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ABSTRACT

An exact parallel algorithm is presented for determining schedules when costs

depend on consecutive jobs passed through the production system and the benefits of

production are the sum of the benefits associated with each job. The algorithm pro-

vides optimal schedules when the goal of production is to (i) maximize benefits minus

costs, (ii) minmize costs (iii) maximize sum of benefits while keeping costs below a

prescribed level, or (iv) minimize costs while attaining some level of benefits. The

scheduling algorithm is shown to be equivalent to the prize collecting traveling sales-

man problem. The algorithm uses a branch and bound approach based on a Lagran-

gian lower bounding technique, branching rules that partition the search tree, and an

upper bounding procedure based on a patching algorithm. The algorithm is imple-

mented on a shared memory multiprocessor and computational results are presented

for problems ranging in size from SO to 200.
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Introduction

A number of scheduling situations may be viewed as a problem of choosing which jobs should be

processed in a fixed time frame and sequencing those jobs which are to be processed. Associated with a

particular sequence of production is some benefit and cost. Depending on how the benefits and costs

are measured there are several rationale objectives for choosing a particular sequence of production:

(1) maximize the sum of benefits minus the sum of costs.

(2) minimize production costs without regard for benefits.

(3) maximize benefits such that costs do not exceed some fixed amount.

(4) minimize costs while attaining some level of benefits.

Each of these four objectives is justifiable in some production environment. If both benefits and costs

are measured in common units such as dollars, then the first objective seems most appropriate. How-

ever, if production costs are measured in units of some finite resource such as available machine or

labor time, then the second or third objective may be the most appropriate. When the benefits of pro-

duction activities are indirect, then the fourth objective of attaining some target level of benefit may be

the objective of choice. This paper shows that with certain restrictions on the nature of benefits and

costs associated with job processing, all four objectives are treatable using the same basic sequencing

algorithm.

In the scheduling scenario addressed by this paper there are a set of N jobs labeled (1 N).

These jobs are candidates for processing through a system where costs depend only on the consecutive

jobs in the production sequence. A flowshop with the zero wait processing condition (see [1]), and
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single machine scheduling with setup costs (see [2]) are two examples of such a system. Thus if job j

is processed after job i, a production cost cxj is incurred. Matrix c = (ctJ) for all ij € (1,...,N) is

defined to be the transistion cost matrix since it contains the costs due to system transistion between all

possible pairs of jobs. The diagonal element cu of the transistion cost matrix represents the cost

incurred if a job i is not processed by the system during the time horizon of the model. Every job i

which is processed by the scheduling system contributes benefit p%. Startup and shutdown costs are

incorporated into the scheduling model by introducing an artificial job 0. Cost cOj represents the cost of

starting production with job j 6 (1,...,N) and cost ci0 represents the cost of shutting down production

after job i 6 {1,...,N}. The transistion cost matrix is augmented so that row zero contains costs C& for i

€ {1,...,N} and column zero contains costs c /0 for j e {1,...,N}. Transistion cost matrix element CQQ is

set to infinity to indicate that at least one job will be processed. Also, there is no benefit associated

with artificial job 0 so that p0 is zero. The scheduling scenario is completely defined by n, the number

of jobs to be processed, the augmented transistion cost matrix c, and the job benefit vector p. A solu-

tion to the scheduling scenario consists of a list of which jobs are not processed during the time horizon

of the model and a sequence of production for those jobs which are processed.

An optimal solution to the scenario described in the previous paragraph depends on which of the

four scheduling objectives is used. To illustrate the impact of the scheduling objective, consider the

example shown in Figure 1. In this example there are nine jobs labeled (1,...,9) in addition to artificial

job 0. As Figure 2 shows the optimal production sequence depends on which of the four scheduling

objectives is appropriate. The following sections will show how the same algorithm may be used to

determine optimal sequences for all four scheduling objectives.

Problem Formulations

The scheduling scenario described in the introduction may be represented by a complete directed

graph G= (V,A), where vertex set V = (0,l,...,N) represents the set of jobs including artificial job 0

and arc set A= {(i,j) I i,j € V} represents precedence in production. In terms of graph G, a feasible

schedule is a subgraph G'= (V\A f ) where Vf = V, the cardinality of A' is N+ 1, each vertex has an

indegree and outdegree of one, and arc set A' defines a feasible production sequence. If arc (i,j) € A'

with i * j and i,j e V, then job i precedes job j in a production sequence. If arc (i,i) e A' for i e

{1.....N} then job i is not processed within the time horizon of the model. Arc (Oj), j€ (1 N) indi-

cates that job j is the first job to be processed and arc (k,0), k € {1,...,N} indicates that job k is the last

job to be processed. Figure 3 shows a subgraph representing a feasible schedule and a subgraph

representing an infeasible schedule. As Figure 3 shows, a feasible schedule is represented by a graph

consisting of a set of loops (possibly empty) and a single cycle involving two or more vertices of the

subgraph. The elements of the transistion cost matrix have a one to one correspondence with arc set

A. Thus Cij is the cost incurred if arc (ij) is present in the subgraph representing a feasible solution.
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Likewise, there is a one to one correspondence between the benefit vector and the vertex set V. In

terms of subgraph G' benefit A is realized if vertex i does not participate in a loop. By associating

binary integer variable xih ij e V with the arcs of set A, the scheduling scenario presented in the intro-

duction may be formulated as an integer program. In the integer programming formulation, xtJ is one

if arc (i,j) is present in the optimal solution and zero otherwise. The goal of maximizing the sum of

benefits minus the sum of costs may be expressed as:

max 2>a-*«)-Z Z c ^/ (1)
i*V imVjmV

The left term in equation (1) represents the sum of benefits and the right term represents the sum of

costs. Equation (1) may be written more compactly as:

X ^ (2)

where

lij-Cij for each ije V : i* j

Zu^Cii+Pi for each ieV

Since the first summation in equation (2) is a constant, it may be dropped to yield the following objec-

tive that will maximize the sum of benefits minus the sum of costs:

i/ (3)

Equation (3) is subject to the following constraints which specify the scheduling scenario of the intro-

duction:

lxirh j*V (4)

2 ^ = 1 , ieV (5)

Z Z *«/£|Shl. for each SczV (6)
ic5/*«5\{i)

XijG (0,1}, for each i Je V (7)

The following objective in combination with equations (4-7) will minimize production costs without

regard for the production benefits:

Note that equations (3-7) and equations (4-7,8) are almost identical to the well known Asymmetric

Traveling Salesman Problem (ATSP). The review presented in [3] is an excellent summary of ATSP
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research up to 198S. The parallel algorithm reported in [4] has been used to solve large randomly gen-
erated ATSPs. The objective of maximizing benefits such that costs do not exceed some fixed amount

Cmu may be stated as:

(9)

This objective is subject to equations (4-7) as well as the following equation:

X cnxij * c m « (10)

Equations (4-7,9,10) are equivalent to the Orienteering Problem reported in [5,6,7]. The fourth objec-

tive listed in the introduction of minimizing costs while attaining some level of benefits also uses equa-

tion (8) as the objective function. The following equation is necessary to enforce the goal of attaining a

minimum level of benefits, Pmia:

ZtPiXu* EA-^min (11)

Equations (4-8,11) is an integer programming representation of the Prize Collecting Traveling Salesman

Problem (PCTSP) reported in [8,7]. When phrased in PCTSP terminology, p4 of equation (11) is the

prize received by the salesman for visiting city i. Pmm is the minimum sum of prizes that the salesman

must collect in his travels. The salesman's goal is to order the cities he will visit in such a way as to

minimize total travel costs. The salesman incurs cost ctj for traveling between city i and city j. Cost cu

is incurred if the salesman does not visit city i.

Table 1 summarizes the four scheduling objectives along with the corresponding equation

numbers comprising an integer programming formulation. Table 1 also associates the names of the

combinatorial problems as they are known in the operations research literature with the corresponding

scheduling objective. All four of the integer programming problems listed in Table 1 can be solved by

an algorithm for the PCTSP (integer programming problem 4). By setting Pmixi equal to zero, the

PCTSP formulation becomes equivalent to integer programming problems 1 and 2. Integer program-

ming problem 3 can be solved using an algorithm for the PCTSP parametrically. Parametric application

of the PCTSP algorithm is detailed below. The next section describes an exact parallel algorithm for

the PCTSP. Since the PCTSP is an NP-hard problem (see [7]), the algorithm uses a branch and bound

approach. A parallel algorithm is given for the PCTSP since the problem is computationally demand-

ing.

Examination of the four integer programming formulations summarized in Table 1 suggests the

Resource Constrained Traveling Salesman Problem (RCTSP). In the terminology of the traveling

salesman problem (see [3]), the RCTSP consists of finding a tour of minimum cost that docs not

necessarily visit all cities. The resource usage of this tour cannot be more than R mM. Traveling between
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city i and city j requires a resource expenditure of ri} and costs cir As an integer program, the RCTSP

may be represented as follows using the complete graph G= (V,A) defined above:

imV

(12)

i y =l , jeV (13)

(14)
j*V

1 2 > i > * i y £ * m « (15)

Z Z *v*FM. for each SczV (16)
i*Sj*S\{i)

Xije[0M for each iJeV (17)

Interpreted in scheduling terminology, the cities of the RCTSP correspond to jobs. City 0 corresponds

to artificial job 0 which indicates the beginning and end of the production sequence. The costs cl}

correspond exactly to the augmented transistion cost matrix. The resource usage rl} can be associated

with the amount of resource required to switch the production facility from job i to job j. The objective

of the RCTSP when viewed as a scheduling problem is to minimize production costs such that not more

than a set amount of some resource is consumed. An RCTSP cannot be directly solved as a PCTSP as

the other integer programs of Table 1. However, PCTSP can be solved as an RCTSP by setting ru-pi

for all i e V , fy=0 for all ij e V : i* j, and Rmtx = £ A — ^ m i n * Thus each of the problems listed in
ieV

Table 1 is a special case of RCTSP.

An Exact Parallel PCTSP Algorithm

The parallel PCTSP branch and bound algorithm is patterned after the processor shop model

reported in [4]. Figure 4 shows the processor shop dataflow. Figure 5 shows the control algorithm

each processor uses when operating in the dataflow environment of Figure 4. Each of the components

shown in Figure 4 are explained in the sections that follow. Complete details and justification for using

the processor shop model as the basis for parallel branch and bound may be found in [4]. A key com-

ponent of the model shown in Figure 4 is the Lagrangian assignment problem data type (LAP) This

data type encapsulates information necessary for each of the algorithm components to function Figure

6 provides an outline of the information present in an LAP. A processor contributes to PCTSP solu-

tion by performing operations indicated by the algorithm components on various LAPs. The LAPs

correspond to the nodes of the branch and bound search tree. LAPs are characterized as being solved

or unsolved. The lower bounding procedure has been applied to solved LAPs, but not to unsolved
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LAPs. The two queues shown in Figure 4 are accessed using a best bound first strategy. Thus a pro-

cessor removes the LAP with the least lower bound first. LAPs resident in the unsolved queue inherit

their parent's lower bound for purposes of determining order of removal.

Lower Bounding Technique

Lower bounds for the PCTSP algorithm are calculated using the Lagrangian relaxation method

[9]. The Lagrangian problem is formed by neglecting equation (6) and dualizing equation (11) in the

PCTSP formulation of equations (4-8,11). The resulting Lagrangian problem may be represented as

follows:

max
X*0

where

X £ £ (19)

(20)
*V

= Cij for each iJeV : z* ; (21)

c(X)u = Cu+Xpi for each ieV (22)

subject to

E x , ; = l , jeV (23)

£x t f= l , ieV (24)

Xije {0,1}, for each ije V (25)

For fixed X, the integer program represented by (18-25) is simply an assignment problem which is

solved using any of the algorithms reported in [10,11,12]. As is evident by equation (18), the Lagran-

gian problem is simply a single variable nonlinear maximization problem. An algorithm for obtaining a

good solution to this maximization problem consists of a bounding phase and a bisection phase. During

the bounding phase XL and \v are determined such that :

(i) the solution (xL) corresponding to L(\L) does not satisfy equation (11).

(ii) the solution (xy) corresponding to L(X(/) does satisfy equation (11).
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The bounding phase requires an initial value of X which is increased by STEPJSIZE if the correspond-

ing solution (x) does not satisfy equation (11). If (x) satisfies equation (11) then X is decreased by

STEPJSIZE. As indicated by equation (18), X must be non-negative. Thus X is set to zero if a

decrease in X would ever cause X to be negative. The bounding phase continues increasing or decreas-

ing X in this fashion until an appropriate XL and Xv are found that satisfy (i) and (ii). The X associated

with the lower bound of the parent node in the branch and bound tree is used as an initial value for X.

If the node being lower bounded does not have a parent, then an initial X is computed via the tech-

nique suggested in [7]. STEPJSIZE is initialized to be lambda/2.0 or 1.0 if the initial lambda is 0.

After each increase or decrease of X, STEPJSIZE is set to 2*STEP_SIZE in order to accelerate the

search for a XL and X^. During the bisection phase XL and Xv are updated such that (i) and (ii)

remain satisfied. This update is performed via a bisection technique where L(XM) and the correspond-

ing (XM) are determined with X^ = (XL + X</)/2. If {xM) satisfies equation (11) then XM replaces

Xy otherwise XL is replaced. The bisection technique terminates normally when X</ - XL is less than

t*Xu. For the computational results reported below, an e of 0.1 has been found to lead to good perfor-

mance. The Lagrangian method is terminated immediately if, at any time, the value of the objective

function (18) exceeds the global upper bound or if the solution (x) corresponding to X = 0 satisfies

equation (11). The Lagrangian method is also terminated if the number of evaluations of objective

function (18) exceed MAXJTERATIONS with MAXJTERATIONS set at 20. When the Lagrangian

method terminates, the largest value of the objective function (18) is reported to be the lower bound.

In the course of computing a near optimum to equation (18), several intermediate values for X

must be computed. Every new value of X does not require a complete assignment problem solution.

Successive assignment problems corresponding to new values of X can be solved parametricaily based

on the most recent assignment problem solution. By solving assignment problems parametricaily in this

fashion, the computational efficiency of the lower bounding technique is greatly improved.

Branching Rules

In terms of the dataflow diagram shown in Figure 4, the branching rules take a solved LAP and

create one or more unsolved LAPs which are placed in the unsolved queue. The branching rules

operate on a near optimal solution x to equations (18-23) whose description is contained in a solved

LAP. Solution x does not necessarily satisfy equations (6,11). Figure 7 illustrates a graph correspond-

ing to an x which violates equations (6,11). The solution shown in the graph of Figure 7 violates equa-

tion (6) because there are multiple subtours. The solution shown in Figure 7 violates equation (11)

because the £A*ii exceeds
imV
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The branching rules are enforced using include and exclude arcs which refer to graph G= (V,A)

defined in the formulation section. The binary variable x%J associated with an include arc (i,j) is forced

to be one in the solution of the lower bounding equations (18-25). The binary variable xlf associated

with an exclude arc (ij) is forced to be zero in the solution of the lower bounding equations (18-25).

As Figure 6 shows include and exclude arc sets are stored in LAPs. [13,4] explain how include and

exclude arcs are enforced in assignment problem solutions that yield the lower bounds.

There are three types of branching rules used by the PCTSP algorithm:

(1) loop reduction - eliminate loops for all i e V such that px > £ A-^min and xu = 1.

(2) loop branching - used when £ A X U >
ieV i€V

(3) subtour branching - used when £ £ xij> 1$ h 1 f°r some S c V.
ieS/€S\{i)

Loop reduction and loop branching seek to enforce equation (11) while subtour branching seeks to

enforce equation (6). Note that loop reduction is a special case of loop branching. The branching rules

are precisely stated using solution x*, include arc set /*, and exclude arc set Ek from solved LAPk.

The include arc set Ik implies a set Fk of vertices that are forced to participate in loops. Given these

definitions, the branching rules are as follows:

loop reduction - Let L= (ti,*2»*.-,'r} be the largest vertex set such that for all ieL: (a) pg >

2 Pi~Pmin> (b) xku = U and (c) arc (i,i) is not a member of Ik for all i€L. Equation (11) implies
i*V\Fk

x ^ ^ O a n d x ^ ^ O a n d ••• a n d x ^ ^ O (26)

Generate one successor LAPkx of LAPk defined by

-»0'M*I)}

loop branching - Let L= (ii,'2t—tf'r) b e t h e largest vertex set such that: (a) £ A X * U > £ A-
ieL i€V\Fk

(b) xku = 1 for all ieL, (c) arc (i,i) is not a member of Ik for all ieL. Equation (11) implies

*kixirO or x'yfO or • • • or xk ̂ =0

Generate t successors LAPkXy...,LAPkt of LAPk defined by

Ekr=EkKJ {(wV)} 1

hr-hKJ Kil.il) ( i r . l . i r - l ) } J f O r r S l - - r
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Note that for r = l , the include arc set Ikr is simply equal to /*. Computational experience shows that

the most efficient implementation of this branching rule labels the vertices of L in order of descending

prize value. Thus the labels { iW—^} of set L are always assigned such that pt> p^ • • > pir

subtour braching (see [14,15,16,17,13]) - Let As = {(it»i2) (4.«i)} be the arc set of a subtour of

xh containing a minimum number of arcs not in Ik involving vertex set S=* {ii,...,/,}. Equation (6)

implies

(30)

Without loss of generality, assume As - /* = {(I'I, 1*2).• ••>(**.i*+i))» w^h s £ t. Then equation (30)

implies

(**,y2=0) or (x*<l l2=l,x* l2<3=0) or • • or (xk^ • • • s x \ _ A = l , x * w + = 0 ) (31)

where s+ 1 is to be taken modulo t. Generate s successors, LAPki,...tLAPkt of LAPk defined by

f o r r = 1 J ( 3 2 )

The branching rule that creates the least number of unsolved LAP is applied whenever two or more of

the branching rules are applicable. By this criteria, loop reduction is always preferentially applied since

it creates only one unsolved LAP. Note that each of the three branching rules partitions the branch

and bound tree in the sense that no two nodes will be redundant.

Elimination Rules

The elimination rules are used to fathom branches in the branch and bound tree. As Figure 4

illustrates, the elimination rules are applied to an LAP before any amount of substantial computation is

performed. This guarantees that a minimum amount of computational effort is expended in the search

for an optimal solution. There are two elimination rules. The first rule eliminates an LAP from con-

sideration whenever its lower bound equals or exceeds the current global upper bound. The second

rule eliminates an LAP from consideration whenever the LAP's include arc set implies that equation

(11) cannot be satisfied. This occurs whenever £p,-> ^ A - ^ m i n where L= {ilf i2t..., it] is the set of
ieL ieV

vertices that are involved in loops that are members of an LAPs include arc set.
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Upper Bounding Technique

The upper bounding technique provides approximate solutions to equations (4-8,11). In combina-

tion with the elimination rules, the upper bounding technique permits fathoming of search tree

branches that do not lead to an optimum. A discussion of the role of the upper bounding technique in

a parallel branch and bound algorithm is given in [4]. The upper bounding technique used in the

PCTSP algorithm is an extension of the patching algorithm given in [18]. As discussed above, the solu-

tion x to the lower bounding equations (18-25) can be interpreted on graph G as a collection of loops

and subtours. The PCTSP patching algorithm operates on solution x in two phases:

(i) The patching algorithm reported in [18] combines the subtours of solution x to form a single

tour. The loops are not considered in this phase. Thus solution x has been modified to consist of

a single tour and a collection of loops. Denote this modified solution i. If £ satisfies equation

(11), phase (ii) does not execute since a valid solution has been found to equations (4-8,11).

(ii) This phase satisfies equation (11) by incorporating some of the vertices that participate in loops

into the single tour formed in phase (i). Let L= {/i,/2>—»*r) be the vertices that participate in

loops. Let /, be such that £,/.= 1 for all i€ V. Variable /, is known as the successor of i since arc

(i«/i) is present in the solution subgraph of graph G (see the formulation section above). The

cost of incorporating a loop vertex ieL into the single tour from phase (i) is expressed as:

Cif+tji-Cu-Cjf. (32)

where jeV\L is some vertex that is a member of the tour. If the quantity expressed in relation

(32) is negative or zero for any IeL and jeV\L then vertex i is incorporated into the tour by

setting £,/.= 1, iy,= 1, £u=0, and i>/.= 0. Additionally, /, is set to fj and then f, is set to i. Fig-

ure 8 illustrates the process of incorporating a loop into a tour. If expression (32) is not zero or

negative for any ieL, jeV\L then an IeL, ]eV\L is found that maximizes the following rela-

tion:

PiUcif+Cji-Cu-Ctfj) ( 3 3 )

The loop vertex represented by I is incorporated into the tour using / as shown in Figure 8 and by

setting Jfy^l, J?£=l, *£=0, *//:=0, / ; = / / , and then / ;=? . The steps of phase (ii) are repeated

until equation (11) of the PCTSP formulation is satisfied.

The solution x corresponding to the global upper bound is replaced by the PCTSP solution x produced

by the patching procedure if £ Z c«> /̂ is l e s s t h a n £ Zc»>x»>- T h e patching procedure described by
ieVjcV ieVjeV

(i) and (ii) has a worst case computational complexity of \V |3. In practice, the patching procedure need

not be applied to every LAP. Once a good upper bound is established, repeated application of the

patching procedure is a waste of computational resources. A procedure similar to that described in [4]
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can be used to selectively apply the patching procedure.

PCTSP Algorithm Computational Results

The parallel PCTSP algorithm described above was implemented on a 14 processor BBN Butterfly

Plus computer! possessing 56 megabytes of shared memory. The Butterfly Plus is a tightly coupled

shared memory multiprocessor comprised of Motorola 68020/68881 processors accessing 4 megabytes

of local memory and nonlocal memory through a packet switched network. Remote memory accesses

are transparent to processors, but slower than local memory accesses. The Butterfly Plus computer does

not support simultaneous access to individual memory locations. When two or more requests are made

for reading a memory location only one access is serviced. The other requests must be retried at a later

time. The algorithm was implemented in the C programming language under a Chrysalis operating sys-

tem environment. A more complete description of the Butterfly Plus computer may be found in [19].

The PCTSP algorithm was tested on problems with cost matrix elements drawn from a uniform

distribution of integers in the range [0,1000]. The elements of the prize vector p in equation (11) were

drawn from a uniform distribution of integers in the range [0,100]. The target prize Pmin was set to be

<**ZA- Problems were generated for an a of 0.2, 0.5, 0.8, 1.0 and n= \V\ of 50, 100, 150, and 200.
imV

The PCTSP algorithm was used to solve 10 problems for each n and a.

Table 2 contains the average and standard deviation of the total execution time, number of nodes

evaluated in the branch and bound tree, and the ratio of the optimal solution value to the lower bound

value of the root node for each a and n. A plot of the total execution time as a function of n for each

a is given in Figure 9. The ratio column of Table 2 shows that the strength of the Lagrangian lower

bounding technique increases with both increasing a and n. [7] discusses ways in which the lower

bounds can be improved for both small n and a. Figure 9 and Table 2 suggest that the most difficult

problems possess an a between 0.5 and 0.8 as evidenced by both total execution time and number of

nodes evaluated in the branch and bound tree. The case of a= 1.00 shows that the pure ATSP is

significantly easier to solve than the PCTSP. In fact for a= 1.00 the lower bounding technique

described above can be replaced by an assignment problem based technique. [4] describes a parallel

algorithm for the ATSP based on an assignment problem bounding approach. Note that both the total

execution time and number of nodes evaluated sometimes demonstrate considerable variability among

problems of the same a and n.

t Butterfly Plui is a trademark of Bolt, Beranek, and Newman Inc.
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In order to gauge the benefit of parallelism, the same 10 problems were solved for an n of 100

and an a of 0.2, 0.5, 0.8, and 1.0 using different numbers of processors. Table 3 lists the results as a

function of the number of processors and a. The data of Table 3 is plotted in Figure 10. In addition to

reducing average execution time, algorithm parallelism also reduces execution time variability. Algo-

rithm parallelism has exactly the opposite effect on the number of nodes evaluated in the branch and

bound tree. As Table 3 shows, both the average and standard deviation of the number of nodes

evaluated increases with an increasing number of processors. An increased number of nodes evaluated

tends to offset the benefit of adding additional processors. As Table 3 and Figure 10 indicate, algorithm

speedup ranges from about 2.89 for a= 1.0 to about 9.1S for as 0.8 using 14 processors. The storage

scheme for cost matrix c provides an additional explanation for why the parallel algorithm does not take

full advantage of additional processors. The cost matrix is distributed across all processors participating

in problem solution. Each processor maintains roughly an equal portion of the cost matrix in its local

memory. In the course of problem solution each processor may address the entire cost matrix. Thus

multiprocessor executions of the algorithm suffer a performance penalty due to nonlocal cost matrix

access. This problem may be circumvented by storing a complete copy local to each processor. How-

ever maintaining multiple copies of the cost matrix becomes prohibitive as problem size grows.

Parametric Algorithm for the Orienteering Problem

As pointed out above, the Orienteering Problem represented by equations (4-7,9,10) may be

solved by applying the PCTSP algorithm parametrically. In this parametric solution, Pmin of equation

(11) is modified in a fashion analogous to a binary search until an optimal Orienteering solution is

found. The following algorithm states precisely how the PCTSP algorithm is used to solve the

Orienteering problem:

Algorithm SolveOrienteer

Input:
problem size n, cost matrix c, benefit vector p, maximum tour cost Cmax.

Output:
A tour that collects a maximum amount of benefits that doesn't incur a cost greater than Cmax.

begin
best_benefits := -<»;
lower_bound := 0;

upper .bound :=
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while(k>werj>ound £ upper.bound)

begin
mid_bound := (lower J>ound + upper_bound)/2;

set ^min #= midj>ound;
let x be the PCTSP solution to equations (4-8,11) using n,c,p,Pmin;

upper_bound := mid_bound - 1;

else
begin

benefits :=

if (benefits > best_benefits) let best_benefits:= benefits, save x;

lower_bound :=

end

end

if (best j)rize = -«)

orienteering problem has no solution;

else

return best_prize and the associated x;

end

The efficiency of Algorithm SolveOrienteer can be improved upon if the PCTSP algorithm is modified

to include the constraint represented by equation (10). The modification takes the form of an addi-

tional elimination rule. Thus if any lower bound calculated during PCTSP solution exceeds Cmtx, the

corresponding LAP is eliminated from further consideration. When the modified PCTSP algorithm is

not used to solve Orienteering Problems, Cmtx can be set to infinity. Note that the PCTSP can be

solved parametrically using an exact Orienteering algorithm in a manner entirely analogous to that illus-

trated in Algorithm SolveOrienteer.

Conclusions

A parallel algorithm has been presented for the PCTSP. This algorithm has application to

scheduling scenarios where production costs depend only on consecutive jobs passed through the sys-

tem and overall benefits of production are the sum of the benefits for each job that is processed. The

PCTSP model offers flexibility in terms of scheduling to meet various objectives provided the assump-

tions on production costs and benefits are met. Computational results show the parallel PCTSP
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algorithm to be effective on randomly generated problems ranging in size from SO to 200 cities. The

RCTSP generalization of the PCTSP formulated above promises to be an even more powerful tool for

providing optimal solutions to scheduling scenarios. Solution procedures for the RCTSP can be based

on an approach similar to that for the PCTSP.
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Figure 1 An example scheduling scenario with nine jobs plus an
artificial job 0 to designate production startup and shutdown



objective: maximize the sum of benefits
minus the sum of costs

optimal schedule : ( 0 , 7, 3, 2, 6, 9, 4, 5, 8)

jobs not processed : 1

optimal objective function value : 21

objective : minimize production costs
without regard for benefits

optimal schedule : (0 , 4, 9)

jobs not processed : 1, 2, 3, 5, 6, 7, 8

optimal objective function value : 79

objective: maximize benefits such
that costs do not exceed 120

optimal schedule : ( 0 , 4 ,7 , 3, 2, 6, 9)

jobs not processed : 1, 5, 8

optimal objective function value : 120

objective: minimize costs while achieving
80% of available benefits (143)

optimal schedule : ( 0 , 7, 3, 2, 6, 9, 4, 8)

jobs not processed : 1,5

optimal objective function value : 148

Figure 2 Optimal production sequences for each of
the four scheduling objectives



graph representing a feasible pnxluction sequence

graph representing an infeasible production sequence

Figure 3 Graphs representing feasible and infeasible
production sequences
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Figure 4 Data flow diagram for parallel PCTSP
branch and bound algorithm



(1) if (unsolved LAP queue not empty) then
remove an LAP; from the unsolved queue using best bound first selection,
use elimination rules to delete LAPj if possible (if LAPi eliminated, go to (1)).
solve LAPi using Lagrangian lower bounding technique,
replace global upper bound if possible (if replaced, delete LAPj and go to (1)).
use elimination rules to delete LAP} if possible (if LAPj eliminated, go to (1)).
apply patching algorithm to LAPj and replace global upper bound if possible,
place LAPj on solved LAP queue,
goto( l ) .

end if.

(2) if (solved LAP queue not empty) then
remove an LAP^ from the solved queue using best bound first selection,
use elimination rules to delete LAPfc if possible (if LAP^ eliminated, go to (1)).
apply branching rules to LAP^ to generate new assignment problems,
place new assignment problems on unsolved LAP queue,
delete LAPfc.
goto( l ) .

end if.
(3) mark processor as idle.

loop
if either queue becomes nonempty, mark processor as working and go to (1).
if all processors become idle, terminate execution.

end loop.

Figure 5 Control algorithm used by all processors participating
in the branch and bound algorithm



scalar qualities:

lb lower bound value obtained by solving a Lagrangean assignment problem

X near optimal value of Lagrangian dual calculated by the lower bounding
procedure

ub upper bound value obtained by the extended patching algorithm
nloops number of loops present in lower bound solution
nsubtours number of subtours present in lower bound solution
Ecard number of exclude arcs contained in LAP

Icard number of include arcs contained in LAP

non-scalar quanties:

f fj is the successor of vertex i (i.e. x̂ f. = 1)
f fj is the predecessor of vertex j (i.e. x£j = 1)
u UJ is the dual variable associated with row i
v VJ is the dual variable associated with column j
loops loops contains those vertices which participate in a loop
I set of include arcs (i.e. xy = 1 if arc (i j) is a member of I)
E set of exclude arcs (i.e. XJJ = 0 if arc (i j) is a member of E)

comments:

An LAP completely describes a node of the search tree for all operations used during the
branch and bound algorithm.

Figure 6 Information present in an LAP
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Figure 7 Graph of lower bound solution that violates
subtour and prize constraints



after
incorporating

loop

Figure 8 Incorporating a loop into a tour.
One of the operations of the extended

patching algorithm.
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Table 1 Summary of scheduling objectives

problem
number objective formulation

literature
name

literature
references

1

2

3

4

maximize the sum of benefits
minus the sum of costs

minimize production costs
without regard for benefits

maximize benefits such that costs
do not exceed some fixed amount

minimize costs while attaining
some level of benefits

equations
(3-7)

equations
(4-7,8)

equations
(4-7,9,10)

equations
(4-8,11)

asymmetric
traveling
salesman
problem
(ATSP)

asymmetric
traveling
salesman
problem
(ATSP)

orienteering
problem

prize collecting
traveling
salesman
problem

(PCTSP)

references
[3,4,13,14,15,18]

references
(3,4,13,14,15,18]

references
[5,6,7]

references
[7,8]



Table 2t

a = 0.20

n cases time (avg/std) nodes (avg/std) ratio (avg/std)

50
100
150
200

10
10
10
10

5.15/ 2.03
32.33/15.76
98.17/33.88
187.98/86.70

75.80/43.85
377.20/315.71
788.00/545.88
797.00/751.33

1.145/0.140
1.114/0.099
1.076/0.048
1.056/0.015

0.50

cases time (avg/std) nodes (avg/std) ratio (avg/std)

50
100
150
200

10
10
10
10

8.48/ 4.53
46.54/14.83
183.94/92.99

461.32/417.50

225.00/249.43
415.40/227.25
1436.20/944.68

2494.10/2794.41

1.081/0.030
1.044/0.020
1.033/0.010
1.026/0.014

a = 0.80

n cases time (avg/std) nodes (avg/std) ratio (avg/std)

50
100
150
200

10
10
10
10

11.61/ 4.77
67.37/27.65

254.80/235.57
477.05/243.34

360.30/269.50
1056.40/458.11

2147.90/2364.26
1505.60/1181.03

1.060/0.025
1.024/0.009
1.011/0.003
1.015/0.009

a > 1.00

n cases time (avg/std) nodes (avg/std) ratio (avg/std)

50
100
150
200

10
10
10
10

3.19/ 0.95
6.83/ 2.84

12.86/ 3.09
28.07/ 6.77

75.30/47.16
88.10/91.57
78.00/56.32
155.40/94.12

1.026/0.018
1.006/0.005
1.005/0.004
1.OO5/O.OO3

t data collected on a 14 processor BBN Butterfly Plus



Table 3t

processors

1
2
4
8

14

cases

10
10
10
10
10

ot= 0.20

time (avg/std)

186.09/111.73
104.89/63.84
57.58/30.76
40.04/19.37
32.33/15.76

nodes (avg/std)

328.30/286.03
344.00/277.41
344.80/282.70
370.80/311.85
377.20/315.71

irs

1
2
4
8

14

cases

10
10
10
10
10

time (avg/std)

268.22/123.64
149.39/71.67
88.81/41.19
57.27/20.24
46.54/14.83

nodes (avg/std)

285.30/209.78
295.70/204.95
302.70/204.29
337.10/202.07
415.40/227.25

ct= 0.80

processors cases time (avg/std) nodes (avg/std)

1
2
4
8

14

10
10
10
10
10

616.61/339.87
338.27/186.72
179.26/94.96
98.36/48.19
67.37/27.65

1030.60/479.76
1031.10/479.87
1030.80/480.08
1032.30/479.81
1056.40/458.11

a- 1.00

processors cases time (avg/std) nodes (avg/std)

1
2
4
8

14

10
10
10
10
10

19.76/
12.53/
8.72/
6.84/
6.83/

17.16
10.02
5.23
3.21
2.84

75.40/80.25
77.00/82.86
76.90/81.60
81.80/87.91
88.10/91.57

t data collected on a 14 processor BBN Butterfly Plus


