NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



Space Efficient
Processor Identity Protocols

Shang-Hua Teng

March 1989
CMU-CS-89-123 ,

Abstract

In this paper, a space efficient probabilistic protocaol is
presented for the Processor [dentity Problem-an essential prob-
lem in distributed computation and asynchronous parallel com-
putation. Our protocol uses only O(nlog? n) bits. The new pro-
tocol improves the previous known protocol, due to Lipton and
Park. which uses O(nr?) bits. Qur protocol is very simple. fully
distributed and symmetric. This provides a very practical and
important primitive for distributed systems and asynchronous
parallel systems.

This work was supported in part by National Science Foundation Grant CCR-87-
13489.

The views and conclusions contained in this paper are those of the authors and
should not be interpreted as representing the official policies, either expressed or
implied, of the National Science Foundation or the US Government.



1 Introduction

The space complexity of a fundamental problem in distributed and asynchronously parallel
computation, the Processor Identity Problem, is studied. The Processor Identity Problem
assigns unique identifiers to processors in an asynchronous distributed system. More specif-
ically, a solution to the processor identity problem is a protocol run by n asynchronous
processors which communicate via a shared memory to produce a unique assignment of pro-
cessors to elements of the set {1,2,-.-,n}. This problem was first introduced in [6] where
Lipton and Park gave a O(n?) bits probabilistic protocol to the problem.

Theorem 1.1 (Lipton and Park) The Processor [dentity Problem can be solved in Ln®
bits with probability at least 1 — e& for some constant ¢ > 1.

[t seems, from the construction in (6], that the 2(n?) bits are required for the Processor
Identity Problem; and it is not clear how to reduce the failure probability to -, for any
constant ¢ > 0, using no more than O(n?) bits.

In this paper, a space eficient probabilistic protocol is presented for the Processor
Identity Problem. Our protocol uses only O(nlog?n) bits. The new protocol improves the
previous known protocol by simultaneously reducing the number of bits required and the
failure probability.

Theorem 1.2 (Main Result)

1. The Processor Identity Problem - -~ be solved in O(nlog®n) bits with probability at
least 1 — ;1;_-, for any constant ¢ > . '

2. If there are n® bits in the shared memory, then there exists a Processor Identity Protocol
with failure probability bounded by .

Like the protocol in [6], our protocol is very simple, fully distributed and symmetric
[5.6]. Our solution also makes no assumption about the initial contents of the elements in
the shared memory.

As observed by Lipton and Park {6], a great number of multiprocessor coordination
problems, distributed computing problems, and asynchronous parallel computation prob-
lems, such as Choice Coordination problem (7], Mutual Exclusion Problem (2,3,4], Drinking
Philosopher Problem [1], many Consensus Problems, assume that processors initially have
unique identifiers. Hence, our new protocol can be used as the first step to solve these prob-
lems efficiently. The solution to the processor identity problem provides a very importans
primitive for distributed computation and asynchronous parallel computation [6].

Therefore, our solution provides a very practical and important primitive for distributed
systems and asynchronously parallel systems.

1 University Libraries
Carnegie Mellon University
Pitshurgh, Pennsylvania 15213



2 Definitions

The computation model used in the Processor Identity Problem is called Asynchronous
CRCW PRAM which is an asynchronous distributed systems of n processors that communi-
cate among each other via a cornmon shared memory. Each processor has its local memory
and can perform asynchronous read and write operations to the elements in the shared mem-
ory and some basic logic and arithmetic operations. Concurrent reads to an element in the
shared memory is allowed and if more than one processor tries to write to a single element
in the shared memory, it is assumed that an arbitrary processor succeeds. The only way
processors can communicate is through the common memory. Each processor has a random
number generator.

There is neither a central clock nor a central arbiter in the system. There is no assump-
tion about the speed of processors in the system except that each operation performed by a
processor takes finite amount of time.

Definition 2.1 (Processor Identity Problem) The Processor Identity Problem is to de-
sign a protocol which is Tun on each processor to produce a one-to-one assignment of the n
processors to elements of the set {1,2,--- ,n}.

The following is a theorem proved by Lipton and Park which says that there is no
deterministic protocol for the Processor Identity Problem.

Theorem 2.1 (Lipton and Park) Assume that all processors start in identical states, for
any fized time t, no protocol exists which always solves the Processor Identity Problem within
time t.

3 A Simple and Space Efficient Protocol

In this paper, the Processor Identity Protocol has three parameters (K, L, M?). Such a
protocol is denoted by PIP(K, L, M?), which uses K LM? bits. In each PIP(K, L, M?)
protocol, the K LM? bits in the common shared memory are partitioned into K L x M?2
bit-arrays, By, ..., Bx (see Figure 1).
To simplify the specification, the following set of notations is used.
o Bi[7,*]: the j* row of B;;
e |V|: the number of 1’s in a 0-1 vector V, called the size of V;

|row(B)|: the maximum size over rows of a 0-1 array B, called the row-size of B;

I(B): the index of the row with maximum size. If there is a tie, I(B) denotes any one
of them.

|B|: the number of 1’s in a 0-1 array B, called the size of B;

D



M?

Figure 1: The Partition of the Memory

3.1 The Protocol

Our Proccssor Identity Protocol is completely distributed and symmetric [5,6]. Even though
the protocol is probabilistic, it is safe in the sense that

1. if one processor terminates, then all processor terminates;

2. if the protocol terminates, than it generates a valid identity for each processor.

Moreover. our protocol terminates with very high probability. The following probabilis-

tic algorithm is run on each processor;

Identity Protocol:

—

. select b from {1,2,---, K}, randomly;;

S~

select 7y,...,7; from {1,2,---, M?}, randomly;;

3. initialize all array elements in each array to 0;;

-

repeat

{a) fork=1,2,---,L
1. Bylk,ie] =15
i fort=1,2,---,K
o if TF, |row(B;)! = n, exit with identifier (b, I(By), igs,y )i

The basic idea of the protocol is that at the first step, each processor randomly selects
the first {ogK bits of its name. It will be shown that with very high probability, processors



are approXimately evenly partitioned into A groups. Hence, the problem size is reduced from
n to #. Then the method of Lipton and Park can be used on the smaller-sized problem.
However. the protocol of Lipton and Park can not be used directly to the smaller-sized
problem. because it is not known a priori the number of processors 1n each grou;.. Hence.
each processor can not determine whether the subprotocol on its group 1s successful. A
critical observation to circumvent this problem is that each processor can check whether all

subprotocols succeed by checking whether K | |row(B))| = n.

3.2 The Correctness

We have to prove that our protocol is safe. In other words, we have to show that
Lemma 3.1 (Correctness)

1. if one processor terminates, then all processor terminates;

2. if the protocol terminates, than no two processors exits with the same tdentifier.

[PROOF]: The Proof is similar to that of Lipton and Park [6]. We first show that our
protocol satisfies the condition (2).

Since all array elements of By, ..., By are set to 0 at the first step, and each processor
can only write one 1 in each row of its corresponding array. Hence, if a processor exits with
an identity (b, I(By),71(s,)), and ny processors choose B,, then the I(By)* row of B, must
contain n; 1’s each of which is written by a different processor. So, it is impossible that
another processor exits with the same identity (b, I(B,), i1(8,}), because in that case, there
is a row in B, containing n, 1’s; while Z{B,) contains at most n, — 1 1’s. This contradicts
the definition of Z(B,).

Since each processor can only write one | in each row of its corresponding array. Hence,
no processor can exit before others finish setting all array elements to 6. Now, suppose

one processor exits, then it must be the case that /X, |[row(B;)] = n. Since, the arrays
does not change during the repeat loop, hence, each processor will eventually detects
T [row(Br)] = n and exits. a

As proven in Lemma 3.1, upon termination, each processor obtains an unique identifier
of the form (7,7, k), where 1 i < K,1 <3< L,and 1 < k £ M? The following protocol
transforms this set of unique identifiers to a one-to-one assignment of the n processors to
elements of the set {1,2,-.. n}.

Let ID = {(i,5,k)[1 <1 < K,1 <j < K,1 < k £ M?}. For each pair (iy, j1, k) and
(22, J2, k2) from ID, (iy, j1, k1) < (22, f2, k2} if (1) @4 < 42, or (ii) 4, = 42 and j; < jo, or (iii)
iy = I3, J1 = J2, and ky < kp. Let (h,...,1,) € ID". The rank of {; in (/1,...,1,) is the
number of elements in (/4,...,{;) which are less than or equal to /;.

It follows from Lemma 3.1 that a successful execution of the Identity Protocol gener-
ates n elements (/;,...,{,) from ID. The following Ranking Protocol computes the rank of

4



each elements in {[..... l;) using K LM? bits. Assume another A LM? bits in the shared
memory are partitioned into A L x M? bit-arravs, C,.. ... Cx. Assume a processor obtained
an identifier (i, j, k) € ID from the Identifier Protocol.

Ranking Protocol:
L. initialize all array elements in each array to 0:;
2. repeat
(a) C.[J. k] = 13
(by for{=1,2.--- | K
o if =K, |Ci| = n, exit with the rank of (.. k)

The correctness of the Ranking Protocol can be proven similarly as that of the Identity
Protocol (see Lemma 3.1).

3.3 Failure Analysis

[t follows from the protocol that the protocol terminates iff

K
> lrow(By)| = n. (1)
=1

An execution of the protocol is feasible if (1) is satisfied; It is regular if there is no
1 < b < K such that no more than M processors choose the same array By; It is b-resolvable
if there are n; processors choose B, and |row(B;)| = n,. Clearly, an execution of the protocol
is feasible iff for all 1 < b < K, it is b-resolvable.

Let Pr(f) be the probability that an execution of the protocol is feasible and Prir) be
the probability that an execution of the protocol is regular.

Lemma 3.2 With probability at least 1 — K(#7)M, an execution of the protocol is regular.

[PROOF]: Let
K
PATTERN = {(n1,...,ng) | d_n=n& n; > 0}

i=1
BAD(M) = {(n1,....ng) € PATTERN | 3l,n; > M}
Clearly,

|BAD(M)|

Prir)=1- [PATTERN]

5



Let Pr(rb) be the probability that there are more than M processors choose B;. cleariy.
forall 1 <i,) <A,

Pr(ri) = Pr(rj) (2)

%% < K- Pr(rl) (3)

Pr(rl) < ( M ) (%YI = (he?‘tf)w (4)

Therefore Pr{r) > 1 — K(ﬁ)“. 0

Lemma 3.3 Ifn, < M, then with probability at least 1 — ;1;-, an ezecution of the protocol is
b-resolvable.

[PROOF]: See Lipton and Park [6]. a

Theorem 3.1 The Processor Identity Problem can be solved in O(nlog?® n) bits with proba-
bility at ieast 1 — X, for some constant ¢ > 0.

[PROOF]: Let K = n/logn, L =cylogn,and M = ¢; logn, where ¢; = f:‘e and ¢ = c+ 1.
[t follows from Lemma 3.2 that the an execution of the protocol is regular with probability
at least

M ez logn ¢z logn—logn
I_K(en> __ T enlogn 21_(£) Zl—i
KM logn \ nec;logn 2 ne

[t follows from Lemma 3.3 that an execution of the protocol is feasible under the con-
dition that it is regular is at least

) 1 1 1

B logn ecilogn — T e logelogn—logn — e

1

Hence, an execution of the protocol terminates with probability at least 1 — O( ;).

Since the protocol is safe (Lemma 3.1), the theorem follows. -

3.4 Failure—Space Trade—off

A processor identity protocol PZP(K, L, M?) is an e-protocol if an execution of PIP(K, L, M?)
terminates with probability at least 1 — e. A space-minimal e-protocol tries to minimize the
number of bits required.

Lemma 3.2 and Lemma 3.3 provide a formula of the trade-off between the space re-
quirement and the probability of failure. It follows from Lemma 3.2 and 3.3 that the failure
probability of a processor identity protocol PIP(K, L, M?) is at most max{f( ;“M)M,

Hence, in any e-protocol, € < 1,

-1
K}



1. L 2 logh —loge: and

2. K20 < e

This implies that KM > en. Since the number of bits required in PIP(A. L, M?) is
N ). Hence. in space-minimal protocol. A M = ¢;n, with ¢ > ¢ and W is minimized under
the condition of (2). It follows that L = @(logn — loge) and W = O(logn — loge). So.
use the processor identity protocol given in this paper, the number of bits required in an
e-protocol is O{n{logn — log€)?).

Theorem 3.2 If there are n'**, ¢ > 0, bits in the common memory, then there is a pro-
cessor identity protocol with failure probability bounded by 5},—;

Corollary 3.1 If there are n? bits in the common memory, then there is a processor identity
protocol with failure probability bounded by —5=.

Therefore, if n? bits, the same number of bits in Lipton and Park’s protocol, are available
in the common memory, then the failure probability is reduced from 3 to 5—}; where L 1s

some constant.

4 Open Question

In this paper, a new O(nlog’ n) bit processor identity protocol is presented. This improves
the previous protocols by simultaneously reducing the number of bits required and the failure
probability.

The following question is still open.

o Is there a processor identity protocol which uses o(n log® n) bits with failure probability
bounded by ;—?

Conjecture 4.1 Any processor identity protocol with failure probability bounded by % re-
quires (nlogn) bits.

Acknowledge We would like to thank Alan Frieze, Gary Miller, and Arvin Park for valu-
able discussion. We also thank Manpreet Khaira for proofreading the paper and helpful
comments.

References

(1] K. M. Chandy and J. Misra. The drinking philosophers problems. ACM Transactions
on Programming Languages and Systems., 6:632-646, 1984,



[2] E. W. Dijkstra. Solution of a problem in concurrent programming control. CACM .
8:569-378., 1965.

(3] D. Knuth. Additional comments on a problem in concurrent control. CACM., 9:321-322,
1966,

(4] L. Lamport. The mutual exclusion problem: part i and ii. JA CM., 33:313-348. 1986.

15] D. Lehmann and M. O. Rabin. On advantages of free choice: a symmetric and fully
distributed solution to the dining philosophers problem. In Procedings of 8th Annual
ACM Symposium on Principle of Programming Languages, pages 133-138, ACM, Jan-
uary 1981.

(6] Richard J. Lipton and Arvin Park. The processor identity problem. manuscript, 1988,

[7] M. O. Rabin. The choice coordination problem. Acta Informatica., 17:121-134, 1982.



