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ABSTRACT

In this paper the problem of establishing the optimal trade-off between

investment cost for the retrofit and expected revenue that result from increasing

flexibility in systems described by nonlinear models is addressed. A systematic

procedure is first proposed for constructing the cost versus flexibility curve. A

stochastic optimization method is then presented for evaluating the expected optimal

revenue at a number of redesigns with specified degree of flexibility with which the

trade-off curve relating expected revenue to flexibility is generated. This allows to

identify the level of flexibility that maximizes the expected profit in a retrofit design.

Examples are presented to illustrate the proposed strategy.



INTRODUCTION

In the first part of this series a novel computational strategy was presented for

determining optimal retrofit designs with a specified fixed degree of flexibility in

systems described by nonlinear models. The problem that will be addressed in this

part is the one of finding the optimal level of flexibility that will maximize the total

profit in an existing process flowsheet. The major issue in this problem is how to

establish the optimal trade-off between investment cost for the retrofit and expected

revenue that result from increasing flexibility.

In order to address the above problem two basic subproblems will be

considered. The first one is the development of the trade-off curve relating flexibility

to retrofit cost in the case of a chemical process whose performance is described

by a nonlinear model. The major challenge here lies on how to avoid solving

extensively the parametric optimization problem in terms of the flexibility index

F. The second subproblem is the generation of the revenue curve as a function of

flexibility. The challenge here lies on how to efficiently estimate the expected

optimal revenue of the process given distribution functions for the uncertain

parameters. It should be noted that these subproblems have been addressed by

Pistikopoulos and Grossmann (1988b) for the case when a chemical process is

described by a linear model. In this paper it will be shown that some of their basic

ideas and solution strategies can be extended to the nonlinear case.

A systematic procedure is first proposed for constructing the curve that relates

flexibility to retrofit cost. This procedure relies on identifying the break points of the

different segments in the curve through the solution of NLP subproblems. These

segments are characterized by different "l imiting" sets of active constraints. From

the trade-off curve a number of redesigns with specified degree of flexibility are

obtained for which the corresponding expected optimal revenue is evaluated, it is

shown that this can be performed through a modified Cartesian Integration method,

that is coupled with the solution of NLP optimization problems.



PROBLEM STATEMENT

The specific problem which is to be addressed in the second part of these

papers can be stated as follows:

The nonlinear model of an existing flowsheet with fixed equipment sizes and

fixed structure is given which involves a set of uncertain parameters 0. Continuous

distribution functions p(0.) i=1,.rP for the vector of the uncertain parameters are also

specified. The nominal value 9H of the uncertain parameters corresponds to the mean

value, while positive and negative expected deviations A0 ', Ad.*, i-1,.,p are

determined at a specified level of confidence. The problem is then to determine the

required changes of the design variables d that will provide a flexibility that

maximizes the total profit, consisting of the difference between expected revenue and

retrofit cost.

In order to address this problem, two basic assumptions will be made:

1. The revenue of the process is strongly dependent on the uncertain

parameters.

2. The expected revenue will be quantified over the feasible parameter space

defined by the flexibility index F as introduced by Swaney and Grossmann (1985).

Also, for simplicity in the presentation no fixed charges will be assumed for

the investment cost. Under these assumptions, this work will concentrate on firstly

developing the retrofit cost curve and then estimating the curve of the expected

revenue.



PROBLEM FORMULATION

For a fixed flexibility index F, the problem of determining minimum investment

cost changes of the existing design can be represented in the following way if fixed

charge costs are not considered:

C(F) = min 2* CAc(Ad.)]
Ad j s l

s.t X(d,F) = max min maxf(d,z,0) £ 0
0GT(F) z jGJ J

d = dE + Ad

where Ad., i=1,.,r, are the changes of the design variables to be determined for

the existing design dE. A(d,F) is the feasibility function for a given design d for

fixed flexibility F, and whose non-negative value implies feasible operation over the

parameter range T(F)={01 0N-FA0"£0£0N+FA0*}. As was shown in Part I, by

introducing relaxation constraints for the function X(d,F), problem (P1) leads to the

following mathematical formulation:

C(F) = min
Ad 7TT

s.t. /_ X>* f (d,z\0k^) <, 0 £=1,.,L, k»1...n <PL>

d » d E + A d

where n . corresponds to the number of potential active sets that limit
AS

/

flexibility, and L is the number of design points with associated critical points 9
p

and multipliers X. for each active set k. As was shown in Part I, problem (PL) was

incorporated within an algorithmic procedure for solving problem (P1). Clearly

problem (PL) is a parametric optimization problem in terms of the flexibility index



F. Consequently, in order to develop a trade-off curve of cost C(F) versus the

flexibility F, problem (PL) must be solved at a large number of values of F, and at

each of these points feasible operation must be verified through problem (6) of Part

I. It will be shown in the next section that a much more efficient computational

scheme can be developed.

Also, if revenue considerations are taken into account, the problem of

maximizing the expected profit Z with respect to flexibility can be represented

conceptually in the following way:

max Z = E { max riz.$) |f(d,z,0)*O }
Ad,F 0GT(F) z '

(PO)
s.t. X(d,F) £ 0

d = dE • Ad

where Z is the profit as given by the difference between expected revenue and

retrofit cost and r(z,0) is a nonlinear revenue function.

Problem (PO) is in general very difficult to solve, since it involves a stochastic

semi-infinite nonlinear programming problem. For the linear case, Pistikopoulos and

Grossmann (1988b) have proposed a systematic procedure to approximate problem

(PO) by constraining the profit maximization to having minimum investment cost. This

leads to a decomposition scheme which provides a good approximation to (PO) if the

revenue of the process is strongly dependent on the uncertain parameters. If the

revenue of the process is only function of the uncertain parameters, this

decomposition scheme has been shown to be exactly equivalent to problem (PO).

Using a similar line of reasoning for the case of nonlinear models leads to the

following formulation:

max Z = R(F) - C(F)
F



s.t. C(F) = min ^ j3.c(Ad.)
Ad j s l

s.t. *(d,F) * 0

where the expected revenue R(F) is given by :

R(F) = E { max r(z,0) I fid.z.d) £ 0 }
0€T(F) z

s.t. T(F) = { $ | 0N - FA0' S 6 Z 8H • FA0* } (P2)

d = dE • Ad

Ad = arg[C(F)]

In this way the solution of problem (P) can be decomposed in a similar way as

for the case of linear models. First, problem (P1) has to be solved parametrically in F

in order to determine the investment cost C(F) as a function of flexibility. Given then

several fixed values of flexibility with associated design changes, the expected

revenue curve R(F) is generated. Finally, a one dimensional search in the flexibility

index F is performed to maximize the profit Z=R(F)-C(F). The difficulties that arise in

the nonlinear case, however, stem from the two following points:

• In order to solve problem (P1) parametrically as a function of F, one can
not resort directly to the parametric solution of problem (PL) which in the
linear case provides an exact representation.

• In order to estimate the optimal expected revenue for fixed flexibility an
efficient integration scheme is required to handle nonlinear models.

In the next section both points will be addressed with the aim of developing

efficient solution procedures.



TRADE-OFF CURVE OF COST vs. FLEXIBILITY

In this section it will be shown how the curve of retrofit cost versus

flexibility, C(F), can be obtained. A typical trade-off curve is shown in Figure 1,

which is a continuous piecewise nonlinear function consisting of a number of

different segments (1-4, 4-3, 3-2 in Figure 1). Each segment is characterized by

different "l imiting" active sets of constraints, where their number increases with

increasing flexibility index (see Pistikopoulos and Grossmann, 1988a). Therefore, break

points (points 3 and 4) exist between adjacent segments. It then becomes clear that

in order to construct such a curve it is first necessary to identify the sequence of

break points in the curve, which will correspond precisely to the points where a

change in the active sets of constraints that limit flexibility occurs.

The location of the break points will be identified by first determining the

existing flexibility index (i.e. point 1 in Figure 1). Then an optimal redesign will be

obtained with flexibility equal to the flexibility target FT (i.e. point 2 in Figure 1).

Based on the minimum cost solution at point 2, the next step will consist in

determining the smallest value of flexibility for which the "limiting" active sets

identified at point 2 remain the same. In this way point 3 in Figure 1 will be

identified, which will correspond to a break point (kink) since a small move at a

lower flexibility index value will give rise to different "l imiting" active sets at

minimum cost. Point 4 in Fig. 1 wil l be identified using a similar procedure. Finally,

additional points between the break points can be generated to approximate the

nonlinear curve in each segment with a polynomial function.

Based on the above discussion, a systematic procedure can then be proposed to

generate the trade-off curve for nonlinear investment cost versus flexibility. It

involves the following basic steps:

STEP 0 : At the existing design dE, solve the flexibility analysis problem (eqtn.

(4), Part I) to obtain the measure of flexibility F1=FE and the corresponding n^

"l imiting" active set(s) A S M k | J^={ j | f.(d,z,0)=O},k=1,.,n^sh Set C(F1)=0.



STEP 1 : (a) Set F2=FT, where FT is the maximum flexibility target up to which

the curve is to be generated. Apply the procedure of Part I which involves the

iterative solution of problem (PL) for fixed flexibility F2 to obtain the optimal design

d2 with cost C(F2) (i.e. at point 2 in the curve of Figure 1), and the corresponding n2

AS

"limiting" active sets AS2={k | J ^ M j | f.(d,z,0)=O},k=1,.,n2
sh Set t=2.

(b) If AS1 is identical to AS1, go to step 3. Otherwise, go to step 2.

STEP 2 : (a) To identify a break point, define Jk = {j | f k(d,zk,0k)=O}, Jk ={j I
At J Mt •

f k(d,z\0k) £ 0}, k = I , . . ^ * , where n* is the number of "limiting" active sets at
J A5 A5

point t, and zk and 0k are the control variables and uncertain parameters associated

with the k'th active set. To determine the design d**1 with flexibility value F**1 where

the closest break point occurs (e.g. point 3 in Fig. 1), solve the following

optimization problem:

C(F'*1) = min . > [y?c(Ad)]
Ad,F,^k ^ '

s.t. fj
lt(d,zk,^lt) = 0 j€J* t

k=1,.,n*AS

f.k(d,zk^k) <. 0 ]6Jk
t

d - dE • Ad

(P3)

(b) Set F » F**1 - t, where « is a small positive number (i.e. <=0.02). Solve the

feasibility test problem (eqtn. (6) of Part I) for d'*1 to identify new "limiting" active
•t

set(s) AS" 1 that are violated. Set t = t + 1 and go back to step Kb).

STEP 3 : Additional cost values between the break points can be generated by

solving problem (P1) for a number of fixed flexibility values. However, note that the

trade-off curve is characterized by the same "limiting" active sets between any

adjacent points (e.g. points 1,4,3,2 in Fig. 1). If, in addition, the critical parameter



points correspond to vertices, additional cost values can be generated for flexibility

points F between these adjacent points as follows: The number of active

constraints describing each segment is (nAS)x(n+1), where n is the number of control

variables z. The total number of control variables zk involved in the different active

sets is (n* )x(n). Therefore, if the number of design changes Ad is equal to the
AS

number of active sets nf _ for the segment, as is often the case, then there are no
AS

degrees of freedom and additional cost values can be obtained through the solution

of the following system of (nt )x(n+1) nonlinear equations in (n1 )x(n*1) unknowns
AS AS

(control variables z\ and design changes):

Jk
At » { j | rk(d,zk,0) = 0 } k * 1,..,nAS (1)

where d=dE+Ad, and 0k=0N+FA0f, where A0* is the critical vertex direction. If the

number of design changes Ad is smaller than n*AC, additional cost values are obtained
0

through the solution of problem (P1) with F*F .

AS'

Note that the above algorithmic procedure systematically determines the active

sets that characterize the different segments on the curve by efficiently detecting the

sequence of their break points through the solution of problem (P3) in step 2(a),

where the flexibility index F is treated as a free variable.

Also, it should be noted that in step 3 the reason why one can often determine

additional points between adjacent break points through the system of nonlinear

equations in (1) is that in most cases each active set can be modified through a

single design change. Hence, for most cases the number of design changes will

coincide with the number of active sets n* (see examples 1,2,3 later in the paper).
AS

It should also be noted that in most cases there is an increase of only one

new active set between any two adjacent segments. It then follows that if the

number of design changes for this case is equal to the number of active sets in each

segment, problem (P3) could be solved as a system of nonlinear equations, provided

that the critical parameter values are vertices. The reason is as follows. Problem

(P3) involves nASx(n+1) equations. Since the flexibility index and the number of control

variables is equal to (n* xn)+1, the degrees of freedom are consumed for n ! - i design
AS AS
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changes. This corresponds precisely to the number of design changes at the kink if

the lower segment has n^ -1 active constraints. Clearly caution has to be exercised

with this scheme since some of the inequalities in (P3) may be violated.

In the next section an analytical example of a small nonlinear problem will be

presented to illustrate the steps of the proposed procedure to generate the trade-off

curve of cost versus flexibility.

EXAMPLE 1

To illustrate the procedure in the previous section, consider that the

specifications of a design are represented by the following inequalities:

f1 = z2/3 - (dl-d2><9 • di - 2d2 £ 0

f2 = -0.25(1,2 - 30/8 * d2 < 0 (2)

f3 = z * 02/5 - 2d i - 2 £ 0

This nonlinear model was also studied in Part I (example 1), where an optimal

redesign was obtained with flexibility, FT=1. The existing design variables are d ^ ^ ,

d2
E=3 and the values of the optimal redesign are d^T.B, d2

T=4.88. The single uncertain

parameter 0 has a nominal value 0N=4 and expected deviations A#*=5, A0"=4.

Applying the algorithmic procedure, the following results are obtained:

STEP 0 : At dE*(4,3) the flexibility analysis problem yields F1=FE=0.585 with one

"limiting" active set A S M J M ( f ,f )}}.

STEP 1 : (a) Set F2=FT=1.0. Then, the result obtained in Part I indicates that the

optimal cost is 27.0 units (no fixed charges) with "l imiting" active sets

J ^ - M f / j ) } , JA
2={(f2,f3)H. Set t«2.

(b) AS2 is not identical to AS1. Go to step 2.

STEP 2 : (a) Problem (P3) can then be formulated in the following way:
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min 5Ad * • 5 A d /
F.Ad,.Ad2 ' 2

s.t. f,1 = <zV - ^ - d , ) * 1 • d, - 2d2 = 0

fa' * -0.25d,(z') - (3/8)0' • d2 » 0

(3)
f3

1 = (z1) * (01)2/5 - 2d1 - 2 * 0

f2
2 = -O^Sd/z2) - (3/8)^2 * d2 = 0

f3
2 = (z2) * (02)2/5 - 2d1 - 2 = 0

f,2 = (z2)2 - {6}-42)6
2 • d1 - 2d2 ^ 0

d i = 4 + Ad l

d2 * 3 • Ad2

Adl = Ad^ - A d / , Ad2 = Ad2* - Ad2*

Ad}\Ad;fAd2\Ad2'^ 0

< ^k ^ 9"+?Ad\ k=1,2

The solution of the above problem (3) yields F=0.898, Adi=2.144, Ad2=0.0; i.e. the

break point occurs at a value of F3=0.898, which corresponds to a redesign with

d^e.144, d2=3, at a minimum cost of 10.72 units. Note, that if the design change Ad

is fixed at a value of zero, then problem (3) can also be solved as a system of four

equations ( f / , f2 \ f2
2, f3

2) in four unknowns (F, Ad r z\ z2), with 01=0N-4F and

02=0N+5F. This follows from the fact that the number of "limiting" active sets at F2

is two, while there is only one "limiting" active set at F1.

(b) Set F=0.898-0.008=0.89 (e =0.008). Then the feasibility test problem can be

formulated as follows for the two potential sets of active constraints:

*k(d,F) = max u
u,zr,0

s.t. fk = u j€J k, k=1,2 (4)
J ^

0.44 ^ 8 <• 8.45
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F = 0.89, d - (6.144,3)

where JA
1*f(f1,f2)} and JA

2={(f2,f3}. The solution of problem (4) yields X^O,

*2=1.58>0. Therefore, the -new "l imiting" active set for the next segment is

AS3={JA
2={(f2,f3n. Set t*3 and go back to step Kb).

STEP 1 : (b) Since AS3 is identical to AS1 there are no other break points, go

to step 3.

STEP 3 : The curve consists of two segments as seen in Figure 2. Additional

points can be generated by considering several additional flexibility points F^ through

the solution of the following system of equations describing each segment

SEGMENT 1-3

f2
2 = -O^Sd/z2) - (3/8M0N+5F^) + 3 » 0 (5a)

f3
2 = (z2) • <0N+5F£)2/5 - 2d, - 2 » 0

SEGMENT 3-2

f,1 = (z1)2 - (drd2)(0N-4F£) • d, - 2d2 = 0

f2
1 = -0.25d,(2') - (3/8)(^N-4F^) + d2 = 0 (5b)

f 2 * -0.25d (z2) - (3/8)(^N+5F£) • d = 0
2 1 2

f3
2 = (z2) * (0N+5F*)2/5 - 2d l - 2 = 0

By evaluating the cost for the corresponding design changes, and f i t t ing a

polynomial , leads to the curve shown in Figure 2.

EXPECTED REVENUE

In order to motivate the proposed procedure for estimating the expected

revenue, consider a nonlinear revenue function r(z.d)=z+d2 in the previous example.

Also assume a normal probability distribution function p(0) for the single uncertain
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parameter of the form N(4,4). With a level of confidence of 86% for the positive

expected deviation and 70% for the negative expected deviation, their values are

A0*=5 and A0"*4 respectively.

For the existing design dE, which has a flexibility index FE=0.585, we can

evaluate the maximum revenue at different fixed values of d in the range

T(FE)={0 | 1.66S0S6.925} by solving the NLP problem:

max z • d2

(6)
fl = z2/3 - (dE-dE)0 * dE - 2dE £ 0

f2 = -0.25dEz - 3(9/8 • dE £ 0

f3 = z • 02/5 - 2dE - 2 £ 0

where dE=4, dE=3.

In order to construct a piecewise linear approximation of the maximum revenue

as a function of 6, assume that problem (6) is solved at the following four points:

the nominal value 0N=4, the lower bound 0L=1.66, the upper bound 0U=6.925, and the

optimal value of 8 corresponding to the highest revenue if 6 is an interior point

within the range T(F)=T(0.585). This latter point is obtained from (6) by treating d as

an additional variable for the optimization. The results obtained are summarized in

Table 1, where it can be seen that the fourth point coincides with the upper bound.

Having obtained the three revenue values r{$J. r(02), r(03) in Table 1 the segments

between them are approximated with the linear functions rt^d) and rljd); where rl^(d)

* [riej-riOJHOfe^e • WO)62-T(8}0JIO2-SyY
y and a similar expression holds for

rl2(0). Figure 3 shows the piecewise approximation of the optimal revenue function

that is obtained. This Figure also shows the actual nonlinear curve obtained through

the solution of a large number of parameter points. The error of the piecewise

approximation in this case is of the order of less than 4%.

Using the piecewise linear aproximations the optimal expected revenue at the
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existing flexibility FE can be obtained by integrating over S as follows:

' 3 ' , ' 3

\ rid) piS) dd = f rlJ8)p{8)dd+ \ rlfd) p(0)dd = 24.056 (7)

In order to obtain values of the expected revenue R(F) at two other flexibility

values, the points F=0.898 and F=1.0 were considered. Table 2 summarizes the results

obtained for the three designs. By fitting a polynomial for the three expected revenue

values the curve shown in Fig. 4 is obtained. Plotting also the trade-off curve

generated previously in Fig. 2, the curve for the total profit is obtained. Note that

the optimal flexibility results at the value F*=0.898 (i.e. the break point) with

corresponding design values d=(6.144,3.0), which only implies a change in the first

design variable of Ad^2.144. Note that the predicted expected profit of this redesign

is 30 units, which represents an increase of 25% of the expected profit of 24 units

for the existing design.

This example involved only one single uncertain parameter d and hence the

procedure for estimating the expected revenue is relatively straightforward. Also

note that at each of the three flexibility values chosen, only 4 NLP's (eqtn (6» had to

be solved. In the case when 2 or more uncertain parameters are involved, however, a

special method must be devised to estimate the multiple integral of the expected

revenue so as to minimize the number of NLP subproblems to be solved.

In the next two sections a summary of the Modified Cartesian Integration

method will be first presented, which is a direct extension of the one discussed in

detail for the linear case (see Pistikopoulos and Grossmann, 1988b, and Bureanu,

1980). Then the piecewise linear approximation for the evaluation of the conditional

optimal expected revenue function will be presented for the general case.
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MODIFIED CARTESIAN INTEGRATION METHOD

The basic idea of the Cartesian Integration method (Bureanu, 1980) is to

approximate the multiple integral of the expected revenue through Gaussian quadrature

of n^-1 uncertain parameters, and to evaluate one-dimensional analytical integrals in

terms of a single uncertain parameter dm at each of the nodes of the quadrature

formula. However, since the number of nodes that must be considered for the n^-1

parameters in the Gaussian quadrature formula increases very rapidly, the vector of

the uncertain parameters will be partitioned in order to select only few uncertain

parameters for which nodes will be considered in the Gaussian quadrature formula.

This has the important effect of reducing the number of NLP problems to be solved.

This Modified Cartesian Integration method, which is described in detail in

Pistikopoulos and Grossmann (1988b), consists of three major steps:

STEP 1. Partitioning of the vector 8 of the uncertain parameters in three

subsets according to their economic sensitivity: 6 , a single independent parameter

that exhibits the largest sensitivity to the revenue; ffQf a vector of dimensionality

D£1 with significant sensitivities to the revenue; and Bs, the remaining uncertain

parameters of dimensionality S whose sensitivity to the revenue can be neglected.

Discretization of the subset dQ is performed at a finite number of nodes q, q€Q,

corresponding to the roots of the Gaussian quadrature formula (see Carnahan et a/,

1969).

STEP 2. Evaluation of the conditional expected revenue function R (F) at each
q

node q through a one-dimensional integral in d (see eqtn (11) in next section).

STEp 3. Estimation of the expected revenue from the following expression (see

Bureanu, 1980):

R(F) = M IT w R(F)TTD
ip(^ q) (8)

qfcQ
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where M * T° TTD {$ u-0 L)
l l i ' i Di Di

w = weight for Gaussian quadrature at node q

R (F) = conditional expected revenue for 8m and 8 at node q

\j • vJ.O '\j ™ \j * Tp ^ U.«D \\s ^ \j )i \J vT \J • l " l f f c • LJ
Di Di Di <ti Di Di i D

t£. = roots of the Gaussian quadrature formula

Since steps 1 and 3 are essentially equivalent to the ones for the linear case,

only step 2 will be presented in some more detail for the nonlinear case, where a

piecewise linear approximation of the nonlinear conditional expected revenue is

applied.

EVALUATION OF THE CONDITIONAL EXPECTED REVENUE FUNCTION

At each node q, the conditional expected revenue function R (F) at the flexibility
q

value F will be of the following form (see Pistikopoulos and Grossmann, 1988b):

8 u 8 u

m S S
' < f )= [ f (max r(z.8 \6"d«)p (d )dd ][ f T\ pJ
q J m 1 S D m m m J * * ' S i

Q
 L z a l ' = 1

. . - s , ] ( 9 )

In order to evaluate the above integral, which is separable in d and • 0 , the
w m S

integration of the optimal expected revenue in dm has to be obtained in a similar

fashion as was obtained for the small nonlinear example that was discussed

previously. At a given value of d . the optimization of the revenue function will be

given by:

T(0 ) = max r(z, 8 I 0C
N, 0n

q)
z

s.t . f ( d , z , 0 ,d",d*) £ 0 (10)
m s D
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where d corresponds to the design determined at the given value of the flexibility

index F. The idea is then, as in the small example, to approximate the optimal

revenue function as a piecewise linear function considering essentially four uncertain

parameter values and the corresponding optimal values of the revenue function

through the solution of problem (10). The four parameter values that are selected are:

the nominal point 6 }=8 N, the lower bound 6 2=8 L, the upper bound 8 3=0 u and the
mm mm mm

optimal point 8 A=8* obtained from (10) with 0 as an additional optimization
m m m

variable. The point 8A is only considered for the piecewise approximation if it is an
m

interior point within the range [8 L, 8 UL In this way, the conditional expected
mm

revenue function can be approximated in the following way:

a n*i a u

3 m S S

R(F) = [T f rl(9 )p (8 )d9 ] [ f T T P <* ^ ] < 1 1 >
q *—* J k mm m m J * * Si Si Si

w h e r e x l \ 8 ) i s t h e l i n e a r a p p r o x i m a t i o n f u n c t i o n f o r e a c h s e g m e n t [ 8 \ 6 k * ] ]
km mm

and is given by the following expression:

(12)
\ \, \yj I —

 L ' \ " / r \ ( 7 / J L " " J " L ' \ " /C7 \\U IU J L " " J
k m m m m m m m m mm mm

where r(8k) is the optimal objective function value of (10) at the parameter

point 8k, k=1,2,3,4.
m

Finally, the curve of the expected revenue R(F) as a function of F is generated

by fitting a polynomial over a specified set of flexibility values where the expected

revenue is evaluated.
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ALGORITHMIC PROCEDURE TO IDENTIFY OPTIMAL FLEXIBILITY

Based on the analysis presented in the previous sections an algorithmic

procedure can then be developed to determine the optimal degree of flexibility while

redesigning an existing chemical plant with a nonlinear model. It involves three steps:

STEP 1 : (a) Construct the retrofit cost versus flexibility trade-off curve C(F) by

applying the procedure described previously in the paper.

(b) From the curve select a set of N+1 flexibility values {F1} and the

corresponding set of design variable values {d1}.

STEP 2 : (a) For each value of flexibility F1 and its associated design variable

d j, estimate the expected revenue R(F') as given by equation (8). This step involves

the procedure for approximating the conditional expected revenue that was described

in the previous section.

(b) Using polynomial approximation, fit a curve for R(F) using the points

[F',R<FU

STEP 3 : Given the curves for R(F) and C(F) determine with a one-dimensional

direct search procedure the degree of flexibility F# that maximizes Z-R(F)-C(F).

In the next section two process example problems will be considered to

illustrate the application of the proposed procedure.

EXAMPLE 2

Example 2 corresponds to the nonlinear model of the chemical process

flowsheet shown in Figure 5, that involves a PFR reactor, a fractionator and a recycle

stream. A slightly modified version of this flowsheet problem was studied for the

linear case in Pistikopoulos and Grossmann (1988a).

The existing design of the flowsheet has a volume of the reactor V=7.5 m3 and
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limits for the powers of the two pumps W1
D=22.O KW and W2°=15.5 KW, respectively.

Three uncertain parameters are involved in the description of this system: the

composition of B in the feedstream (0,) and the reaction rate constants ki {0J and k

(0 ). Distribution functions are provided for the three uncertain parameters, as shown

in Table 3, and the corresponding nominal values as well as the expected deviations

for a confidence level of 85% for both directions.

Retrofit cost data and the nonlinear revenue function, accounting for profit from

sales, cost of raw material and operating cost, are also listed in Table 3. The

problem is then to determine the degree of flexibility that maximizes the total profit,

consisting of the difference between expected revenue and cost for the necessary

modifications.

The flexibility index of the existing design is F6=0.50 with one "limiting" active

set AS1={JA
1} consisting of four constraints, since three control variables are

involved (the pressure P and the temperature T of the separation column, and the

flowrate of the feedstream F). One active constraint is the purity requirement for the

product B, whereas the remaining three are simple bounds for the temperature T and

the actual work required by the two pumps. Setting the flexibility target to FT=1.O,

and applying the procedure of Part I, yields a reactor volume increase of 6.5 m3 with

a minimum cost of $130,000/yr in order to achieve a redesign with the required

flexibility. The "limiting" active set at FT is again AS1, which implies that no break

points occur, and hence the curve is characterized throughout by the same active set.

By considering a number of other points F^ within [0.5,1.0] and solving the system

of nonlinear equations describing active set JA
1 in AV the corresponding cost values

are obtained, with which the trade-off curve is then generated as shown in Fig. 6.

From the cost curve three points, Fj={0.5, 0.82, 1.0} with corresponding design

variables dj={(7.5,15.5,22.0), (10.0,15.5,22.0), (14.0,15.5,22.0)} are selected to construct

the curve for the expected revenue. Optimizing the existing design at the nominal

parameter values, the sensitivity coefficients that were obtained for the uncertain

parameters (see Pistikopoulos and Grossmann, 1988b) are:
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[ r, • 2673, r2 = 858, r3 = 572 ].

Since ^1>
r
2

as^3# the fraction of B in the feedstream (0}) is selected as the

independent uncertain parameter, whereas the two kinetic constants are both selected

to be discretized. Thus:

Selecting three points for each uncertain parameter 6o.t i«1,2 nine nodes were

generated for the integration. At each node four optimization problems were solved

for constructing the piecewise approximation of the conditional expected revenue.

Since three values of fixed flexibility were selected, a total of 108 NLP optimization

problems were solved overall in order to estimate the expected revenue at the three

redesigns. The results are summarized in Table 4. Figure 6 shows the resulting

revenue curve as well as the optimal flexibility of F#=0.87, with a corresponding

optimal profit of 1.75x105 $/yr. At this point solving problem (P1), yields an increase

in the reactor volume of 4 m3. Therefore, by increasing the reactor volume from 7.5

m3 to 11.5 m3 the expected profit of the process flowsheet in Fig. 5 can be

increased from 0.74x105 $/yr to 1.75x105 $/yr due to the increased flexibility from the

existing index 0.5 to the optimal value of 0.87.

EXAMPLE 3

A slightly modified version of the reactor system considered in Halemane and

Grossmann (1983) and Pistikopoulos and Grossmann (1988b) is shown in Figure 7,

which consists of a reactor-cooler system, where a first order exothermic reaction A

-» B takes place. The existing design of this flowsheet has a volume of the reactor

V=4.6 m3 and an area of the heat exchanger A=12.0 m2. Two uncertain parameters will

be considered, the feedflowrate, F and the reaction rate constant k . Distribution
o o

functions, the corresponding nominal values as well as the expected deviations for a

confidence level of 85% are shown in Table 5, where retrofit cost data and the

nonlinear revenue function are also listed. The specification constraints and the

nonlinear model of this process can be found in Pistikopoulos and Grossmann
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(1988b).

The flexibility index of the existing design is FE=0.05, due to the large expected

deviations. The trade-off curve of cost versus flexibility can then be generated by

applying the algorithmic procedure that was described in this paper and is shown in

Figure 8. Note, that no break points occur and the solution indicates that only one

design modification is required, a reactor volume increase with corresponding values

depending on the level of flexibility, as shown in Table 6, where the associated

costs are also listed.

In order to generate the curve for the expected revenue, three points were

considered for the flexibility {F'} = {0.05,0.5,1.0} with the corresponding design

variables {di} = {(4.6,12.0),(5.54,12.0),(6.644,12.0)}. The sensitivity analysis, for the

existing design and nominal parameter values, results to the following partitioning for

the two uncertain parameters: d =0 =F , 8 = 0 =k , 0 = 0 (since r =23.2 > r =0.15).
^ m 1 o D 2 o S 1 2

Selecting four nodes for dQ and applying the procedure for estimating the expected

revenue at each value of F1 yields the results shown in Table 6, obtained through the

solution of 48 NLP optimization problems. Then the optimal profit curve is generated,

as shown in Figure 9, where it can be seen that the optimal flexibility is at a value

F#=0.733, corresponding to a redesign with V=6.0 m3, A=12.0 m2 and a maximum

expected profit of 140,000 $/yr.

Finally, it is interesting to compare the above result with the case when the

redesign is performed at only one condition; e.g. maximize profit at the "worst"

point (high F , low k ) for a given flexibility index. The results are shown in Table 6.

As it can be seen, the redesign with F=1 has a higher profit (242.2x103 $/yr) than the

one of the existing design with FE=0.05 (7.2x103 $/yr) and higher than the one of the

redesign with F=0.733 (185.8x103 $/yr). Thus, one might be tempted to select the

design with flexibility F=1. However, note that this profit was only evaluated at the

worst condition. If on the other hand expected revenue considerations are taken into

account, as it was shown in this example with normal probability distribution

functions describing the two uncertain parameters, the redesign with F=0.733 is in

fact the optimal one. Thus, this result shows the importance of properly evaluating
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the expected revenue, and hence the expected profit for a retrofit design.

CONCLUSIONS

In this paper the problem of establishing the optimal trade-off between retrofit

cost and expected revenue for increasing flexibility in a chemical process has been

addressed. First, by considering a nonlinear model for the process, an efficient

algorithmic procedure has been developed to generate the trade-off curve relating

retrofit cost to flexibility, and which avoids the need of solving extensively the

resulting parametric nonlinear optimization problem. This procedure consists in

systematically identifying the break points in the curve by detecting the active sets

of constraints that provide a limit on the increase of flexibility. Then, by

considering probability distribution functions for the uncertain parameters, the optimal

increase of flexibility that maximizes the total profit of the chemical process can be

evaluated by generating the expected revenue curve as a function of flexibility. An

extension of the algorithmic procedure developed by the same authors for the linear

case has been presented for this case, which is based on approximating the

conditional optimal revenue as a piecewise linear function. The efficiency of the

proposed methods has been illustrated with three example problems.
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Table 1: Expected revenue approximation data for example 1

0 r(8)

nominal value (01) 4.0 20.2426

lower bound (02) 1.66 6.0692

upper bound (03) 6.925 48.364

optimal value 6.925 48.364



Table 2: Cost Expected revenue and profit values for example 1

Flexibil ity
index

F

0.585

0.898

1.0

Design
variable

d

(4,3)

(6.144,3)

(7.501,4.878)

Cost
function

C(F)

0.0

10.72

27.0

Revenue
function

R(F)

24.056

40.6566

48.367

Profit

2

24.056

29.936

21.367



Table 3: Data for uncertain parameters, cost and revenue function for example 2

Uncertain
Parameter

e

CB

k, Is"1)

k. (s-1)

Distribution
Function

•

N(0.5,0.02)

N<0.02,0.002)

N(0.01,0.0008)

Nominal
Value

e"

0.5

0.02

0.01

Positive
Deviation

Ad*

0.03

0.003

0.001

Negative
Deviation

Ad'

0.03

0.003

0.001

Retrofit cost: 2 AV + AW^ • AW D ($104/yr)

Revenue : r = 500 F4 * 150 F6 - 180 F - 0.1 F3(900-T) ($106/yr)



Table 4: Cost Expected revenue and profit values for example 2

Flexibility
index

Design
variable

Cost
function

Revenue
function

Profit

(m3,KW,KW)
C(F)

$104/yr
R(F)

$105/yr
Z

$104/yr

0.5

0.82

1.0

<7.5,15.5,22)

(10,15.5,22)

(14,15.5,22)

0

5

13

0.74

2.19

2.95

7.4

17.0

16.5



Table 5: Data for uncertain parameters, cost and revenues for example 3

Uncertain
Parameter

e

F (Kmol/hr)
0

k (hr-1)
o

Distribution
Function

••

N(45.36.18.O)

N( 12.0,0.8)

Nominal
Value

45.36

12.0

Positive
Deviation

A<T

22.68

1.2

Negative
Deviation

Ad'

22.68

1.2

Retrofit cost: 200 AV + 80 AA ($103/yr)

Revenue function: r - 100 FQ - (10 F1 + 5 FJ <$iO3/yr)



Table 6: Cost, Expected revenue and profit values for example 3

Flexibility
index

F

0.05

0.33

0.50

0.75

1.0

Design
variable

d
<m3,m2)

<4.6,12.O)

<5.162,12.0)

<5.537,12.0>

(6.0,12.0)

(6.644,12.0)

Cost
function

C(F)
$iO3/yr

0.0

130

200

280

405

Revenue
function

R(F)
$103/yr

9.39

••

304.74

420.0

516.72

Profit at
worst point

$103/yr

7.2

••

115.2

185.8

242.2



FIGURES

• Figure 1: Trade-off curve of Investment cost for retrofit versus flexibility.

• Figure 2: Cost vs. flexibility trade-off curve for example 1.

• Figure 3: Piecewise linear approximation of nonlinear revenue curve for
example 1.

• Figure 4: Expected profit curve and optimal flexibility for example 1.

• Figure 5: Process flowsheet for example 2.

• Figure 6: Optimal degree of flexibility for example 2.

• Figure 7: Reactor-cooler system flowsheet for example 3.

• Figure 8: Cost curve vs. flexibility for example 3.

• Figure 9: Total profit curve and optimal level of flexibility for example 3.
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