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A b s t r a c t 

This report describes a new technique to maintain the coherency of replicated read/write data in 
large multiprocessors tha t do not have a global bus. The coherency maintenance technique makes it 
possible to efficiently support a shared memory programming model on a message passing machine. 
The report contains performance evaluation data obtained by executing both synthetic load and real 
applications on a detailed simulator. 

1. I n t r o d u c t i o n 
This report addresses some of the problems arising in the design of multiprocessors tha t have no 

physical shared memory but support a shared memory programming model at the architecture 
(instruction set) level. 

There are many reasons why such a multiprocessor can be useful: 
• The widespread use of bus-based shared-memory processors has created a large base of 

existing software systems and applications that rely on the shared memory programming 
model. On the other hand, bus-based architectures are limited to a few processors. 

• A shared-memory programming model can be more convenient. For example, 
communication by critical regions and side-effects may be easier to understand than 
message passing when the structure of the problem and its parallel decomposition call 
for multiple processors accessing the same data. 

• An efficient shared memory model facilitates load balancing. With message passing, 
work has to be explicitly assigned to a processor and, if necessary, rebalanced by 
explicitly redistributing the load to underutilized processors. In a shared memory model 
all processors can grab work as needed from one or more shared queues. 

• Distributed-memory machines are easier and cheaper to build. Distributed-memory 
machines can be built with memory/processor modules tha t are interconnected by means 
of a small number of wires. On the contrary, the complexity of high performance buses 
requires shared memory machines to be engineered around a carefully designed 
backplane with a fixed number of slots. 

• Distributed-memory machines are more scalable. Technology being equal, a distributed-
memory architecture can support more processors than a machine with physically-
shared memory. 

The easiest way to support a shared memory model is to connect memories to processors by a 
single multiplexed connection - a bus. The weakness of a bus lies in its limited bandwidth; its 
strength in the fact t ha t all memory accesses are visible by all the processors in the system. The 
load on the bus can be lowered if data are replicated in local memories (caches) and local copies are 
kept coherent with the main memory content. There are a number of well-known, practical protocols 
tha t can maintain the content of the caches coherent if the architecture is bus-based. The effect of 
these protocols is such tha t the behavior of the machine (but not the speed!) is identical to the 
behavior of a machine with a single centralized shared memory and no caches. Most commercial 
systems are bus-based. 

A bus limits the number of processors: the exact number of usable processors depends both on 
technology, e.g. the relative speed of bus and processor, and on application behavior. If we exclude 
"embarassingly parallel" applications (that would work well on any parallel architecture because of 
their very low communication rate) practical bus-based systems seem to be limited to a few 10s of 
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processors. For example, by using the performance data from [1], a 10 MIPS processor will typically 
make one reference on the global bus every 15 instructions. If the bus can service 10 million 
references per second, 15 processors will use up all the available bus bandwidth. 

There are only a few working systems that use processor-memory interconnections with a higher 
bandwidth than a bus. The major problem these systems face is keeping the memory system 
coherent. The solutions currently in use range from having no caches and waiting for each memory 
reference to be acknowledged before issuing the next one (Butterfly [7]), to caching only variables 
tha t are not shared (RP3 [14]). There are also some coherency protocols tha t do not require a bus 
because they maintain directories of the replicated data [1] a t the main memory site. These protocols 
are largely untested in real systems. 

This report describes a solution tha t does not require the use of a bus or a central directory to 
maintain the coherence of readable and writable replicated data. Although the coherency algorithm 
can be adapted to many architectures, we focus on distributed-memory architectures (Figure 1-1) in 
which each node has a general purpose processor, a fraction of the global shared memory and an 
interface tha t connects memory and processor to a communication network. The same data can be in 
more than one local memory and in more than one cache. The local memory and the cache are kept 
coherent with a local snooping protocol while the local memory of different nodes is kept coherent by 
the algorithm we will describe in the next Sections. In Section 2 we explain the coherency problem. 
In Section 3 we describe the coherency mechanism. In Section 4 we describe in detail the 
architecture tha t has been used for the evaluation of Section 5. 

2 . S h a r e d M e m o r y C o h e r e n c e 
Regardless of the language they are using, programmers commonly assume tha t every write 

operation is performed immediately and indivisibly. This implies tha t the value of a variable is 
always the value stored by the last write operation, i.e. a read operation always re turns the last 
value written. Moreover, in a parallel program, it is common practice to assume tha t operations 
performed in sequence by one processor are also observed in sequence, albeit possibly with some 
delay, by all the other processors. 

This assumption may be violated in two important cases: 
1. If the memory system contains multiple memory banks, and processors do not wait for 

each access to be acknowledged before performing the next, then one processor could 
observe the actions of another processor as if they were performed out of sequence. For 
example, two write operations performed one after the other by one processor might be 
serviced a t widely different times because of network delays. Another processor tha t 

F i g u r e 1-1: Generic Distributed-memory Architecture 
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reads the same locations a t about the same time might observe the effects of the second 
write operation but not the effects of the first one. 

2. If the same variable is replicated in multiple memories, a write operation must update 
or invalidate the copies. If this operation cannot be performed indivisibly, some 
processors might observe the effect of multiple updates out of order. 

Both cases prevent correct synchronization between processors and, therefore, make correct 
parallel processing impossible. The former situation can be avoided if all processors wait for an 
acknowledge from the memory system before performing another access. This is quite limiting since 
the latency of the interconnection network is typically much larger than the instruction time of 
processors of comparable technology. This seems to be the solution adopted in the RP3 
multiprocessor ([14]). 

The lat ter situation can be avoided if the hardware prevents all the processors from accessing a 
replicated value until the value in all the copies is coherent. There are quite a few coherence 
protocols but most of them require tha t all the processors be connected to all the memories through a 
single bus. If a bus is not available, directory schemes (see [1]) are a promising solution tha t is not 
used in any existing machine with more than a few processors and whose effectiveness remains 
mainly untested. In a directory scheme, the information on whether a block is cached or not is kept 
in a table tha t is associated with main memory. The performance of the best directory scheme seems 
to be comparable in number of communication cycles to the performance of bus-based schemes. For 
example, Hennessy et al. suggest that a directory scheme like the one described in [2] requires about 
four communication cycles for each memory reference. Since a communication cycle in a machine 
with many processors can be orders of magnitude larger than the latency of main memory access, the 
measurement of the performance of a directory scheme should take into account the impact of 
latency on the processors' execution time. Since we do not know of any such evaluation it is not 
possible a t this point to do a fair comparison of directory schemes with any other solution. 

All these coherency maintenance techniques guarantee what has been called by Dubois et al. in 
[9] strong coherence. Strongly coherent systems do not violate either of the two previous 

assumptions. Therefore, synchronization can be performed by simple read and write operations and 
atomic read/write sequences. Although strong coherence is sufficient to implement a usable shared-
memory parallel-processing model, it is not necessary. In this report we argue tha t a less-restrictive 
form of coherence, called weak-coherence, is sufficient and easier to implement. 

2.1. Weak Coherence 
Typically, a parallel program alternates between a long sequence of normal read and write 

operations on shared data structures and synchronization operations (e.g. P and V). Enforcing 
strong coherence among the normal read and write operations is not necessary if the programmer 
unders tands t h a t a synchronization operation should be used every time a specific order of access 
between two concurrent computations must be enforced. Assume tha t all synchronization accesses 
are strongly coherent among themselves and in relation to the preceding and following sequence of 
normal accesses. At the same time, do not make any assumption on the coherence of a sequence of 
normal accesses relative to other sequences of normal accesses. In this case the memory system is 
said to implement weak coherence (see the paper by Dubois for a formal definition of 
weak-coherence [9]). Our contention is tha t weak coherence is easier to implement on non-bus 
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architectures and does not impair programming capabilities. 

The only problem generated by weak coherence at the programming level is tha t synchronization 
operations must be explicitly flagged by the programmer so tha t the system can implement them 
correctly. For example, the code in Table 2-1 shows two ways of programming a producer-consumer 
synchronization. In a strongly coherent memory system all write operations are "visible" as soon as 
the processor has performed them and the (a) code achieves the desired effect. In a weakly-coherent 

/* S h a r e d d a t a s t r u c t u r e */ 
struct a 
{ 
int a; 
int flag = FALSE; 

) P ; 

/* S h a r e d d a t a s t r u c t u r e */ 
struct a 
{ 
int a; 
int flag = 0; 

) P ; 

/* P r o c e s s IV f* P r o c e s s 1 */ 

p.a • ...; p.a = ... 
p.flag- TRUE; V(p.flag); 

/* P r o c e s s 2 • / /* P r o c e s s 2 */ 

while (p.flag * - FALSE) Rp.flag) 
wait(); 

... = p.a; ... - p.a; 

(a) (b ) 

Figure 2-1: Wrong (a) and Correct (b) Code for a Weakly Coherent System 

system, if p.a and p.flag are allocated in separate memory modules, it is possible for the write of p.a 
to be delayed after the write and subsequent read by Process 2 of p.flag. The (b) code in Table 2-1 is 
correct because the synchronization operation has been made explicit. We believe tha t the coding 
style exemplified by the (a) code of Table 2-1 should be avoided because it masquerades a 
synchronization operation as a normal access and may be misunderstood. We have examined the 
code of the Mach operating system kernel and found tha t a synchronization had been implemented 
as a normal access only in one case. We believe most programs would port to a weakly-coherent 
system without any change. In the next Sections we will show tha t weak-coherence can be easily 
implemented on large multiprocessors. 

3 . M a i n t a i n i n g W e a k C o h e r e n c e : t h e G r a y Z o n e 
Coherency maintenance is usually based on observing all the memory operations and preventing 

the occurrence of transactions tha t might put the system in an incoherent state. For example, 
writing to a variable tha t has multiple copies might cause all the copies to be invalidated before the 
write operation occurs. Our mechanism, instead, is based on performing all the operations on all the 
copies in parallel bu t making sure tha t each copy ends up with the same value. This requires a 
global clock to t imestamp every request before it is sent to other nodes. Consider a number of nodes 
accessing a shared variable stored in the memories of some other nodes. Each node may arbitrarily 
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issue read and write messages. Any network will have some delay associated with the transmission 
of messages and will have to deal with contention for communication resources. Both effects can 
perturb the sequence of messages that arrive at the nodes where the shared variable is stored, thus 
destroying coherency. If all messages were timestamped on creation, the sequence of read/write 
messages to a particular variable could be sorted at the receiving end and then performed correctly 1. 

Synchronization operations also require that some special operation on the variable be performed 
in a specific order; this special operation computes a value tha t will be returned to the processor. For 
example, if multiple fetch-and-add operations are performed on the same variable, each operation 
must return a unique value tha t depends on the ordering of the requests. Sorting of timestamped 
requests achieves the correct result. 

Unfortunately, the sorting step can only be performed when all the requests that might change 
the outcome of an operation have arrived at the node that contains the shared variable. The 
implementation of the sorting step is impossible unless the upper bound on the message propagation 
time in the network is known. The simplest solution is to approximate the upper bound with a fixed 
upper bound, discarding and retrying all messages that take more than the upper bound. In this 
case, a small upper bound would minimize the time to finalize the memory operations but would 
potentially cause a lot of messages to exceed the bound and be deleted. A large upper bound would 
have the opposite effect. A fixed bound could never be tuned correctly, because the optimal value of 
the bound depends on the delay through the network and on the load, both of which are varying 
continuously. 

Our mechanism keeps a dynamic bound tha t is a good approximation of the real bound without 
requiring much network bandwidth. In the next two subsections we will describe how absolute time 
and communication-time upper bound can be maintained. 

3.1. M a i n t a i n i n g A b s o l u t e T i m e 
Providing each processor in the system with an accurate absolute time requires a counter tha t is 

reset at system initialization time and is continuously incremented by a clock signal tha t is common 
to all the nodes. For this to work properly two problems must be solved: the global distribution of a 
common clock signal and the detection of inconsistencies and subsequent recovery from them. 

The distribution of a global clock is perhaps an overrated problem as there are numerous large 
systems tha t operate on a single clock, e.g. [13], [3], [14] and [15]. A single clock source is not only 
necessary in order to maintain an absolute time, but it is also advantageous for interprocessor 
communication (eliminates the need for synchronizers, allows deterministic protocols tha t can be 
implemented with simple finite state machines and improves some routing and resource allocation 
strategies). 

The implementation of a large (say 1000 processors), synchronous system with a single, global 
clock and tight bounds on the skew between any pair of processors is feasible with a conservative 

llt la assumed that the global clock has a resolution sufficient to distinguish all requests A clock that is advanced «t *h* 
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design by treating the signal as an analog, RF source. The continuously running clock from a crystal 
oscillator is amplified with a broadband power amplifier and, instead of using digital gates to divide 
the clock signal, passive power splitters are used. 

However, given a good common clock distribution, the problem is only half solved. No serious 
digital design should be unprepared for a glitch in a critical component. If the proposed system were 
to rely on a large number of counters to advance in lock step fashion after reset - with no way of 
verifying consistency - it would be hard to recognize and diagnose errors. If one of the time keeping 
counters in a 1000 processor system were to be off by a small amount - say due to a power supply 
glitch, an alpha-particle hit t ing a critical gate - no immediate problem would be apparent. In the 
case of particular usage patterns tha t are sensitive to incoherent behavior of the machine, errors 
might occur tha t would be virtually impossible to diagnose due to the potentially long period 
between cause and effect. Even worse, in many applications it would be hard to recognize that the 
results are incorrect. 

Note tha t the severity of the timer problem arises from its accumulative nature: any glitch would 
be preserved for as long as the system is running, potentially months or years. Thus, while the 
probability for a single counter failure is quite low, it is not likely tha t all 1000 of them will count 
correctly for a year a t a high rate. Fortunately, periodic consistency checks and procedures to 
identify and correct t r a r -ient errors can lower the probability system failure to a tolerable level. 
These procedures are facilitated by the fact tha t the communication network, as we will see in 
Section 4, is synchronous. 

3.2. T h e Gray Zone 
A coherent and reliable time distribution mechanism, such as the one outlined in the previous 

Section, is not sufficient to build a coherent memory system. Proper t imestamping can resolve any 
ambiguity among competing operations but is unable to finalize any operation without additional 
knowledge about the behavior of the message passing layer. Typical communication systems for 
distributed memory multiprocessors have variable and potentially unbounded message latencies 
tha t depend on the traffic pat tern, network load, routing and scheduling strategies. As a 
consequence, the receiver of a message has no way of knowing if there are messages still in transit 
with t imestamps t h a t are older than the t imestamps of the message jus t received. 

Assuming tha t the message passing layer is well behaved, 2 all operations will settle in a coherent 
final state in a finite time span. Let's define the upper bound of this time span: 

Def in i t ion 1: The Gray Zone a t time t is the smallest t ime interval UgzA t ha t contains 
the t imestamps of all outstanding messages at t ime f. 

Note tha t is a function of t. Furthermore, it is a system-wide global quantity. We say that a 
message M has matured if its t imestamp is smaller than tg2; this implies tha t any message sent 
before or a t the same time as M has been received. Operations tha t require the coherent value of a 
memory location will stall until the requesting message has matured, while all other operations 
proceed immediately. 

2 A message passing layer is considered well behaved if it is free of deadlocks, and if it is fair. 
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Figure 3-1: The Computation of the Gray Zone width in a 1-dimensional network 

Let us call t{ the smallest t imestamp of all the messages tha t are in the queues of a given node 
waiting to be t ransmit ted (or retransmitted). Each node can easily compute t{ by updating it every 
time a new message enters or leaves a queue. Imagine four nodes connected by a 1-dimensional 
cube, for example the 4-ary cube in Figure 3-1. If node D sends t{ to the node on its left (C) then C can 
compute t of the subnetwork C-D as the minimum of the tt sent by D and its local value. If C sends 
this value to B and B also takes the minimum with its tt and sends it to A then A can compute a 
system-wide approximation of tgz. The value is approximate because it is based on the value of t in 
B a t / - l , the value of tgz in C a t f-2, etc. This procedure must be performed as often as possible to 
keep a good approximation. 

It is easy to see tha t if A, B and C also compute the minimum of their tl and the tgz of their left 
subnetwork and send it to their right neighbors, then D will be able to maintain a system-wide 
approximation of tgz. Let us now take node B. If B takes the minimum of tt and the tgz coming from its 
right and left subnetworks, then it can also compute the value of the system-wide tgz. It might be 
useful to imagine each node in the system as the root of a tree tha t contains all the other nodes: local 
tgzs are propagated up the tree and, when they reach the root after depth-of-the-tree message cycles, 
the root is able to compute an approximation of the global tgz. 

As it is apparent from the simple case of Figure 3-1, it is not necessary to transfer the information 
relative to the trees rooted in each of the nodes separately: every cycle each node only needs to send 
one new approximation out on each of its output connections and receive one partial value from all of 
its input connections. Assume tha t the message system transfers fixed-length messages, one per 
time unit . If the network has diameter d then it will take d t ime uni ts for the approximate toy to 
propagate, if every message carries this information. 
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Figure 3-2: The Computation of the Gray Zone width in a 2-dimensional network 

The Gray Zone computation tha t each node must perform is a function of the topology of the 
network and can be driven by a locally stored table once the configuration is known. In the case of 
binary n-cubes (see Figure 3-2) the derivation of the computation table is simple. Recall the 
construction of a boolean n-cube of degree d: first construct two subcubes of degree d-1 and then 
connect each node of one of the subcubes to one node of the other subcube. Now assume that each of 
the nodes in the two d-l subcubes has the value of tg2 for its subcube. If each node sends this value to 
its corresponding node in the other subcube then tha t node can compute its view of the global tgz as 
the minimum of the values of tg2 for the two subcubes. For example, see Figure 3-2, C first computes 
t of the C-D subcube and then sends it to A, where it is combined with t of the A-B subcube. For 
the binary n-cube topology the maximum time for a gray zone increment to reach all nodes is a 
function of the network diameter. 

For any given topology, if a constructive mechanism for building the gray zone computation tables 
is not known, it is possible to use a minimum-depth spanning tree of the interconnection network as 
the basis for updating the Gray Zone information. In this case the maximum update time can be 
between d (the network diameter) and 2d, depending on the topology (see [12] for more information). 

In the following sections we describe the use of the Gray Zone concept in the implementation of 
weakly coherent memory operations in a system tha t has no physical shared memory. (Section 4 
provides further implementation details.) 

3.2.1. R e a d Operat ions 
If a node performing a read operation has a local copy of the memory location, the read operation 

simply consists of a local memory access. Otherwise, a request message is t ransmit ted to the nearest 
node tha t has a copy of the memory location, which re turns the value. This is a weakly-coherent 
operation; if some other node had written a certain value to the memory location at some earlier 
time, there is no guarantee tha t the read operation would re turn tha t value. (The coherent-read 
synchronization operation does guarantees this, see Section 3.2.3 below.) 
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3.2.2. Write Operations 

As in the case of read operations, write operations are performed locally or on the nearest node 
tha t has a copy of the memory location. In the latter case, the first node sends a request containing 
the address, data, and the timestamp of the operation to the remote node, after which it can continue 
normal operation. The write operation is then propagated to all copies of the memory location by 
update request messages. Both the original write request to the nearest copy (if necessary) and the 
write-update messages contain the original timestamp of the write operation, so tha t each node can 
sort all updates to memory in time order and perform them consistently. (If two nodes issue write 
operations to the same location with the same timestamp, the node-id is used to disambiguate these 
requests.) The sorting operation is implemented as follows. Each node has a coherency buffer that 
maintains the addresses and timestamps of the locations that have been changed recently on that 
node. Whenever the node receives a write or update request, it checks the coherency buffer to see if 
it contains an entry for the addressed location. If so, the request is allowed to proceed only if its 
t imestamp is newer than tha t in the coherency buffer, and the t imestamp in the coherency buffer is 
also updated. Otherwise, a coherency buffer entry is created. Whenever an entry in the coherency 
buffer has a t imestamp older than tgV it can be discarded; this limits the size of the buffer. 

Since the original t imestamp is retained in all the update messages, the Gray Zone time tgz is 
prevented from advancing until the update messages have all been received and processed. This 
affects the performance of synchronization operations, as explained below. 

3.2.3. Synchronizat ion Operat ions 
Synchronization operations are handled similarly to write operations: the operation is handled 

locally or at the neares t copy, and then update messages containing the original timestamp are 
t ransmit ted to all the remaining copies of the memory location, where they are sorted through the 
coherency buffer. But, in addition, the result of the synchroniztion must be returned to the node 
originating the operation. 3 This result is the value the memory location would contain if all 
preceding operations to tha t location had completed, and no succeeding one had. Furthermore, the 
strongly coherent na ture of the synchronization operation also implies tha t when it completes, all 
preceding operations to memory by the node performing tha t operation have also completed. All this 
is handled, locally if there is a local copy or a t the nearest copy, by the following mechanism. 

For each location on which a synchronization operation is pending, the coherency buffer is 
extended by several fields: a value (initially the value obtained from memory), the timestamp 
corresponding to the value rv (initially the value in the coherency buffer if any, or tgz), and the 
t imestamp of the operation f^.4 Whenever the node has to perform some other memory operation on 
tha t memory location, the value field is updated appropriately if the t imestamp of tha t operation 
falls between tv and top9 and rv is updated to the new timestamp. This extension to the coherency 
buffer is maintained as long as tgz is less than top, a t which point it matures and the value field is 
returned as the result of the synchronization operation, and the extension can be discarded. As a 

*We have studiedthe implementation of four kinds of synchronization operations: fetch-and-addy test-and-set exchange 
^coherent-read. The last is similar to any other synchronization operation, but does not change the memory location in any 

4 Note that several synchronization operations may be pending simultaneously on a single memory location, so the 
coherency buffer should provide for several such extensions to exist simultaneously. 
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result, the performance of synchronization operations depends mainly on the Gray Zone width. 

A consequence of this mechanism is tha t an approximate result of the synchronization operation is 
available immediately. This can be advantageous if it has a high probability of being the correct 
outcome of the synchronization, as in the case of a lock for which there is little contention. 
Therefore, synchronization operations are implemented in two phases: the synchronization 
operation itself, tha t sets up the coherency buffer and its extension and returns an initial guess, and 
a subsequent verify operation that waits for the final result to become available. Other operations 
can be executed in between, thus absorbing some of the synchronization latency. 

if (P(semaphore, tag)) 

/* instruction that do not depend on the outcom* of P() or can be undone */ 

if(verify(tag)) 

/* instructions that depend on the outcome of P() */ 

F i g u r e 3-3: Delayed Synchronization 

For example, the synchronization statement P(semaphore,tag) in Figure 3-3 can precede any 
instruction tha t can be executed independent of the outcome of the synchronization. (The initial 
guess returned by this synchronization can also be used, provided the actions can be undone if the 
guess proves to be wrong.) When the final result becomes necessary, the statement verify(tag) stalls 
execution until the outcome of synchronization operation is available. The variable tag makes it 
possible to have more than one pending synchronization. 

4 . A D i s t r i b u t e d - m e m o r y A r c h i t e c t u r e 
In order to be able to perform some initial evaluations we have assumed the availability of a 

specific architecture. This architecture has homogeneous nodes, see Figure 4-1, each node 
containing a general-purpose processor with a cache and memory mapping, some dynamic RAM 
memory and a network interface tha t handles coherency management, global memory mapping and 
routing. 

Each node has a fixed number of communication channels tha t can be connected to channels on 
other nodes. No constraints are imposed on the connection pattern. In particular, it is possible to 
optimize the interconnection topology according to the characteristics of specific applications. The 
network interface is concentrated in a device tha t performs a number of different but closely related 
functions: i.e. memory coherence, system-wide memory management and routing. All these 
functions can be implemented by a number of independent state machines and a couple of small but 
functionally specialized memories. With current technology, it is reasonable to build an integrated 
circuit t ha t contains all the circuits necessary to perform these functions. The functions of the 
network interface are defined below. 
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Figure 4-1: The Architecture Used in the Performance Evaluation 

Memory Mapping. The memory mapping we have chosen is compatible with state-of-the-art 
general-purpose operating systems and processors. Coherency management, described below, does 
not require a virtual memory organization but software production of non-trivial applications 
depends on good memory management and full operating system support. 

The system manages memory in pages. Processors manipulate per-process virtual addresses that 
are t ranslated by a local memory mapping unit (MMU) into physical addresses (see Figure Figure 
4-2). The local MMU could be a s tandard device like the MC88200 tha t includes a cache and 
translation look-aside buffer. Both virtual and physical addresses are 32-bit byte addresses. 

Physical addresses are t ranslated into hardware addresses for the local memory and/or messages 
tha t are sent to other nodes. These operations are performed by the global MMU tha t is managed by 
the operating system. The mapping tables of the global MMU are stored in the local DRAM memory. 

There are four types of physical pages, distinguished by the two high-order address bits: 

Local, private: The page address directly references the local memory, the page can only be 
accessed on this node. There is no global mapping entry for such pages, and the 
memory reference can proceed at full speed. This kind of page is used for 
program code and stack, for example. 
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F i g u r e 4-2: The Memory Mapping Structure 

Local, shared, read only: 
The page address directly references the local memory. Other nodes have this 
page mapped in their hardware address space (i.e., the page is replicated on 
multiple nodes) bu t nobody may write it. This reference can also proceed a t full 
speed bu t the global MMU maintains a reference counter tha t is incremented 
every t ime the page is accessed and can be used by memory management policies 
to improve memory allocation. 

Local, shared, read/write: 
The page address directly references the local memory. Other nodes have this 
page mapped in their hardware address space (i.e., the page is replicated on 
multiple nodes) and the page is writable. Hence, any write or synchronization 
operation (other than coherent-read) must result in update messages being 
forwarded to all copies of the page. This is achieved efficiently by creating a 
minimum-depth binary multicast-tree from these nodes. The page table entry on 
each node contains two pointers to two nodes down the tree. The leaf nodes point 
back to the root node, so an update initiated a t any level in the tree can 
eventually propagate to all the nodes in the tree; the depth field in the mapping 
table (see figure) is used to avoid cycling perpetually through the folded tree. The 
table also has a reference counter t ha t is used by the memory allocation policies. 

Remote, shared; The page is not available locally; a remote access is necessary. The page may be 
replicated on multiple remote nodes. The page address is used to access a table 
tha t identifies the nearest remote node containing the page, and the address of 
the page on tha t node. There is also a reference counter t ha t is used by the 
memory allocation policies. 

Notice tha t sharing or page replication occurs a t the page level. However, remote accesses and 
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update operations take place at the word level. That is, a remote read operation only results in the 
transfer of the desired word, and a write operation only updates the single word in all copies of the 
address page. 

The physical-hardware address translation tables shown in Figure 4-2 are stored in DRAM 
memory and some overlapping between local memory and table access is possible. Each local shared 
page needs 1 byte and each read/write local page needs 11 bytes. Remote pages require 5 bytes per 
page. 

From the user's point of view there is no difference between this memory organization and the 
organization of a uniprocessor or a bus-based multiprocessor. From the operating system's view, 
most memory management algorithms remain unchanged. The differences occur in memory 
management algorithms tha t deal with the migration or replication of pages between nodes. These 
must be performed only after having notified and received permission from the underlying hardware. 

Coherency Management . Coherency management consists of Gray Zone computation, update 
management (of replicated memory pages) and synchronization management. The global Gray Zone 
computation is performed in the underlying interconnection network. The network is synchronous: 
a 64-bit fixed-length message packet is exchanged over each channel at every message cycle of 
450ns. A message contains, among other fields, source and destination node addresses, a timestamp, 
and either a 32-bit address or 32-bit data. It also contains a field for exchanging Gray Zone 
information, as described in Section 3.2. In order to save network bandwidth, instead of 
t ransmit t ing the absolute value of t we t ransmit an incremental value tha t indicates how much the 
new tg2 has changed from the old. We encode this value using two bits, so we can only represent the 
case of tgz remaining stable or increasing by 1, 2 or 3. Since the absolute time also increases every 
message cycle, the encoding actually represents the case of the Gray Zone becoming wider, 
remaining constant, or narrowing by one or two message cycle units. If the Gray Zone changes by a 
larger value, the system will encode this in several consecutive increments. This method requires 
less than 4% of the network bandwidth. 

Update management and synchronization management is performed by the coherency buffers and 
their extensions as described in Sections 3.2.2 and 3.2.3. 

Rout ing . A non-deterministic, adaptive routing strategy is used to provide good resource 
utilization and dynamic behavior even under high load conditions. In particular, high dimensional 
topologies may be used to increase bandwidth without compromising latency because multiple 
al ternate paths between two given nodes can be used concurrently. Implementation simplicity is 
achieved by supporting precisely one packet type with fixed length and format. A tightly 
synchronized store-and-forward strategy is used which fully utilizes the physical channel bandwidth 
and improves the efficiency of the routing heuristic (see [12] for an analysis of the characteristics of 
such a network). 

The routing component is built around a register file with serial access capability. Essentially, 
each word in the register file is a shift-register tha t can store one entire packet plus some transient 
information (such as the subset of t ransmit ters tha t can be used to advance the packet toward its 
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destination). Serial access 5 is supported so that t ransmitters can operate directly out of the register 
file. This eliminates the need for special parallel to serial converters in each transmitter and their 
counterpart in each receiver. This also reduces the need for data transfers, if uniform access to the 
register file is provided. Multiple packets may be entered and/or removed into/from the network in 
one communication cycle. 

5 . P e r f o r m a n c e E v a l u a t i o n 
The validity of the coherency mechanism described in Section 2 depends not only on its 

correctness but also on its performance when implemented with current technology. Therefore, we 
have built a simulator (described in detail in [12]) to evaluate the performance of real programs on 
plausible system implementations. 

The user of the simulator supplies a program in C language whose execution is simulated on each 
of the nodes. A library package provides functions to create shared memory and allocate it on the 
nodes specified by the user. When the program reads or writes data allocated in shared memory the 
simulator emulates the appropriate actions by the network interface and by the network. Coherence 
management, routing and memory access are simulated in detail. The time between memory 
references is computed by examining the instructions executed and computing an approximate 
execution t ime. 6 This is done during execution by instructions inserted by a preprocessor. 

The network topology, its speed, the speed of the node processor and the page size can all be 
changed by the user. The simulator also includes memory management algorithms similar to the 
ones described in [6]. These algorithms at tempt to replicate pages in order to improve performance; 
although we have implemented these algorithms in the simulator, they have been turned-off in the 
experiments described in this report in order to show the bare performance of the machine. 

All the experiments described in this report use the hypercube topology. The performance of the 
machine depends on the relative performance of the processors, the memories and the network. 
Therefore, we have chosen values tha t we believe are achievable with commonly used technology: the 
time to transfer one 64-bit packet (all packets are 64-bit long) between two adjacent nodes is 450 ns; 
the main memory access time is 150 ns; the state machines tha t implement the memory and network 
interface circuits cycle a t 20MHz. Unless otherwise specified, we have assumed each node contains a 
processor similar in performance to a 20 MHz Motorola 68020. 

Two kinds of experiments have been performed. First, the machine has been stimulated with a 
randomly generated artificial load to establish the basic performance of its components and the point 
of saturation of critical resources. Secondly, since the performance depends on the characteristics of 
the task the machine is running, we have evaluated three real applications: the matching par t of an 
expert system, a single-point-shortest-path algorithm and the recognition par t of a speech 
recognition system. In increasing order, the three tasks are examples of highly data dependent and 

5Serial access does not imply bit-serial access: there can be more than one tap into the shift register so that 4 or 8 bits can 
be moved in/out in parallel 

6 The execution time is approximate since the internal behavior of the processor is not simulated and changes in 
performance due to pipeline stalls or overlapped instructions are not taken into account. 
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very low granularity tasks. One of the tasks has an inner loop which is only a few microseconds long 
and requires in average three synchronization operations for each inner loop execution: this is an 
order of magnitude more demanding than what is usually considered a low-granularity task. All the 
tasks are components of real applications and have been tried on real data. 

5.1. A r t i f i c i a l L o a d 

Our objective with these experiments is to measure latency and maximum frequency of shared 
memory operations (reads, writes and synchronization operations). Latency can be due to many 
reasons: 

• A read operation did not find the page in local memory and caused a remote access. The 
processor and cache cannot proceed until the network interface has queried one of the 
remote nodes where the page is stored and the value has been returned. 

• A write or a synchronization operation did not find the page in local memory and caused 
a remote write. There is no latency for this operation unless the network interface is 
saturated and cannot process the request. 

• A read or write operation referenced a page tha t was not mapped in the same node. This 
is similar to a uniprocessor page fault and is not considered here, since its latency is 
mostly a function of the operating system overhead and secondary storage access time. 

• A synchronization verification or a coherent read was issued by the processor. The 
latency is a function of the Gray Zone width. 

• A local access conflicts with an access by the network interface on behalf of some other 
node. 

5.1.1. R e a d Latency vs . Repl icat ion 
We have performed two sets of experiments on binary hypercubes. The first maintains a constant 

average frequency of read/write operations (i.e., load) while varying the replication, and the second 
maintains a constant replication and varies the load. This section and the following describe the 
results of the first experiment. 

The read latency can be separated into the following components: network transit time (rn), 
memory read cycle time (rm), queuing delay in the network (dn), and queuing delay at the memory 
location (dm). If the number of network hops between the source node and the node containing the 
addressed page is hf then tn=2hth. (Two packets are needed for a read access: address and data.) The 
queuing delays dn and dm a re integral multiples of th and tm, respectively. Since th is much higher 
than tm (450ns vs. 150 ns), the latency of remote read operations is dominated by tn and dn. 

Replicating a page in one or more nodes can reduce tn by reducing h9 since h is the number of hops 
to the nearest copy of the addressed page. In the best case of complete replication, h becomes 0. This 
is a good solution for read-only pages if there is enough memory. However, if the page can also be 
written, each write operation generates extra write-update messages to update all copies of the 
replicated page, t hus increasing the network load and the network queuing delay dn. In addition, the 
Gray Zone width increases, extending the synchronization time. The extent of such behavior is 
dependent on both the frequency of read/write operations and the degree of replication. 

In this experiment, each processing element (PE) holds a page tha t is replicated in a sub-cube 
around tha t PE, and each PE performs read and write operations on randomly chosen pages in the 
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system 7 . The read and write operations are directed to the nearest copy of the addressed page; write 
operations then propagate to all the remaining copies. This generates a load that is evenly 
distributed throughout the system, without any hot-spot location. The interval between the 
initiation of successive operations is distributed exponentially with a mean of 2.4p.s, representing a 
moderate to heavy network load. Read operations are three times as frequent as writes. 

Figure 5-1 shows the variation of the average read latency with replication for binary hypercubes 
of various sizes. The simulation results are shown by the solid lines. Since the simulator models 
both the network and the memory system at every clock cycle, the latency figures are quite accurate. 

32 64 
Replication 

Figure 5-1: Read Latency vs. Replication, Uniformly Distributed Accesses Every 2A\±s 

As expected, the read latency decreases with increasing replication, up to a certain replication 
factor. In this region, the latency is dominated by tn. But with increasing replication the read 
latency rises, especially for larger configurations, indicating tha t the network queuing delay dn is 
becoming significant. The lower bound on the average read latency, i.e. in the absence of any 
queuing delay, is given by: 

(log2N-log2c)tk + tm 

where N is the number of nodes, and c is the replication factor. This is obtained as follows: the 
average distance between the source node and the addressed page, if there is only one copy of the 
page, is log^N/l hops. With c copies of the page distributed in a subcube, this distance is reduced by 
log2cP> hops. The average read latency, in the absence of queuing delays, is the round-trip time plus 
the memory access time. This lower bound is shown by the dotted line in Figure 5-1 for the 64 PE 
case. The curve obtained through simulation shows a greater latency. Since simulation results 
indicate t ha t the queuing delay for a memory cycle was negligible (less than 50 ns on the average), 

7 We are only modeling those references that miss the local PE cache, and cause a local or remote memory cycle. 
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the queuing delay in the network accounts almost entirely for the difference between the two curves. 
From the Figure, we see that this delay is only a small fraction of the total delay at low replication 
(about 20%), but grows to over 60% at 32-fold replication. 

5.1.2. Gray Zone vs . Repl icat ion 

Figure 5-2 shows the average Gray Zone width for the set of experiments described in the previous 
section. The Gray Zone width rises slowly with replication up to a certain point, after which it 
increases very sharply. This change in the slope of the curve marks the point where the network 
queuing delay s tar ts becoming prominent. 
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Figure 5-2: Gray Zone Width vs. Replication, Uniformly Distributed Addresses Every 2.4|is 

The network delay is a function of the offered network load, which, in the above experiments, can 
be calculated as follows. The average distance between a source and the nearest copy of the 
addressed page is (log2N-log2c)/2. Each write operation results in c - 1 additional update operations, 
requiring as many network hops. Since each operation requires the transmission of both an address 
and a da ta packet, the average number of network hops needed per PE per operation is given by: 

noP=l°8j*- l°8ic + ?fw(c-1) 
where fw is the fraction of write operations, 
then: 

"op** 

The offered network load per PE per network cycle is 

period between operations 

whereas the network capacity per node per network cycle is, approximately, 

These expressions provide us with guidelines for controlling replication, within the limits imposed by 
the assumptions made during the experiment. From these and other simulation experiments, we 
have noticed t ha t the read latency and Gray Zone width behave reasonably as long as the average 
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offered network load is within approximately 20% of the network capacity. 

5.1.3. Read Latency and Gray Zone Width vs . Load 
This section describes the results of another experiment in which the replication is a constant 

fraction of the number of PEs in the system, while the frequency of read/write operations is varied. 
The distribution of read/write operations over the various pages is uniform, the interval between 
successive operations is exponentially distributed, and the frequency of reads is three times as much 
as tha t of writes, as in the previous experiment. 

Maintaining replication a t a constant fraction of the number of PEs implies tha t the average read 
latency in the absence of queuing delays: 

is independent of N. Network queuing delays (ignoring memory queuing delays) account for most of 
the deviation from the latency computed with this formula. Table 5-1 shows the variation of read 
latency with load for binary hypercubes of various sizes. In the first part of the table, replication is 
kept a t 1/4 the system size, and in the second at 1/2. The load is characterized by the mean interval 
between the initiation of successive operations. 

Ops. Int.--> .8 1.2 1.6 2.4 3.6 4.8 9.6 

Repl. PE's 

1 4 1.60 1.62 1.60 1.58 1.57 1.51 

2 8 1.68 1.60 1.58 1.59 1.52 1.48 

4 16 1.74 1.74 1.68 1.66 1.63 1.63 

8 32 1.89 1.81 1.79 1.72 1.66 1.65 

16 64 2.10 2.04 1.88 1.80 1.74 1.72 

32 128 2.94 2.92 2.54 1.98 1.87 1.78 

2 4 0.99 0.95 0.97 0.93 0.91 0.89 0.96 

4 8 1.07 0.98 0.95 0.97 0.92 0.96 0.94 

8 16 1.21 1.18 1.11 1.09 1.03 1.02 1.01 

16 32 1.57 1.50 1.28 1.15 1.08 1.05 1.02 

32 64 2.62 2.60 2.50 1.57 1.19 1.14 1.05 

Table 5-1: Read Latency vs. Load 
(Mean Operation Interval in Microseconds) 

We can see t ha t the average read latency is fairly constant almost throughout the table, indicating 
a relative absence of network queuing delays. These become apparent only for large systems (when 
replication becomes high) operating at large loads. 

Figures 5-3 and 5-4 show the Gray Zone widths for the same sets of experiments. Once again, the 
Gray Zone width increases fairly slowly except in the case of large systems operating at high loads. 

In conclusion, page replication reduces the average read latency significantly, bu t only up to a 
certain point. Furthermore, the Gray Zone width always increases with replication, and it increases 
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Figure 5-3: Gray Zone Width vs. Load, Replication Equal to 1/4 System Size 

3 14.0 

8.0 10.0 12.0 
Operation Interval (microseconds) 

Figure 5-4: Gray Zone Width vs. Load, Replication Equal to 1/2 System Size 
rapidly beyond a certain point. This implies tha t in order to obtain the full benefit of replication, it 
is important to limit the degree of da ta sharing among PEs, especially in large systems. For 
example, if certain data structures are shared between only 8 PEs in a 64 PE system, they can be 
replicated on all these PEs without causing the network to be overloaded. The experiments 
described in later sections make use of precisely this strategy. 
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5.1.4. S y n c h r o n i z a t i o n P e r f o r m a n c e 
This set of simulation experiments was conducted to measure the average time taken for a 

fetch-and-add-verify synchronization operation with all PEs in the system contending for a single 
lock, and the effect of such a (potential) hot-spot on other background (remote read/write) operations. 
The results of such an experiment are dependent on several parameters: the network topology and 
size, the frequency of synchronization operations, the frequency of read/write operations, and the 
lock replication count, to name a few principal ones. The topology was restricted to binary 
hypercubes, and the load pat tern was constrained as follows: each PE generates read and write 
operations directed to a randomly chosen remote PE node. In addition, it generates fetch-and-add-
verify operations on the single lock variable, which may be replicated on several nodes. One write is 
generated every four reads and one fetch-and-add-verify is generated every 10 read or write 
operations. There is no delay between the completion of one operation and the s tar t of the next; 
hence, this is the highest load tha t the system will sustain. 

The system behavior under this load was determined by simulation. Figure 5-5 shows the average 
synchronization latency per PE vs. replication for various system configurations. The latency is 
measured from the time the fetch-and-add operation is issued until the time the corresponding verify 
operation completes. 
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Figure 5-5: Fetch-and-add Latency vs. Replication 
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When the number of PEs is between 4 and 64, the synchronization latency is dictated essentially 
by the network performance; i.e., the time taken for synchronization requests to propagate to a node 
containing the lock, for the Gray Zone information to percolate through the system, and for the 
verified reply to re turn to the source PE. Every time the number of PEs is doubled, (i.e., the network 
dimensionality is increased by 1) the performance curve is shifted up by approximately l . l j is . Most 



21 

of this is accounted for by the extra distance the request and response packets must travel in the 
larger system. Specifically, the average distance to the lock increases by 0.5 hop, and four packets 
must travel this extra distance: address and data packets for the request, a data packet for the 
initial response, and one for the verified response. All of this adds up to an extra 0.9 JIS. 

When the number of PEs increases to 128, the memory bandwidth to the single lock becomes the 
bottleneck. With a cycle time of 150 ns and two cycles needed for each synchronization operation, a 
single lock can sustain at most 3.33 synchronization operations/|is. Table 5-2 shows the maximum 
number of synchronization operations per jisecond tha t was sustained by the lock in this experiment. 
Clearly, the memory module holding the lock is close to saturation in the last two cases. With 256 
PEs, the fetch-and-add-verify latency is over 30pts for this kind of load. 

Number of Processors 2 4 8 16 32 64 128 256 
ops/usec 0.12 0.20 0.34 0.58 1.02 1.78 2.90 2.95 

T a b l e 5-2: Peak Synchronization Rate 
(Total Number of Synchronization Operations per Microsecond) 

Replicating the lock decreases the fetch-and-add-verify latency up to a point. This is partly due to 
the shorter average distance between any given node and the nearest copy of the lock, and partly due 
to the increase in effective memory bandwidth. In larger configurations, where the memory 
bandwidth is the bottleneck, replication improves the fetch-and-add latency significantly. For 
instance, with 128 PEs and two copies of the lock, each copy handles only half the total number of 
requests. Each copy must also process update requests from the other copy, but the cost of these is 
one memory cycle, as opposed to two for the original requests. Hence, the memory bandwidth 
requirement per copy is reduced by about 33%, eliminating the bottleneck. 

Replication does not, however, reduce synchronization time very significantly. In fact, beyond 
8-fold replication the synchronization time begins to increase. This is in contrast to the read latency 
performance described in the previous experiment. One reason is tha t the lock is a hot-spot, unlike 
any given page in the previous experiment. With higher replication, the update requests that keep 
all copies coherent begin to flood the network, increasing both the message latency and the Gray 
Zone width. 

With limited replication, the fetch-and-add latency is remarkably insensitive to the total load in 
the system, as well as to the relative ratio of synchronization operations and background traffic 
(provided the lock memory bandwidth is not a bottleneck). Varying the former between 20% and 
100%, and the lat ter between 0.03 and 0.33 affects the performance only by about 15%. This 
demonstrates tha t the synchronization time consists almost entirely of the time for request and 
response packets to simply cover the distance between the source and the lock, with very little 
queuing delays. 

The latency of background read operations is also quite insensitive to wide variations in the total 
load and increases linearly with the network dimension: from 2.18 (is with 4 PEs to 4.66 \is with 256 
PEs. By varying the total load between 20% and 100% and the fraction of synchronization 
operations between 0.03 and 0.33 the read time is only affected by about 6%. This holds t rue even 
when the synchronization traffic is almost saturat ing the lock, which implies tha t the network is 
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able to route read requests around the hot spot quite effectively. 

5.2. R e a l L o a d 

5.2.1. P r o d u c t i o n S y s t e m M a t c h 
The matching process is one of the bottlenecks of production system computations. In this 

evaluation we have followed the model used by Gupta in [10]. The production systems class of 
applications can be modeled abstractly as follows. An application consists of a global hash table and 
a set of dynamically created tasks. The execution of each task requires access to (and modification 
of) one entry in the hash table and generates zero or more new tasks. The application runs as a 
succession of cycles; a cycle terminates when there is no task pending. In a parallel implementation, 
several processors can be working on independent tasks concurrently as long as there is no conflict 
for a hash table entry. 

The average granularity of each task is between 50 and 100 |is, during which both the shared task 
queue and the hash table have to be updated. The size of the affected data structures is between 10 
and 20 32-bit words. During this update two or more synchronization operations are needed: one for 
taking a task off the queue, one to lock the hash table entry for this task, and the remaining to insert 
new tasks into the queue. Furthermore, in each cycle the processors need additional synchronization 
to determine if the end of the cycle has been reached. The cost of these synchronization operations 
must be low in comparison with the task granularity. Finally, the available parallelism in these 
applications is limited by the average number of tasks active at any time; in the cases studied the 
number of active tasks is between 15 and 20. 

In an ideal implementation, there would be a single task queue shared among all the processors 
(which requires tha t the hash table also be shared globally). This ensures the best possible load 
distribution among the processors and, provided the cost of global memory access is no different from 
tha t of local memory access in a uniprocessor, gives the best possible performance. In an actual 
implementation on our machine, however, it is not advisable to share the task queue and hash table 
globally, since these data structures are accessed and updated relatively frequently. The reason is 
the following. In order to be competitive with a uniprocessor implementation, each processor in this 
machine mus t have a local copy of all the data it needs for processing each task. Otherwise, reading 
10-20 words from a remote location (at 2 |xs per access vs. 50 ns for each local-cache access) is too 
costly considering the small granulari ty of the task. At the same time, it is not feasible to replicate 
all da ta a t every processor when the number of processors is more than 8 or so, because the need to 
update all the copies begins to saturate the network. 

An alternative solution is to partition the hash table among the processors, and maintain a 
separate task queue per processor, so tha t each processor will receive only those tasks tha t need 
access to its local hash table partition. This not only eliminates most of the remote accesses and the 
need for replication, but also some of the synchronization overhead: a processor no longer needs to 
lock its task queue to read a task and no longer has to lock the hash table entry for t ha t task. The 
disadvantage of such a static allocation is the potential loss of performance due to a non-uniform 
distribution of tasks among the processors. 

The compromise solution is to maintain a separate task queue for each small cluster of processors. 
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The cluster should be small enough so that all the data needed for that task queue can be replicated 
everywhere in tha t cluster without incurring too high a cost for the update of all copies. At the same 
time, the total number of queues should be small enough for the load distribution not to become too 
uneven. 

A number of experiments were run on the simulator using traces generated from an actual 
production system (Rubik). Figure 5-6 shows the performance for various data allocation strategies. 
Separate curves are shown for an (ideal) totally-partitioned case (a separate task queue per 
processor), for different cluster sizes (number of processors sharing a given task queue), and for the 
totally shared case (a single task queue shared among all processors). The speedup values are 
relative to an efficient uniprocessor implementation. The experiments on a totally shared task 

§• 32 

16 32 
No. of processors 

Figure 5-6: Results of Simulation of Rubik Traces 
queue were conducted to place an upper bound on the available parallelism in the application For 
this purpose, the extra computational cost arising from replicating the shared data structures was 
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hidden from the simulator and the computational cost per task was made to be identical to that of an 
efficient uniprocessor implementation. Since the hash table was hidden from the simulator, we did 
not account for the time required for hash table conflicts. As a result, the performance figures of the 
totally shared case are overestimated. On the other hand, the synchronization cost was retained in 
the simulation and it does show up as an overhead in the performance figures. 

The differences in the above performance curves can be understood by looking at the breakdown of 
the total processing time per processor, which consists of three major components: the actual 
computation time, the synchronization overhead, and the idle time waiting on an empty task queue. 
Table 5-3 summarizes these. 

Number of Processors 2 4 8 16 32 

totally compute 106.2 53.1 26.6 13.3 6.6 
shared sync 10.4 8.4 5.6 3.6 2.2 
(ideal) idle 0.1 0.2 0.6 2.0 4.1 

totally compute 106.2 53.1 26.6 13.3 6.6 
partitioned sync 9.4 6.7 4.4 2.7 1.6 

idle 3.0 11.0 14.8 17.8 18.5 

clustered compute 109.4 53.6 27.2 13.8 7.0 
sync 11.0 7.2 5.4 3.1 1.8 
idle 1.2 9.7 3.9 8.8 9.6 

size 2 2 4 4 4 

Table 5-3: Peak Synchronization Rate 

The biggest factor determining the shape of the performance curve is the idle time. The totally 
shared case (with a single global task queue) has the best load distribution, and hence has the least 
idle time. The totally partitioned configuration has a separate queue per processor, which leads to a 
much worse load distribution among processors (i.e., a processor remains idle if its input task queue 
is empty, even though there may be tasks pending in other queues). Consequently, it has a much 
higher idle time. The clustered configuration reaches a better load distribution (and lower idle time) 
as expected, although these results are still inferior to the ideal case of a single task queue. The 
synchronization overhead is fairly steady between 10 and 20% of the computation time. 

Since these simulations were trace driven, we have not been able to take advantage of an 
important optimization feature of this architecture. This is its ability to initiate and complete 
synchronization operations in two phases, while carrying on other computation in between. From 
the above table, we can see tha t the synchronization overhead is between 10 and 20%. Therefore, 
this application can potentially run tha t much faster than the above graph and table indicate. 

5.2.2. S ing le P o i n t Shortes t P a t h 
The Single Point Shortest Path problem is a good example of a problem requiring many 

synchronization operations. The problem involves finding the minimum cost to traverse a graph from 
one vertex to any other vertex. Both sequential and concurrent algorithms for thi? problem work by 
propagating the distance cost from one vertex and updating it until no more updates are possible 
(see Daily's thesis [8] for a description of the algorithms). Each arc contains the cost to traverse it 
and each vertex contains the cost to reach it from the start ing point. The former is set at 
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Figure 5-7: Speed-up for the Single Point Shortest Path Problem 

initialization time and the lat ter is dynamically computed. 

Number of Processors 2 4 8 16 32 64 128 256 
best case 

(some replication) 
99.8 99.53 97.34 91.62 83.37 66.89 51.62 32.62 

worst case 
(no replication) 

97.4 76.34 70.16 72.3 71.55 41.68 23.00 16.02 

Table 5-4: Average Processor Utilization. 

The basic step of a concurrent implementation involves choosing a vertex and computing the cost 
of moving to each of its neighbors. If the new cost is better than the cost stored in the vertex, the cost 
is updated and the vertex is queued for further expansion. When there are no more vertices to 
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expand, the algorithm terminates. Each step requires three kinds of synchronization operations: 
extracting a vertex from the queue, locking a vertex in order to update its cost atomically and 
inserting a vertex into the queue. We used a fetch-and-add primitive to implement the queue and a 
semaphore to lock each vertex. Each step takes about 80 |is of processing time (if all synchronization-
related instructions are not counted) and requires an average of two fetch-and-add and four fetch-
and-set operations. 

The implementation uses multiple queues since a single queue introduces serialization and 
requires long remote accesses. The vertices are evenly distributed among the nodes and there is one 
queue on each node. If a processor extracts work only from its local queue, it is possible for some 
processors to remain idle for part of the time, especially if the ratio of number of vertices to the 
number of processors is low. The shared memory model and the possibility of replicating data are 
very helpful in this case. We have replicated queues and vertices on more than one processor and 
found a substantial performance increase due to better load balancing. In this case, a processor 
looks a t each of the queues start ing with the queues tha t are replicated locally. 

Figure 5-7 shows the speed-up of me average time to process one vertex for different levels of 
replication. The speed-up drop for 256 processors is mainly due to the fact tha t the graph has too 
few nodes (1024) compared to the number of processors; often the sum of the number of the vertices 
in the queues is less than 256 and it is impossible to rebalance the load. The task size creates a load 
balancing problem with more than 32 processors. This is indicated by the utilization (ratio of the 
average processor idle time to the elapsed time) shown in Table 5-4. With no replication, the 
utilization decreases substantially when more than 32 processors are used. When replication is 
used, utilization and speed-up remain reasonable up to 128 processors. 

The network and the coherency mechanism are much less loaded than in the case of the artificial-
load experiments described in the previous sections: the average read time is about 200 ns and the 
average synchronization latency is less than 2.5 jiseconds in the case of 256 processors. The 
synchronization latency experienced by the program is less than 2.5 jiseconds since some of the 
locking operations are partially overlapped with useful computation. 

5.2.3. B e a m Search 
The SPHINX speech recognition system (Kai-Fu Lee et. al. [11]) is a state-of-the-art speaker-

independent continuous speech recognition system which currently achieves in excess of 95% 
accuracy on a 1000 word vocabulary with loosely constrained grammars. The system has two 
components: a signal processing component tha t can be executed in real time (real time is the length 
of the ut terance to be recognized) by a signal processing processor like the Texas Instruments 
TMS32030, and a beam search [4] component tha t requires about 7 times real t ime on a Sun 4/260 
for a medium-difficulty task. The search component is a good example of a real-world non-numeric 
application since it exhibits the following characteristics: 

1. No floating point arithmetic or integer multiplications; no more than 25% of the 
instructions are arithmetic operations. 

2. Negligible amount of I/O (about .03 bytes per instruction). 

3. Control-flow depends on the input data (speech input). 

4. Poor locality of da ta reference. 
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5 ' S y S . a H a S i n S W h i ° h C r e a t C S d e p e n d e n c i e s t h a t c a n n o t b e a v o i d e d by compilation 

The inner loop of this algorithm can be coded in about 70 RISC instructions and requires about 10 
memory references per iteration. A medium-complexity 1,000 word task requires the execution of 
about 1 0 6 inner loop iterations per second. Larger lexicons and more complex grammars require 
substantially more computation. 

The beam search algorithm of SPHINX searches a Hidden Markov Model representation of the 
speech process and returns the most likely sequence of words. Beam search requires a very fine-
grain parallel decomposition and a substantial amount of synchronization. Typically, a processor 
must dequeue one Markov state from the list of states to be processed, lock all the states tha t follow 
it and finally queue a new state. 

Queuing (dequeuing) states in (from) a central queue causes too much serialization. The solution 
is to split the queue into local queues, one for each processor, so that queue accesses can proceed in 
parallel. In this case, because of the highly data-dependent behavior of beam search, it is likely that 
some queues will become empty before others and some processors will remain idle and create a load 
imbalance. This load imbalance can be limited by associating each queue with a few processors 
instead of one. 

The algorithm requires a large memory bandwidth tha t cannot be fully obtained by means of 
caches since the search proceeds in many different parts of the graph at the same time and the 
locality of da ta references is limited. 

We have implemented the search algorithm on different machines and on the simulator. The same 
C code has been used for all existing machines. Because of memory limitations (the algorithm 
requires about 8 Mbytes of memory) we have driven the simulator with a detailed trace collected 
from one of the C-code programs instead of the program itself. Both execution time and memory 
references were accurately modeled and we have validated the simulator version by comparing the 
execution time of a real machine with the execution time on a single node of the simulated system. 

Figure 5-8 compares the performance of a few commercial machines with the simulated 
performance of our multiprocessor. We have chosen the speed of the processors so tha t the speed of a 
single processor system is similar to the speed of a single processor Encore Multimax. The absolute 
performance of such a one-processor system is about 27 times real time (real-time is the length of the 
utterance). The line labeled BEAM shows the performance of a shared-memory accelerator called 
BEAM [5] t ha t uses three 10-MIPS Weitek-8032 and is currently the fastest machine running 
SPHINX. The Figure also shows the relative speed of a Sun 4/260 and a Sun 3/60. In comparing the 
values one should remember tha t the performance of the algorithm depends not only on the speed of 
the processor b u t also on the performance of the memory system, e.g. on the size of the cache. 

The speed of the bus-based Encore peaks a t about 12 processors, bu t there are no substantial 
speed improvements with more than 8 processors because the combination bus/shared memory 
system saturates . The distributed-memory multiprocessor has close-to-linear speed-up until 16 
processors and then becomes less effective because of the synchronization overhead. One should also 
notice tha t the performance is as good as or better than the performance of the bus-based machine 
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Number of Processors 

Figure 5-8: Beam Search Speed-up Relative to the Performance of 
a One-processor Encore Multimax. 

even in the range in which the lat ter performs well. This indicates tha t a distributed memory 
architecture can be advantageous even with a small number of processors. 

Figure 5-9 shows the simulated performance with a much faster processor. The single processor 
speed has been calibrated to be about 1.5 times the speed of a single Weitek 8032 processor as it was 
used in the BEAM accelerator [5]. We estimated tha t this speed is a conservative approximation of 
the speed attainable by a Motorola 88000 running a t 20MHz. The performance of the single 
processor system is 1.83 times real time. In comparing Figure 5-8 to Figure 5-9 one should bear in 
mind tha t there is a factor of 15 performance difference between the single processor case in the two 
Figures. The inner loop of the search takes less than 4 jiseconds and three synchronizations are 
necessary for each iteration. 
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Number of Processors 

Figure 5-9: Beam Search Speed-up Relative to the Performance of 
the Best Sequential Implementation. 

The dashed curve shows the performance with exactly the same program tha t was used to derive 
the measurements of Figure 5-9: the speed-up starts deteriorating after 32 processors. The dot-dash 
curve shows the performance of a different version of the program in which par t of the 
synchronization latency has been overlapped with computation. For example, the program assumes 
tha t lock operations are always successful and performs the instructions tha t depend on the lock 
without waiting for the synchronization outcome. Only a t the end of this processing it checks the 
outcome of the lock operation and repeats the computation if necessary. The absolute performance is 
improved because pa r t of the synchronization delays are hidden, but the slope of the curve is similar 
to the slope of the previous case. 

The dotted line shows the performance of a very different version of the same program: the loop is 
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programmed as three independent tasks that are associated with the completion of a 
synchronization operation. Each of the tasks can be repeatedly executed and can issue a number of 
synchronization operations which, when completed, will trigger the execution of other tasks. 
Switching to a different task instead of waiting for the outcome of a synchronization is very useful 
since it increases utilization. If the overhead of switching is too high, though, the advantage is lost. 
In programming this specific program we have been able to keep the overhead within 10 instructions 
per context switch. Although we believe that a general purpose package with similar performance 
could be programmed, we have not done it. Since the slope of the curve is dominated by the 
increasing cost of synchronization, better speed-up is achieved in this last case because a larger 
percentage of the synchronization latency is overlapped with computation. 

6. S u m m a r y 
We have argued tha t a form of coherence (weak coherence) that is less restrictive than the one 

supported on current shared memory multiprocessors is sufficient and easier to implement on large 
multiprocessors. We have presented a new technique to support weak coherence in multiprocessors 
tha t do not have a physical shared memory. The technique is based on keeping a dynamic 
approximation of the t imestamp of the oldest message tha t is still in transit . 

We have simulated a system tha t implements our coherence mechanism at a very detailed level 
and found tha t the system can be more scalable than a bus based system using the same technology. 
Moreover, we found tha t replicating writable data can improve load balancing and therefore improve 
performance. 

One of the experiments with a fine-grain real application has also shown tha t a distributed-
memory multiprocessor of this kind is competitive with a shared-memory system even if only a few 
processors are used. 
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