
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Coherent Shared Memory
on a Message Passing Machine

Roberto Bisiani, Andreas Nowatzyk and Mosur Ravishankar

December 1988

CMU-CS-88-204 ^

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Copyright © 1988 R. Bisiani, A Nowatzyk, M. Ravishankar

This research is sponsored by the Defense Advanced Research Projects Agency, DoD, through
ARPA Order 5167, and monitored by the Space and Naval Warfare Systems Command under
contract N00039-85-C-0163. Views and conclusions contained in this document are those of the
authors and should not be interpreted as representing official policies, either expressed or implied, of
the Defense Advanced Research Projects Agency or of the United States Government. Par ts of this
report have been submitted for publication and will probably be copyrighted if accepted.

i

1
T a b l e o f C o n t e n t s

A b s t r a c t
1. I n t r o d u c t i o n 1
2 . S h a r e d M e m o r y C o h e r e n c e 2

2.1. W e a k C o h e r e n c e 3
3 . M a i n t a i n i n g W e a k C o h e r e n c e : t h e G r a y Z o n e 4

3.1. M a i n t a i n i n g Abso lu t e T i m e 5
3.2. T h e G r a y Zone 6

3.2.1. R e a d O p e r a t i o n s a
3.2.2. Wr i t e O p e r a t i o n s
3.2.3. S y n c h r o n i z a t i o n O p e r a t i o n s 9

4 . A D i s t r i b u t e d - m e m n r v Arr»hit*>s»+iivo , A D i s t r i b u t e d - m e m o r y A r c h i t e c t u r e
5. P e r f o r m a n c e E v a l u a t i o n

5.1. Ar t i f ic ia l L o a d 15
5.1.1. R e a d L a t e n c y vs . R e p l i c a t i o n 15
5.1.2. G r a y Zone vs . R e p l i c a t i o n 17
5.1.3. R e a d L a t e n c y a n d G r a y Zone W i d t h vs . L o a d 18
5.1.4. S y n c h r o n i z a t i o n P e r f o r m a n c e 20

5.2. R e a l L o a d 22
5.2.1. P r o d u c t i o n S y s t e m M a t c h 22
5.2.2. S ingle P o i n t S h o r t e s t P a t h 24
5.2.3. B e a m S e a r c h 26

6. S u m m a r y 3 0
A c k n o w l e d g m e n t s 3 0
R e f e r e n c e s 3 0

10
14

University Libraries
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

ii

L i s t o f F i g u r e s
F i g u r e 1-1: G e n e r i c D i s t r i b u t e d - m e m o r y A r c h i t e c t u r e 2
F i g u r e 2-1: W r o n g (a) a n d C o r r e c t (b) C o d e for a W e a k l y C o h e r e n t 4

S y s t e m
F i g u r e 3-1: T h e C o m p u t a t i o n o f t h e G r a y Z o n e w i d t h i n a 1 - d i m e n s i o n a l 7

n e t w o r k
F i g u r e 3-2: T h e C o m p u t a t i o n o f t h e G r a y Z o n e w i d t h i n a 2 - d i m e n s i o n a l 8

n e t w o r k
F i g u r e 3-3: D e l a y e d S y n c h r o n i z a t i o n 10
F i g u r e 4-1: T h e A r c h i t e c t u r e U s e d i n t h e P e r f o r m a n c e E v a l u a t i o n 11
F i g u r e 4-2: T h e M e m o r y M a p p i n g S t r u c t u r e 12
F i g u r e 5-1: R e a d L a t e n c y v s . R e p l i c a t i o n , U n i f o r m l y D i s t r i b u t e d 16

A c c e s s e s E v e r y 2 . 4 m s
F i g u r e 5-2: G r a y Z o n e W i d t h v s . R e p l i c a t i o n , U n i f o r m l y D i s t r i b u t e d 17

A d d r e s s e s E v e r y 2 . 4 m s
F i g u r e 5-3: G r a y Z o n e W i d t h v s . L o a d , R e p l i c a t i o n E q u a l t o 1/4 S y s t e m 19

S i z e
F i g u r e 5-4: G r a y Z o n e W i d t h v s . L o a d , R e p l i c a t i o n E q u a l t o 1/2 S y s t e m 19

S i z e
F i g u r e 5-5: F e t c h - a n d - a d d L a t e n c y v s . R e p l i c a t i o n 2 0
F i g u r e 5-6: R e s u l t s o f S i m u l a t i o n o f R u b i k T r a c e s 23
F i g u r e 5-7: S p e e d - u p f o r t h e S i n g l e P o i n t S h o r t e s t P a t h P r o b l e m 2 5
F i g u r e 5-8: B e a m S e a r c h S p e e d - u p R e l a t i v e t o t h e P e r f o r m a n c e o f a 28

O n e - p r o c e s s o r E n c o r e M u l t i m a x .
F i g u r e 5-9: B e a m S e a r c h S p e e d - u p R e l a t i v e t o t h e P e r f o r m a n c e o f t h e 2 9

B e s t S e q u e n t i a l I m p l e m e n t a t i o n .

L i s t o f T a b l e s
T a b l e 5-1: R e a d L a t e n c y v s . L o a d (M e a n O p e r a t i o n I n t e r v a l

M i c r o s e c o n d s)
T a b l e 5-2: P e a k S y n c h r o n i z a t i o n R a t e (T o t a l N u m b e r o f

S y n c h r o n i z a t i o n O p e r a t i o n s p e r M i c r o s e c o n d)
T a b l e 5-3: P e a k S y n c h r o n i z a t i o n R a t e
T a b l e 5-4: A v e r a g e P r o c e s s o r U t i l i z a t i o n .

1

A b s t r a c t

This report describes a new technique to maintain the coherency of replicated read/write data in
large multiprocessors tha t do not have a global bus. The coherency maintenance technique makes it
possible to efficiently support a shared memory programming model on a message passing machine.
The report contains performance evaluation data obtained by executing both synthetic load and real
applications on a detailed simulator.

1. I n t r o d u c t i o n
This report addresses some of the problems arising in the design of multiprocessors tha t have no

physical shared memory but support a shared memory programming model at the architecture
(instruction set) level.

There are many reasons why such a multiprocessor can be useful:
• The widespread use of bus-based shared-memory processors has created a large base of

existing software systems and applications that rely on the shared memory programming
model. On the other hand, bus-based architectures are limited to a few processors.

• A shared-memory programming model can be more convenient. For example,
communication by critical regions and side-effects may be easier to understand than
message passing when the structure of the problem and its parallel decomposition call
for multiple processors accessing the same data.

• An efficient shared memory model facilitates load balancing. With message passing,
work has to be explicitly assigned to a processor and, if necessary, rebalanced by
explicitly redistributing the load to underutilized processors. In a shared memory model
all processors can grab work as needed from one or more shared queues.

• Distributed-memory machines are easier and cheaper to build. Distributed-memory
machines can be built with memory/processor modules tha t are interconnected by means
of a small number of wires. On the contrary, the complexity of high performance buses
requires shared memory machines to be engineered around a carefully designed
backplane with a fixed number of slots.

• Distributed-memory machines are more scalable. Technology being equal, a distributed-
memory architecture can support more processors than a machine with physically-
shared memory.

The easiest way to support a shared memory model is to connect memories to processors by a
single multiplexed connection - a bus. The weakness of a bus lies in its limited bandwidth; its
strength in the fact t ha t all memory accesses are visible by all the processors in the system. The
load on the bus can be lowered if data are replicated in local memories (caches) and local copies are
kept coherent with the main memory content. There are a number of well-known, practical protocols
tha t can maintain the content of the caches coherent if the architecture is bus-based. The effect of
these protocols is such tha t the behavior of the machine (but not the speed!) is identical to the
behavior of a machine with a single centralized shared memory and no caches. Most commercial
systems are bus-based.

A bus limits the number of processors: the exact number of usable processors depends both on
technology, e.g. the relative speed of bus and processor, and on application behavior. If we exclude
"embarassingly parallel" applications (that would work well on any parallel architecture because of
their very low communication rate) practical bus-based systems seem to be limited to a few 10s of

2

processors. For example, by using the performance data from [1], a 10 MIPS processor will typically
make one reference on the global bus every 15 instructions. If the bus can service 10 million
references per second, 15 processors will use up all the available bus bandwidth.

There are only a few working systems that use processor-memory interconnections with a higher
bandwidth than a bus. The major problem these systems face is keeping the memory system
coherent. The solutions currently in use range from having no caches and waiting for each memory
reference to be acknowledged before issuing the next one (Butterfly [7]), to caching only variables
tha t are not shared (RP3 [14]). There are also some coherency protocols tha t do not require a bus
because they maintain directories of the replicated data [1] a t the main memory site. These protocols
are largely untested in real systems.

This report describes a solution tha t does not require the use of a bus or a central directory to
maintain the coherence of readable and writable replicated data. Although the coherency algorithm
can be adapted to many architectures, we focus on distributed-memory architectures (Figure 1-1) in
which each node has a general purpose processor, a fraction of the global shared memory and an
interface tha t connects memory and processor to a communication network. The same data can be in
more than one local memory and in more than one cache. The local memory and the cache are kept
coherent with a local snooping protocol while the local memory of different nodes is kept coherent by
the algorithm we will describe in the next Sections. In Section 2 we explain the coherency problem.
In Section 3 we describe the coherency mechanism. In Section 4 we describe in detail the
architecture tha t has been used for the evaluation of Section 5.

2 . S h a r e d M e m o r y C o h e r e n c e
Regardless of the language they are using, programmers commonly assume tha t every write

operation is performed immediately and indivisibly. This implies tha t the value of a variable is
always the value stored by the last write operation, i.e. a read operation always re turns the last
value written. Moreover, in a parallel program, it is common practice to assume tha t operations
performed in sequence by one processor are also observed in sequence, albeit possibly with some
delay, by all the other processors.

This assumption may be violated in two important cases:
1. If the memory system contains multiple memory banks, and processors do not wait for

each access to be acknowledged before performing the next, then one processor could
observe the actions of another processor as if they were performed out of sequence. For
example, two write operations performed one after the other by one processor might be
serviced a t widely different times because of network delays. Another processor tha t

F i g u r e 1-1: Generic Distributed-memory Architecture

3

reads the same locations a t about the same time might observe the effects of the second
write operation but not the effects of the first one.

2. If the same variable is replicated in multiple memories, a write operation must update
or invalidate the copies. If this operation cannot be performed indivisibly, some
processors might observe the effect of multiple updates out of order.

Both cases prevent correct synchronization between processors and, therefore, make correct
parallel processing impossible. The former situation can be avoided if all processors wait for an
acknowledge from the memory system before performing another access. This is quite limiting since
the latency of the interconnection network is typically much larger than the instruction time of
processors of comparable technology. This seems to be the solution adopted in the RP3
multiprocessor ([14]).

The lat ter situation can be avoided if the hardware prevents all the processors from accessing a
replicated value until the value in all the copies is coherent. There are quite a few coherence
protocols but most of them require tha t all the processors be connected to all the memories through a
single bus. If a bus is not available, directory schemes (see [1]) are a promising solution tha t is not
used in any existing machine with more than a few processors and whose effectiveness remains
mainly untested. In a directory scheme, the information on whether a block is cached or not is kept
in a table tha t is associated with main memory. The performance of the best directory scheme seems
to be comparable in number of communication cycles to the performance of bus-based schemes. For
example, Hennessy et al. suggest that a directory scheme like the one described in [2] requires about
four communication cycles for each memory reference. Since a communication cycle in a machine
with many processors can be orders of magnitude larger than the latency of main memory access, the
measurement of the performance of a directory scheme should take into account the impact of
latency on the processors' execution time. Since we do not know of any such evaluation it is not
possible a t this point to do a fair comparison of directory schemes with any other solution.

All these coherency maintenance techniques guarantee what has been called by Dubois et al. in
[9] strong coherence. Strongly coherent systems do not violate either of the two previous

assumptions. Therefore, synchronization can be performed by simple read and write operations and
atomic read/write sequences. Although strong coherence is sufficient to implement a usable shared-
memory parallel-processing model, it is not necessary. In this report we argue tha t a less-restrictive
form of coherence, called weak-coherence, is sufficient and easier to implement.

2.1. Weak Coherence
Typically, a parallel program alternates between a long sequence of normal read and write

operations on shared data structures and synchronization operations (e.g. P and V). Enforcing
strong coherence among the normal read and write operations is not necessary if the programmer
unders tands t h a t a synchronization operation should be used every time a specific order of access
between two concurrent computations must be enforced. Assume tha t all synchronization accesses
are strongly coherent among themselves and in relation to the preceding and following sequence of
normal accesses. At the same time, do not make any assumption on the coherence of a sequence of
normal accesses relative to other sequences of normal accesses. In this case the memory system is
said to implement weak coherence (see the paper by Dubois for a formal definition of
weak-coherence [9]). Our contention is tha t weak coherence is easier to implement on non-bus

4

architectures and does not impair programming capabilities.

The only problem generated by weak coherence at the programming level is tha t synchronization
operations must be explicitly flagged by the programmer so tha t the system can implement them
correctly. For example, the code in Table 2-1 shows two ways of programming a producer-consumer
synchronization. In a strongly coherent memory system all write operations are "visible" as soon as
the processor has performed them and the (a) code achieves the desired effect. In a weakly-coherent

/* S h a r e d d a t a s t r u c t u r e */
struct a
{
int a;
int flag = FALSE;

) P ;

/* S h a r e d d a t a s t r u c t u r e */
struct a
{
int a;
int flag = 0;

) P ;

/* P r o c e s s IV f* P r o c e s s 1 */

p.a • ...; p.a = ...
p.flag- TRUE; V(p.flag);

/* P r o c e s s 2 • / /* P r o c e s s 2 */

while (p.flag * - FALSE) Rp.flag)
wait();

... = p.a; ... - p.a;

(a) (b)

Figure 2-1: Wrong (a) and Correct (b) Code for a Weakly Coherent System

system, if p.a and p.flag are allocated in separate memory modules, it is possible for the write of p.a
to be delayed after the write and subsequent read by Process 2 of p.flag. The (b) code in Table 2-1 is
correct because the synchronization operation has been made explicit. We believe tha t the coding
style exemplified by the (a) code of Table 2-1 should be avoided because it masquerades a
synchronization operation as a normal access and may be misunderstood. We have examined the
code of the Mach operating system kernel and found tha t a synchronization had been implemented
as a normal access only in one case. We believe most programs would port to a weakly-coherent
system without any change. In the next Sections we will show tha t weak-coherence can be easily
implemented on large multiprocessors.

3 . M a i n t a i n i n g W e a k C o h e r e n c e : t h e G r a y Z o n e
Coherency maintenance is usually based on observing all the memory operations and preventing

the occurrence of transactions tha t might put the system in an incoherent state. For example,
writing to a variable tha t has multiple copies might cause all the copies to be invalidated before the
write operation occurs. Our mechanism, instead, is based on performing all the operations on all the
copies in parallel bu t making sure tha t each copy ends up with the same value. This requires a
global clock to t imestamp every request before it is sent to other nodes. Consider a number of nodes
accessing a shared variable stored in the memories of some other nodes. Each node may arbitrarily

5

issue read and write messages. Any network will have some delay associated with the transmission
of messages and will have to deal with contention for communication resources. Both effects can
perturb the sequence of messages that arrive at the nodes where the shared variable is stored, thus
destroying coherency. If all messages were timestamped on creation, the sequence of read/write
messages to a particular variable could be sorted at the receiving end and then performed correctly 1.

Synchronization operations also require that some special operation on the variable be performed
in a specific order; this special operation computes a value tha t will be returned to the processor. For
example, if multiple fetch-and-add operations are performed on the same variable, each operation
must return a unique value tha t depends on the ordering of the requests. Sorting of timestamped
requests achieves the correct result.

Unfortunately, the sorting step can only be performed when all the requests that might change
the outcome of an operation have arrived at the node that contains the shared variable. The
implementation of the sorting step is impossible unless the upper bound on the message propagation
time in the network is known. The simplest solution is to approximate the upper bound with a fixed
upper bound, discarding and retrying all messages that take more than the upper bound. In this
case, a small upper bound would minimize the time to finalize the memory operations but would
potentially cause a lot of messages to exceed the bound and be deleted. A large upper bound would
have the opposite effect. A fixed bound could never be tuned correctly, because the optimal value of
the bound depends on the delay through the network and on the load, both of which are varying
continuously.

Our mechanism keeps a dynamic bound tha t is a good approximation of the real bound without
requiring much network bandwidth. In the next two subsections we will describe how absolute time
and communication-time upper bound can be maintained.

3.1. M a i n t a i n i n g A b s o l u t e T i m e
Providing each processor in the system with an accurate absolute time requires a counter tha t is

reset at system initialization time and is continuously incremented by a clock signal tha t is common
to all the nodes. For this to work properly two problems must be solved: the global distribution of a
common clock signal and the detection of inconsistencies and subsequent recovery from them.

The distribution of a global clock is perhaps an overrated problem as there are numerous large
systems tha t operate on a single clock, e.g. [13], [3], [14] and [15]. A single clock source is not only
necessary in order to maintain an absolute time, but it is also advantageous for interprocessor
communication (eliminates the need for synchronizers, allows deterministic protocols tha t can be
implemented with simple finite state machines and improves some routing and resource allocation
strategies).

The implementation of a large (say 1000 processors), synchronous system with a single, global
clock and tight bounds on the skew between any pair of processors is feasible with a conservative

llt la assumed that the global clock has a resolution sufficient to distinguish all requests A clock that is advanced «t *h*

6

design by treating the signal as an analog, RF source. The continuously running clock from a crystal
oscillator is amplified with a broadband power amplifier and, instead of using digital gates to divide
the clock signal, passive power splitters are used.

However, given a good common clock distribution, the problem is only half solved. No serious
digital design should be unprepared for a glitch in a critical component. If the proposed system were
to rely on a large number of counters to advance in lock step fashion after reset - with no way of
verifying consistency - it would be hard to recognize and diagnose errors. If one of the time keeping
counters in a 1000 processor system were to be off by a small amount - say due to a power supply
glitch, an alpha-particle hit t ing a critical gate - no immediate problem would be apparent. In the
case of particular usage patterns tha t are sensitive to incoherent behavior of the machine, errors
might occur tha t would be virtually impossible to diagnose due to the potentially long period
between cause and effect. Even worse, in many applications it would be hard to recognize that the
results are incorrect.

Note tha t the severity of the timer problem arises from its accumulative nature: any glitch would
be preserved for as long as the system is running, potentially months or years. Thus, while the
probability for a single counter failure is quite low, it is not likely tha t all 1000 of them will count
correctly for a year a t a high rate. Fortunately, periodic consistency checks and procedures to
identify and correct t r a r -ient errors can lower the probability system failure to a tolerable level.
These procedures are facilitated by the fact tha t the communication network, as we will see in
Section 4, is synchronous.

3.2. T h e Gray Zone
A coherent and reliable time distribution mechanism, such as the one outlined in the previous

Section, is not sufficient to build a coherent memory system. Proper t imestamping can resolve any
ambiguity among competing operations but is unable to finalize any operation without additional
knowledge about the behavior of the message passing layer. Typical communication systems for
distributed memory multiprocessors have variable and potentially unbounded message latencies
tha t depend on the traffic pat tern, network load, routing and scheduling strategies. As a
consequence, the receiver of a message has no way of knowing if there are messages still in transit
with t imestamps t h a t are older than the t imestamps of the message jus t received.

Assuming tha t the message passing layer is well behaved, 2 all operations will settle in a coherent
final state in a finite time span. Let's define the upper bound of this time span:

Def in i t ion 1: The Gray Zone a t time t is the smallest t ime interval UgzA t ha t contains
the t imestamps of all outstanding messages at t ime f.

Note tha t is a function of t. Furthermore, it is a system-wide global quantity. We say that a
message M has matured if its t imestamp is smaller than tg2; this implies tha t any message sent
before or a t the same time as M has been received. Operations tha t require the coherent value of a
memory location will stall until the requesting message has matured, while all other operations
proceed immediately.

2 A message passing layer is considered well behaved if it is free of deadlocks, and if it is fair.

-r—?*—?
—v—?

?—1 T
?—•?

B

Figure 3-1: The Computation of the Gray Zone width in a 1-dimensional network

Let us call t{ the smallest t imestamp of all the messages tha t are in the queues of a given node
waiting to be t ransmit ted (or retransmitted). Each node can easily compute t{ by updating it every
time a new message enters or leaves a queue. Imagine four nodes connected by a 1-dimensional
cube, for example the 4-ary cube in Figure 3-1. If node D sends t{ to the node on its left (C) then C can
compute t of the subnetwork C-D as the minimum of the tt sent by D and its local value. If C sends
this value to B and B also takes the minimum with its tt and sends it to A then A can compute a
system-wide approximation of tgz. The value is approximate because it is based on the value of t in
B a t / - l , the value of tgz in C a t f-2, etc. This procedure must be performed as often as possible to
keep a good approximation.

It is easy to see tha t if A, B and C also compute the minimum of their tl and the tgz of their left
subnetwork and send it to their right neighbors, then D will be able to maintain a system-wide
approximation of tgz. Let us now take node B. If B takes the minimum of tt and the tgz coming from its
right and left subnetworks, then it can also compute the value of the system-wide tgz. It might be
useful to imagine each node in the system as the root of a tree tha t contains all the other nodes: local
tgzs are propagated up the tree and, when they reach the root after depth-of-the-tree message cycles,
the root is able to compute an approximation of the global tgz.

As it is apparent from the simple case of Figure 3-1, it is not necessary to transfer the information
relative to the trees rooted in each of the nodes separately: every cycle each node only needs to send
one new approximation out on each of its output connections and receive one partial value from all of
its input connections. Assume tha t the message system transfers fixed-length messages, one per
time unit . If the network has diameter d then it will take d t ime uni ts for the approximate toy to
propagate, if every message carries this information.

8

Figure 3-2: The Computation of the Gray Zone width in a 2-dimensional network

The Gray Zone computation tha t each node must perform is a function of the topology of the
network and can be driven by a locally stored table once the configuration is known. In the case of
binary n-cubes (see Figure 3-2) the derivation of the computation table is simple. Recall the
construction of a boolean n-cube of degree d: first construct two subcubes of degree d-1 and then
connect each node of one of the subcubes to one node of the other subcube. Now assume that each of
the nodes in the two d-l subcubes has the value of tg2 for its subcube. If each node sends this value to
its corresponding node in the other subcube then tha t node can compute its view of the global tgz as
the minimum of the values of tg2 for the two subcubes. For example, see Figure 3-2, C first computes
t of the C-D subcube and then sends it to A, where it is combined with t of the A-B subcube. For
the binary n-cube topology the maximum time for a gray zone increment to reach all nodes is a
function of the network diameter.

For any given topology, if a constructive mechanism for building the gray zone computation tables
is not known, it is possible to use a minimum-depth spanning tree of the interconnection network as
the basis for updating the Gray Zone information. In this case the maximum update time can be
between d (the network diameter) and 2d, depending on the topology (see [12] for more information).

In the following sections we describe the use of the Gray Zone concept in the implementation of
weakly coherent memory operations in a system tha t has no physical shared memory. (Section 4
provides further implementation details.)

3.2.1. R e a d Operat ions
If a node performing a read operation has a local copy of the memory location, the read operation

simply consists of a local memory access. Otherwise, a request message is t ransmit ted to the nearest
node tha t has a copy of the memory location, which re turns the value. This is a weakly-coherent
operation; if some other node had written a certain value to the memory location at some earlier
time, there is no guarantee tha t the read operation would re turn tha t value. (The coherent-read
synchronization operation does guarantees this, see Section 3.2.3 below.)

9

3.2.2. Write Operations

As in the case of read operations, write operations are performed locally or on the nearest node
tha t has a copy of the memory location. In the latter case, the first node sends a request containing
the address, data, and the timestamp of the operation to the remote node, after which it can continue
normal operation. The write operation is then propagated to all copies of the memory location by
update request messages. Both the original write request to the nearest copy (if necessary) and the
write-update messages contain the original timestamp of the write operation, so tha t each node can
sort all updates to memory in time order and perform them consistently. (If two nodes issue write
operations to the same location with the same timestamp, the node-id is used to disambiguate these
requests.) The sorting operation is implemented as follows. Each node has a coherency buffer that
maintains the addresses and timestamps of the locations that have been changed recently on that
node. Whenever the node receives a write or update request, it checks the coherency buffer to see if
it contains an entry for the addressed location. If so, the request is allowed to proceed only if its
t imestamp is newer than tha t in the coherency buffer, and the t imestamp in the coherency buffer is
also updated. Otherwise, a coherency buffer entry is created. Whenever an entry in the coherency
buffer has a t imestamp older than tgV it can be discarded; this limits the size of the buffer.

Since the original t imestamp is retained in all the update messages, the Gray Zone time tgz is
prevented from advancing until the update messages have all been received and processed. This
affects the performance of synchronization operations, as explained below.

3.2.3. Synchronizat ion Operat ions
Synchronization operations are handled similarly to write operations: the operation is handled

locally or at the neares t copy, and then update messages containing the original timestamp are
t ransmit ted to all the remaining copies of the memory location, where they are sorted through the
coherency buffer. But, in addition, the result of the synchroniztion must be returned to the node
originating the operation. 3 This result is the value the memory location would contain if all
preceding operations to tha t location had completed, and no succeeding one had. Furthermore, the
strongly coherent na ture of the synchronization operation also implies tha t when it completes, all
preceding operations to memory by the node performing tha t operation have also completed. All this
is handled, locally if there is a local copy or a t the nearest copy, by the following mechanism.

For each location on which a synchronization operation is pending, the coherency buffer is
extended by several fields: a value (initially the value obtained from memory), the timestamp
corresponding to the value rv (initially the value in the coherency buffer if any, or tgz), and the
t imestamp of the operation f^.4 Whenever the node has to perform some other memory operation on
tha t memory location, the value field is updated appropriately if the t imestamp of tha t operation
falls between tv and top9 and rv is updated to the new timestamp. This extension to the coherency
buffer is maintained as long as tgz is less than top, a t which point it matures and the value field is
returned as the result of the synchronization operation, and the extension can be discarded. As a

*We have studiedthe implementation of four kinds of synchronization operations: fetch-and-addy test-and-set exchange
^coherent-read. The last is similar to any other synchronization operation, but does not change the memory location in any

4 Note that several synchronization operations may be pending simultaneously on a single memory location, so the
coherency buffer should provide for several such extensions to exist simultaneously.

10

result, the performance of synchronization operations depends mainly on the Gray Zone width.

A consequence of this mechanism is tha t an approximate result of the synchronization operation is
available immediately. This can be advantageous if it has a high probability of being the correct
outcome of the synchronization, as in the case of a lock for which there is little contention.
Therefore, synchronization operations are implemented in two phases: the synchronization
operation itself, tha t sets up the coherency buffer and its extension and returns an initial guess, and
a subsequent verify operation that waits for the final result to become available. Other operations
can be executed in between, thus absorbing some of the synchronization latency.

if (P(semaphore, tag))

/* instruction that do not depend on the outcom* of P() or can be undone */

if(verify(tag))

/* instructions that depend on the outcome of P() */

F i g u r e 3-3: Delayed Synchronization

For example, the synchronization statement P(semaphore,tag) in Figure 3-3 can precede any
instruction tha t can be executed independent of the outcome of the synchronization. (The initial
guess returned by this synchronization can also be used, provided the actions can be undone if the
guess proves to be wrong.) When the final result becomes necessary, the statement verify(tag) stalls
execution until the outcome of synchronization operation is available. The variable tag makes it
possible to have more than one pending synchronization.

4 . A D i s t r i b u t e d - m e m o r y A r c h i t e c t u r e
In order to be able to perform some initial evaluations we have assumed the availability of a

specific architecture. This architecture has homogeneous nodes, see Figure 4-1, each node
containing a general-purpose processor with a cache and memory mapping, some dynamic RAM
memory and a network interface tha t handles coherency management, global memory mapping and
routing.

Each node has a fixed number of communication channels tha t can be connected to channels on
other nodes. No constraints are imposed on the connection pattern. In particular, it is possible to
optimize the interconnection topology according to the characteristics of specific applications. The
network interface is concentrated in a device tha t performs a number of different but closely related
functions: i.e. memory coherence, system-wide memory management and routing. All these
functions can be implemented by a number of independent state machines and a couple of small but
functionally specialized memories. With current technology, it is reasonable to build an integrated
circuit t ha t contains all the circuits necessary to perform these functions. The functions of the
network interface are defined below.

11

Arbitrary
connections

(CACHE)

Local MMU

I PROCESSOR I

C D R A M)

Coherency
manager

Global MMU

Router

Figure 4-1: The Architecture Used in the Performance Evaluation

Memory Mapping. The memory mapping we have chosen is compatible with state-of-the-art
general-purpose operating systems and processors. Coherency management, described below, does
not require a virtual memory organization but software production of non-trivial applications
depends on good memory management and full operating system support.

The system manages memory in pages. Processors manipulate per-process virtual addresses that
are t ranslated by a local memory mapping unit (MMU) into physical addresses (see Figure Figure
4-2). The local MMU could be a s tandard device like the MC88200 tha t includes a cache and
translation look-aside buffer. Both virtual and physical addresses are 32-bit byte addresses.

Physical addresses are t ranslated into hardware addresses for the local memory and/or messages
tha t are sent to other nodes. These operations are performed by the global MMU tha t is managed by
the operating system. The mapping tables of the global MMU are stored in the local DRAM memory.

There are four types of physical pages, distinguished by the two high-order address bits:

Local, private: The page address directly references the local memory, the page can only be
accessed on this node. There is no global mapping entry for such pages, and the
memory reference can proceed at full speed. This kind of page is used for
program code and stack, for example.

12

CPU

MVfJ

I
01: Remote, shared, R or RW
00: Local, private, R or RW
10: Local, shared, R only
11: Local, shared, RW

e I PAGE # f

Virtual
address (32)

Physical
address (32)

PAGEObfSfci

Ref. Depth Depth
count DST DST
(8) Node Node

Page # Page #
(38) (38)

rzr

Hardware
Address
(30)

N
MEMORY

T o o ther
Depth Pa t« <jpag» o f f s e t) — ^ n o d e s

Message

F i g u r e 4-2: The Memory Mapping Structure

Local, shared, read only:
The page address directly references the local memory. Other nodes have this
page mapped in their hardware address space (i.e., the page is replicated on
multiple nodes) bu t nobody may write it. This reference can also proceed a t full
speed bu t the global MMU maintains a reference counter tha t is incremented
every t ime the page is accessed and can be used by memory management policies
to improve memory allocation.

Local, shared, read/write:
The page address directly references the local memory. Other nodes have this
page mapped in their hardware address space (i.e., the page is replicated on
multiple nodes) and the page is writable. Hence, any write or synchronization
operation (other than coherent-read) must result in update messages being
forwarded to all copies of the page. This is achieved efficiently by creating a
minimum-depth binary multicast-tree from these nodes. The page table entry on
each node contains two pointers to two nodes down the tree. The leaf nodes point
back to the root node, so an update initiated a t any level in the tree can
eventually propagate to all the nodes in the tree; the depth field in the mapping
table (see figure) is used to avoid cycling perpetually through the folded tree. The
table also has a reference counter t ha t is used by the memory allocation policies.

Remote, shared; The page is not available locally; a remote access is necessary. The page may be
replicated on multiple remote nodes. The page address is used to access a table
tha t identifies the nearest remote node containing the page, and the address of
the page on tha t node. There is also a reference counter t ha t is used by the
memory allocation policies.

Notice tha t sharing or page replication occurs a t the page level. However, remote accesses and

13

update operations take place at the word level. That is, a remote read operation only results in the
transfer of the desired word, and a write operation only updates the single word in all copies of the
address page.

The physical-hardware address translation tables shown in Figure 4-2 are stored in DRAM
memory and some overlapping between local memory and table access is possible. Each local shared
page needs 1 byte and each read/write local page needs 11 bytes. Remote pages require 5 bytes per
page.

From the user's point of view there is no difference between this memory organization and the
organization of a uniprocessor or a bus-based multiprocessor. From the operating system's view,
most memory management algorithms remain unchanged. The differences occur in memory
management algorithms tha t deal with the migration or replication of pages between nodes. These
must be performed only after having notified and received permission from the underlying hardware.

Coherency Management . Coherency management consists of Gray Zone computation, update
management (of replicated memory pages) and synchronization management. The global Gray Zone
computation is performed in the underlying interconnection network. The network is synchronous:
a 64-bit fixed-length message packet is exchanged over each channel at every message cycle of
450ns. A message contains, among other fields, source and destination node addresses, a timestamp,
and either a 32-bit address or 32-bit data. It also contains a field for exchanging Gray Zone
information, as described in Section 3.2. In order to save network bandwidth, instead of
t ransmit t ing the absolute value of t we t ransmit an incremental value tha t indicates how much the
new tg2 has changed from the old. We encode this value using two bits, so we can only represent the
case of tgz remaining stable or increasing by 1, 2 or 3. Since the absolute time also increases every
message cycle, the encoding actually represents the case of the Gray Zone becoming wider,
remaining constant, or narrowing by one or two message cycle units. If the Gray Zone changes by a
larger value, the system will encode this in several consecutive increments. This method requires
less than 4% of the network bandwidth.

Update management and synchronization management is performed by the coherency buffers and
their extensions as described in Sections 3.2.2 and 3.2.3.

Rout ing . A non-deterministic, adaptive routing strategy is used to provide good resource
utilization and dynamic behavior even under high load conditions. In particular, high dimensional
topologies may be used to increase bandwidth without compromising latency because multiple
al ternate paths between two given nodes can be used concurrently. Implementation simplicity is
achieved by supporting precisely one packet type with fixed length and format. A tightly
synchronized store-and-forward strategy is used which fully utilizes the physical channel bandwidth
and improves the efficiency of the routing heuristic (see [12] for an analysis of the characteristics of
such a network).

The routing component is built around a register file with serial access capability. Essentially,
each word in the register file is a shift-register tha t can store one entire packet plus some transient
information (such as the subset of t ransmit ters tha t can be used to advance the packet toward its

14

destination). Serial access 5 is supported so that t ransmitters can operate directly out of the register
file. This eliminates the need for special parallel to serial converters in each transmitter and their
counterpart in each receiver. This also reduces the need for data transfers, if uniform access to the
register file is provided. Multiple packets may be entered and/or removed into/from the network in
one communication cycle.

5 . P e r f o r m a n c e E v a l u a t i o n
The validity of the coherency mechanism described in Section 2 depends not only on its

correctness but also on its performance when implemented with current technology. Therefore, we
have built a simulator (described in detail in [12]) to evaluate the performance of real programs on
plausible system implementations.

The user of the simulator supplies a program in C language whose execution is simulated on each
of the nodes. A library package provides functions to create shared memory and allocate it on the
nodes specified by the user. When the program reads or writes data allocated in shared memory the
simulator emulates the appropriate actions by the network interface and by the network. Coherence
management, routing and memory access are simulated in detail. The time between memory
references is computed by examining the instructions executed and computing an approximate
execution t ime. 6 This is done during execution by instructions inserted by a preprocessor.

The network topology, its speed, the speed of the node processor and the page size can all be
changed by the user. The simulator also includes memory management algorithms similar to the
ones described in [6]. These algorithms at tempt to replicate pages in order to improve performance;
although we have implemented these algorithms in the simulator, they have been turned-off in the
experiments described in this report in order to show the bare performance of the machine.

All the experiments described in this report use the hypercube topology. The performance of the
machine depends on the relative performance of the processors, the memories and the network.
Therefore, we have chosen values tha t we believe are achievable with commonly used technology: the
time to transfer one 64-bit packet (all packets are 64-bit long) between two adjacent nodes is 450 ns;
the main memory access time is 150 ns; the state machines tha t implement the memory and network
interface circuits cycle a t 20MHz. Unless otherwise specified, we have assumed each node contains a
processor similar in performance to a 20 MHz Motorola 68020.

Two kinds of experiments have been performed. First, the machine has been stimulated with a
randomly generated artificial load to establish the basic performance of its components and the point
of saturation of critical resources. Secondly, since the performance depends on the characteristics of
the task the machine is running, we have evaluated three real applications: the matching par t of an
expert system, a single-point-shortest-path algorithm and the recognition par t of a speech
recognition system. In increasing order, the three tasks are examples of highly data dependent and

5Serial access does not imply bit-serial access: there can be more than one tap into the shift register so that 4 or 8 bits can
be moved in/out in parallel

6 The execution time is approximate since the internal behavior of the processor is not simulated and changes in
performance due to pipeline stalls or overlapped instructions are not taken into account.

15

very low granularity tasks. One of the tasks has an inner loop which is only a few microseconds long
and requires in average three synchronization operations for each inner loop execution: this is an
order of magnitude more demanding than what is usually considered a low-granularity task. All the
tasks are components of real applications and have been tried on real data.

5.1. A r t i f i c i a l L o a d

Our objective with these experiments is to measure latency and maximum frequency of shared
memory operations (reads, writes and synchronization operations). Latency can be due to many
reasons:

• A read operation did not find the page in local memory and caused a remote access. The
processor and cache cannot proceed until the network interface has queried one of the
remote nodes where the page is stored and the value has been returned.

• A write or a synchronization operation did not find the page in local memory and caused
a remote write. There is no latency for this operation unless the network interface is
saturated and cannot process the request.

• A read or write operation referenced a page tha t was not mapped in the same node. This
is similar to a uniprocessor page fault and is not considered here, since its latency is
mostly a function of the operating system overhead and secondary storage access time.

• A synchronization verification or a coherent read was issued by the processor. The
latency is a function of the Gray Zone width.

• A local access conflicts with an access by the network interface on behalf of some other
node.

5.1.1. R e a d Latency vs . Repl icat ion
We have performed two sets of experiments on binary hypercubes. The first maintains a constant

average frequency of read/write operations (i.e., load) while varying the replication, and the second
maintains a constant replication and varies the load. This section and the following describe the
results of the first experiment.

The read latency can be separated into the following components: network transit time (rn),
memory read cycle time (rm), queuing delay in the network (dn), and queuing delay at the memory
location (dm). If the number of network hops between the source node and the node containing the
addressed page is hf then tn=2hth. (Two packets are needed for a read access: address and data.) The
queuing delays dn and dm a re integral multiples of th and tm, respectively. Since th is much higher
than tm (450ns vs. 150 ns), the latency of remote read operations is dominated by tn and dn.

Replicating a page in one or more nodes can reduce tn by reducing h9 since h is the number of hops
to the nearest copy of the addressed page. In the best case of complete replication, h becomes 0. This
is a good solution for read-only pages if there is enough memory. However, if the page can also be
written, each write operation generates extra write-update messages to update all copies of the
replicated page, t hus increasing the network load and the network queuing delay dn. In addition, the
Gray Zone width increases, extending the synchronization time. The extent of such behavior is
dependent on both the frequency of read/write operations and the degree of replication.

In this experiment, each processing element (PE) holds a page tha t is replicated in a sub-cube
around tha t PE, and each PE performs read and write operations on randomly chosen pages in the

16

system 7 . The read and write operations are directed to the nearest copy of the addressed page; write
operations then propagate to all the remaining copies. This generates a load that is evenly
distributed throughout the system, without any hot-spot location. The interval between the
initiation of successive operations is distributed exponentially with a mean of 2.4p.s, representing a
moderate to heavy network load. Read operations are three times as frequent as writes.

Figure 5-1 shows the variation of the average read latency with replication for binary hypercubes
of various sizes. The simulation results are shown by the solid lines. Since the simulator models
both the network and the memory system at every clock cycle, the latency figures are quite accurate.

32 64
Replication

Figure 5-1: Read Latency vs. Replication, Uniformly Distributed Accesses Every 2A\±s

As expected, the read latency decreases with increasing replication, up to a certain replication
factor. In this region, the latency is dominated by tn. But with increasing replication the read
latency rises, especially for larger configurations, indicating tha t the network queuing delay dn is
becoming significant. The lower bound on the average read latency, i.e. in the absence of any
queuing delay, is given by:

(log2N-log2c)tk + tm

where N is the number of nodes, and c is the replication factor. This is obtained as follows: the
average distance between the source node and the addressed page, if there is only one copy of the
page, is log^N/l hops. With c copies of the page distributed in a subcube, this distance is reduced by
log2cP> hops. The average read latency, in the absence of queuing delays, is the round-trip time plus
the memory access time. This lower bound is shown by the dotted line in Figure 5-1 for the 64 PE
case. The curve obtained through simulation shows a greater latency. Since simulation results
indicate t ha t the queuing delay for a memory cycle was negligible (less than 50 ns on the average),

7 We are only modeling those references that miss the local PE cache, and cause a local or remote memory cycle.

17

the queuing delay in the network accounts almost entirely for the difference between the two curves.
From the Figure, we see that this delay is only a small fraction of the total delay at low replication
(about 20%), but grows to over 60% at 32-fold replication.

5.1.2. Gray Zone vs . Repl icat ion

Figure 5-2 shows the average Gray Zone width for the set of experiments described in the previous
section. The Gray Zone width rises slowly with replication up to a certain point, after which it
increases very sharply. This change in the slope of the curve marks the point where the network
queuing delay s tar ts becoming prominent.

% 30.0 c o

25.0

I 20.0
•S

2
O

15.0

10.0

5.0

0.0

-32 PEs .128 PEs

_ - 1 6 PEs

• • 'dl
L

1 «

•Es

n
u ZD 30 35 40

Replication
Figure 5-2: Gray Zone Width vs. Replication, Uniformly Distributed Addresses Every 2.4|is

The network delay is a function of the offered network load, which, in the above experiments, can
be calculated as follows. The average distance between a source and the nearest copy of the
addressed page is (log2N-log2c)/2. Each write operation results in c - 1 additional update operations,
requiring as many network hops. Since each operation requires the transmission of both an address
and a da ta packet, the average number of network hops needed per PE per operation is given by:

noP=l°8j*- l°8ic + ?fw(c-1)
where fw is the fraction of write operations,
then:

"op**

The offered network load per PE per network cycle is

period between operations

whereas the network capacity per node per network cycle is, approximately,

These expressions provide us with guidelines for controlling replication, within the limits imposed by
the assumptions made during the experiment. From these and other simulation experiments, we
have noticed t ha t the read latency and Gray Zone width behave reasonably as long as the average

18

offered network load is within approximately 20% of the network capacity.

5.1.3. Read Latency and Gray Zone Width vs . Load
This section describes the results of another experiment in which the replication is a constant

fraction of the number of PEs in the system, while the frequency of read/write operations is varied.
The distribution of read/write operations over the various pages is uniform, the interval between
successive operations is exponentially distributed, and the frequency of reads is three times as much
as tha t of writes, as in the previous experiment.

Maintaining replication a t a constant fraction of the number of PEs implies tha t the average read
latency in the absence of queuing delays:

is independent of N. Network queuing delays (ignoring memory queuing delays) account for most of
the deviation from the latency computed with this formula. Table 5-1 shows the variation of read
latency with load for binary hypercubes of various sizes. In the first part of the table, replication is
kept a t 1/4 the system size, and in the second at 1/2. The load is characterized by the mean interval
between the initiation of successive operations.

Ops. Int.--> .8 1.2 1.6 2.4 3.6 4.8 9.6

Repl. PE's

1 4 1.60 1.62 1.60 1.58 1.57 1.51

2 8 1.68 1.60 1.58 1.59 1.52 1.48

4 16 1.74 1.74 1.68 1.66 1.63 1.63

8 32 1.89 1.81 1.79 1.72 1.66 1.65

16 64 2.10 2.04 1.88 1.80 1.74 1.72

32 128 2.94 2.92 2.54 1.98 1.87 1.78

2 4 0.99 0.95 0.97 0.93 0.91 0.89 0.96

4 8 1.07 0.98 0.95 0.97 0.92 0.96 0.94

8 16 1.21 1.18 1.11 1.09 1.03 1.02 1.01

16 32 1.57 1.50 1.28 1.15 1.08 1.05 1.02

32 64 2.62 2.60 2.50 1.57 1.19 1.14 1.05

Table 5-1: Read Latency vs. Load
(Mean Operation Interval in Microseconds)

We can see t ha t the average read latency is fairly constant almost throughout the table, indicating
a relative absence of network queuing delays. These become apparent only for large systems (when
replication becomes high) operating at large loads.

Figures 5-3 and 5-4 show the Gray Zone widths for the same sets of experiments. Once again, the
Gray Zone width increases fairly slowly except in the case of large systems operating at high loads.

In conclusion, page replication reduces the average read latency significantly, bu t only up to a
certain point. Furthermore, the Gray Zone width always increases with replication, and it increases

19

•3
C

o
8
o

O
C

2
O

18.0

8.0 10.0 12.0
Operation Interval (microseconds)

Figure 5-3: Gray Zone Width vs. Load, Replication Equal to 1/4 System Size

3 14.0

8.0 10.0 12.0
Operation Interval (microseconds)

Figure 5-4: Gray Zone Width vs. Load, Replication Equal to 1/2 System Size
rapidly beyond a certain point. This implies tha t in order to obtain the full benefit of replication, it
is important to limit the degree of da ta sharing among PEs, especially in large systems. For
example, if certain data structures are shared between only 8 PEs in a 64 PE system, they can be
replicated on all these PEs without causing the network to be overloaded. The experiments
described in later sections make use of precisely this strategy.

20

5.1.4. S y n c h r o n i z a t i o n P e r f o r m a n c e
This set of simulation experiments was conducted to measure the average time taken for a

fetch-and-add-verify synchronization operation with all PEs in the system contending for a single
lock, and the effect of such a (potential) hot-spot on other background (remote read/write) operations.
The results of such an experiment are dependent on several parameters: the network topology and
size, the frequency of synchronization operations, the frequency of read/write operations, and the
lock replication count, to name a few principal ones. The topology was restricted to binary
hypercubes, and the load pat tern was constrained as follows: each PE generates read and write
operations directed to a randomly chosen remote PE node. In addition, it generates fetch-and-add-
verify operations on the single lock variable, which may be replicated on several nodes. One write is
generated every four reads and one fetch-and-add-verify is generated every 10 read or write
operations. There is no delay between the completion of one operation and the s tar t of the next;
hence, this is the highest load tha t the system will sustain.

The system behavior under this load was determined by simulation. Figure 5-5 shows the average
synchronization latency per PE vs. replication for various system configurations. The latency is
measured from the time the fetch-and-add operation is issued until the time the corresponding verify
operation completes.

16.0

14.0

12.0

10.0

3 4 5 6 7 8

Figure 5-5: Fetch-and-add Latency vs. Replication

9 10
Replication

When the number of PEs is between 4 and 64, the synchronization latency is dictated essentially
by the network performance; i.e., the time taken for synchronization requests to propagate to a node
containing the lock, for the Gray Zone information to percolate through the system, and for the
verified reply to re turn to the source PE. Every time the number of PEs is doubled, (i.e., the network
dimensionality is increased by 1) the performance curve is shifted up by approximately l . l j is . Most

21

of this is accounted for by the extra distance the request and response packets must travel in the
larger system. Specifically, the average distance to the lock increases by 0.5 hop, and four packets
must travel this extra distance: address and data packets for the request, a data packet for the
initial response, and one for the verified response. All of this adds up to an extra 0.9 JIS.

When the number of PEs increases to 128, the memory bandwidth to the single lock becomes the
bottleneck. With a cycle time of 150 ns and two cycles needed for each synchronization operation, a
single lock can sustain at most 3.33 synchronization operations/|is. Table 5-2 shows the maximum
number of synchronization operations per jisecond tha t was sustained by the lock in this experiment.
Clearly, the memory module holding the lock is close to saturation in the last two cases. With 256
PEs, the fetch-and-add-verify latency is over 30pts for this kind of load.

Number of Processors 2 4 8 16 32 64 128 256
ops/usec 0.12 0.20 0.34 0.58 1.02 1.78 2.90 2.95

T a b l e 5-2: Peak Synchronization Rate
(Total Number of Synchronization Operations per Microsecond)

Replicating the lock decreases the fetch-and-add-verify latency up to a point. This is partly due to
the shorter average distance between any given node and the nearest copy of the lock, and partly due
to the increase in effective memory bandwidth. In larger configurations, where the memory
bandwidth is the bottleneck, replication improves the fetch-and-add latency significantly. For
instance, with 128 PEs and two copies of the lock, each copy handles only half the total number of
requests. Each copy must also process update requests from the other copy, but the cost of these is
one memory cycle, as opposed to two for the original requests. Hence, the memory bandwidth
requirement per copy is reduced by about 33%, eliminating the bottleneck.

Replication does not, however, reduce synchronization time very significantly. In fact, beyond
8-fold replication the synchronization time begins to increase. This is in contrast to the read latency
performance described in the previous experiment. One reason is tha t the lock is a hot-spot, unlike
any given page in the previous experiment. With higher replication, the update requests that keep
all copies coherent begin to flood the network, increasing both the message latency and the Gray
Zone width.

With limited replication, the fetch-and-add latency is remarkably insensitive to the total load in
the system, as well as to the relative ratio of synchronization operations and background traffic
(provided the lock memory bandwidth is not a bottleneck). Varying the former between 20% and
100%, and the lat ter between 0.03 and 0.33 affects the performance only by about 15%. This
demonstrates tha t the synchronization time consists almost entirely of the time for request and
response packets to simply cover the distance between the source and the lock, with very little
queuing delays.

The latency of background read operations is also quite insensitive to wide variations in the total
load and increases linearly with the network dimension: from 2.18 (is with 4 PEs to 4.66 \is with 256
PEs. By varying the total load between 20% and 100% and the fraction of synchronization
operations between 0.03 and 0.33 the read time is only affected by about 6%. This holds t rue even
when the synchronization traffic is almost saturat ing the lock, which implies tha t the network is

22

able to route read requests around the hot spot quite effectively.

5.2. R e a l L o a d

5.2.1. P r o d u c t i o n S y s t e m M a t c h
The matching process is one of the bottlenecks of production system computations. In this

evaluation we have followed the model used by Gupta in [10]. The production systems class of
applications can be modeled abstractly as follows. An application consists of a global hash table and
a set of dynamically created tasks. The execution of each task requires access to (and modification
of) one entry in the hash table and generates zero or more new tasks. The application runs as a
succession of cycles; a cycle terminates when there is no task pending. In a parallel implementation,
several processors can be working on independent tasks concurrently as long as there is no conflict
for a hash table entry.

The average granularity of each task is between 50 and 100 |is, during which both the shared task
queue and the hash table have to be updated. The size of the affected data structures is between 10
and 20 32-bit words. During this update two or more synchronization operations are needed: one for
taking a task off the queue, one to lock the hash table entry for this task, and the remaining to insert
new tasks into the queue. Furthermore, in each cycle the processors need additional synchronization
to determine if the end of the cycle has been reached. The cost of these synchronization operations
must be low in comparison with the task granularity. Finally, the available parallelism in these
applications is limited by the average number of tasks active at any time; in the cases studied the
number of active tasks is between 15 and 20.

In an ideal implementation, there would be a single task queue shared among all the processors
(which requires tha t the hash table also be shared globally). This ensures the best possible load
distribution among the processors and, provided the cost of global memory access is no different from
tha t of local memory access in a uniprocessor, gives the best possible performance. In an actual
implementation on our machine, however, it is not advisable to share the task queue and hash table
globally, since these data structures are accessed and updated relatively frequently. The reason is
the following. In order to be competitive with a uniprocessor implementation, each processor in this
machine mus t have a local copy of all the data it needs for processing each task. Otherwise, reading
10-20 words from a remote location (at 2 |xs per access vs. 50 ns for each local-cache access) is too
costly considering the small granulari ty of the task. At the same time, it is not feasible to replicate
all da ta a t every processor when the number of processors is more than 8 or so, because the need to
update all the copies begins to saturate the network.

An alternative solution is to partition the hash table among the processors, and maintain a
separate task queue per processor, so tha t each processor will receive only those tasks tha t need
access to its local hash table partition. This not only eliminates most of the remote accesses and the
need for replication, but also some of the synchronization overhead: a processor no longer needs to
lock its task queue to read a task and no longer has to lock the hash table entry for t ha t task. The
disadvantage of such a static allocation is the potential loss of performance due to a non-uniform
distribution of tasks among the processors.

The compromise solution is to maintain a separate task queue for each small cluster of processors.

23

The cluster should be small enough so that all the data needed for that task queue can be replicated
everywhere in tha t cluster without incurring too high a cost for the update of all copies. At the same
time, the total number of queues should be small enough for the load distribution not to become too
uneven.

A number of experiments were run on the simulator using traces generated from an actual
production system (Rubik). Figure 5-6 shows the performance for various data allocation strategies.
Separate curves are shown for an (ideal) totally-partitioned case (a separate task queue per
processor), for different cluster sizes (number of processors sharing a given task queue), and for the
totally shared case (a single task queue shared among all processors). The speedup values are
relative to an efficient uniprocessor implementation. The experiments on a totally shared task

§• 32

16 32
No. of processors

Figure 5-6: Results of Simulation of Rubik Traces
queue were conducted to place an upper bound on the available parallelism in the application For
this purpose, the extra computational cost arising from replicating the shared data structures was

24

hidden from the simulator and the computational cost per task was made to be identical to that of an
efficient uniprocessor implementation. Since the hash table was hidden from the simulator, we did
not account for the time required for hash table conflicts. As a result, the performance figures of the
totally shared case are overestimated. On the other hand, the synchronization cost was retained in
the simulation and it does show up as an overhead in the performance figures.

The differences in the above performance curves can be understood by looking at the breakdown of
the total processing time per processor, which consists of three major components: the actual
computation time, the synchronization overhead, and the idle time waiting on an empty task queue.
Table 5-3 summarizes these.

Number of Processors 2 4 8 16 32

totally compute 106.2 53.1 26.6 13.3 6.6
shared sync 10.4 8.4 5.6 3.6 2.2
(ideal) idle 0.1 0.2 0.6 2.0 4.1

totally compute 106.2 53.1 26.6 13.3 6.6
partitioned sync 9.4 6.7 4.4 2.7 1.6

idle 3.0 11.0 14.8 17.8 18.5

clustered compute 109.4 53.6 27.2 13.8 7.0
sync 11.0 7.2 5.4 3.1 1.8
idle 1.2 9.7 3.9 8.8 9.6

size 2 2 4 4 4

Table 5-3: Peak Synchronization Rate

The biggest factor determining the shape of the performance curve is the idle time. The totally
shared case (with a single global task queue) has the best load distribution, and hence has the least
idle time. The totally partitioned configuration has a separate queue per processor, which leads to a
much worse load distribution among processors (i.e., a processor remains idle if its input task queue
is empty, even though there may be tasks pending in other queues). Consequently, it has a much
higher idle time. The clustered configuration reaches a better load distribution (and lower idle time)
as expected, although these results are still inferior to the ideal case of a single task queue. The
synchronization overhead is fairly steady between 10 and 20% of the computation time.

Since these simulations were trace driven, we have not been able to take advantage of an
important optimization feature of this architecture. This is its ability to initiate and complete
synchronization operations in two phases, while carrying on other computation in between. From
the above table, we can see tha t the synchronization overhead is between 10 and 20%. Therefore,
this application can potentially run tha t much faster than the above graph and table indicate.

5.2.2. S ing le P o i n t Shortes t P a t h
The Single Point Shortest Path problem is a good example of a problem requiring many

synchronization operations. The problem involves finding the minimum cost to traverse a graph from
one vertex to any other vertex. Both sequential and concurrent algorithms for thi? problem work by
propagating the distance cost from one vertex and updating it until no more updates are possible
(see Daily's thesis [8] for a description of the algorithms). Each arc contains the cost to traverse it
and each vertex contains the cost to reach it from the start ing point. The former is set at

25

Figure 5-7: Speed-up for the Single Point Shortest Path Problem

initialization time and the lat ter is dynamically computed.

Number of Processors 2 4 8 16 32 64 128 256
best case

(some replication)
99.8 99.53 97.34 91.62 83.37 66.89 51.62 32.62

worst case
(no replication)

97.4 76.34 70.16 72.3 71.55 41.68 23.00 16.02

Table 5-4: Average Processor Utilization.

The basic step of a concurrent implementation involves choosing a vertex and computing the cost
of moving to each of its neighbors. If the new cost is better than the cost stored in the vertex, the cost
is updated and the vertex is queued for further expansion. When there are no more vertices to

26

expand, the algorithm terminates. Each step requires three kinds of synchronization operations:
extracting a vertex from the queue, locking a vertex in order to update its cost atomically and
inserting a vertex into the queue. We used a fetch-and-add primitive to implement the queue and a
semaphore to lock each vertex. Each step takes about 80 |is of processing time (if all synchronization-
related instructions are not counted) and requires an average of two fetch-and-add and four fetch-
and-set operations.

The implementation uses multiple queues since a single queue introduces serialization and
requires long remote accesses. The vertices are evenly distributed among the nodes and there is one
queue on each node. If a processor extracts work only from its local queue, it is possible for some
processors to remain idle for part of the time, especially if the ratio of number of vertices to the
number of processors is low. The shared memory model and the possibility of replicating data are
very helpful in this case. We have replicated queues and vertices on more than one processor and
found a substantial performance increase due to better load balancing. In this case, a processor
looks a t each of the queues start ing with the queues tha t are replicated locally.

Figure 5-7 shows the speed-up of me average time to process one vertex for different levels of
replication. The speed-up drop for 256 processors is mainly due to the fact tha t the graph has too
few nodes (1024) compared to the number of processors; often the sum of the number of the vertices
in the queues is less than 256 and it is impossible to rebalance the load. The task size creates a load
balancing problem with more than 32 processors. This is indicated by the utilization (ratio of the
average processor idle time to the elapsed time) shown in Table 5-4. With no replication, the
utilization decreases substantially when more than 32 processors are used. When replication is
used, utilization and speed-up remain reasonable up to 128 processors.

The network and the coherency mechanism are much less loaded than in the case of the artificial-
load experiments described in the previous sections: the average read time is about 200 ns and the
average synchronization latency is less than 2.5 jiseconds in the case of 256 processors. The
synchronization latency experienced by the program is less than 2.5 jiseconds since some of the
locking operations are partially overlapped with useful computation.

5.2.3. B e a m Search
The SPHINX speech recognition system (Kai-Fu Lee et. al. [11]) is a state-of-the-art speaker-

independent continuous speech recognition system which currently achieves in excess of 95%
accuracy on a 1000 word vocabulary with loosely constrained grammars. The system has two
components: a signal processing component tha t can be executed in real time (real time is the length
of the ut terance to be recognized) by a signal processing processor like the Texas Instruments
TMS32030, and a beam search [4] component tha t requires about 7 times real t ime on a Sun 4/260
for a medium-difficulty task. The search component is a good example of a real-world non-numeric
application since it exhibits the following characteristics:

1. No floating point arithmetic or integer multiplications; no more than 25% of the
instructions are arithmetic operations.

2. Negligible amount of I/O (about .03 bytes per instruction).

3. Control-flow depends on the input data (speech input).

4. Poor locality of da ta reference.

27

5 ' S y S . a H a S i n S W h i ° h C r e a t C S d e p e n d e n c i e s t h a t c a n n o t b e a v o i d e d by compilation

The inner loop of this algorithm can be coded in about 70 RISC instructions and requires about 10
memory references per iteration. A medium-complexity 1,000 word task requires the execution of
about 1 0 6 inner loop iterations per second. Larger lexicons and more complex grammars require
substantially more computation.

The beam search algorithm of SPHINX searches a Hidden Markov Model representation of the
speech process and returns the most likely sequence of words. Beam search requires a very fine-
grain parallel decomposition and a substantial amount of synchronization. Typically, a processor
must dequeue one Markov state from the list of states to be processed, lock all the states tha t follow
it and finally queue a new state.

Queuing (dequeuing) states in (from) a central queue causes too much serialization. The solution
is to split the queue into local queues, one for each processor, so that queue accesses can proceed in
parallel. In this case, because of the highly data-dependent behavior of beam search, it is likely that
some queues will become empty before others and some processors will remain idle and create a load
imbalance. This load imbalance can be limited by associating each queue with a few processors
instead of one.

The algorithm requires a large memory bandwidth tha t cannot be fully obtained by means of
caches since the search proceeds in many different parts of the graph at the same time and the
locality of da ta references is limited.

We have implemented the search algorithm on different machines and on the simulator. The same
C code has been used for all existing machines. Because of memory limitations (the algorithm
requires about 8 Mbytes of memory) we have driven the simulator with a detailed trace collected
from one of the C-code programs instead of the program itself. Both execution time and memory
references were accurately modeled and we have validated the simulator version by comparing the
execution time of a real machine with the execution time on a single node of the simulated system.

Figure 5-8 compares the performance of a few commercial machines with the simulated
performance of our multiprocessor. We have chosen the speed of the processors so tha t the speed of a
single processor system is similar to the speed of a single processor Encore Multimax. The absolute
performance of such a one-processor system is about 27 times real time (real-time is the length of the
utterance). The line labeled BEAM shows the performance of a shared-memory accelerator called
BEAM [5] t ha t uses three 10-MIPS Weitek-8032 and is currently the fastest machine running
SPHINX. The Figure also shows the relative speed of a Sun 4/260 and a Sun 3/60. In comparing the
values one should remember tha t the performance of the algorithm depends not only on the speed of
the processor b u t also on the performance of the memory system, e.g. on the size of the cache.

The speed of the bus-based Encore peaks a t about 12 processors, bu t there are no substantial
speed improvements with more than 8 processors because the combination bus/shared memory
system saturates . The distributed-memory multiprocessor has close-to-linear speed-up until 16
processors and then becomes less effective because of the synchronization overhead. One should also
notice tha t the performance is as good as or better than the performance of the bus-based machine

28

Number of Processors

Figure 5-8: Beam Search Speed-up Relative to the Performance of
a One-processor Encore Multimax.

even in the range in which the lat ter performs well. This indicates tha t a distributed memory
architecture can be advantageous even with a small number of processors.

Figure 5-9 shows the simulated performance with a much faster processor. The single processor
speed has been calibrated to be about 1.5 times the speed of a single Weitek 8032 processor as it was
used in the BEAM accelerator [5]. We estimated tha t this speed is a conservative approximation of
the speed attainable by a Motorola 88000 running a t 20MHz. The performance of the single
processor system is 1.83 times real time. In comparing Figure 5-8 to Figure 5-9 one should bear in
mind tha t there is a factor of 15 performance difference between the single processor case in the two
Figures. The inner loop of the search takes less than 4 jiseconds and three synchronizations are
necessary for each iteration.

29

Number of Processors

Figure 5-9: Beam Search Speed-up Relative to the Performance of
the Best Sequential Implementation.

The dashed curve shows the performance with exactly the same program tha t was used to derive
the measurements of Figure 5-9: the speed-up starts deteriorating after 32 processors. The dot-dash
curve shows the performance of a different version of the program in which par t of the
synchronization latency has been overlapped with computation. For example, the program assumes
tha t lock operations are always successful and performs the instructions tha t depend on the lock
without waiting for the synchronization outcome. Only a t the end of this processing it checks the
outcome of the lock operation and repeats the computation if necessary. The absolute performance is
improved because pa r t of the synchronization delays are hidden, but the slope of the curve is similar
to the slope of the previous case.

The dotted line shows the performance of a very different version of the same program: the loop is

30

programmed as three independent tasks that are associated with the completion of a
synchronization operation. Each of the tasks can be repeatedly executed and can issue a number of
synchronization operations which, when completed, will trigger the execution of other tasks.
Switching to a different task instead of waiting for the outcome of a synchronization is very useful
since it increases utilization. If the overhead of switching is too high, though, the advantage is lost.
In programming this specific program we have been able to keep the overhead within 10 instructions
per context switch. Although we believe that a general purpose package with similar performance
could be programmed, we have not done it. Since the slope of the curve is dominated by the
increasing cost of synchronization, better speed-up is achieved in this last case because a larger
percentage of the synchronization latency is overlapped with computation.

6. S u m m a r y
We have argued tha t a form of coherence (weak coherence) that is less restrictive than the one

supported on current shared memory multiprocessors is sufficient and easier to implement on large
multiprocessors. We have presented a new technique to support weak coherence in multiprocessors
tha t do not have a physical shared memory. The technique is based on keeping a dynamic
approximation of the t imestamp of the oldest message tha t is still in transit .

We have simulated a system tha t implements our coherence mechanism at a very detailed level
and found tha t the system can be more scalable than a bus based system using the same technology.
Moreover, we found tha t replicating writable data can improve load balancing and therefore improve
performance.

One of the experiments with a fine-grain real application has also shown tha t a distributed-
memory multiprocessor of this kind is competitive with a shared-memory system even if only a few
processors are used.

A c k n o w l e d g m e n t s
We would like to thank Duane Adams, Lawrence Butcher, Siddhartha Chatterjee, Duane

Northcutt and Raj Reddy for comments on the manuscript and helpful discussions.

R e f e r e n c e s
1] AgarwalA* Simoni.R., Hennessy^T. and Horowitz,M.

An Evaluation of Directory Schemes for Cache Coherence.
In 15th ISCA, pages 280-289. IEEE, May, 1988.

[2] Archibald,J. and Baer^J.L.
An Economical Solution to the Cache Coherence Problem.
In 12th ISCA, pages 355-362. IEEE, June , 1985.

[3] Beetem, J., Denneau, M. and Weingarten, D.
The GF11 Supercomputer.
In 12th Ann. Intl. Symp. on Computer Architecture, pages 108-115. IEEE Computer Society,

June , 1985.

31

[4] Bisiani,R.
Beam Search.
Encyclopedia of Artificial Intelligence.
John Wiley & Sons, 1987.

[5] Bisiani, R.
BEAM: An Accelerator for Speech Recognition.
In IEEE International Conference on Acoustics, Speech and Signal Processing, pages . May,

1989.

[6] Black,D.L., G u p t a A and Weber,W.
Competitive Management of Distributed Shared Memory.
In Compcon '88. IEEE, Spring, 1988.

[7] Crowther, W., Goodhue, J., Starr , E., Thomas, R., Milliken, W., Blackadar, T.
Performance Measurements on a 128-node Butterfly Parallel Processor.
In Parallel Processing Conference. IEEE, 1985.

[8] Dally,W.J.
A VLSI Architecture for Concurrent Data Structures.
PhD thesis, California Institute of Technology, 1986.

[9] Dubois,M., Scheurich,C. and Briggs,F.
Memory Access Buffering in Multiprocessors.
In 13th ISCA, pages 434,442. IEEE, June , 1986.

[10] Gupta, A., Forgy, C. L., Kalp, D., Newell, A., and Tambe, M.
Parallel OPS5 on the Encore Multimax.
In Proceedings of the International Conference on Parallel Processing, pages 271-280. August,

1988.

[11] Lee ,KF.
Large-Vocabulary Speaker-Dependent Continuous Recognition: The SPHINX System.
PhD thesis, Carnegie-Mellon, 1988.

[12] Nowa tzykA
Performance Analysis ofHypercube Based Ensemble Machine Architectures.
PhD thesis, Carnegie-Mellon, In preparation, 1989.

[13] Palmer, J . F.
A VLSI Parallel Supercomputer.
In Hypercube Multiprocessors , pages 19-26. SLAM, 1986.

[14] Pfister, G. F. et al.
The IBM Research Parallel Processor Prototype (RP3): Introduction and Architecture.
In Proc. oflntl Conf. on Parallel Processing, pages 764-771. IEEE Computer Society, August,

1985.

[15] Russell, R . M .
The CRAY-1 Computer System.
Comm. ACM 21(l):63-72, January , 1978.

