
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



Learning State Space Trajectories 
in Recurrent Neural Networks 

Barak A. Pearlmutter 
December 31 , 1988 

C M U - C S - 8 8 - 1 9 1 -

Abstract 

We describe a number of procedures for finding dE/dwij where E is an error functional of the 
temporal trajectory of the states of a continuous recurrent network and w,y are the weights of that 
network. Computing these quantities allows one to perform gradient descent in the weights to 
minimize £, so these procedures form the kernels of connectionist learning algorithms. Simulations 
in which networks are taught to move through limit cycles are shown. We also describe a number of 
elaborations of the basic idea, such as mutable time delays and teacher forcing, and conclude with 
a complexity analysis. This type of network seems particularly suited for temporally continuous 
domains, such as signal processing, control, and speech. 
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1 Introduction 

Note: this is an expanded version of an earlier paper of the 
same title [9]. 

Pineda [11] has shown how to train the fixpoints of a re
current temporally continuous generalization of backprop-
agation networks [8,12,14]. Such networks are governed 
by the coupled differential equations 

1 dt = -yi + <r(Xi) + Ii 

where 
v0j 

(1) 

(2) 

is the total input to unit z, y, is the state of unit /, Tt is 
the time constant of unit z, a is an arbitrary differentiate 
function1, wfy are the weights, and the initial conditions 
yi(t0) and driving functions It(t) are the inputs to the system. 

Consider minimizing £(y), some functional of the tra
jectory taken by y between to and t\. For instance, 
& = f£(yo(0 ~f(0)2dt measures the deviation of yo from 
the function/, and minimizing this £ would teach the net
work to have yo imitate/. Below, we develop a technique 
for computing dE(y)/dwij and dE(y)/dTiy thus allowing us 
to do gradient descent in the weights and time constants so 
as to minimize £. The computation of dE/dwij seems to 
require a phase in which the network is run backwards in 
time, and tricks for avoiding this are also described. 

2 A Forward/Backward Technique 
We can approximate the derivative in (1) with 

dtKJ~ At (3) 

which yields a first order difference approximation to (1), 

We use tildes to indicate temporally discretized versions of 
continuous functions. The notation y,(0 is being used as 
shorthand for the particular variable representing the de-
screte version of yt(fo + nAt), where n is an integer and 
t = to + nAt. 

Let us define 

In the usual case £ is of the form f£f(y(t), Odt s o eM = 
df(y(t)tt) /dyi(t). Intuitively, measures how much a 

typically <r(0 = (1 + e~*y-1, in which case *'(0 = <r(0(l - * (0) . 

Figure 1: The infinitesimal changes to y considered in e\(t) 
(left) and z{(t) (right). 

small change to yi at time t affects £ if everything else is 
left unchanged. 

Let us define 
<9+£ 

Ut) = -rryr (6) 
where the d+ denotes an ordered derivative [15], with vari
ables ordered by time. Intuitively, zt(t) measures how much 
a small change to yt at time t affects £ when this change 
is propagated forward through time and influences the re
mainder of the trajectory, as in figure 1. Of course, z; is 
the limit of z, as At —* 0. 

We can use the chain rule for ordered derivatives to cal
culate zi(t) in terms of the Zj(t+At). According to the chain 
rule, we add all the separate influences that varying yi(t) 
has on £. It has a direct contribution of Atei(t)t which 
comprises the first term of our equation for zt(r). Varying 
yi(t) by e has an effect on y,(z+ At) of e(l - At/Ti), giving 
us a second term, namely (1 — At/Ti)z{t + At). 

Each weight vv,y allows y t (r) to influence yj(t+At). Let us 
compute this influence in stages; varying yKO by e varies 
Xj(t) by ewij, which varies c(xj(t)) by €Wija'(Xj(t)), which 
varies $j(t + At) by ewijaf(xj(t))At/Tj. This gives us our 
third and final term, ^jWij<rXxj(t))AtZj{t + At)/Tj. 

Combining these, 

At 

(7) 

2,-(0 = Atei(t) + ^ 1 - — J ~Zl(t + At) 

If we put this in the form of (3) and take the limit as 
At 0 we obtain the differential equation 

dzi 1 ! 
It = TiZi ~ e i ~ 2 ^ TWijCr (Xj)Zj- (8) 

For boundary conditions note that by (5) and (6) zt(fO = 
Atei(t\), so in the limit as At —• 0 we have zi(t\) = 0. 

Consider making an infinitesimal change dwij to for 
a period At starting at r. This will cause a corresponding 
infinitesimal change in £ of 

At 
yMcrXxjitV—ZjiOdwij. 
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Figure 2: A lattice representation of (4). 

Since we wish to know the effect of making this infinites
imal change to wxy throughout time, we integrate over the 
entire interval yielding 

dE 1 fh 

s j - U * * * * * < 9 > 

If we substitute p, = 7 f 1 into (4), find dE/dpi by pro
ceeding analogously, and substitute 7, back in we get 

dE 1 fh dyL 

m , - 7 , h « i * <I0) 

One can also derive (8), (9) and (10) using the calculus 
of variations and Lagrange multipliers (William Skaggs, 
personal communication), or from the continuous form of 
dynamic programming [5]. 

3 Simulation Results 

Using first order finite difference approximations, we inte
grated the system y forward from to to t\9 set the boundary 
conditions z;(fi) = 0, and integrated the system z back
wards from t\ to to while numerically integrating z; cr/(x/)yl 

and Zidyi/du thus computing dE/dwij and dE/dTi. Since 
computing dzjdt requires knowing <7'(jcj), we stored it and 
replayed it backwards as well. We also stored and replayed 
y, as it is used in expressions being numerically integrated. 

We used the error functional 

£ - 5 £ ^ \ < * - 4 ) 2 * (11) 

where dt(t) is the desired state of unit / at time t and si(t) 
is the importance of unit i achieving that state at that time. 
Throughout, we used <r(£) = (1 + e"*)" 1 . Time constants 
were initialized to 1, weights were initialized to uniformly 
distributed random values between 1 and - 1 , and the initial 
values yt(to) were set to /,(*<)) + cr(0). The simulator used 
the approximations (4) and (7) with At = 0.1. 

All of these networks have an extra unit which has no 
incoming connections, an external input of 0.5, and out
going connections to all other units. This unit provides a 
bias, which is equivalent to the negative of a threshold. 
This detail is suppressed below. 

3.1 Exclusive Or 

The network of figure 3 was trained to solve the xor prob
lem. Aside from the addition of time constants, the net
work topology was that used by Pineda in [11]. We defined 
E - Y^k j fify^ " d^k))2dt where k ranges over the four 
cases, d is the correct output, and y0 is the state of the 
output unit. The inputs to the net and range over 
the four possible boolean combinations in the four differ
ent cases. With suitable choice of step size and momentum 
training time was comparable to standard backpropagation, 
averaging about one hundred epochs. 

For this task it is to the network's benefit for units to 
attain their final values as quickly as possible, so there 
was a tendency to lower the time constants towards 0. In 
an effort to avoid small time constants, which degrade the 
numerical accuracy of the simulation, we introduced a term 
to decay the time constants towards 1. This decay factor 
was not used in the other simulations described below, and 
was not really necessary in this task if a suitably small At 
was used in the simulation. 

It is interesting that even for this binary task, the network 
made use of dynamical behavior. After extensive training 
the network behaved as expected, saturating the output unit 
to the correct value. Earlier in training, however, we oc
casionally (about one out of every ten training sessions) 
observed the output unit at nearly the correct value be
tween t = 2 and t = 3, but then saw it move in the wrong 
direction at t = 3 and end up stabilizing at a wildly incor
rect value. Another dynamic effect, which was present in 
almost every run, is shown in figure 4. Here, the output 
unit heads in the wrong direction initially and then corrects 
itself before the error window. A very minor case of diving 
towards the correct value and then moving away is seen in 
the lower left hand corner of figure 4. 

input hidden output 

Figure 3: The XOR network. 
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Figure 4: The states of the output unit in the four input cases plotted from t = 0 to t = 5 after 200 epochs of learning 
The error was computed only between t = 2 and t = 3. warning. 
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3.2 A Circular Trajectory 

We trained a network with no input units, four hidden units, 
and two output units, all fully connected, to follow the 
circular trajectory of figure 5. It was required to be at the 
leftmost point on the circle at t = 5 and to go around the 
circle twice, with each circuit taking 16 units of time. The 
environment does not include desired outputs between t = 0 
and t = 5, and during this period the network moves from 
its initial position at (0.5,0.5) to the correct location at 
the leftmost point on the circular trajectory. Although the 
network was run for ten circuits of its cycle, these overlap 
so closely that the separate circuits are not visible. 

Upon examining the network's internals, we found that it 
devoted three of its hidden units to maintaining and shaping 
a limit cycle, while the fourth hidden unit decayed away 
quickly. Before it decayed, it pulled the other units to the 

appropriate starting point of the limit cycle, and after it 
decayed it ceased to affect the rest of the network. The 
network used different units for the limit behavior and the 
initial behavior, an appropriate modularization. 

3,3 A Figure Eight 

We were unable to train a network with four hidden units to 
follow the figure eight shape shown in figure 6, so we used 
a network with ten hidden units. Since the trajectory of the 
output units crosses itself, and the units are governed by 
first order differential equations, hidden units are necessary 
for this task regardless of the a- function. Training was 
more difficult than for the circular trajectory, and shaping 
the network's behavior by gradually extending the length 
of time of the simulation proved useful. 
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Figure 6: Desired states d\ and d2 plotted against each other (left); actual states yi and y 2 plotted against each other at 
epoch 3182 (center) and 20000 (right). 

From t = 0 to t = 5 the network moves in a short loop 
from its initial position at (0.5,0.5) to where it ought to 
be at t = 5, namely (0.5,0.5). Following this, it goes 
through the figure eight shaped cycle every 16 units of 
time. Although the network was run for ten circuits of its 
cycle to produce this graph, these overlap so closely that 
the separate circuits are not visible. 

3,4 Perturbation Experiments 

In an attempt to judge the stability of the limit cycles exhib
ited above, we modified the simulator to introduce random 
perturbations and observed the effects of these perturba
tions upon the cycles. It is interesting to note that the two 
output units in the figure eight task appear to be phase 
locked, as their phase relationship remains invariant even 
in the face of major perturbations. This phase locking is 
unlike the solution that a human would wire up by hand. 

The limit cycle on the right in figure 6 is symmetric, 
but when perturbations are introduced, as in the right of 
figure 7, symmetry is broken. The portion of the limit cy
cle moving from the upper left hand corner towards the 
lower right hand corner has diverging lines, but we do not 
believe that they indicate high eigenvalues and instability. 
The lines converge rapidly in the upward stroke on the 
right hand side of the figure, and analogous unstable be
havior is not present in the symmetric downward stroke 
from the upper right hand corner towards the lower left. 
Analysis shows that the instability is caused by the initial
ization circuitry being inappropriately activated; since the 
initialization circuitry is adapted for controlling just the ini
tial behavior of the network, when the net must delay at 
(0.5,0.5) for a time before beginning the cycle by moving 
lowards the lower left corner, this circuitry is explicidy not 
symmetric. The diverging lines seem to be caused by this 
circuitry being activated and exerting a strong influence on 

the output units while the circuitry itself deactivates. 

4 Embellishments 

4.1 Time Delays 
Consider a network of this sort in which signals take finite 
time to travel over each link, so that (2) is modified to 

^ ) S E ^ " ^ ( 1 2 ) 

j 

Tji being the time delay along the connection from unit; to 
unit i. Surprisingly, such time delays merely add analogous 
time delays to (8) and (9), 

Yt® = Y * ® ~ e M - ^ (13) 

= ^ / 1 yMAxjit + T^ZJO + ri})dt, (14) 
<?wy 1 j J to 

while (10) remains unchanged. If we set rty = At, these 
modified equations alleviate concern over time skew when 
simulating networks of this sort, obviating the need for 
predictor/corrector methods. 

Instead of regarding the time delays as a fixed part of the 
architecture, we can imagine modifiable time delays. Given 
modifiable time delays, we would like to be able to learn 
appropriate values for them, which can be accomplished 
using gradient descent by 

| i = Zj(t)<T\Xj{t))»At - ri})dt. (15) 
orij Jh at 

We have not yet simulated networks with modifyable time 
delays. 
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Figure 7: The output states y{ and y2 plotted against each other for a 1000 time unit run, with all the units in the 
network perturbed by a random amount about every 40 units of time. The perturbations in the circle network (left) were 
of magnitude less than 0.1, and in the eight network (right) of magnitude less than 0.05. 

An interesting class of architectures would have the state 
of one unit modulate the time delay along some arbitrary 
link in the network or the time constant of some other 
unit. Such architectures seem appropriate for tasks in which 
time warping is an issue, such as speech recognition, and 
such architectures can certainly be accommodated by our 
approach. 

In the presence of time delays, it is reasonable to have 
more than one connection between a single pair of units, 
with different time delays along the different connections. 
Such "time delay neural networks" have proven useful in 
the domain of speech recognition [7,13], Having more 
than one connection from one unit to another requires us 
to modify our notation somewhat; weights and time delays 
are modified to take a single index, and we introduce some 
external apparatus to specity the source and destination of 
each connection. Thus w; is the weight on a connection 
between unit C(f) and unit 72(0, and r,- is the time delay 
along that connection. Using this notation we write (12) as 

Our equations would be more general if written in this 
notation, but readability would suffer, and the translation 
is quite mechanical. 

4.2 Avoiding the Backwards Pass 

As mentioned in section 3, the obvious way to simulate 
these networks is to start at to, simulate y forward to t\ 
while storing it, set z(t\) = 0 and simulate z backwards 
from t\ to to while replaying y. While simulating back
wards, we numerically integrate according to equations (9) 
and (10), thereby computing the partials of E. However, 
this requires simulating backwards in time, which is not 
pleasing, and it requires remembering the trajectory of y, 
which takes storage linear in t\ - fo. One way to avoid 
storing the trajectory of y is to simulate it backwards as we 
simulate z backwards, but note that simulating y backwards 
is typically numerically unstable. 

Here, we consider the alternative of guessing z(fo) such 
that z(fi) = 0 and doing all of our simulations forward 
through time. This is not attractive on serial machines with 
plentiful memory, but might be more attractive on parallel 
machines with limited storage. These complexity issues 
are discussed in section 5.2. 

Let us find a way to compute dzi{t\)/dzj(to). We define 

(16) 

and take the partial of (8) with respect to z ; (r 0 ) , substitut
ing in Cy where appropriate. This results in a differential 
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equation for Qljy 

and for boundary conditions we note that 

C f / ( ' o ) s { 0 otherwise. 

(17) 

(18) 

Given guesses for the correct value of z(r 0 ) , we will 
simulate y, z and C forward from / 0 to t\ and then update 
the guesses in order to minimize B where 

(19) 

with a shooting method by making use of the fact that 

dB GO \—* (20) 

For notational convenience, let b{ = dB/dzfa). We can 
use a Newton-Raphson method with the appropriate modi
fication for the fact that B has a minimum of zero, resulting 
in the simple update rule 

B 
Zi(h) — Zi(t0) - Zrrr-rrrbi. 

llbH 
(21) 

During our simulation we accumulate the appropriate in
tegrals, so if our guesses for zt(f0) were nearly correct we 
will have computed nearly correct values for dE/dwij and 
dE/dTi. If the w,y change slowly the correct values for 
z,(fo) will change slowly, so tolerable accuracy can be ob
tained by using the dE/dwij computed from the slightly 
incorrect values for z,(fo) while simultaneously updating 
the zt(/o) for future use, eliminating the need for an inner 
loop which iterates to find the correct values for the z,(/o). 
This argument assumes that the quadratic convergence of 
the Newton-Raphson method dominates the linear diver
gence of the changes to the w,y, which can be guaranteed 
by choosing suitably low learning parameters. Regrettably, 
it also assumes that the forward simulation of z is numeri
cally stable enough for our purposes, which is typically not 
the case for long trajectories. 

4.3 An Online Variation 

We can use the technique of Williams and Zipser [16] to 
create an online version of our algorithm. Let us define 

P$(0 = 
dyt(t) 
dwu 

(22) 

and note that 

(23) 

If we begin with (1), substitute k for i, take the partial with 
respect to w,,, and substitute in p where possible, we have 
a differential equation for p , 

(24) 

which is stable in the forward direction. To construct an 
online algorithm we simulate the systems y and p forward 
through time and continuously update the weights to do 
gradient descent using (23), spreading the weight update 
across time using the continuous update rule 

~t (25) 

We can derive analogous equations for the time con
stants; define 

take the partial of (1) with respect to 7y, and substitute in 
q. This yields 

which can be used to update the time constants using the 
continuous update rule 

dt (28) 

Similarly, let us derive equations for modifying the time 
delays of section 4.1. Define 

(29) 

and take the partial of (1) with respect to r y , arriving at a 
differential equations for r, 

dd dyi 
dt Tk-jj- = - r* + <r\xk)(wy-£(t - ri}) - ] T w^t - r*)). 

included if j = k 
(30) 

The time delays can be updated online using the continuous 
update equation 

(31) 
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4.4 Teacher Forcing 

Williams and Zipser report that their teacher forcing tech
nique radically improves learning time in recurrent net
works [16]. Teacher forcing involves using the training 
signal to modify the states of units to desired values as 
the network is run. Williams and Zipser's application of 
teacher forcing to their networks is deeply dependent on 
discrete time steps, so applying teacher forcing to tempo
rally continuous networks requires a different approach. 

The essential idea is that we will add some knobs that can 
be used to control the states of the output units, we will use 
them to keep the output units locked at some desired states, 
and we will minimize an error functional which measures 
the amount of control we have exerted. 

Let 

/r.- = ^ ( - y i + *(*.0 + /.-) (32) 

so that (1) is just dyi/dt = F,-, and add a new forcing term 
MO to (1), 

d\: 
(33) dt t l * U 

Let the set of forced units be For each i e <P let dL be 
the trajectory that we will force y, to follow, so we set 

f - d ± F (34) 

and yi(t0) = di(t0) for i € # and / = 0 for i g <£, with 
the consequence that y, = 4 for i e $. Now let the error 
functional be of the form 

Jto 
L(fu...,fn,t)dt, (35) 

where typically L = 
We can modify the derivation in section 2 for this 

"teacher forced" system. For i € # a change to y, will 
be canceled immediately, so taking the limit as At —* 0 
yields z,- = 0. Because of this, it doesn't matter what e, is 
for i G 

We can apply (5) to calculate a for i £ $. The chain rule 
is used to calculate how a change in y» effects E through 
the/1, yielding 

SEdfj 
IF 6fj dyi 

ui 

For i £ $ (8) and (10) are unchanged, and for j & $ and 
any i (9) also remains unchanged. The only equations still 
required are dE/dwij for ; € # and dE/dTL for i e To 

derive the first, consider the instantaneous effect of a small 
change to wijy giving 

(37) 

(38) 

8E 1 h dL. 

Analogously, for / 6 0 

dT, ' Ti Jh dfi dt L 

We are left with a system with a number of special cases 
depending on whether units are in <P or not. Interestingly, 
an equivalent system results if we leave (8), (9), and (10) 
unchanged except for setting zt = dL/dfi for i € <P and 
setting all the ev = 0. It is an open question as to whether 
there is some other way of defining z, and e< that results in 
this simplification. 

5 Analysis 

5.1 Computational Power 

It would be useful to have some characterization of the 
class of trajectories that a network can learn as a function of 
the number of hidden units. We are investigating this area, 
and have some preliminary results. These networks have at 
least the representational power of Fourier decompositions, 
as one can use a pair of nodes to build an oscillator of 
arbitrary frequency by making use of the local linearity 
of the a function, so one can take the first n terms of a 
function's Fourier decomposition and analytically find a set 
of weights for a network with In + 1 nodes that generates 
this approximation to the function (Merrick Furst, personal 
communication). 

We can also derive some fairly straightforward bounds 
on the possible ranges of the states and their derivatives. 
We use n for the number of units in the network, and the 
notation max |/| is used to delimit the maximum absolute 
value attainable by any 

max|y| < max|<r| +max|/ | 

max < 2 max max \y\ 

(39) 

(40) 

max dt2 

max|j«| (max 

+ max 

(1 + n max|cr'| max|w|) 

) (41) 
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This bounds the rate at which the network's state can 
change, and the rate at which its velocity vector can change, 
thus limiting the class of trajectories that may be learned. 
But it does not limit the complexity (number of squiggles) 
of a trajectory, provided it is sufficiendy slow moving. A 
stronger notion of trajectory complexity would be desirable. 

5.2 Complexity 

Consider a network with n units and m weights which is 
run for s time steps2 where s = (h — to)/At. Additionally, 
assume that the computation of each e4(r) is 0(1) and that 
the network is not partitioned. 

Under these conditions, simulating the y system takes 
0(m + n) = 0{m) time for each time step, as does simulat
ing the z system. This means that using the technique de
scribed in section 3, the en are simulation takes 0(m) time 
per time step, the best that could be hoped for. Storing 
the activations and weights takes 0(n + m) = 0(m) space, 
and storing y during the forward simulation to replay while 
simulating z backwards takes 0(sn) space, so if we use this 
technique the entire computation takes 0(sn + m) space. If 
we simulate y backwards during the backwards simulation 
of z, the simulation requires 0(n + m) space, again the best 
that could be hoped for. This later technique, however, is 
susceptible to numeric stability problems. 

Maintaining the Cy terms of section 4.2 takes 0(nm) time 
each time step, and 0(n2) space. These are the dominant 
factors in the calculation of the partials of B. The technique 
of Williams and Zipser described in section 4.3 requires 
0(n2m) time each time step, and 0(nm) space. 

These time complexity results are for sequential ma
chines, and are summarized in table 1. All these algorithms 
are embarrassingly parallel and eminently suitable for im
plementation on both vector processors and highly parallel 
machines. 

5.3 Stability 

We can analytically determine the stability of the network 
by measuring the eigenvalues At- of Df where / is the 
function that maps the state of the network at one point in 
time to its state at a later time. For instance, for a network 
exhibiting a limit cycle one would typically use the function 
that maps the network's state at some time in the cycle to 
its state at the corresponding time in the next cycle. It 
is tempting to introduce a term to be minimized which 
rewards the network for being stable, for instance £ , ^? 
where A, is an eigenvalue of Df. Regrettably, computing 
Df is costiy, so we are investigating ways to add terms to 

2Variable grid methods [2] can reduce s by dynamically varying At. 

technique store y back y shooting W&Z 
time 0(m) 0(m) 0(nm) 0(nlm) 
space 0(sn + m) 0(m) 0(nl + m) 0(nm) 
online? no no semi yes 
stable? yes no no yes 
local? yes yes no no 

Table 1: A summary of the complexity of some learning 
procedures for recurrent networks. In the "store y" tech
nique we store y as time is run forwards and replay it as we 
run time backwards computing z. In "back y" we do not 
store y, instead recomputing it as time is run backwards. 
W&Z is the technique of Williams m d Zipser. 

E which measure weaker but more economically computed 
criteria of stability than max, |A,| < 1, such as 

( Tr(P/) \ 2 

V l + D e K D / ) ; ' 

We conjecture that the apparent noise tolerance shown in 
the simulations of section 3.4 is caused by the learning al
gorithm running in the presence of noise introduced by the 
conversion from differential equations to difference equa
tions and perhaps floating point roundoff errors. This leads 
to the thought of enhancing the stability of the solutions 
that the learning algorithm derives by deliberately inject
ing noise into the system during training, thus punishing 
the algorithm for even short stretches of instability. 

6 Future Work 

Our next experiments will involve using inputs to specify a 
member of a class of continuous tasks, and testing general
ization to novel inputs. We will make a network with two 
inputs and two outputs, where the inputs are used to specify 
the radius and cycle time of a circle to be traced out on the 
two output units. After that, we would like to experiment 
with more complex error functional, involving dyi/dt and 
correspondences between states at different points in time. 
We also plan on simulating networks with adjustable time 
delays, something which we have not experimented with 
at all to date. 

In the longer term, there are obvious applications to iden
tification and control, some of which will be explored in 
the author's thesis research. Signal processing and speech 
generation and recognition (using generative techniques) 
are also domains to which this type of network can be 
naturally applied. Such domains may lead us to complex 
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architectures like those discussed in section 4.1. For con
trol domains, it seems important to have ways to force 
the learning towards solutions that are stable in the con
trol sense of the term, so we are attempting to develop the 
ideas hinted at in section 5.3 into workable additions to the 
learning algorithm. 

On the other hand, we can turn the logic of section 5.3 
around. Consider a difficult contraint satisfaction task of 
the sort that neural networks are sometimes applied to, such 
as the traveling salesman problem [3]. Two competing 
techniques for such problems are simulated annealing [6,1] 
and mean field theory [10]. By providing a network with 
a noise source which can be modulated (by second order 
connections, say) we could see if the learning algorithm 
constructs a network that makes use of the noise to gen
erate networks that do simulated annealing, or if pure gra
dient descent techniques are evolved. If a hybrid network 
evolves, its structure may give us insight into the relative 
advantages of these two different optimization techniques. 

7 Relation to Other Work 

We use the same class of networks used by Pineda [11], but 
he is concerned only with the limit behavior of these net
works, and completely suppresses all other temporal behav
ior. His learning technique is applicable only when the net
work has a simple fixpoint; limit cycles or other non-point 
attractors violate a mathematical assumption upon which 
his technique is based. 

We can derive Pineda's equations from ours. Let /, be 
held constant, assume that the network settles to a fixpoint, 
let the initial conditions be this fixpoint, i.e., yt('o) = yt(oo), 
and let E measure Pineda's error integrated over a short in
terval after to, with an appropriate normalization constant. 
As t\ tends to infinity, (8) and (9) reduce to Pineda's equa
tions, so in a sense our equations are a generalization of 
Pineda's; but these assumptions strain the analogy. 

Jordan [4] uses a conventional backpropagation network 
with the outputs clocked back to the inputs to generate tem
poral sequences. The treatment of time is the major dif
ference between Jordan's networks and those in this work. 
The heart of Jordan's network is atemporal, taking inputs to 
outputs without reference to time, while an external mech
anism is used to clock the network through a sequence of 
states in much the same way that hardware designers use 
a clock to drive a piece of combinatorial logic though a 
sequence of states. In our work, the network is not exter
nally clocked; instead, it evolves continuously though time 
according to a set of coupled differential equations. 

Williams and Zipser [16] have discovered an online 
learning procedure for networks of this sort; a derivation 
of their technique is given in section 4.3 above. 
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