyses of 
the dialog after each input/database response pair and generate sets of restrictions on the next 
utterance. The predictions generated are layered. Each successive layer is less constraining than 
the prior layer. The most constraining prediction set is generated using all knowledge sources 
listed above. The next set does not use user models and uses a larger non-overlapping set of coal 
states. Further sets are generated by moving upward in the goal hierarchy, allowing more plans 
to be executed. The prediction sets become successively more general, hence the term layered . 
Ultimately, the entire system grammar will be used. If this fails, an "allword recognition is 
attempted where any word sequences are allowed (providing of course that the words are in the 
system lexicon). 
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3.2. Derivation of Predictions 
To illustrate how the information contained in a goal state or plan step is used to generate 
predictions, we present simplified, although prototypical representations of both a plan step and 
the control information which encodes our 'less reliable" information about users. These are 
depicted in Figures 2 and 3, presectively. 

Figure 2: Example Goal State Schema 
[ Shipclass 
:Concepts-Raquirad ((Shipclass singla-usa Child-rastrictions* 

(knoxclass parryclass))) 
Concept Times-used Restriction-pointers 

:Optional-Concepts ((Ragion singla-usa Child-rastrictions* 
(Parsian-gulf))) 

:Optional (Not for axpart-usar) 
True/Nil/User-consideration 

:Naxt-statas (Find-Raplacamant) goal-state 
:Parant (Find-Raplacamant) 
-.Childran (nona) 
:Control (nona) 

1 
* » Coaputad by local and global contaxt 

Figure 3: Example Control Schema 
[Control00030 - for Find-raplacamant 
:Exclusiva ((Shipclass Squipmant)) 
:Omit (Shiptypa) 
:Ordar ( ( . 9 0 Shipclass .10 Mission-Info) 

( . 9 0 Mission-Info .10 Shipclass)) 
] 

The concepts-required and optional-concepts slot values are used to specify the concepts 
relevant when a user transits to the goal state. The number of concepts per goal state and the 
number of goal states a user could progress to next determine the size of the lexicon the speech 
recognition system must analyze. The control slot contains a pointer to a control schema 
wherever the child slot is not empty. 
Control schemas predict whether any child states are likely to be omitted and any preferred 
orderings on the states for a specific system user. They are used to generate the most 
constraining prediction layers. 
As seen in Figure 3, there are three slots in a control schema. The order slot stores information 
about preferred orderings among non-optional, conjunctive subgoal states. The exclusive slot 
stores pairs of goal states which are exclusive because the information in the first allows the user 
to infer the information in the second. The omit slot store a list of goal states the user omits 
because they are unaware of the domain concepts. 
Control schemas are attached to parent goal states to predict which child states will be visited. 
Hence, they are also used to dynamically compute the value of the optional slot for each child 
schema. When a state is predicted to be omitted, the optional slot value becomes true for that 
cycle of input and database response. The optional ana concepts-required slots are important 
for determining when a goal state is complete. 

3.2.1. Algorithm for Prediction Generation 
These structures are used to derive predictions by the following process. When an incoming 
utterance and database response are processed, we select the most likely plan steps executed. If 
a plan step is not complete, then our most constraining prediction set reflects the assumption that 
the user will complete the plan step. The other prediction layers do not change. If one or more 
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plan steps are complete, we identify the next goal states to which a system user could transit. 
Identifying possible next states is the basis for each layer of predictions. Next, we take all of the 

Possible next plan step which would follow from the just completed step and store them, 
ollowing this, we apply our less reliable knowledge sources to further prune the set of next, 

most likely steps. To do this, we first use any and all knowledge of user ordering preferences 
and states which could be omitted. Then we back off first on the ordering information and then 
on the states which could be omitted. Then, since all goal states and possible problem solving 
plans are represented in a hierarchical manner, we progressively move up a layer in the hierarchy 
of incomplete, yet active plan steps or goal states to determine the state to wnich the user could 
next progress.1 Once we have determined the next states, we can take the concepts associated 
with the states and compute restrictions on their expansions, restrictions on references given the 
state and the context, and restrictions on partial utterances. 
Once the predictions are generated, they are expanded into potential surface forms and used by 
the speech recognition module to guide the pattern matching process, as described below. 

4. Use of Predictions to Guide Recognition 
The idea behind the MINDS system is to use pragmatic knowledge to reduce the amount of 
search performed by the speech recognizer thereby reducing recognition errors caused by 
ambiguity and word confusion. Hence, pragmatic knowledge is used predictively. These 
predictions take the form of semantic concepts with restrictions on their children and restrictions 
on methods of referencing the concepts. The underlying motivation for using a semantic 
representation was that speech recognizers can be jguided by using a semantic grammar. 
Furthermore, a semantic grammar can be represented with non-terminal rewrite rules which 
group semantically related surface forms. Thus, once the layered predictions are generated, 
appropriate portions of the semantic grammar are "activated" and restrictions are placed on the 
expansion of rewrite rules as dictated By the predictions. The expanded "active" grammar is then 
used to guide the speech recognizer. 

4.1. Expanding Predictions into Potential Surface Forms 
To expand the prediction sets, we must relate the abstract concepts to words sequences which 
represent the conceptual meaning of the concepts. 
For each concept, we have a partially precompiled set of possible surface forms which can be 
used in actual utterances. These individual concepts usually expand into noun phrases. 
In addition to the individual concepts, we have a complete semantic network grammar which is 
indexed according to the combinations of semantic concepts expressed The semantic network 
grammar is partitioned into subnets. A subnet defines allowable syntactic surface forms to 
express a particular combination of semantic concepts. For example, all the ways for asking 
about a ship's mission are grouped into subnets. The subnets are also partitioned alone syntactic 
lines, such as ellipsis (a partial utterance), single anaphora (we, he), plural anaphora (they, them, 
those) and definite reference (the). This multidimensional indexing allows predictions about 
syntactic forms as well as concepts. Thus, the surface forms associated with each combination 
of semantic concepts are segmented into a number of subnets. 
The grammar is pre-compiled into finite-state networks. The nodes of the nets represent non­
terminal categories which expand into words. In this way, we can precompile our subnets for 
efficiency ana still permit the predictions to restrict the expansion or non-terminals into words. 
This also allows us to add additional words to the system lexicon without modifying the 
grammar. 

1The algorithm is somewhat simplified for purposes of this discussion. A forthcoming paper will discuss 
predictions re: clarification subdialogs and non-hierarchical open focus spaces. 
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4.1.1. Algorithm 
As illustrated above, the grammar is multidimensionally segmented into subnets. Our algorithm 
for using this information to translate each set of layered predictions into a form usable by the 
speech recognition module is as follows. 
First we find the set of subnets which contain one or more of the predicted semantic concepts. 
Forms that violate predictions on ellipsis or anaphora are pruned from this set. This set defines 
the nets to be active for the next utterance. Once the set of subnets is defined, we look for all the 
semantic concept categories, and check if their membership has been reduced by the predictions 
from the dialog module. This step represents a restriction on concept words that are active. The 
module then forms an active lexicon list and grammar based on the resulting subnets and 
restrictions derived from this algorithm. 
The final expansion of predictions brings together the partitioned semantic networks that are 
currently predicted and the concepts in their surface forms. Through an extensive set of indexing, 
we intersect all predicted concept expressions with all the predicted semantic networks. This 
operation dynamically generates one combined semantic network grammar which embodies all 
the dialog level and sentence level constraints on the sentences which can be matched. 
This operation is repeated for each set of predictions and results in a set of layered semantic 
networks. These networks are used by the recognizer to guide the pattern matching process. 
To illustrate this point, let us assume that the frigate "Spark" has a disabled sps-48 radar. One 
layer of our predictions expects the user to ask when it will be repaired. The dialog tracking 
module predicts the "shipname" concept restricted to the value "Spark", the estimated time of 
repair concept and the ship-capabilities" concept, restricted to radar and SPS-48. Single 
anaphoric reference to the ship is also expected, but ellipsis is not meaningful at this point. The 
current damage assessment dialog phase allows queries about features of a single ship. 
During the expansion of the concepts, we find the word nets such as "the ship", "this ship", "the 
shipV, "this ship's", "it", "its", "Spark" and "Spark's". We also find the word nets for the radar 
capabilities such as "surface search radar", "sps-48", "radar", etc., and word nets for repair 
questions. 
We then intersect these with the sentential forms allowed during this dialog phase. Thus we 
obtain the nets for phrases like "Display/list etr/estimated time to repair/estimated repair 
time/projected time for repair on/for surface search radar/sps-48/radar/sps-48 surface search 
radar , and "Display/what is/ its/Spark's/this ship's/the ship s etr/projected repair time/", and 
many more. This semantic network now represents a maximally constrained grammar which 
reflects the constraints embodied in this layer of predictions. 

4.2. Recognizing Speech Using Dynamic Networks 
As explained above, predictions are used to define an active set of subnets and an active set of 
words to be used in processing the next utterance. We use the Sphinx system as the basis for our 
recognizer. It has been modified to use finite state nets to control word transitions instead as 
opposed to word-pairs or bigrams. Sphinx creates word models by concatenating Hidden 
Markov Models of phonemes. These word networks are precompiled. 
During recognition, the speech module performs a time-syncronous beam search. The search 
traces through the active nodes of our nets to control word transitions. As the search exits a word 
it forms a set of words to transit to from successor states in the nets. Only the active finite state 
nets and active words are used to compute the successor word set. The search then transits to the 
words in this set Paths falling below a threshold score are pruned. The network is used to allow 
only "legal" transitions. It does not affect the score of a path but simply restricts words which 
can continue the path. 
The recognizer is given several sets of predictions which are successively more general fless 
constraining). The most constraining set is used first. If no string is found which exceeds a 
threshold score, the input is reprocessed using the next more general set of predictions. If an 
acceptable recognition is not found using the most general set of predictions, the entire set of 
nets is used. 
After the input has been processed, the word string with the best score is passed back to the 
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system for parsing. In addition to the word string, the subnet matched, the overall score and 
individual word scores are passed back. 

5. Results 
The above described use of clans in speech recognition is currendy embodied in the MINDS 
system (Young and Ward, 1988; Young, Hauptmann and Ward, 1988; Hauptmann and Young, 
1988). MINDS is a multimedia interactive dialog system where users solve problems by 
interacting with a database. Users can speak, type or point to input information and both the 
system and the user can initiate clarification dialogs when appropriate. It uses an adapted 
version of the SPHINX (Lee, 1988) speech recognition system with a 1000 word vocabulary. Its 
task domain is naval resource management. Here users must query a relational database to 
determine whether a disabled vessel should be replaced with another vessel, scheduled for a later 
repair, or whether the mission should be delayed. 
To test the ability of our layered predictions to both reduce search space and to improve speech 
recognition performance, we performed two experiments. The first experiment assessed 
perplexity reduction enabled by the predictive use of pragmatic knowledge. The second 
experiment measured improvement in recognition accuracy rates resulting from the use of 
layered predictions. Both studies used an independent test set. This means that the utterances 
processed by the system to obtain the experimental results had not been previously seen by the 
system. Furthermore, the test set did not include any clarificiation dialogs. 

5.1. Test and Training Sets 
Our test data (10 scenarios) were adapted versions of three problem solving sessions taken from 
the TONE database. The TONE database is a set of transcripts from Naval personnel solving 
problems about what to do with a disabled vessel. The personnel must determine whether to 
delay a mission, find a replacement vessel or schedule a repair for a later date. They use a 
database to find necessary problem solving information. In addition to the three scenarios from 
the TONE database, we created seven additional sessions by paraphrasing the original three. 
These scenarios were not used to train upon. 
Our training data were five different problem solving scenarios from the TONE database. The 
training scenarios were used for writing grammars and developing user models. Problem solving 
plans were derived from an abstract description of the stages ana options available to a problem 
solver. The abstract plan descriptions were provided by the Navy. 
Our database was different from the one used in gathering the TONE transcripts. While it 
contained the same fields, the information about particular ships differed across the two 
databases. To enable testing with the TONE transcripts, we had to adapt the test scenarios. Our 
adaptations consisted of the following: 

• Shipnames were changed to correspond to those in our database. 
• Lexical entries not in our lexicon (such as 'employment schedule') were replaced 

with equivalent concepts from our lexicon (such as 'mission* and 'mission 
importance'). 

• Database inconsistencies were resolved in favor of the CMU database. For 
example, if in the naval database, ship X required capability Y for its mission but in 
the CMU database ship, X required mission capability Z, all references in a scenario 
to Y were replaced with references to Z. 

These adaptations have minimal impact on the integrity of the data. 
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5.2. Reduction in Search Space 
Our first experiment was designed to test the search space reduction resulting from applying 
pragmatic constraints. Thus, we used all 10 of our test scenarios. The scenarios contained an 
average of 9 sentences. 
To measure the constraint imposed by the knowledge sources, we use an index called perplexity. 
This is an information theoretic measure that is widely used in speech systems to characterize the 
constraint provided by a grammar. Perplexity represents the geometric mean of the number of 
alternative words at any point. Search space size tor a given test sentence is computed by raising 
perplexity to the number of words in the sentence. 
To measure the reduction in perplexity and search space it was necessary to collect test set 
perplexity measurements for each of the parsed sentences in two conditions: 

• Total domain grammar alone 
• Using predictions 

Test set perplexity is the perplexity of the actual sentence parsed. It is different than total 
grammar perplexity because it takes into account only those alternatives which are legal next 
words given the grammar. 
To measure the test set perplexity of all the sentences in each of the test scenarios using the 
entire system grammar is relatively straight forward. However, measuring the test set perplexity 
of sentences which are parsed with layered predictions is not. Since prediction layers fail, we 
must report the perplexity of the layers which were successful. However, since some layers are 
non-overlapping, the number we report is the perplexity of the successful prediction layer 
merged with all the unsuccessful layers attempted. 
As seen in Table 1, test set perplexity was reduced in excess of an order of magnitude, from 
279.2 to 17.8. 

Reduction in 
Branching Factor and Search Space 

Constraints used: grammar layered predictions 
Test Set Perplexity 279.2 17.8 

Search Space 3.81 x 1 0 1 9 1.01 x 10 9 

Put differently, the knowledge sources reduced the search space for lexical entries by 9 orders of 
magnitude on the average 8 word sentence when the predictions were expanded into potential 
surface expression forms for future utterances. 

5.3. Recognition Performance 
To evaluate the effects of using layered predictions on recognition performance we used 10 
speakers (8 male, 2 female) who had not been used to train the recognizer. Each speaker read 20 
sentences from the adapted test set provided by the Navy. Each of these utterances was 
recorded. The speech recordings were then run through the SPHINX recognition system in two 
conditions: 

• using the system grammar (all legal sentences) 
• using the successful prediction layer merged with all unsuccessful layers 

The results can be seen in Table 2. 
As can be seen, the system performed significantly better with the predictions. Error rate 
decreased by a factor of five. Perhaps more important, however, is the nature of the errors. In 
the "with predictions" condition, 89 percent of the insertions and deletions were the word "the". 
Additionally, 67 percent of the substitutions were "his" for "its". Furthermore, none of the errors 
in the "with predictions" condition resulted in an incorrect database query. Hence, semantic 
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Recognition 
Performance 

Constraints used: grammar layered predictions 
Test Set Perplexity 242.4 18.3 

Word Accuracy 82.1 96.5 
Semantic Accuracy 85% 100% 

Insertions 0.0% 0.5% 
Deletions 8.5% 1.6% 

Substitutions 9.4% 1.4% 

accuracy was 100%. 

6. Summary 
In summary, by identifying and using knowledge sources which can intelligently reduce search 
space, we progress toward developing robust, interactive problem solving environments where 
speech is the primary mode of communication. One such Knowledge source is pragmatics. The 
use of layered predictions derived from pragmatic knowledge sources appears to be a powerful 
technique for improving speech recognition and reducing search space. Layered predictions 
allow the recognition system to capitialize upon pragmatic Knowledge sources without impairing 
the system's ability to recognize less likely utterances. The more consistent the users behavior, 
the better the recognition. As user behavior deviates, recognition accuracy degrades gracefully 
and the system is capable of recovering and generating further pragmatic predictions based upon 
both the users expected and less expected behavior. However, as domains continue to scale up 
and we begin to process spontaneously generated speech, additional knowledge sources will 
become increasingly important. 
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