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Abstract 

In this paper, a space efficient probabilistic protocol is 
presented for the Processor Identity Pro6/em-an essential prob
lem in distributed computation and asynchronous parallel com
putation. Our protocol uses only 0(n log 2 n) bits. The new pro
tocol improves the previous known protocol, due to Lipton and 
Park, which uses 0(n2) bits. Our protocol is verv simple, fully 
distributed and symmetric. This provides a very practical and 
important primitive for distributed systems and asynchronous 
parallel systems. 
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1 Introduction 
T h e space complexi ty of a fundamenta l problem in d is t r ibuted and asynchronously parallel 
compu ta t i on , the Processor Identity Problem, is s tudied. T h e Processor Ident i ty Problem 
assigns unique identifiers to processors in an asynchronous d is t r ibu ted system. More specif
ically, a solut ion to the processor ident i ty problem is a protocol run by n asynchronous 
processors which commun ica t e via a shared memory to p roduce a unique ass ignment of pro
cessors to e lements of t h e set { 1 , 2 , • • • , n } . This problem was first in t roduced in [6] where 
Lip ton and P a r k gave a 0(n2) bi ts probabil is t ic protocol to t he problem. 

T h e o r e m 1 . 1 ( L i p t o n a n d P a r k ) The Processor Identity Problem can be solved in Ln2 

bits with probability at least I — cL for some constant c > 1 . 

It seems, from t h e cons t ruc t ion in [ 6 ] , t h a t t h e f i ( n 2 ) bits are required for t he Processor 
Ident i ty Prob lem; and it is not clear how to reduce the failure probabi l i ty to for any 
cons t an t c > 0 , using no more t h a n 0(n2) bi ts . 

In this paper , a space e n c i e n t probabil is t ic protocol is presented for the Processor 
Identity Problem. O u r protocol uses only 0(n log 2 n) b i ts . T h e new protocol improves the 
previous known pro tocol by s imul taneously reducing the number of bits required and the 
failure probabi l i ty . 

T h e o r e m 1 . 2 ( M a i n R e s u l t ) 

1. The Processor Identity Problem ^ n be solved in 0(n\og2 n) bits with probability at 
least 1 — ^ r , for any constant c> , 

2. If there are n2 bits in the shared memory, then there exists a Processor Identity Protocol 
with failure probability bounded by 

Like t h e pro tocol in [ 6 ] , our protocol is very simple, fully distributed and symmetric 
[ 5 , 6 ] . O u r solut ion also makes no a s sumpt ion a b o u t t h e init ial contents of the elements in 
t h e shared memory. 

As observed by Lip ton a n d P a r k [ 6 ] , a grea t n u m b e r of mul t iprocessor coordinat ion 
p rob lems , d i s t r ibu ted c o m p u t i n g problems, and asynchronous parallel c o m p u t a t i o n prob
lems, such as Choice Coord ina t ion p rob lem [ 7 ] , M u t u a l Exclusion P r o b l e m [ 2 , 3 , 4 ] , Drinking 
Ph i losopher P r o b l e m [ 1 ] , m a n y Consensus P rob lems , a s sume t h a t processors initially have 
un ique identifiers. Hence, our new protocol can be used as t h e first s tep to solve these prob
lems efficiently. T h e solut ion to t h e processor ident i ty p rob lem provides a very i m por t an t 
p r imi t ive for d i s t r ibu ted c o m p u t a t i o n and asynchronous parallel c o m p u t a t i o n [ 6 ] . 

Therefore , ou r solut ion provides a very prac t ica l a n d i m p o r t a n t pr imi t ive for d is t r ibuted 
sys tems a n d asynchronous ly paral le l sys tems . 
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2 Definitions 
T h e c o m p u t a t i o n model used in the Processor Ident i ty P rob lem is called Asynchronous 
CRCW PRAM which is an asynchronous d is t r ibuted systems of n processors t h a t communi 
ca te among each o the r via a common shared memory. Each processor has its local memory 
and can perform asynchronous read and wri te opera t ions to the elements in the shared mem
ory and some basic logic and a r i thmet ic opera t ions . Concur ren t reads to an element in the 
shared m e m o r y is allowed and if more t h a n one processor tries to wri te to a single element 
in t h e shared memory, it is assumed t h a t an a rb i t r a ry processor succeeds. The only WAY 
processors can communicate is through the common memory. Each processor has a r a n d o m 
n u m b e r genera tor . 

T h e r e is ne i ther a cent ra l clock nor a cent ra l a rb i te r in the sys tem. T h e r e is no assump
tion a b o u t t he speed of processors in the sys tem except t h a t each opera t ion performed by a 
processor takes finite a m o u n t of t ime. 

D e f i n i t i o n 2 .1 ( P r o c e s s o r I d e n t i t y P r o b l e m ) The Processor Identity Problem is to de
sign a protocol which is run on each processor to produce a one-to-one assignment of the n 
processors to elements of the set { 1 , 2 , • • • , n]. 

T h e following is a t heo rem proved by Lip ton and Pa rk which says t h a t there is no 
de te rmin is t i c pro tocol for t h e Processor Ident i ty Prob lem. 

T h e o r e m 2 .1 ( L i p t o n a n d P a r k ) Assume that all processors start in identical states, for 
any fixed time t, no protocol exists which always solves the Processor Identity Problem within 
time t. 

3 A Simple and Space Efficient Protocol 
In this paper , t he Processor Identity Protocol has th ree pa rame te r s (K, L, M2). Such a 
protocol is deno ted by V1V(K, L, M2), which uses KLM2 b i ts . In each VIV(K,L,M2) 
protocol , t h e KLM2 bi ts in t h e c o m m o n shared m e m o r y a re pa r t i t ioned in to K L x M2 

bi t -a r rays , B 1 ? . . . , BK (see F igure 1). 
To simplify t h e specification, t h e following set of no ta t ions is used. 

• BX[J, * ] : t h e JTH row of B{; 

• t h e n u m b e r of l ' s in a 0-1 vector V, called t h e size of V; 

• \row(B)\: t h e m a x i m u m size over rows of a 0-1 a r r ay B, called t h e row-size of B\ 

• 1(B): t h e index of t h e row wi th m a x i m u m size. If the re is a t ie , 1(B) denotes any one 
of t h e m . 

• \B\: t h e n u m b e r of l ' s in a 0-1 a r ray S , called t h e size of B\ 
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Figure 1: T h e Pa r t i t ion of the Memory 

3.1 The Protocol 
O u r Processor Iden t i ty Pro toco l is completely distributed and symmetric [ 5 ,6] . Even though 
the pro tocol is probabi l is t ic , it is safe in t he sense t h a t 

1. if one processor t e rmina te s , t hen all processor t e rmina tes ; 

2. if t h e protocol t e rmina te s , t h a n it generates a valid ident i ty for each processor. 

Moreover, our protocol t e rmina tes wi th very high probabil i ty . T h e following probabilis
tic a lgo r i thm is run on each processor; 

I d e n t i t y P r o t o c o l : 

1. s e l e c t b from {1 ,2 , • • •, K}, randomly; ; 

2. s e l e c t i u . . . , i L from {1 ,2 , • • •, A f 2 } , randomly; ; 

3. i n i t i a l i z e all a r r ay e lements in each a r r ay to 0;; 

4 . r e p e a t 

(a) for k = l , 2 , - . - , £ 

i. Bh[k,ik) = 1;; 

ii. f o r / = l , 2 , - - - , / r 

• if YltLi \row(Bi)\ = n, e x i t wi th identifier (b,I(Bb), i / ( B b ) ) ; ; 

T h e basic idea of t h e pro tocol is t h a t a t t he first s t ep , each processor r andomly selects 
t h e first logK bi ts of its n a m e . It will be shown t h a t wi th very high probabil i ty, processors 
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are approx imate ly evenly par t i t ioned into K groups. Hence, the problem size is reduced from 
n to jr. T h e n the m e t h o d of Lipton and P a r k can be used on the smaller-sized problem. 
However, the protocol of Lipton and Park can not be used direct ly to the smaller-sized 
problem, because it is not known a priori t he number of processors in each grou;,. Hence, 
each processor can not de te rmine whether the subprotocol on its group is successful. A 
crit ical observat ion to circumvent this problem is t ha t each processor can check whether all 
subprotocols succeed by checking whether Ylhzi \row(Bi)\ = n. 

3.2 The Correctness 

We have to prove t h a t our protocol is safe. In o the r words, we have to show t h a t 

L e m m a 3 .1 ( C o r r e c t n e s s ) 

1. if one processor terminates, then all processor terminates; 

2. if the protocol terminates, than no two processors exits with the same identifier. 

[ P R O O F ] : T h e Proof is s imilar to t h a t of Lipton and P a r k [6]. We first show t h a t our 
pro tocol satisfies t h e condi t ion (2) . 

Since all a r r ay elements of Bi,..., BK a re set to 0 a t t h e first s tep , and each processor 
can only wr i te one 1 in each row of its corresponding array. Hence, if a processor exits with 
an ident i ty (6 , / (£&) , ii(Bb))i and rc& processors choose B^ then t he X{B\>)th row of B\> mus t 
con ta in n& l ' s each of which is wr i t t en by a different processor. So, it is impossible t h a t 
a n o t h e r processor exits wi th t he s a m e ident i ty (6, J ( B & ) , ii(BB))<> because in t h a t case, there 
is a row in Bf> con ta in ing n& l ' s ; while Z (B&) conta ins a t most n& — 1 l ' s . This cont radic ts 
the definition of 

Since each processor can only wri te one 1 in each row of its cor responding array. Hence, 
no processor can exit before o thers finish se t t ing all a r r ay e lements t o 0. Now, suppose 
one processor exi ts , t hen it m u s t be t h e case t h a t YlfLi \row(Bi)\ = n. Since, t h e arrays 
does not change du r ing t h e r e p e a t l o o p , hence, each processor will eventual ly detects 
YliLi \row(Bt)\ = n a n d exi ts . • 

As proven in L e m m a 3 .1 , u p o n t e rmina t ion , each processor ob ta ins an un ique identifier 
of t h e form ( i , j , fc), where 1 < i < K, 1 < j < L, and 1 < k < M2. T h e following protocol 
t ransforms this set of un ique identifiers to a one- to-one ass ignment of t h e n processors to 
e lements of t h e set { 1 , 2 , • • • , n } . 

Let IV = {(ij,k)\l < i < K,l < j < K,l < k < M 2 } . For each pa i r A?i) and 
(*2, J 2 , & 2 ) from IV, (¿1 , JUKI) < ( ¿ 2 , 7 2 , ^ 2 ) if (i) H < ¿2, or (ii) ¿1 = ¿2 a n d ji < J2, or (iii) 
h = ¿2, JI = J 2 , a n d ki < k2. Let . . . , ln) G IVn. T h e rank of U in (lu . . . , / n ) is the 
n u m b e r of e lements in ( / 1 , . . . , ln) which a re less t h a n or equal to l{. 

It follows from L e m m a 3.1 t h a t a successful execut ion of t h e Iden t i ty P ro toco l gener
a tes n e l ements ( / 1 , . . . , U) from IV. T h e following R a n k i n g Pro toco l computes t h e rank of 
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each e lements in ( /x, . . . , / , - ) using KLM2 bi ts . Assume another KLM2 bits in the shared 
memory are par t i t ioned into A' L x M2 b i t -ar rays , C 1 ? . . . , Assume a processor obtained 
an identifier (i<j, k) G TV from the Identifier Protocol , 

R a n k i n g P r o t o c o l : 

1. i n i t i a l i z e all a r r ay e lements in each a r ray to 0;; 

2. r e p e a t 

(a) d[j,k] = 1;; 

(b) f o r / = 1 ,2 , - - . ,A" 

• if H/Li = n-> e x i t wi th the rank of (i , j , fc);; 

T h e correctness of the Ranking Pro toco l can be proven similarly as t ha t of the Ident i ty 
Pro toco l (see L e m m a 3.1). 

3.3 Failure Analysis 
It follows from the protocol t h a t the protocol t e rmina tes iff 

K 
J2\row(Bi)\ = n. ( 1 ) /=i 

An execut ion of t h e protocol is feasible if (1) is satisfied; It is regular if there is no 
I < b < K such t h a t no more t h a n M processors choose the same a r ray Bb\ It is b-resolvable 
if t he re a re nb processors choose Bb and \row(Bb)\ = nb. Clearly, a n execut ion of t he protocol 
is feasible iff for all 1 < b < K, it is b-resolvable. 

Let Pr(f) be t h e p robabi l i ty t h a t an execut ion of t h e protocol is feasible and Pr(r) be 
the p robabi l i ty t h a t a n execut ion of t h e pro tocol is regular. 

L e m m a 3 .2 With probability at least 1 — K{J?JJ)M, an execution of the protocol is regular. 

[ P R O O F ] : Let 
K 

PATTERN = {{nu...,nK) | = n & n, > 0} 

Clearly, 

BAD(M) = {(nu...,nK) g PATTERN | 31,m > M) 

\BAD(M)\ 
Pr(r) = 1 -

I PATTERN] 
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Let Pr(rb) be the probabi l i ty t h a t there are more t han M processors choose Bi,, clearly 
for all 1 < i,j < K, 

Pr(rt) = Pr(rj) (2] 
\BAD{M)\ 

{PATTERN] 
< K • Pr(rl) ( 3 ) 

Therefore Pr{r) > 1 - K{f^)M. • 

L e m m a 3 . 3 If < M , then with probability at least 1 — an execution of the protocol is 
b-resolvable. 

[ P R O O F ] : See Lipton a n d P a r k [6]. • 

T h e o r e m 3 .1 The Processor Identity Problem can be solved in 0(n log 2 n) bits with proba
bility at least 1 — for some constant c > 0. 

[ P R O O F ] : Let K = n / l o g n , L = c\ l o g n , and M = c<i l o g n , where c\ = and c2 = c + 1. 
It follows from L e m m a 3.2 t h a t t he an execut ion of the protocol is regular wi th probabi l i ty 
a t least 

1 _ K ( 6 n ) M - 1 - — ( e n l °g n V2 l°g n > x . / l \ C 2 l o g n - l o s n 

\KM) ~~ l o g n \nc2 l o g n J " \ 2 / 
1 

> 1 
n c 

It follows from L e m m a 3.3 t h a t a n execut ion of t he protocol is feasible under the con
di t ion t h a t it is regular is a t least 

r l n l 1 1 
1 - K— = 1 - — — > 1 - — : = > 1 

EL l o e ; n e C l l o g n — 2 C l l o s e l o s n " " l ° s n "~ nc 

Hence, a n execut ion of t h e protocol t e rmina tes wi th probabi l i ty a t least 1 — 
Since t he pro tocol is safe ( L e m m a 3.1), t h e theo rem follows. • 

3.4 Failure-Space Trade-off 
A processor iden t i ty pro tocol VIV(K, L, M2) is an e-protocolif an execut ion of VIV(K, L, M2) 
t e rmina t e s wi th p robab i l i ty a t least 1 — e. A space-minimal e -pro tocol tries to minimize the 
n u m b e r of bits required. 

L e m m a 3.2 a n d L e m m a 3.3 provide a formula of t h e trade-off be tween the space re
qu i r emen t a n d t h e p robab i l i ty of failure. It follows from L e m m a 3.2 and 3.3 t h a t t h e failure 
p robab i l i ty of a processor ident i ty protocol VIV(K, L, M2) is a t mos t max{K(-$fr)M, Kjt}. 

Hence, in any e-pro tocol , e < 1, 
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1. L > log K — log e; and 

2. A ' ( ^ ) > ' < e . 

This implies t h a t A" A/ > en. Since the number of bits required in VZV(K, L, M2) is 
KM. Hence, in space-minimal protocol , KM — c x n , with c > e and M is minimized under 
the condi t ion of (2). It follows tha t L = © ( l o g n — loge) and M = 0 ( l o g n — loge) . So. 
use the processor ident i ty protocol given in this paper , the number of bits required in an 
e-protocol is 0 ( n ( l o g n — l o g e ) 2 ) . 

T h e o r e m 3 .2 If there are n 1 + 2 e , t > 0, bits in the common memory, then there is a pro
cessor identity protocol with failure probability bounded by 

C o r o l l a r y 3 . 1 If there are n2 bits in the common memory, then there is a processor identity 
protocol with failure probability bounded by 

Therefore , if n2 b i ts , t he same number of bits in Lip ton and Park ' s protocol , are available 
in the c o m m o n memory , t hen the failure probabi l i ty is reduced from jr to where L is 
some cons t an t . 

4 Open Question 
In this paper , a new 0 ( n log 2 n) bit processor ident i ty protocol is presented . This improves 
t he previous protocols by s imul taneous ly reducing the number of bits required and the failure 
probabil i ty . 

T h e following ques t ion is still open . 

• Is the re a processor ident i ty protocol which uses o(n log 2 n) bi ts wi th failure probabi l i ty 
bounded by j ? 

C o n j e c t u r e 4 .1 Any processor identity protocol with failure probability bounded by j re
quires Q(nlogn) bits. 
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