
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU Common Lisp User's Manual
Mach/IBM RT PC Edition

David B. McDonald, Editor

April 1989

CMU-CS-89-132 .

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This is a revised version of Technical Report CMU-CS-87-156.

Companion to Common Lisp: The Language

Abstract

CMU Common Lisp is an implementation of Common Lisp that currently runs on the IBM RT PC under Mach, a
Berkeley Unix 4.3 binary compatible operating system. This document describes the implementation dependent
choices made in developing this implementation of Common Lisp. Also, several extensions have been added,
including the proposed error system, a stack crawling debugger, a stepper, an interface to Mach system calls, a
foreign function call interface, the ability to write assembler language routines, and other features that provide a
good environment for developing Lisp code.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 4976
under contract F33615-87-C-1499 and monitored by the Avionics Laboratory, Air Force Wright Aeronautical
Laboratories, Aeronautical Systems Division (AFSC), Wright-Patterson AFB, OHIO 45433-6543.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or
the U.S. Government

TABLE OF CONTENTS
i

7

Table of Contents
1. Introduction

1.1. Obtaining and Running CMU Common Lisp on the IBM RT PC under Mach
2. Implementation Dependent Design Choices

2.1. Numbers 5
2.2. Characters 5
2.3. Vector Initialization 6
2.4. Defstruct 6
2.5. Packages 6
2.6. The Editor 7
2.7. Time Functions 7
2.8. Garbage Collection 8
2.9. Describe 9
2.10. Load 9
2.11. Modules 10
2.12. The Inspector 10

3* Miscellaneous Extensions to Common Lisp 13
3.1. Unix Interrupts

3.1.1. Default Interrupt Handlers for Lisp
3.1.2. Examples of Signal Handlers

3.2. Saving a Core Image 15
33. Search Lists
3.4. Running Programs from Lisp
3.5. Time Parsing and Formatting

4. Error System
4.1. Introduction

4.1.1. Purpose
4.1.2. Terminology , 2 2

4.2. Concepts 23
4.2.1. Signalling Errors 23

25
26

13
14
15

16
17
18
21
21
21

4.2.2. Trapping Errors
4.2.3. Handling Conditions
4.2.4. Object-Oriented Basis of Condition Handling 26
4.2.5. Restarts 27
4.2.6. Named Restarts 29
4.2.7. Restart Functions 29
4.2.8. Contrasting Restarts and Catch/Throw 30
4.2.9. Generalized Restarts 30
4.2.10. Serious Conditions 31
4.2.11. Non-Serious Conditions 31
4.2.12. Condition Types 32
4.2.13. Signalling Conditions 32
4.2.14. Condition Handlers 32
4.2.15. Printing Conditions 33

4 3 . Signalling Conditions 33
4.4. Handling Conditions 35
4.5. Defining and Creating Conditions 37
4.6. Assertions 38
4.7. Case Forms 41
4.8. Establishing Restarts 43
4.9. Finding and Manipulating Restarts 47
4.10. Restart Functions 47
4.11. Debugging Utilities 48
4.12. System Defined Types 49

University Libraries
Carnegie Mellon Universi

Pittsb».r?[|]f Pennsylvania }[

11

5. Debugging Tools
5.1. Function Tracing

5.1.1. Encapsulation Functions
5.2. The Single Stepper
5 3 . The Debugger

53.1. Frame Changing Commands
532. Exiting Commands
5 3 3 . Information Commands
53.4. Other Commands
53.5. Specials

6. The Compiler
6.1. Calling the Compiler
62. Open and Closed Coding
6 3 . Compiler Switches
6.4. Declare switches

7. Efficiency
7.1. Compile Your Code
7.2. Avoid Unnecessary Consing
7 3 . Do, Don't Map
7.4. Think Before You Use a List

7.4.1. Use Vectors
7.4.2. Use Structures
7.43. Use Hashtables
7.4.4. Use Bit-Vectors

7.5. Simple Vs Complex Arrays
7.6. To Call or Not To Call
7.7. Keywords and the Rest
7.8. Numbers
7.9. Timing

8. MACH Interface
8.1. Lisp Equivalents for C Routines
8.2. Type Translations
8 3 . Unix System Calls
8.4. Making Sense of Return Codes
8.5. Packages
8.6. Useful Variables
8.7. Reading the Command Line
8.8. Reading and Writing Virtual Memory Without Aliens
8.9. The Software Interrupt System

9. Event Dispatching with SERVER
9.1. Object Sets
9.2. The SERVER Function
9 3 . Using SERVER with Matchmaker Interfaces
9.4. Using SERVER with the X Interface
9.5. A SERVER Example

10. The Alien Facility
10.1. What the Alien Facility Is
10.2. Alien Values
103. Alien Types
10.4. Alien Primitives
10.5. Alien Variables
10.6. Alien Stacks
10.7. Alien Operators

TABLE OF CONTENTS

10.8. Examples
11. Foreign Function Call Interface

11.1. Introduction
11.2. Loading Unix Object Files
113. Defining Foreign Data Types

113.1. Defining New C Types
113.2. Defining C Arrays
1 1 3 3 . Defining C Records
113.4. Defining C Pointers

11.4. Defining Variable Interfaces
11.5. Defining Routine Interfaces
11.6. Calling Lisp routines from C
11.7. An Example

12. User-Defined Assembler Language Routines
12.1. Introduction
12.2. Notation
123. Defining User Miscops
12.4. The Assembler
12.5. Assembler Instructions

12.5.1. Storage Access
12.5.2. Address Computation
12.53. Branching
12.5.4. Traps
12.53. Moves and inserts
12.5.6. Arithmetic Operations
12.5.7. Logical Operations
12.5.8. Shifts
12.5.9. System Control
12.5.10. Input/Output

12.6. Useful Macros
12.6.1. Saving and Restoring Registers
12.62. Storage Allocation
12.63. Error reporting
12.6.4. Type Checking
12.63. Miscellaneous
12.6.6. Floating Point

12.7. Useful Miscops
12.8. Loading Miscops
12.9. Invoking User Miscops
12.10. Tak Example

Index
Index

CMU COMMON LISP USER'S GUIDE

LIST OF TABLES V

List of Tables

1

Acknowledgements
This manual is a modified version of Spice Lisp User's Guide edited by Scott E. Fahlman and Monica J. Cellio It

has been updated to reflect differences between the Common Lisp implementation on the Perq and the IBM RT PC

2

Chapter 1

Introduction

CMU Common Lisp is a public-domain implementation of Common Lisp developed in the Computer Science
Department of Carnegie Mellon University. Currently, it runs only on the IBM RT PC workstation under CMU's
Mach operating system; we may port it to other machines in the future. CMU Common lisp is descended from
Spice Lisp, developed at CMU for the Perq workstation.

The central document for users of any Common l isp implementation is Common Lisp: The Language, by Guy
L. Steele Jr. All implementations of Common Lisp must conform to this standard. However, a number of design
choices are left up to the implementor, and implementations are free to add to the basic Common Lisp facilities.
This document covers those choices and features that are specific to the CMU Common Lisp implementation on the
IBM PC RT for the Mach operating system. Common Lisp: The Language and this User's Guide, taken together,
should provide everything a user of CMU Common Lisp on the IBM RT PC needs to know.

In addition to the language itself, this document describes a number of useful library modules that run in CMU
Common Lisp. Hemlock, an Emacs-like text editor is included as an integral part of the CMU Common lisp
environment. It is described in two separate documents: Hemlock User's Manual and Hemlock Command
Implementor1s Manual.

Mach and CMU Common Lisp are currendy undergoing intensive tuning and development. For the next year or
so, at least, new releases will be appearing frequently. This document will be modified for each major release, so
that it is always up to date. Users of CMU Common Lisp at CMU should watch the Mach, Unix-Announce,
Unix-Forum, and CUSP bulletin boards for release announcements, pointers to updated documentation files, and
other information of interest to the user community.

1.1. Obtaining and Running CMU Common Lisp on the IBM RT PC under
Mach

In order to run CMU Common Lisp, you must have an IBM RT PC or IBM RT PC/APC with at least 4
megabytes of memory and a floating point accelerator card. If you plan to use the X window system at the same
time, you should have at least 6 megabytes of memory. The Hemlock editor can be used with the workstation's
high-resolution display (the IBM AED (Viking), IBM 6155 (APA16), IBM 6153 (APA8), or IBM 5080 (mpel) are
supported) under the X window manager version 11 or a standard terminal, such as a Concept-100 or H-19.

At CMU, there is a misc collection named c s . m i s c . r t l i s p which should be updated on your machine
regularly by normal sup mechanisms. The standard Mach distribution is set up to request this collection by default.
For those outside of CMU, there are several files including lisp, lisp.core, spelldictbin, etc. that need to be installed.
Lisp is a small C program that loads lisp.core into memory. Lisp should be put in any bin directory that is normally
in your search path. Lisp currently expects to find lisp.core in the directory /usr/misc/.lisp/lib/. If Hemlock is run

3

4 CMU COMMON LISP USER'S GUIDE

under the X window system, it needs several files that it expects to find in /usr/misc/.lisp/lib/. If the inspector is
used, then it expects to find some files in the directory /usr/misc/.lisp/lib/. The inspector expects to find a help file
in the directory /usr/misc/.lisp/doc/.

At CMU, you should put either /usr/misc/bin (if you want all the misc executable files) or /usr/misc/.lisp/bin (if
you want just Common Lisp) in your PATH searchlist Typing lisp will start up l isp with the default core image
(/usr/misc/.lisp/lib/lisp.core) after several seconds.

Cunentiy Lisp accepts the following switches:

-core requires an argument that should be the name of a core file. Rather than using the default core
file (/usrAnisc/iisp/lib/lisp.core), the specified core file is loaded.

-edit specifies to enter Hemlock. An optional argument should be the name of the editor Lisp to
register with the nameserver. If no argument is given, the name
[machine:userid.processid]Editor is used. A file to edit may be specified by placing the name of
the file between the program name (usually lisp) and the first switch.

-eval accepts one argument which should be a Lisp form to evaluate during the start up sequence. The
value of the form will not be printed unless it is wrapped in a form that does output.

-hinit accepts an argument that should be the name of the hemlock ink file to load the first time the
function e d is invoked. The default is to load hemlock-initfasl or, if that does not exist,
hemlock-initlisp from the user's home directory. If the file is not in the user's home directory,
the full path must be specified.

-init accepts an argument that should be the name of an init file to load during the normal start up
sequence. The default is to load initfasl or, if that does not exist, init.lisp from the user's home
directory. If the file is not in the user's home directory, the full path must be specified.

-noinit accepts no arguments and specifies that an init file should not be loaded during the normal start
up sequence. Also, this switch suppresses the loading of a hemlock init file when Hemlock is
started up with the -edit switch.

-load accepts an argument which should be the name of a file to load into Lisp before entering Lisp's
read-eval-print loop.

-register specifies that a slave Lisp should register with the nameserver. If an optional name is given, the
slave Lisp registers that name with the nameserver. Otherwise, the default name
[machine:userid]Eval is registered with the nameserver.

-slave specifies that Lisp should start up as a slave Lisp and try to connect to an editor Lisp. The
default name for the editor Lisp is [machine-name:userid.processid]Editor. If an optional name
is given, the slave Lisp tries to connect to the named editor Lisp.

For more details on the use of the -edit, -slave, and -register switches, see the Hemlock User's Manual

Arguments to the above switches can be specified in one of two ways: <switch>=<value> or
<switchxspacexvalue>. For example, to start up the saved core file my lisp, core type either of the following two
commands:

lisp -core=raylisp.core
lisp -core mylisp.core

Chapter 2

Implementation Dependent Design Choices

Several design choices in Common Lisp are left to the individual implementation. This chapter contains a partial
list of these topics and the choices that are implemented in CMU Common Lisp on the IBM RT PC for Mach. As in
Common Lisp: The Language all symbols and package names are printed in lower case, as a user is likely to type
them. Internally, they are normally stored upper case only.

2.1. Numbers

Currently, short-floats and single-floats are the same, and long-floats and double-floats are the same. Short floats
use an immediate (non-consing) representation with 8 bits of exponent and a 21-bit mantissa. There is a round off
error of approximately 1 in 10 6 when using short-floats. Long floats are 64-bit consed objects, with 12 bits of
exponent and 53 bits of mantissa. All of these figures include the sign bit and, for the mantissa, the "hidden bit".
The long-float representation conforms to the 64-bit IEEE standard, except that we do not support all the exceptions,
negative 0, infinities, and the like.

extensions: * ignore-floating-point-underflow* [Variable]
The variable *ignore-f loating-point-underf low* controls what happens when floating point
underflow occurs. If this variable is nil, a floating point underflow error is signalled. Otherwise, the
operation causing the undeflow quiedy returns a floating point zero of the appropriate type. The default
value is nil.

Fixnums are stored as 28-bit two's complement integers, including the sign bit. The most positive fixnum is 2 2 7 -
1, and the most negative fixnum is - 2 2 7 . An integer outside of this range is a bignum. Since the most positive
fixnum is over one hundred million, you shouldn't need to use bignums unless you are counting the reasons to use
l isp instead of Pascal.

2.2. Characters

CMU Common Lisp characters have 8 bits of code, 8 bits of font, and 8 control bits. The four least-
significant control bits are named Control, Met a, Super, and Hyper, as described in Common Lisp: the
Language. Characters read from a normal file or terminal stream always have zero font and bits. All printing
functions ignore the font information of a character object Write-char and princ ignore the control bits
information; print and prinl print a character using # \ notation (e.g., a character with code for A and control
and meta bits set prints as # \ CONTROL-META-A). Programs can make use of these fields internally.

5

6 CMU COMMON LISP USER'S GUIDE

2.3. Vector Initialization

If no : initial-value is specified, vectors of Lisp objects are initialized to nil, and vectors of integers are
initialized to 0.

2.4. Defstruct

extensions: *safe-defstruct-aCcessors* [Variable]
Saf e-def struct-accessors controls whether slot accessing code is completely type checked
or not The default value is NIL specifying that completely safe accessors are not created. However, they
will still check to make sure all accesses are within range. If the value is non-NIL, the accessor functions
check to make sure that the slot accessors are passed a structure of the correct type. This mode is useful
when debugging code making use of many structures.

2.5. Packages

When CMU Common Lisp is first started up, the default package is the user package. The user package uses
the lisp, extensions, conditions, debug, and clos packages. The symbols exported from these five
packages can be referenced without package qualifiers.

Currently, the following packages are defined (abbreviations for the packages are in parenthesis after the full
name):

clos (pel) The clos package contains the code that implements the Common Lisp Object System (CLOS)
specification and exports the symbols as defined in the CLOS specification. The nickname pel
has been retained for compatibility with earlier versions.

compiler (clc)
The compiler package contains the Common l isp compiler and an assembler for the IBM RT
PC. This package exports only the symbol assemble-file.

conditions The conditions package contains the new error system as proposed for Common Lisp and
exports several symbols necessary for the new error system.

debug The debug package contains the stack crawling debugger and the low level functions on which
it is built It exports symbols the user may want to use when debugging a program.

dired The dired package contains support functions for Hemlock's directory editing mode.
edit The edit package contains matchmaker code to allow a Lisp running the eval server to

establish a connection to a Lisp running Hemlock.
extensions (ext)

The extensions packages exports local extensions to Common Lisp that are documented in
this manual. Examples include the save-lisp function and the interface to foreign (C)
functions.

hemlock (ed) The hemlock package contains all the code to implement Hemlock commands. The hemlock
package currendy exports no symbols.

hemlock-internals (hi)
The hemlock-internals package contains code that implements low level primitives and
exports those symbols used to write Hemlock commands.

inspect The inspect package contains the inspector.
iterate The iterate package contains code used by CLOS and exports a few symbols needed by

CLOS.

IMPLEMENTATION DEPENDENT DESIGN CHOICES 7

keyword

lisp

mach

mmlispdefs

netname

spell

system

tl

ts

user

walker

xlib

The keyword package contains keywords (e.g., .start). All symbols in the keyword package
are exported and evaluate to themselves (i.e., the value of the symbol is the symbol itself).
The lisp package exports all the symbols defined by Common Lisp: the Language and only
those symbols. Strictiy portable Lisp code will depend only on the symbols exported from the
lisp package.

The mach package contains code to interface to the Mach operating system. All the standard
unix system calls (the names are unix-<system call name>) and the Mach specific calls (e.g.,
vmallocate, portallocate, etc.) are exported from this package.

The mmlispdef s package contains code used by matchmaker generated interfaces such as
some functions in the mach package. It exports several symbols that the matchmaker generated
files need.

The netname package contains matchmaker code to interface to the name server. It exports
the functions necessary to access the name server and some constants.
The spell package contains a spelling checker and corrector that is used by Hemlock. It
exports several symbols that allow a user to manipulate the spelling dictionary and to check the
spelling of words.

The system package contains functions and information necessary for the system. This
package is used by the lisp package and exports several symbols that are necessary to
interface to system code. For example, the symbols used by the alien facility are exported from
this package.

The tl package contains matchmaker code to implement the server and client side of the eval
server. This allows Lisp expressions to be evaled by a remote Lisp and the results returned to a
local Lisp. The remote Lisp may or may not be on the same machine as the local one.
The ts package contains matchmaker code to implement the server and client side of a
typescript interface. This allows lisp to implement a read-eval-print loop that is connected to a
remote Lisp.

The user package is the default package and is where a user's code and data is placed unless
otherwise specified. The user package exports no symbols.

The walker package contains code used by CLOS and exports a few symbols needed by
CLOS.

The xlib package contains the Common lisp X interface (CLX) to the XI1 interface. This is
mosdy Lisp code with a couple of functions that are defined in C to connect to the server.
The xp package contains a version of Richard C. Waters' pretty printer written in Common
Lisp.

The lisp, user, keyword, and system packages are required by Common Lisp: the Language.

2.6. The Editor

The ed function will invoke the Hemlock Editor. Hemlock is described in Hemlock User's Manual and Hemlock
Command Implementor1 s Manual; like CMU Common Lisp, it contains easily accessible internal documentation.
Most user's at CMU prefer to use Hemlock's slave connection or eval mode as the normal way to communicate with
Lisp's read-eval-print loop.

2.7. Time Functions

The standard COMMON LISP time functions are available in CMU Common Lisp.

8 CMU COMMON LISP USER'S GUIDE

time form [Macro]
The time macro evaluates its single form argument, prints the total elapsed time for the evaluation to
trace-output, and returns the value which form returns.

internal-time-units-per-second [Constant]
The value of intemal-time-units-per-second is 100.

2.8. Garbage Collection
CMU Common Lisp uses a stop-and-copy garbage collector that compacts the items in dynamic space every time

it runs. Most users run GC frequendy, long before space is exhausted, in order to compact the working set. With
the default value for the following variable, you can expect a GC to take about one minute of elapsed time on a 6
megabyte machine running X as well as Lisp. On machines with 8 megabytes or more of memory a GC should run
without much (if any) paging. GCs run more frequently but tend to take only about 5 seconds.

The following variables control the behavior of the garbage collector.

extensions: *bytes-consed-between-gcs* [Variable]
CMU Common l isp automatically does a GC whenever the amount of memory allocated to dynamic
objects exceeds the value of an internal variable. After each GC, this internal variable is set the amount
of dynamic space in use at that point plus the value of the variable
bytes-consed-between-gcs. The default value is 2000000.

extensions: *gc-verbose* [Variable]
If *gc-verbose* is NIL, no messages will be printed when an automatic garbage collection occurs.
Otherwise, a message is printed when a GC starts and another one is printed when a GC completes. The
default value is T.

e x t e n s i o n s : * g c - n o t i f y - b e f o r e * [Variable]
The variable e x t e n s i o n s : * g c - n o t i f y - b e f o r e * can be set to a function that should notify the
user when a garbage collections begins. The function should accept one parameter the amount of
dynamic space in use before the GC. The default value of this variable is a function that prints a message
similar to the following:

[GC threshold exceeded with 2,107,124 bytes in use* Commencing GC]

e x t e n s i o n s : * g c - n o t i f y - a f t e r * [Variable]
The variable e x t e n s i o n s : * g c - n o t i f y - a f t e r * can be set to a function that should notify the user
when a garbage collection finishes. This function should accept three parameters: the amount of dynamic
spaced retained by the GC, the amount of dynamic space freed, and the new threshold which is the
minimum amount of space in use before the next GC will occur. The default value of this variable is a
function that prints a message similar to the following:

[GC completed with 25,680 bytes retained and 2,096,808 bytes freed.]
[GC will next occur when at least 2,025,680 bytes are in use.]

Note that a garbage collection will not happen at exactiy the new threshold printed by the default
* g c - n o t i f y - a f t e r * function. The system periodically checks whether this threshold has been exceeded, and
only then does a garbage collection.

Automatic garbage collection can be turned off using the g c - o f f function, and turned back on using the g c - o n

IMPLEMENTATION DEPENDENT DESIGN CHOICES 9

function. However, this is not recommended.

2.9. Describe

In addition to the basic function described below, there are a number of switches and other things that can be used
to control described behavior.

describe object ^optional stream [Function]
The describe function prints useful information about object on stream, which defaults to
* standard-output*. For any object, describe will print out the type. Then it prints other
information based on the type of object. The types which are presentiy handled are:

describe prints the number of entries currendy in the hash table and the number of
buckets currendy allocated.

describe prints a list of the function's name (if any) and its formal parameters. If
the name has documentation, then the documentation string will be printed. If the
function is compiled then the file where it is defined will be printed as well.
describe prints whether the integer is prime or not

hash-table

function

fixnum
symbol The symbol's value, properties, and documentation are all printed. If the symbol has

a function definition, then the function is described.

If there is anything interesting to be said about some component of the object, describe will invoke itself
recursively to describe that object The level of recursion is indicated by indented output.

extensions:*describe-level*
The maximum level* of recursive description allowed. Initially two.

[Variable]

extensions:*describe-indentation*
The number of spaces to indent for each level of recursive description, initially three.

extensions:*describe-verbose*
If true, more information will be printed than usually would be. Initially nil.

[Variable]

[Variable]

extensions:*describe-print-level*
extensions:*describe-print-length*

[Variable]
[Variable]

The values of *print-level* and *print-length* during description. Initially two and five.

extensions: *describe-implementat ion-details* [Variable]
If true describe will print out everything there is, otherwise information which is internal to the
implementation is not printed. This currendy controls display of various properties.

2.10. Load

An extension has been made to load to allow the user to control what happens when the object file is older than
the corresponding source file.

10 CMU COMMON LISP USER'S GUIDE

e x t e n s i o n s : * l o a d - i f - s o u r c e - n e w e r * [Variable]
The legal values for * l o a d - i f - s o u r c e - n e w e r * and their meanings are:

.load-object The object file is loaded even though the source file is newer. This is the default

.load-source The source file is loaded instead of the older object file.
xompile The source file is compiled and then the new object file is loaded.
.query The user is asked a yes or no question to determine whether the source or object file

is loaded.

If * l o a d - i f - s o u r c e - n e w e r * contains any other value, an error is signalled

2.11. Modules
The CMU Common Lisp implementation of modules operates as described below in addition to conforming to

Common Lisp: the Language.

provide module-name [Function]
When a module is provided, module-name is added to *modules* indicating that it has been loaded.
Module-name may be either a case-sensitive string or a symbol; if it is a symbol, its print name is
downcased and used.

require module-name ^optional pathname [Function]
When a module is required, it is loaded if it has not been already. Module-name may be either a
case-sensitive string or a symbol; if it is a symbol, its print name is downcased and used.. Pathname, if
supplied, is a single pathname or list of pathnames to be loaded if the module needs, to be loaded. If
pathname is not supplied, then a list of files are looked for that were registered by a
extensions: defmodule form. If the module has not been defined, then a file will be loaded whose
name is formed by merging "modules:" and module-name (downcased if it is a symbol).

The following variable and macro are extensions to the Common Lisp module specification.

extensions: *require-verbose* [Variable]
While loading any files as a result of require, * load-verbose* is bound to
require-verbose which defaults to nil.

extensions: defmodule module-name &rest files [Macro]
This defines a module by registering the files that need to be loaded when the module is required.
Module-name may be either a case-sensitive string or a symbol; if it is a symbol, its print name is
downcased and used.

2.12. The Inspector
An inspector that runs under the X window manager version 11 or on a tty is available in CMU Common Lisp.

inspect ^optional object [Function]
Inspect calls the inspector on the optional argument object. If object, is not given, inspect
immediately returns NIL. Otherwise, the behavior of inspect depends on whether Lisp is running under
X or not.

IMPLEMENTATION DEPENDENT DESIGN CHOICES 11

If X is available, inspect creates an X window and displays object in the window. While inspect is
running and the cursor is in the inspector's X window, mouse clicks and keyboard input have the
following meaning:

Left When the left mouse button is clicked over a component object, that object will be
inspected in the current inspector window.

Middle When the middle mouse button is clicked over a component objea, inspect is exited
returning the component as the result All the new inspector windows are deleted.

Shift Middle When the shift key is depressed and the middle mouse button is clicked over a
component object, inspect exits and returns the component as the result. All the
inspector windows are left displayed on the screen.

Right When the right mouse button is clicked over a component objea, that object will be
inspected in a new inspeaor window.

d, D When either d or D is typed, the current window is deleted. If there are no more
windows, then inspect exits and returns the original object.

h, H, ? When any of h, H, or ? are typed while in an inspeaor window, a new window with
help information is displayed.

m, M When either m or M is typed, a component objea may be modified. The cursor
changes to an arrow with an M beside it. Clicking any mouse button while the mouse
is over a component will select that component as the destination for modification. If
m was typed, the source objea is also selected by the mouse which is indicated by an
S beside the arrow in the cursor. If M was typed, the source object will be prompted
for on the *query-io* stream. The source objea replaces the destination object.
While choosing the destination or source with the mouse, the operation can be
aborted by type q or Q.

q, Q When either q or Q is typed, inspect exits and returns the original object. All new
inspector windows are deleted.

p, P When either p or P is typed, inspect exits and returns the original object. All the.
inspector windows are left on the screen.

r, R When either r or R is typed, the current inspeaor display is recomputed. This is
necessary to maintain a consistent display for an object that may have changed since
the display was originally computed.

u, U When either u or U is typed, the object of which the current object is a component is
displayed. This is the inverse operation to clicking the left mouse button over a
component objea. If the window is currendy displaying the top level objea, nothing
changes.

When the cursor is over a component objea, the object is highlighted by surrounding it with a box.

If X is unavailable, a tty inspector is invoked. This inspector prints information bout and object and a
numbered list of the components of the objea. The following commands are available:

<n>

r
d
u

b ,?

where <n> means a number corresponding to one of the components of the object.
The inspector changes its focus to be this component. The inspector displays the
components of the this new objea.
recomputes the information for the current objea.
redisplays the iriformation for the current objea.

moves up one level of the objeas inspeaed. As you descend into the components of
an objea, a stack of all the objects previously seen is kept. This command pops you
up one level of this stack.

quits the inspector returning the currendy inspected object,
displays some help text

CMU COMMON LISP USER'S GUIDE

When inspect is eventually exited, it returns a l isp object

Chapter 3

Miscellaneous Extensions to Common Lisp

Several extensions have been made to make CMU Common Lisp a better development environment. This chapter
describes various functions, macros, and variables beyond basic Common l isp that have been added to CMU
Common lisp.

3.1. Unix Interrupts

CMU Common l isp allows access to all the Unix signals that can be generated under Mach. It should be noted
that if this capability is abused, it is possible to completely destroy the running lisp. The following macros and
functions allow access to the Unix interrupt system. The signal names as specified in section 2 of the Unix
Programmer's Manual are exported from the Mach package.

system:with-enabled-interrupts specs firest body [Macro]
The macro with-enabled-interrupts should be called with a list of signal specifications specs. Each
element of specs should be a list of two or three elements: the first should be the Unix signal for which a
handler should be established, the second should be a function to be called when the signal is received,
and the third should be an optional character used to generate the signal from the keyboard. This last
item is only useful for the SIGINT, SIGQUTT, and SIGTSTP signals. One or more signal handlers can be
established in this way. With-enabled-interrupts establishes the correct signal handlers and then executes
the forms in body. The forms are executed in an unwind-protect so that the state of the signal handlers
will be restored to what it was before the with-enabled-interrupts was entered. A signal handler function
specified as NIL will set the Unix signal handler to the default which is normally either to ignore the
signal or to cause a core dump depending on the particular signal.

system: without-interrupts firest body [Macro]
It is sometimes necessary to execute a piece a code that can not be interrupted. The macro without-
interrupts executes the forms in body with interrupts disabled. Note that the Unix interrupts are not
actually disabled, rather they are queued until after body has finished executing.

system: with-interrupts firest body [Macro]
When an interrupt handler is called, interrupts are disabled, as if it is wrapped in without-interrupts. The
macro with-interrupts can be used to enable interrupts while the forms in body are evaluated. This is
useful if body is going to enter a break loop or do some long computation that doesn't need interrupts
disabled.

13

14 CMU COMMON LISP USER'S GUIDE

s y s t e m : w i t h o u t - h e m l o c k firest body [Macro]
For some interrupts, such as SIGTSTP (suspend the Lisp process and return to the Unix shell) it is
necessary to leave Hemlock and then return to it. This macro executes the forms in body after exiting
Hemlock. When body has been executed, control is returned to Hemlock.

s y s t e m : e n a b l e - i n t e r r u p t signal Junction ^ o p t i o n a l character [Function]
Enable-interrupt establishes Junction as the handler for signal. The optional character can be specified
for the SIGINT, SIGQUTT, and SIGTSTP signals and causes that character to generate the appropriate
signal from the keyboard. Unless you want to establish a global signal handler, you should use the macro
with-enabled-interrupts to temporarily establish a signal handler. Enable-interrupt returns the old
function associated with the signal and when character is specified for SIGINT, SIGQUTT, or SIGTSTP,
the old character code.

s y s t e m : i g n o r e - i n t e r r u p t signal [Function]
Ignore-intermpt sets the Unix signal mechanism to ignore signal which means that the l isp process will
never see the signal. Ignore-intermpt returns the old function associated with the signal or NIL if none is
currendy defined.

s y s t e m : d e f a u l t - i n t e r r u p t signal [Function]
Default-interrupt can be used to tell the Unix signal mechanism to perform the default action for signal.
For details on what the default action for a signal is, see section 2 of the Unix Programmer's Manual. In
general, it is likely to ignore the signal or to cause a core dump.

3.1.1. Default Interrupt Handlers for Lisp
CMU Common l isp has several interrupt handlers defined when it starts up, as follows:

SIGINT causes Lisp to enter a break loop. This puts you into the debugger which allows you to look at
the current state of the computation. If you proceed from the break loop, the computation will
proceed from where it was interrupted.

SIGQUTT causes Lisp to do a throw to the top-level. This causes the current computation to be aborted,
and control returned to the top-level read-eval-print loop.

SIGTSTP causes Lisp to suspend execution and return to the Unix shell. If control is returned to Lisp, the
computation will proceed from where it was interrupted.

SIGILL, SIGBUS, SIGSEGV, and SIGFPE
cause Lisp to signal an error.

SIGMSG is a Mach specific signal that is generated when an IPC message is received. Most of the time
this signal is ignored. However, when Lisp calls die function s e r v e r when waiting for one of
several things to happen, this signal is enabled and is used to return control to s e r v e r when a
message is received.

SIGEMSG is another Mach specific signal that is generated when an IPC emergency message is received.
The default action for Lisp is to immediately service the emergency message and any others that
are pending.

The SIGINT, SIGQUTT, and SIGTSTP signals can be generated from the keyboard. The characters used to
generate these interrupts are the same as in the shell. Generally, these are control-C for SIGINT, control-\ for
SIGQUTT, and control-Z for SIGTSTP. Depending on what commands are in your .login or .cshrc files, the
characters used to generate these interrupts may be different When in the Lisp read-eval-print loop that you get by
just running Lisp, these interrupts can be generated by typing the appropriate character. To generate one of these
interrupts from the keyboard while running Hemlock depends on how Hemlock is run, as follows:

Under X When running under the X window manager, SIGINT, SIGQUTT, and SIGTSTP are generated

MISCELLANEOUS EXTENSIONS TO COMMON LISP 15

by typing the appropriate control character in the top-level Lisp window.
Terminal When accessing Lisp from a normal terminal (either by telnet or terminal emulation mode under

X), control-\ can be used to generate the SIGINT signal. The other interrupts can not be
signalled diiectiy while in Hemlock, but once in the debugger, they can be signalled by typing
the appropriate character.

When a signal is generated, there may be some delay before it is processed since Lisp cannot be interrupted safely
in an arbitrary place. The computation will continue until a safe point is reached and then the interrupt will be
processed.

Unix signals that correspond to program errors cause the l isp error system to obtain control. Under normal
circumstances this should not happen, but if it does and you have important work, you should immediately try to
save it.

3.1.2. Examples of Signal Handlers
The following code is the signal handler used by the Lisp system for the SIGINT signal,

(defun ih-sigint (signal code scp)
(declare (ignore signal code scp))
(without-hemlock
(with-interrupts
(break "Software Interrupt" t))))

The without-hemlock form is used to make sure that Hemlock is exited before a break loop is entered. The
with-interrupts form is used to enable interrupts because the user may want to generate an interrupt while in the
break loop. Finally, break is called to enter a break loop, so the user can look at the current state of the computation.
If the user proceeds from the break loop, the computation will be restarted from where it was interrupted.

The following function is the Lisp signal handler for the SIGTSTP signal which suspends a process and returns to
the Unix shell.

(defun ih-sigtstp (signal code scp)
(declare (ignore signal code scp))
(without-hemlock
(mach: unix-kill (mach: unix-getpid) mach: sigstop)))

Lisp uses this interrupt handler to catch the SIGTSTP signal because it is necessary to get out of Hemlock in a clean
way before returning to the shell.

To set up these interrupt handlers, the following is recommended:
(with-enabled-interrupts ((mach:SIGINT #'ih-sigint 2)

(mach:SIGTSTP #'ih-sigtstp 26))
<user code to execute with the above signal handlers enabled.>

)

3.2. Saving a Core Image

A mechanism has been provided to save a running l isp core image and to latter restore i t This is convenient if
you don't want to load several files into a Lisp when you first start it up.

extensions: save-lisp file &key :purify : root-structures : init-function [Function]
:load-init-file :print-herald
:process-command-line

The save-lisp function saves the state of the currendy running lisp core image in file. Save-lisp

16 CMU COMMON LISP USER'S GUIDE

is exported from the extensions package. The keyword arguments have the following meaning:

.purify

.root-structures

:init-function

.load'init-file

If non-NEL (the default), the core image is purified before it is saved. This means
moving accessible Lisp objects from dynamic space into read-only and static space.
This reduces the amount of work the garbage collector must do when the resulting
core image is being run. Also, if more than one lisp is running on the same machine,
this maximizes the amount of memory that can be shared between the two processes.
Objects in read-only and static space can never be reclaimed, even if all pointers to
them are dropped.
This should be a list of the main entry points for the resulting core image. The
purification process tries to localize symbols, functions, etc, in the core image so that
paging performance is improved. The default value is NIL which means that Lisp
objects will still be localized but probably not as optimally as they could be. This
argument has no meaning if .purify is NIL.
This is a function which is called when the saved core is resumed. The default
function simply aborts to the top-level read-eval-print loop. If the function returns, it
will be the value of save-lisp.
If non-NIL, then load an init file; either the one specified on the command line or
initfasl or, if init.fasl does not exist, initlisp from the user's home directory. If the
init file is found, it is loaded into the resumed core file before the read-eval-print loop
is entered.

iprint-herald If non-NIL, then print out the standard l isp herald when starting.
:process-command-line

If non-NIL, processes the command line switches and performs the appropriate
actions.

To resume a saved file, type:
lisp -core file

3.3. Search Lists

Search lists make it possible to refer to files using abbreviated names. The general form of a search list definition
is:

(setf (ext:search-list <name>) ' (directory1 directory2 ...))
Where <name> specifies the search list and must be a string (case insensitive) terminated by a colon (:), and
directoryj are strings that specify Unix directories (case sensitive). For example, it is possible to define the search
list code: as follows:

(setf (ext:search-list "code:") '("/usr/lisp/code/"))
It is now possible to use code: as an abbreviation for the directory /usr/lisp/code/ in all file operations. For example,
you can now specify code:evaliisp to refer to the file /usr/hsp/code/evaLlisp.

To obtain the value of a search-list name, use the function search-list as follows:
(ext:search-list <name>)

Where <name> is the name of a search list as described above. If <name> is not defined as a search-list, NIL is
returned For example, calling ext:search-list on code: as follows:

(ext:search-list "code:")
returns the list ("/usr/lisp/code/").

MISCELLANEOUS EXTENSIONS TO COMMON LISP 17

3.4. Running Programs from Lisp

It is possible to ran programs from Lisp by using the following function.

e x t e n s i o n s : r u n - p r o g r a m program args &key : env . w a i t : i n p u t [Function]
: i f - i n p u t - d o e s - n o t - e x i s t
: o u t p u t . . .

Run -program allows lisp to start up a child process and run the specified program. Program should be
a pathname or string specifying the name of the file containing the program to run. Args should be a list
of strings which are passed to program as normal Unix parameters. For no arguments, specify args as
NIL. The following keyword arguments are defined:

:env is a list of strings in the standard Unix environment format (i.e.,
"<variable>=<value>"). The default is to use the environment information passed to
Lisp when Lisp was started. If :env is specified, it uses the value given and does not
combine the environment passed to Lisp with the one specified.

rwait If non-NIL (the default), wait until the child process terminates. If NIL, continue
running Lisp while the child process runs.

.input should be a string specifying the name of a file that contains input for the child
process. This file will be opened on standard input If value is NIL (default), then
standard input is opened to the file "/dev/null". If value is T, the current standard
input will be used. This may cause some confusion if the :wait argument is NIL,
since two processes may be reading from the terminal at the same time. If value is
:stream, then a stream is returned. Anything written to this stream is sent to the new
process. The argument can also be a input stream that already contains all the input
for the process. The input is sent to the process before run-program returns.

:if-input~does-not-exist
specifies what to do if the input file does not exist. The valid values are: NIL
(default) returns NIL from run-program without doing anything; : c r e a t e creates
the named file; and : e r r o r signals an error.

.output should be a pathname specifying the name of a file that will contain the output written
to standard output by the child process. If value is NIL (default), all output is
directed to "/dev/null". If value is T, standard output for the Lisp process is used.
This may cause confusion, since two processes may be writing to die tenriinal. If
value is :stream, then an input stream is returned which can be read from when the
process has output This stream is closed when eof is reached.

:if-output-exists specifies what to do if the output file already exists. The valid values are: NIL returns
NIL from run-program without doing anything; : e r r o r (default) signals an error,
: s u p e r s e d e overwrites the current file; and : append appends all output to the
file.

•.error is similar to .'output, except that the file is associated with standard error.
:if-error-exists specifies what to do if the error output file already exists. It accepts the same values

as if-output-exists.

All other file descriptors are closed in the child process before the program to run is invoked. If an error
occurs, run-program returns NIL and possibly a second value specifying the Unix error that occurred. If
run-program is successful, the values returned depend on the value of :wait. If :wait is non-NIL, then
run-program returns the process id (pid), input stream (if necessary), output stream (if necessary), and
error stream (if necessary), plus the return values from the wait system call. When rwait is NIL, the same
values are returned, except no values are returned for the wait system call (since the process will continue
to run in the background).

18 CMU COMMON LISP USER'S GUIDE

3.5. Time Parsing and Formatting

Functions are provided to allow parsing strings containing time information and printing time in various formats
are available.

extensions: parse-time time-string &key : error-on-mismatch : default-seconds [Function]
:default-minutes :default-hours
:default-day ...

Parse-Time accepts a string containing a time (e.g., "Jan 12,1952") and returns die universal time if it
is successful. If it is unsuccessful and the keyword argument :error-on-mismatch is non-NIL, it signals
an error. Otherwise it returns NIL. The other keyword arguments have the following meaning:

specifies the default value for the seconds value if one is not provided by time-string.
The default value is 0.
specifies the default value for the minutes value if one is not provided by time-string.
The default value is 0.
specifies the default value for the hours value if one is not provided by time-string.
The default value is 0.
specifies the default value for the day value if one is not provided by time-string. The
default value is the current day.
specifies the default value for the month value if one is not provided by time-string.
The default value is the current month.
specifies the default value for the year value if one is not provided by time-string.
The default value is the current year.
specifies the default value for the time zone value if one is not provided by
time-string. The default value is the current time zone.
specifies the default value for the day of the week if one is not provided by
time-string. The default value is the current day of the week.

Any of the above keywords can be given the value .current which means to use the current value as
determined by a call to the operating system.

.default-seconds

.default-minutes

:default-hours

•.default-day

.'default-month

.default-year

.default-zone

.default-weekday

extensions: Format-Universal-Time dest universal-time &key : time zone [Function]
:style :date-first
:print-seconds ...

extensions: Format-Decoded-Time dest seconds minutes hours day month year &key . . . [Function]
Format-Universal-Time formats the time specified by universal-time.
Format-Decoded-Time formats the time specified by seconds, minutes, hours, day, month, and year.
Dest is any destination accepted by the format function. The keyword arguments have the following
meaning:

:timezone is an integer specifying the hours west of Greenwich. .Timzone defaults to the
current time zone.

.-style specifies the style to use in formating the time. The legal values are:

.-short specifies to use a numeric date.

.long specifies to format months and weekdays as words instead of
numbers.

.abbreviated is similar to long except the words are abbreviated.

.government is similar to abbreviated, except the date is of the form "day
month year" instead of "month day, year".

MISCELLANEOUS EXTENSIONS TO COMMON LISP 19

.date-first if non-nil (default) will place the date first. Otherwise, the time is placed first.

.print-seconds if non-nil (default) will format the seconds as part of the time. Otherwise, the
seconds will be omitted.

.print-meridan if non-nil (default) will format "AM" or "PM" as part of the time. Otherwise, the
"AM" or "PM" will be omitted.

.print-timezone if non-nil (default) will format the time zone as part of the time. Otherwise, the time
zone will be omitted.

.print-seconds if non-nil (default) will format the seconds as part of the time. Otherwise, the
seconds will be omitted.

.-print-weekday if non-nil (default) will format the weekday as part of date. Otherwise, the weekday
will be omitted.

CMU COMMON LISP USER'S GUIDE

Chapter 4

Error System

Written by Kent M. Pitman and Bill Chiles

4.1. Introduction

This chapter describes the Common lisp Condition System, as proposed and accept by the X3J13 subcommittee
on error handling. The design is primarily fixed, but the standards committee is still making changes to complete
and polish it. Most of the work that remains is fully specifying the standard condition types (described below) and
which Common Lisp functions must signal what conditions under what situations. CMU Common Lisp defines the
conditions specified near the end of this chapter, but it does not signal all of them when you might expect.
Therefore, we support a somewhat unsophisticated environment for extremely clever condition handling; however,
you will probably find more functionality and conditions implemented than you'll need.

4.1.1. Purpose
Often we find it useful to describe a function in terms of its behavior in normal situations. For example, we may

say informally that the function + returns the sum of its arguments or that the function read-char returns the next
available character on a given input stream. Sometimes exceptional situations arise which do not fit neatly into such
descriptions. For example, + might receive an argument which is not a number, or read-char might receive a
single argument which was a stream that had no more available characters. This distinction between normal and
exceptional situations is in some sense arbitrary, but is often very useful in practice.

For example, suppose you had a function F which you defined to allow only integer arguments, but you also
guaranteed that the function F would detect and signal an error for non-integer arguments. Such a description is in
fact internally inconsistent because the behavior is well-defined for non-integers. Yet we would not want this to
force us to have to describe F as a function that accepts any kind of argument (just in case someone calls F only as a
quick way to signal an error, for example). Using our new terminology, we can say clearly that F accepts integers in
the normal situation, and signals an error in exceptional situations. Moreover, we can say that when we refer to the
definition of a function informally, it is acceptable to speak only of its normal behavior. For example, we can speak
informally about F as a function that accepts only integers without feeling that we are committing some fraud.

Not all exceptional situations are errors. For example, a program which is typing out a long line of text may
notice that it is at the end of the line. It is possible that no real harm will result from continuing to type past the end
of the line because the operating system will simply force a carriage return on the output device and continue typing
on the next line. Even though the system recovers, it may be interesting to establish a protocol whereby that
program can inform its callers of end-of-line exceptions. The controlling program could then opt to deal with these
situations in interesting ways at certain times. It might choose to terminate printing, obtaining an end-of-line
truncation. The point is the printer program can continue to operate correctly even when the controlling program

21

22 CMU COMMON LISP USER'S GUIDE

fails to provide advice about the situation; the situation is not an error.

Mechanisms for dealing with exceptional situations vary widely. When one occurs, a program may attempt to
handle the situation by returning a distinguished value, returning an additional value, setting a variable, calling a
function, performing a special transfer of control, or by stopping the program altogether and entering the debugger.
For the most part, the facilities described in this document do not introduce any fundamentally new way of dealing
with exceptional situations; rather, they encapsulate and formalize useful patterns of data and control flow which
programmers have found useful in dealing with exceptional situations.

A proper conceptual approach to errors should begin with a discussion of the principles of conditions in general
and eventually work its way up to the concept of an error as just one of the many kinds of conditions. However,
given the widespread primitive state of error handling technology, a proper buildup may be as inappropriate as
requiring that a beggar learn to cook a gourmet meal before being allowed to eat. As such, this chapter will first
deal with the essentials, error handling, and then later go back and fill in the missing details.

4.1.2. Terminology
Common Lisp: the Language (pp. 5-6) says the following about errors:

When this manual specifies that i t 4 ' i s an error'' for some situation to occur, this means that:

• No valid Common Lisp program should cause this situation to occur.

• If the situation occurs, the effects are completely undefined as far as adherence to the Common Lisp
specification is concerned.

• No Common Lisp implementation is required to detect such an error. Of course, implementors are encouraged
to provide for detection of such errors wherever reasonable.

This is not to say that some particular implementation might not define the effects and results for such a situation; the
point is that no program conforming to the Common Lisp specification may correctly depend on such effects or results.

On the other hand, if it is specified in this manual that in some situation 4'an error is signalled", this means that:

• If this situation occurs, an error will be signalled (see •rror and c«rror).
• Valid Common Lisp programs may rely on the fact that an error will be signalled.

• Every Common Lisp implementation is requited to detect such an error.

In places where it is stated that so-and-so "must" or "must not" or "may not" be the case, then it "is an error" if
the stated requirement is not met. For example, if an argument "must be a symbol", then it "is an error" if the
argument is not a symbol. In all cases where an error is to be signalled, the word "signalled" is always used explicitly
in this manual.

This has changed for the language standard. We have some new terms and phrases for describing what built in
functions do. A condition is an interesting situation in a program which has been detected and announced. Later we
will allow this term to also refer to objects which programs use to represent such situations. An error is a condition
in which normal program execution may not continue without some form of intervention, either interactively by the
user or under some sort of program control as described later in this document Signalling is the process by which a
program formally announces a condition. The signal function is the primitive mechanism that makes such
announcements. Other abstractions, such as error and cerror, are built using signal.

Common Lisp: the Language is ambiguous about the reason why a particular program action is an error. There
are two principal reasons why an action may be an error without requiring the signalling of an error

• Detecting the error might be prohibitively expensive. Consider the following example:
(+ n i l 3)

This is an error. It is likely that the designers of Common Lisp believed that this would be an error in
all implementations but that they felt that it might be excessively expensive to detect the problem in

ERROR SYSTEM 23

compiled code on stock hardware, so they did not require that + signal an error.

• Some implementations might implement the behavior as an extension. Consider the following example:
(loop for x from 1 to 3 do (print x))

This is an error because loop is not defined to take atoms in its body. Some implementations offer an
extension which makes this well-defined. In order to leave room for such extensions, Common Lisp:
the Language uses the "is an error" terminology to keep implementors from being forced to signal an
error in the extended implementations.

This chapter uses the following terminology, which has been accepted by the X3J13's error handling
subcommittee to become the standard in the next edition of the Common Lisp specification:

• If the signalling of a condition or error is part of a function's contract for specified situations, this
documentation will say that i t 4 Signals" or "must signal" that condition or error.

• If the signalling of a condition or error is optional for some important reason, such as performance, this
documentation will say that the program "might signal" that condition or error. In this case, it defines
the operation to be illegal in all implementations, but allowing some implementations to avoid actually
detecting the error.

• If an action is left undefined for the sake of an implementation-dependent extension, this documentation
will say that it "is undefined" or "has undefined effect" This means that it is not possible to portably
depend upon the effects of that action. A program which has an undefined effect could do anything
including entering the debugger, transfering control, or modifying data in unpredictable ways.

• In the special case where only the return value of an operation is undefined, but any side-effect and
transfer-of-control behavior is well defined, this documentation will say that it has "undefined value."
In this case, the number and nature of the return values is undefined, but the user can reasonably expect
the function to return. Under this description, there are some though not many, legitimate ways in
which such return values can be used. For example, if the function f oo has no side-effects and
undefined value, the expression (list (f oo)) is completely well-defined even for portable code,
but the effect of (print (f oo)) is not well-defined.

4.2. Concepts

4.2.1. Signalling Errors
Signalling an error in a program is an admission by that program that it does not know how to continue and

requires external intervention. Once it signals an error, any decision about how to continue must come from outside
of i t

The simplest way to signal an error is to use the error function with format-style arguments describing the
error. If a piece of code calls error, and there are no active handlers (described later), the system enters the
debugger and outputs the error message. For example, you might see an interaction such as the following:

24 CMU COMMON LISP USER'S GUIDE

* (defun factorial (x)
(cond ((or (not (typep x 'integer)) (minusp x))

(error "~S is not a valid argument to FACTORIAL. " x))
((zerop x) 1)
(t (* x (factorial (1- x))))))

FACTORIAL
* (factorial 20)
2432902008176640000
* (factorial -1)

Error in function FACTORIAL.
-1 is not a valid argument to FACTORIAL.

Restarts:
0: Return to Top-Level.

Debug (type H for help)
(FACTORIAL -1)
0]

A call to error cannot directly return Unless a program prepares for special flow of control to override this
behavior, error enters the debugger, and there will be no option to continue. An implementation's debugger may
provide commands for interactively returning from individual stack frames, but the user must know what he is
doing. The point is programs are written as if error never returns even though an implementation's environment
may provide special development features.

A programmer may have a single, well-defined idea of a recovery strategy for an error, in which case he can use
the function cerror. This specifies information to the user about what would happen if the user does continue
from the call to cerror. For example:

* (defun factorial (x)
(cond ((not (integerp x))

(error "~s is not a valid argument to FACTORIAL." x))
((minusp x)
(let ((x-magnitude (- x)))

(cerror "Compute - (~D!) instead."
" (-~D)! is not defined."
x-magnitude)

(- (factorial x-magnitude))))
((zerop x) 1)
(t (* x (factorial (- x 1))))))

FACTORIAL
* (factorial -3)

Error in function FACTORIAL.
(-3)! is not defined.

Restarts:
0: Compute - (3!) instead.
1: Return to Top-Level.

Debug (type H for help)
(FACTORIAL -1)
0] restart 0
-6

ERROR SYSTEM 25

4.2.2. Trapping Errors
By default, error enters the debugger. You can override this behavior in a variety of ways; the simplest and

most general mechanism is to wrap your code in an ignore-errors form. Normally forms in the body of
ignore-errors evaluate sequentially returning the last value. If the evaluation of this code results in the
signalling of a condition of type error, ignore-errors immediately returns two values: nil and the signalled
condition object (described later). The system does not invoke the debugger or print any error messages. For
example:

* (setq filename "nosuchfile")
"nosuchfile"
* (ignore-errors (open filename :direction :input))
NIL
#<FILE-ERROR.5EA4>

Usually, ignore-errors is undesirable because it handles every possible kind of error. Though some may
argue differently, a program which avoids entering the debugger is not necessarily better than one which does enter
i t Excessive use of ignore-errors keeps the user out of the debugger, but it does little to increase your
program's reliability; your program may continue running after encountering errors other than those you designed it
to ignore. In general, it is better to deal with the particular errors that you believe could occur, and if an unexpected
error does happen, you will find out about it.

The error system defines ignore-errors on a more general facility called handler-case. It allows the
user to specifically deal with types of conditions, including non-error conditions, without affecting the signalling
of disjoint or more general kinds of conditions. The following example achieves an equivalent effect to the previous
example's use of ignore-errors:

* (setq filename "nosuchfile")
"nosuchfile"
* (handler-case (open filename :direction -.input)

(error (condition) (values nil condition)))
NIL
#<FILE-ERROR.5EA9>

The advantage of handler-case in this scenario is the ability to specify a more specific condition type than
error. Condition types are explained in detail later, but the following should be a clear example:

* (makunbound 'filename)
FILENAME
* (handler-case (open filename :direction :input)

(file-error (condition) (values nil condition)))

Error: The variable FILENAME is unbound.

Restarts:
1: Retry getting the value of FILENAME.
2: Specify a value of FILENAME to use this time.
3: Specify a value of FILENAME to store and use.
4: Return to Top-Level.

Debug (type H for help)
0]

26 CMU COMMON LISP USER'S GUIDE

4.2.3. Handling Conditions
The basic idea of condition handling involves the signalling of a condition. A piece of code called the signaller

recognizes and announces an exceptional situation using signal, or some function built on it such as error. The
process of signalling includes the search for and invocation of a handler, a piece of code that will attempt to take
care of the situation appropriately. If this process finds a handler, it may either handle the situation by performing
some non-local transfer of control, or it may decline by refusing to perform a non-local transfer of control.
Whenever a handler declines, the search for a willing handler continues.

Since the lexical environment of the signaller might not be available to handlers, the system supports a data
structure called a condition to represent the relevant state of the situation. Users can also create conditions explicidy
using make-condition and pass them to a function such as signal, or they can allow the system to create
conditions implicidy by using functions such as signal and error. To handle a condition a handler can use any
non-local transfer of control including the following:

• go to a tag in a tagbody
• return from a block
• throw to a catch

The system provides abstractions built on these primitives for convenience in exception handling. For example,
handler-bind makes a handler dynamically accessible to a program, and the following creates a handler for a
condition of type arithmetic-error:

(handler-bind ((arithmetic-error #'this-handler))
...body...)

A handler is a function of one argument, a condition. While body executes, if someone signals a condition of the
designated type, and there are no dynamically intervening handlers, signal invokes the handler on the given
conditioa The following is a complete example showing a macro that handles arithmetic-error's by
returning nil and the condition if the arithmetic could not be computed:

(defmacro without-arithmetic-errors (&body forms)
(let ((tag (gensym)))

* (block ,tag
(handler-bind ((arithmetic-error

#'(lambda (condition)
(return-from , tag

(values nil condition)))))
,fibody))))

Handlers execute in the dynamic context of the signaller, but the system rebinds the set of available condition
handlers to those that were active at the time the program established the handler. This means that if the handler
signals a condition or calls something that signals one, the handler and any others bound in the same
handler-bind form are inaccessible to the signalling process.

If the system can only find handlers that decline, and the condition is signalled via error or cerror, or similar
routines, the system enters the debugger within the dynamic context of the signaller.

4.2.4. Object-Oriented Basis of Condition Handling
The ability of the handler to usefully handle an exceptional situation is related to the quality of the information

given to i t If we only signalled errors with a string describing the condition, string-equal would be a
handler's best tool for identifying what happened, and the information presented to the user would be the same as
the string passed to the handler. It would be ridiculous to try to map what was passed to the error system to
something different to display to the user.

ERROR SYSTEM 27

It is fundamentally important to decouple the error message string from the objects which formally represent the
error state. Thus, there is a notion of typed conditions and formal operations on them which make them inspectable
in a structured way. This object-oriented approach to condition handling has the following important advantages
over a text-based approach:

• Conditions are classified according to subtype relationships, making it easy to test for categories of
conditions.

• Conditions have named slot values through which parameters are conveyed from the program that
signals the condition to the program that handles it.

• Inheritance of methods (in a loose sense) and slots reduce the amount of explicit specification necessary
to achieve various interesting effects.

This document describes some predefined condition types, and the set of condition types is extensible using
define-condition. The following is an example defining a function of two arguements called divide that is
patterned after the / function and that does some error checking:

(defun divide (numerator denominator)
(cond ((or (not (numberp numerator)) (not (numberp denominator)))

(error "(DIVIDE '~S '~S) - Bad arguments."
numerator denominator))

((zerop denominator)
(error 'division-by-zero

:operator 'divide
:operands (list numerator denominator)))

(t ...)))
In the first clause, the definition uses error with a string argument, and in the second clause it names a particular
condition type, division-by-zero. In the case of a string argument, the system signals a- simple-error
condition type.

The particular kind of error signalled may be important when handlers are actually active. For example,
simple-error inherits from type error, which in turn inherits from type condition. In the other case,
division-by-zero inherits from arithmetic-error, which inherits from error, etc. If a handler existed
for arithmetic-error when some code signals a division-by-zero condition, the system would invoke
that handler, however, if the same code in the same context signals a simple-error condition, the system would
ignore the handler for the arithmetic-error type.

4.2.5* Restarts
The condition system separates the act of signalling an error of a particular type from the means of recovering

from that error in some way. In the divide example in the previous section, signalling an error does not imply a
willingness on the part of the signaller to cooperate in any corrective action. For example, if the user ends up in the
debugger, his only option may be to return to the Lisp top level.

When a program detects an error and calls error, execution cannot continue normally because error never
returns directly. However, the user can write his program to transfer control to other points in the program with
specially established restarts. The simplest restart involves structured transfer of control using a macro called
restart-case. The restart-case form allows the programmer to execute a piece of code in a context
where zero or more restarts are active, and if the program or the user, through the debugger, invokes one of those
restarts, the system transfers control to the corresponding clause in the restart-case form.

The following shows the divide example from the previous section rewritten:

28 CMU COMMON LISP USER'S GUIDE

(defun divide (numerator denominator)
(loop

(restart-case (return
(cond ((or (not (numberp numerator))

(not (numberp denominator)))
(error "(DIVIDE '~S '-S) - Bad arguments."

numerator denominator))
((zerop denominator)
(error 'division-by-zero

:operator 'divide
:operands
(list numerator denominator)))

(t ...)))
(nil (argl arg2)

:report
"Provide new arguments for use by the DIVIDE function."
:interactive (lambda ()

(list (prompt-for 'number "Numerator: ")
(prompt-for 'number "Denominator: ")))

(setq numerator argl denominator arg2))
(nil (result)

:report
"Provide a value to return from the DIVIDE function."
:interactive
(lambda () (list (prompt-for 'number "Result: ")))
(return result)))))

The nil at the head of each clause means that it is an anonymous restart Anonymous restarts are typically only
invoked from within the debugger. Later sections describe in detail named restarts that programs can call, typically
from handlers, without the need for user intervention. If the arguments to anonymous restarts are required,-not
optional, the code must specify the : interactive keyword to provide information concerning how to supply the
arguments in case the user causes its invocation via the debugger.

The : report keyword specifies how to present the restart option to the user, such as in the debugger.

In this example, prompt-for is immaterial and does what you think.

The following is a sample interaction that takes advantage of the restarts provided by the revised definition of
divide:

* (+ (divide 3 0) 7)

Error in function DIVIDE.
Attempt to divide 3 by 0.

Restarts:
0: Provide new arguments for use by the DIVIDE function.
1: Provide a value to return from the DIVIDE function.
2: Return to Top-Level.

Debug (type H for help)
(DIVIDE 3 0)
0] restart 0
Numerator: 4
Denominator: 2
9

ERROR SYSTEM 29

4.2.6. Named Restarts
Named restarts are more powerful or convenient than unnamed ones since programs and users can invoke them

without the aid of an interface like the debugger. The following is a degenerate, interesting example:
(restart-case (invoke-restart 'foo 3)

(foo (x) (+ x 1)))
This adds 3 to 1, returning 4, and it is analagous to writing:

(+ (catch 'something (throw 'something 3)) 1)

A more practical example below shows a possible portion of Lisp's symbol-value function that signals an
unbound-variable error:

(restart-case (error 'unbound-variable :name variable)
(continue ()
: report (lambda (stream)

(format stream "Retry getting the value of ~S."
variable))

(symbol-value variable))
(use-value (value)
:report (lambda (stream)

(format stream "Specify a value of ~S to use this time."
variable))

value)
(store-value (value)
:report (lambda (stream)

(format stream "Specify a value of ~S to store and use."
variable))

(setf (symbol-value variable) value)
value))

With this, users can write a variety of automatic handlers for unbound-variable errors. The following makes
unbound variables evaluate to themselves:

(handler-bind ((unbound-variable
#'(lambda (condition)

(if (find-restart 'use-value)
(invoke-restart
'use-value
(cell-error-name condition))))))

...body...)

4.2.7. Restart Functions
Some restarts or recovery techniques are common in that programmers find themselves writing very similar

restart cases. It is good style to provide a simpler invocation means than is otherwise used for these. Restart
functions hide the typical use of invoke-restart.

Conventionally the restart function shares the name of the restart name. The system defined functions abort,
continue, muffle-warning, store-value, and use-value are restart functions. With use-value, the
handler-bind example at the end of the previous section that handles unbound-variable errors becomes
much simpler.

(handler-bind ((unbound-variable
#'(lambda (condition)

(use-value (cell-error-name condition)))))
...body...)

30 CMU COMMON LISP USER'S GUIDE

Textually the example only saves two lines of code, but conceptually the handler doesn't have to be concerned
with whether the restart is currendy active. You don't want your handler to get an unactive restart error because you
forgot to make sure the restart exists. Use-value takes care of that and simply returns if the restart is unactive,
causing the handler to return indicating that it declines handling the condition.

4.2.8. Contrasting Restarts and Catch/Throw
One important feature re start-case offers which catch/throw does not is the ability to reason about the

available points to which a program transfers control without actually attempting the transfer. Considering the
following, the first form is a poor man's variation of the second:

(ignore-errors (throw ...))

(if (find-restart 'something) (invoke-restart 'something))
The following two forms are much cleaner than the programming required using ignore-errors, throw, and
hacks with binding specials to know what context you are in:

(if (and (find-restart 'something) (find-restart 'something-else))
(invoke-restart 'something))

(if (and (find-restart 'something) (yes-or-no-p "Do something? "))
(invoke-restart 'something))

Simply using ignore-errors and throw forces a transfer of control when it possibly is inconvenient or an
error, and the restart mechanism readily provides a means for inspecting the dynamic context and interacting with
the user.

Another difference between the restart facility and the catch/throw facility is that a catch with any given .tag
completely shadows any outer, pending catch with the same tag. Because of the compute-restarts function,
it is possible to see shadowed restarts which can be very useful, such as in the debugger.

4.2.9. Generalized Restarts
Restart-case allows only imperative transfer of control for its associated restarts. The system defines it

using a lower level primitive called restart-bind which does not force transfer of control. Its syntax is as
follows:

(restart-bind ((name function . options)) . body)
body executes in a dynamic context where (invoke-restart ' name) invokes f unction. The options
are keyword-style and describe information similar to that provided with the : report keyword in
restart-case. A restart-case expands into a call to restart-bind with functions that unconditionally
transfer control to a particular body of code, passing along arguments.

Restarts can be useful without transfering control. Consider the following example:
(restart-bind ((nil #'(lambda () (expunge-directory the-dir))

:report-function
#' (lambda (stream)

(format stream "Expunge -A."
(directory-namestring the-dir)))))

(cerror "Try this file operation again."
'directory-full :directory the-dir))

Entering the debugger in this context, the user could perform the expunge, avoiding transfering control from within
the debug context, and then retry the file operation, as in:

ERROR SYSTEM 31

* (open "foo" :direction :output)

Error in function OPEN.
The directory /usr/bovik/ is full.

Restarts
0: Try this file operation again.
1: Expunge /usr/bovik/.
2 : Return to Lisp Top-Level.

Debug (type H for help)
(OPEN "foo" :DIRECTION :OUTPUT)
0] restart 1
Expunging /usr/bovik/ ...
0] restart 0
#<File stream "/usr/bovik/foo">

4.2.10. Serious Conditions
The ignore-errors macro will trap conditions of type error, but since this form is so dangerous for

squelching every kind of error, some conditions are very serious without being a subtype of error. These are of
type serious-condition, and the system might use this type for situations such as stack overflow or exhausted
storage. The type error is a subtype of serious-condition, and though it is technically correct to refer to
errors as serious conditions, we typically reserve that phrase to indicate conditions that arc subtypes of
serious-condition excluding subtypes of error.

This distinction is necessary to provide for exceptions that don't fall under the domain of the Common Lisp
language. We assume an implementation uses a stack for function calling, and we know that stacks can overflow;
however, this is not a programming error. In another implementation, the same program might run fine.
Furthermore, if a program is dynamically within an ignore-errors form, and the system runs out of memory or
the stack overflows, the system must stop or take care of this. The conditions simply cannot be ignored.

By convention, programmers prefer the function error over signal to signal conditions of type
serious-condition, as well as those of type error. It is the use of the function error, and not the type of
the signalled condition, that causes the system to enter the debugger.

4.2.11. Non-Serious Conditions
Some conditions are neither errors nor serious conditions. Programs signal these to give other programs a chance

to intervene, but if none take any action, then computation simply continues normally. For example, an
implementation might choose to signal a non-serious condition called end-of-line when output reaches the last
character position on a line of character output. In such an implementation, the signalling of this condition allows a
convenient way for other programs to do something special in this situation, producing output that is truncated at the
end of a line or simulating a line-wrapping device.

Use signal to signal these types of conditions. If the program uses error to signal a non-serious condition,
the system will still enter the debugger if it goes unhandled. The point of signalling a non-serious condition is that it
should not matter if a program continues to execute immediately after the signalling regardless of whether some
other program took any action based on the situation.

32 CMU COMMON LISP USER'S GUIDE

4.2.12. Condition Types
Some types of conditions are predefined by the system. All types of conditions are subtypes of c o n d i t i o n .

That is, (typep c ' c o n d i t i o n) is true if and only if c is a c o n d i t i o n object.

Implementations supporting multiple (or non-hierarchical) type inheritance are expressly permitted to exploit
multiple inheritance in the tree of condition types as implementation-dependent extensions, as long as such
extensions are compatible with this document.

In order to avoid problems in portable code which run both in systems with multiple type inheritance and systems
without it, the designers warn against assuming subtype relationships specified in this document are mutually
exclusive. In some cases this document does specify disjoint subtypes, but this is not the default. For example,
from the subtype descriptions contained in this document, in all implementations the following must be true:

(typep c ' c o n t r o l - e r r o r) i m p l i e s (typep c ' e r r o r) ,
However, the reader must avoid the following assumption:

(typep c ' c o n t r o l - e r r o r) i m p l i e s (no t (typep c ' c e l l - e r r o r))

4.2.13. Signalling Conditions
When a program signals a condition, the system tries to locate the most appropriate handler for the condition and

invoke that handler. There are constructs for dynamically establishing handlers. If the process of signalling finds a
suitable handler, it calls the handler. Sometimes handlers decline by simply returning without performing a
non-local transfer of control. When this happens, the search for an appropriate handler continues as if the handler
never existed. When s i g n a l fails to find a handler to take care of the situation, it returns n i l .

It is worth noting the handler search procedure finds dynamically more local handlers before it finds those
established dynamically earlier in time, regardless of whether the more local handler is more specific than any
earlier bound handler. Therefore, the programmer should take care when binding handlers to very general condition
types since a more specific handler may already be established that is more appropriate. There is no reason to be
overly concerned about this, experience with existing condition systems suggests that this is a reasonable approach
and works adequately in most situations.

4.2.14. Condition Handlers
A handler is a function of one argument, the signalled condition. The handler may inspect the object to see if it

really wants to take care of i t Handlers execute in the dynamic context of the signaller, but the system rebinds the
set of available condition handlers to those that were active at the time the program established the handler. The
intent of this is to prevent infinite recursion due to errors in a condition handler.

After inspecting the condition, the handler should take one of the following actions:
• Decline to handle the condition by simply returning.

• Handle the condition by performing some non-local transfer of control. This may be done either
primitively using go, r e t u r n , and t h r o w or more abstractly using a function such as a b o r t or
i n v o k e - re st a r t .

• Signal another condition.

• Invoke the interactive debugger.
The latter two items are really ways of putting off the decision to either handle or decline, in case some other code or
the user wants to get in on the recovery action. Ultimately, all a handler can do is handle or decline to handle a
condition.

ERROR SYSTEM 33

4.2.15. Printing Conditions
When *print-escape* is nil, as with princ or the ~A format option, the system invokes the report

method for the condition. This is the means for presenting conditions to users. Some functions,
invoke-debugger, break, and warn, always display the condtion, but users can explicity cause conditions to
report themselves when desired:

(defun open-data-file (user-specified-name default-system-name)
(handler-case (open user-specified-name)

(serious-condition (condition)
(format t "~&Opening ~S failed:~%~A~&Using ~S instead."

user-specified-name condition default-system-name)
(open default-system-name))))

This might print something like the following:
Opening #. (pathname "/usr/dat/unavailable-data-file") failed:
#.(pathname "/usr/dat/unavailable-data-file") is read protected.
Using #.(pathname "/usr/dat/default-objects") instead.

Some notes about the text presented by report methods:
• The message should be a complete sentence, beginning with a capital letter and ending with appropriate

punctuation.

• The message should exclude introductory text such as "Error:" or "Warning:Such text will be
added by the routine invoking the report method as appropriate to the context

• Except where unavoidable, tab characters should be avoided in error messages. Their effect can vary
between implementations and can cause problems even within an implementation because it may output
a variety of space depending on the current printing column when the condition reports.

• Single line messages are preferred, but newlines in the middle of long messages are acceptable.

• If any program displays messages indented from the prevailing left margin, possibly to make the report
standout against other text, then that program will take care to insert the indentation into any extra lines
of a multi-line error message. Similarly, any program that prefixes error messages with semicolons so
that they appear to be comments should take care of inserting a semicolon at the beginning of each line
in a multi-line error message.

When *print-escape* is non-nil, the object should print in some useful and fairly abbreviated fashion
according to the style of the implementation. The condition may print unreadably, as by read; that is, it may use
"#<" syntax.

4 3 . Signalling Conditions

error datum firest arguments [Function]
This function invokes the signal facility on a condition formed from datum and arguments. If the
condition is unhandled, this calls invoke-debugger on the condition. This function never returns and
can only be exited by a non-local transfer of control in a handler or by use of a debugger command.

This uses datum and arguments as follows:
• If datum is a condition, then this uses it direcdy. In this case, it is an error for arguments to

be anything other than nil.
• If datum is a condition type, then this uses the condition resulting from apply'ing
make-condition to datum and arguments.

• If datum is a string, then this uses the condition resulting from the following:

34 CMU COMMON LISP USER'S GUIDE

(make-condition 'simple-error
: format-string datum
: format-arguments arguments)

cerror continue-format-string datum firest arguments [Function]
This function invokes the error facility on a condition formed from datum and arguments. If the
condition is unhandled, this calls invoke-debugger on the condition While signalling the condition,
and while in the debugger if it is reached, it is possible to continue program execution using the
continue restart.

This uses datum and arguments as follows:
• If datum is a condition, then this uses it directly. In this case, cerror only uses arguments

with continue-format-string, and it will not use arguments to initialize datum in any way.

• If datum is a condition type, then this uses the condition resulting from apply'ing
make-condition to datum and arguments. In this case, cerror uses arguments with
continue-format-string in a call to format and with datum in a call to make-condition,
so the user must take care to set up the format string correctly. The directive ~* may be
useful in this situation

• If datum is a string, then this uses the condition resulting from the following:
(make-condition 'simple-error

: format-string datum
: format-arguments arguments)

continue-format-string must be a string, and cerror returns nil.

signal datum firest arguments [Function]
break-on-signals [Variable]

This function invokes the signal facility on a condition formed from datum and arguments. If the
condition is unhandled, signal returns nil.
This uses datum and arguments as follows:

• If datum is a condition, then this uses it directly. In this case, it is an error for arguments to
be anything other than nil.

• If datum is a condition type, then this uses the condition resulting from apply'ing
make-condition to datum and arguments.

• If datum is a string, then this uses the condition resulting from the following:
(make-condition 'simple-condition

: format-string datum
: format-arguments arguments)

If the following test is true, then this function enters the debugger before beginning the signalling process:
(typep condition *break-on-signals*)

The user can continue this invocation of the debugger using the continue restart Note, this is true for
functions and macros that use signal: error, cerror, warn, assert, and check-type.
The condition system provides *break-on-signals* for debugging programs that do signalling.
The user should choose the most restrictive specification that suffices. Setting this flag effectively
violates the modular handling of condition signalling this system seeks to establish, and the effect may be
unpredictable in some cases since the user may not be aware of the variety or number of calls to signal
large sophisticated programs use.

ERROR SYSTEM 35

warn datum &rest arguments
break-on-warnings

[Function]
[Variable]

This function warns about a situation by signalling a condition of type warning formed from datum and
arguments.

This uses datum and arguments as follows:
• If datum is a condition, this uses condition directiy. In this case, if the condition is not of

type warning, or arguments is something other than nil, warn signals an error of type
type-error.

• If datum is a condition type, then this uses the condition resulting from apply?ing
make-condition to datum and arguments. If this is anything other than a subtype of
warning, warn signals a type-error error.

• If datum is a string, then this uses the condition resulting from the following:
(make-condition 'simple-warning

: format-string datum
: format-arguments arguments)

If *break-on-wamings* is true, then the warn enters the debugger using break before signalling
the warning condition. Because of the use of break, the continue restart allows warn to continue
executing normally. This feature is only supported for compatibility with previous condition system
proposals that some implementations implemented. The *break-on-signals* mechanism
supersedes *break-on-warnings* and is more general in comparison. Programmers should write
new code using the *break-on-signals*, and if they want to break on warnings, then they should
set the variable to ' warning. The condition system provides these features for debugging programs
that issue warnings.

The precise mechanism for warning is as follows:
1. If *break-on-warnings* is true, warn calls break. If the user continues the break

the continue restart, proceed with step 2.

2. Signal the warning condition with an active muffle-warning established. This
allows handlers to cause warn to immediately return nil without taking any other actioa
If the condition goes unhandled, proceed with step 3.

3. Report the condition to *error-output*.

4. Return nil.

This macro executes form in a context where various handlers are active as specified by each case. Each
case is of the following form:

(type ([var]) . body)
Type may be any type specifier. If during the execution of form, the code signals a condition for which
there is an appropriate clause (that is, the condition's type is a subtype of one of the specified types), and
there is no intervening handler for the condition's type, then the system transfers control to the body of
the clause. The code in the clause executes in the dynamic context of the signaller, but with respect to
bound handlers, the system alters the context to that immediately prior to establishing the invoked
handler. The code executes also with var bound to the signalled condition. If form runs to a normal
completion, then handler-case returns the values resulting from it.

If var is unneeded, it may be omitted. For example, a clause such as:

4.4. Handling Conditions

handler-case form {case]* [Macro]

36 CMU COMMON LISP USER'S GUIDE

(t y p e (va r) (d e c l a r e (i g n o r e v a r)) form)
may be written more easily in the following way:

(t y p e () form)

A clause may have no forms after the argument specification. In this case, if the system transfers control
to this clause, it returns n i l .

The signalling process searches the clauses from top to bottom, as if the textually earlier clauses were
dynamically bound later in time than the textually later clauses. This is analogous to t y p e c a s e . If
there is a type overlap, s i g n a l transfers control to the textually first case by way of invoking the
handler. For purposes of invoking any one handler case, the dynamic context of bound handlers excludes
all handlers established by a single h a n d l e r - c a s e .

As a special case, the type can be the symbol : n o - e r r o r in the last clause. If the user specifies this, it
designates a case that executes if form returns normally, and the arguments passed to the case are those
returned by form.

Examples of h a n d l e r - c a s e :
(h a n d l e r - c a s e (/ x y)

(d i v i s i o n - b y - z e r o () n i l))

(h a n d l e r - c a s e (open * t h e - f i l e * : d i r e c t i o n : i n p u t)
(f i l e - e r r o r (c o n d i t i o n)

(f o r m a t t "~&Fooey: ~A~%" c o n d i t i o n)
n i l))

(h a n d l e r - c a s e (s o m e - u s e r - f u n c t i o n)
(f i l e - e r r o r (c o n d i t i o n) c o n d i t i o n)
(d i v i s i o n - b y - z e r o () 0)
((o r u n b o u n d - v a r i a b l e u n d e f i n e d - f u n c t i o n) () ' u n b o u n d))

(h a n d l e r - c a s e (i n t e r n x y)
(e r r o r (c o n d i t i o n) c o n d i t i o n)
(: n o - e r r o r (symbol s t a t u s)

(d e c l a r e (i g n o r e symbo l))
s t a t u s))

i g n o r e - e r r o r s {forms}* [Macro]
This macro executes forms in a context that handles conditions of type e r r o r by returning from this
form two values: n i l and the signaled condition object. If the system does not invoke this handler,
either because no one signaled an e r r o r condition or because a tighter bound handler took care of the
error, i g n o r e - e r r o r s returns any values returned by the last form executed.

This is equivalent to the following:
(h a n d l e r - c a s e (p rogn forms)

(e r r o r (c o n d i t i o n) (v a l u e s n i l c o n d i t i o n)))

h a n d l e r - b i n d ({ {type handler) }*) {form]* [Macro]
This macro executes its body in a dynamic context where the given handler bindings are in effect Type
may be any type specifier. Handler should evaluate to a function used to handle conditions of the
associated type(s) during execution of the body. This function takes a required argument that is the
signaled condition.

The signalling process searches the bindings from top to bottom, as if the textually earlier bindings were
dynamically bound later in time than the textually later bindings. This is consistent with

ERROR SYSTEM 37

handler-case which is analogous to typecase. If there is a type overlap, signal finds the earlier
binding first. For purposes of invoking any one handler, the dynamic context of bound handlers excludes
all handlers established by a single handler-bind.
If the body executes normally, this returns the values of the last form.

4.5. Defining and Creating Conditions

define-condition name (parent-type) [({slot}*) {option}*] [Macro]
This macro defines a new condition type called name, which is a subtype of the given parent-type.
Except as otherwise noted, the expansion of this macro does not evaluate the arguments.

Objects of this condition type include slots available in objects of parent-type in addition to the indicated
slots. A slot description has the following form:

{ slot-name \ (slot-name) \ (slot-name default-value) }
The default-value is a form evaluated by make-condition to produce a default value when the caller
leaves the value unspecified. If the description of the slot does not provide a default-value, and the user
of make-condition does not specify a value, then the system initializes the slot in an implementation-
dependent way. It is an error to attempt to access a slot which has not been explicitiy initialized and
which has not been given a default value.

If the new type and some other type from which it inherits have a slot with the same name,
define-condition only allocates one slot for the new type. Any specified default overrides any
inherited default

make-condition accepts keywords (in the keyword package) with the same name as any slot name
and initializes the corresponding slot in conditions it creates.

Accessors are created according to the same rales used by def struct, but it is an error to attempt to
assign a condition's slots with setf. Define-condition interns accessor names into the package
that is current when it executes.

A valid option is one of the following:

(: documentation doc-string)
Doc-string is a string describing the purpose of the condition type or nil. If this
option is unspecified, define-condition assumes nil. The documentation is
retrievable with (documentation name ' type), where type is the condition
name.

(: cone-name symbol-or-string)
As with def struct, this sets up automatic prefixing of the names of slot accessors.
The default is to use the name of the new type, name, followed by a hyphen.

(: report exp) If exp is not a literal string, it must be a suitable argument to the function special
form, and when define-condition expands, it evaluates the expression
(function exp) in the current lexical environment. The function takes two

required arguments, a condition and a stream, and the system invokes the function
whenever it prints the condition with *print-escape* bound to nil. See
section 4.2.15. If exp is a literal string, it is a shorthand for the following:

(lambda (condition stream)
(declare (ignore condition))
(write-string exp stream))

This option inherits from parent-type if not specified.

Here are some examples of defining conditions. This form defines a condition type called
machine-error which inherits from type error:

38 CMU COMMON LISP USER'S GUIDE

(define-condition machine-error (error)
(machine-name)
(:report (lambda (condition stream)

(format stream "There is a problem with -A."
(machine-error-machine-name condition)))))

The slot machine-name can be accessed with machine-error-machine-name, and
make-condition will accept a :machine-name keyword when creating conditions of type
machine-error.
This defines a condition subtype of machine-error to be used when machines are not available:

(define-condition machine—unavailable (machine-error)
0
(:report (lambda (condition stream)

(format stream "The machine ~A is not available."
(machine-error-machine-name condition)))))

The previous comments concerning machine-error apply to machine-unavailable conditions,
and machine-unavailable-machine-name will also access the name of the problem machine.

This defines a still more specific condition type, a subtype of machine-unavailable, which
provides a default for the machine-name slot:

(define-condition central-file-server-unavailable
(machine-unavailable)

((machine-name "cfs.cs.emu.edu")))
Since this example leaves the : report option unspecified, it inherits the report method for
machine-unavailable conditions.

make-condition type firest slot-initializations [Function]
This function constructs a condition object of type type using slot-initializations. This returns the
condition object. Slot-initializations is given as alternating keyword/value pairs. The following example
shows the creation of a condition type peg/hole-mismatch with slots named peg-shape and
hole-shape:

(make-condition ' peg/hole-mismatch
:peg-shape 'square :hole-shape 'round)

4.6. Assertions

check-type place typespec ^optional string [Macro]
This macro signals an error of type type-error if the contents of place are not of type typespec. If
this signals a condition, handlers can use the functions type-error-object and
type-error-expected-type to access the contents of place the desired type typespec,
respectively. This form only returns if a handler, or the user from the debugger, invokes the
store-value restart.

In this situation store-value takes an argument or prompts the user for it and stores the value in
place, continuing within check-type which starts over possibly signalling an error again. Subforms of
place may evaluate multiple times because of the implicit loop generated. Check-type returns nil.
Place must be a generalized variable reference acceptable to setf. Typespec must be a type specifier,
and check-type does not evaluate it. String is a string literal describing type, and if it is unsupplied,
check-type computes a description from typespec.

ERROR SYSTEM 39

The error message will mention place, its contents, and the desired type.

Here are a couple examples:
* (setf aardvarks '(sam harry fred))
(SAM HARRY FRED)
* (check-type aardvarks (array * (3)))

The value of AARDVARKS is (SAM HARRY FRED) ,
which is not of type (ARRAY * (3)).

Restarts:
0 : Supply a new value of AARDVARKS.
1: Return to Top-Level.

Debug (type H for help)
(LISP: :CHECK-TYPE-ERROR AARDVARKS (SAM HARRY FRED)

(ARRAY * (3)) NIL)
0] restart 0
Type a form to be evaluated:
'#(sam fred harry)
NIL
* aardvarks
* (SAM FRED HARRY)
* (setf count 'foo)
FOO
* (check-type count (integer 0 *) "a positive integer")

The value of COUNT is FOO, which is not a positive integer.

Restarts:
0: Supply a new value of COUNT.
1 : Return to Top-Level.

Debug (type H for help)
(LISP::CHECK-TYPE-ERROR COUNT FOO

(INTEGER 0 *) "a positive integer")
0] restart 1

assert test-form fioptional ({place}*) datum {argument}* [Macro]
This macro signals an error if the value of test-form is nil. Using the the continue restart allows the
user to alter the values of some variables. If continue does execute, assert starts over, evaluating
test-form and possibly signalling an error again. Assert returns nil.
Test-form is any form. Each place must be a generalized variable reference acceptable to setf.
Assert only evaluates subforms of each place if the continue restart runs, and it may re-evaluate
them each time the assertion fails.

This only evaluates datum and each argument if it signals a condition, and it will re-evaluate them each
time the assertion fails. Assert uses these parameters in the following way:

• If datum is a condition, this uses it directiy. In this case, it is an error to specify any
argument.

• If datum is a condition type, then this uses the condition resulting from apply'ing
make-condition to datum and arguments.

• If datum is a string, then this uses the condition resulting from the following:

CMU COMMON LISP USER'S GUIDE

(make-condition 'simple-error
: format -st ring datum
: format-arguments arguments)

• If datum is unsupplied, then this uses a condition of type simple-error constructed with
test-form as data, for example:

(make-condition 'simple-error
:format-string "The assertion ~S failed."
:format-arguments ' (test-form))

Here is an example of assert:
* (setf x (make-array '(3 5) :initial-element 3))
#2A((3 3 3 3 3) (3 3 3 3 3) (3 3 3 3 3))
* (setf y (make-array '(3 5) :initial-element 7))
#2A((7 7 7 7 7) (7 7 7 7 7) (7 7 7 7 7))
* (defun matrix-multiply (a b)

(let ((*print-array* nil))
(assert (and (= (array-rank a) (array-rank b) 2)

(= (array-dimension a 1) (array-dimension b 0)))
(a b)
"Cannot multiply ~S by ~S." a b)

(really-matrix-multiply a b)))
MATRIX-MULTIPLY
* (matrix-multiply x y)

Error in function LISP::ASSERT-ERROR.

Cannot multiply #<Array, rank 2 {B8}> by #<Array, rank 2 {D4}>.

Restarts:
0: Retry assertion with new values for A, B.
1: Return to Top-Level.

Debug (type H for help)
(LISP::ASSERT-ERROR (AND (= (# #) (# #) 2) (= (# # #) (###)))

(A B)
"Cannot multiply ~S by ~S."
#<Array, rank 2>...)

0] restart 0
The old value of A is #<Array, rank 2>.
Do you want to supply a new value? y
Type a form to be evaluated:
x
The old value of B is #<Array, rank 2>.
Do you want to supply a new value? y
Type a form to be evaluated:
(make-array '(5 3) :initial-element 6)
#2A((54 54 54 54 54)

(54 54 54 54 54)
(54 54 54 54 54)
(54 54 54 54 54)
(54 54 54 54 54))

ERROR SYSTEM 41

4.7. Case Forms

This section describes case forms similar to case and typecase that signal an error if no branch fires.

etypecase keyform { (type {form}*) }* [Macro]
This control construct is similar to typecase, but no explicit otherwise or t clause is permitted. If
no clause fires, this signals an error of type type-error with a message constructed from the clauses.
This error cannot be continued. To supply your own error message, use typecase with an
otherwise clause containing a call to error. The name of this function stands for "exhaustive type
case" or *'error-checking type case."

Here is an example:
* (setq x 1/3)
1/3
* (etypecase x

(integer (* x 4))
(symbol (symbol-value x)))

1/3 fell through ETYPECASE expression.
Wanted one of (SYMBOL INTEGER).

Restarts:
0 : Return to Top-Level.

Debug (type H for help)
(LISP::%EVAL (ERROR 'CONDITIONS::CASE-FAILURE

INAME 'ETYPECASE :DATUM ...))
0]

etypecase keyplace { (type {form}*) }* [Function]
This control construct is similar to typecase, but no explicit otherwise or t clause is permitted.
The keyplace must be a generalized variable reference acceptable to setf. If no clause fires,
etypecase signals an error of type type-error with a message constructed from the clauses. The
user may continue this error using the store-value restart.

In this situation store-value takes an argument or prompts the user for it and stores the value in
keyplace, continuing within etypecase which starts over possibly signalling an error again. Subforms
of keyplace may evaluate multiple times because of the implicit loop generated.

This returns any values returned by the last form in the selected case. The name of this function is
mnemonic for 4 * continuable (exhaustive) type case.''

Here is an example:

42 CMU COMMON LISP USER'S GUIDE

* (setq x 1/3)
1/3
* (ctypecase x

(integer (* x 4))
(symbol (symbol-value x)))

1/3 fell through CTYPECASE expression.
Wanted one of (SYMBOL INTEGER) .

Restarts:
0 : Supply a new value for X.
1: Return to Top-Level.

Debug (type H for help)
(LISP::CASE-BODY-ERROR CTYPECASE X 1/3 (OR SYMBOL INTEGER)...)
0] restart 0
Type a form to be evaluated:
3.7
3.7 fell through CTYPECASE expression.
Wanted one of (SYMBOL INTEGER) .

Restarts:
0 : Supply a new value for X.
1: Return to Top-Level.

Debug (type H for help)
(LISP::CASE-BODY-ERROR CTYPECASE X 3.699997 (OR SYMBOL INTEGER)...)
0] restart 0
Type a form to be evaluated:
12
48
*

ecase keyform {case}* [Macro]
This control construct is similar to case, but no explicit otherwise or t clause is permitted. Each
case is of the following form:

({ (keyl key! . . .) | key } form! form! . . .)
If no case fires, this signals an error of type type-error with a message constructed from the cases.
This error cannot be continued. To supply your own error message, use case with an otherwise
clause containing a call to error. The name of this function stands for 4'exhaustive case*' or "error-
checking case/ 9

Here is an example:

ERROR SYSTEM 43

* (setq x 1/3)
1/3
* (ecase x

(alpha (foo))
(omega (bar))
((zeta phi) (baz)))

1/3 fell through ECASE expression.
Wanted one of (ZETA PHI OMEGA ALPHA) .

Restarts:
0: Return to Top-Level.

Debug (type H for help)
(LISP::%EVAL (ERROR 'CONDITIONS::CASE-FAILURE

:NAME 'ECASE :DATUM ...))
0]

cease keyplace {case}* [Macro]
This control construct is similar to case, but no explicit otherwise or t clause is permitted. The
keyplace must be a generalized variable reference acceptable to setf. Each case is of the following
form:

({ (keyl key! . . .) | key } form! form! . . .)
If no clause fires, cease signals an error of type type-error with a message constructed from the
clauses. The user may continue this error using the store-value restart.

In this situation store-value takes an argument or prompts the user for it and stores the value in
keyplace, continuing within cease which starts over possibly signalling an error again. Subforms of
keyplace may evaluate multiple times because of the implicit loop generated.

This returns any values returned by the last form in the selected case. The name of this function is
mnemonic for "continuable (exhaustive) case."

4.8. Establishing Restarts

with-simple-restart (name format-string fcrest format-arguments) {form}* [Macro]
This macro is shorthand for a common use of restart-case. Name is the name of the restart, and if
this one executes, control returns to with-simple-restart returning the values nil and t. If each
form executes normally, then the values of the last one are returned.

Name may be nil, in which case, this establishes an anonymous restart.

By way of example, you could define with-simple-restart in the following way:
(defmacro with-simple-restart ((restart-name format-string

&rest format-arguments)
&body forms)

'(restart-case (progn ,@forms)
(, restart-name ()
: report (lambda (stream)

(format stream f format-string , ̂ format-arguments))
(values nil t))))

Here is an example of its use:

44 CMU COMMON LISP USER'S GUIDE

* (defun read-eval-print-loop (level)
(with-simple-restart (abort "Exit command level ~D." level)

(loop
(with-simple-restart (abort "Return to command level ~D."

level)
(let ((form (p rog2 (fresh-line) (read) (fresh-line))))

(prinl (eval form)))))))
READ-EVAL-PRI NT-LOOP
* (read-eval-print-loop 1)
(+ ^ 3)

Error in function + .
Wrong type argument, A, should have been of type NUMBER.

Restarts:
0 : Return to command level 1 .
1 : Exit command level 1 .
2 : Return to Top-Level.

Debug (type H for help)
(CONDITIONS: :MAKE-ERROR-TABLE + 0 A NIL)
0] restart 0
(+ 5 nil)

Error in function +.
Wrong type argument, NIL, should have been of type NUMBER.

Restarts:
0 : Return to command level 1 .
1 : Exit command level 1 .
2 : Return to Top-Level.

Debug (type H for help)
(CONDITIONS: :MAKE-ERROR-TABLE + 0 NIL NIL)
0] restart 1
NIL
T
*

restart-case expression { {case-name arglist {keyword value}* {form}*) }* [Macro]
This macro evaluates expression in a dynamic context where the clauses have special meanings as points
to which handlers and users may transfer program control. If expression executes normally,
restart-case returns any values returned by it. If anyone invokes one of the restarts, the system
transfers control to that branch executing each form and returning any values returned by the last such
form.

If there are no forms in a selected clause, restart-case returns nil.
Case-name may be nil or a symbol naming the restart. A case-name may be repeated, in which case
find-restart will find the first such clause that appears textually. The other clauses are accessible
using compute-restarts.
Each arglist is a normal lambda list of locals to be bound during the execution of its corresponding forms.
These arguments convey any necessary data from a call to invoke-restart to the clause.

Valid keyword/value pairs are as follows:

ERROR SYSTEM 45

:interactive exp
By default, invoke-restart-interactively passes no arguments to a
restart, and all the arguments must be optional to accomodate interactive restarting,
what typically occurs in the debugger with user intervention. The arguments may be
required if the restart specifies the : interactive keyword, and exp must be a
suitable argument to the function special form. Restart-case evaluates the
expression (function exp) in the current lexical environment. It should return a
function of no arguments that returns a list of values to which
invoke-restart-interactively will apply the restart. This function runs in
the dynamic environment available prior to any restart attempt. The interactive
function may use the *query-io* stream.

: report exp If exp is not a literal string, it must be a suitable argument to the function special
form, and restart-case evaluates the expression (function exp) in the
current lexical environment. The function takes one required argument, a stream, and
the system invokes the function whenever it prints the restart with
print-escape bound to nil. If exp is a literal string, it is a shorthand for the
following:

(lambda (stream)
(write-string exp stream))

If the system reports a named restart, and it has no report method, the system uses the restart name in
generating default report text. It is an error to define an unnamed restart without any report information
since these are generally only useful interactively, possibly as an option for the user in the debugger.

Here are some examples:
(loop

(restart-case (return (apply function some-args))
(new-function (new-function)

•.report "Use a different function."
:interactive
(lambda

() (list (prompt-for 'function "Function: ")))
(setq function new-function))))

(loop
(restart-case (return (apply function some-args))

(nil (new-function)
:report "use a different function."
:interactive
(lambda () (list (prompt-for 'function "function: ")))

(setq function new-function))))

(restart-case (a-command-loop)
(return- from- command- level

0
: report
(lambda (stream)

(format stream "Return from command level ~D." level))
nil))

(loop
(restart-case (another-random-computation)

(continue ()
nil)))

prompt-for is immaterial to this example and does what you think. The first and second examples are
equivalent from the point of view of someone using the interactive debugger, but differ in one important

46 CMU COMMON LISP USER'S GUIDE

aspect for non-interactive handling; a handler can make use of named restarts other than nil as in the
following piece of code:

(if (find-restart 'new-function)
(invoke-restart 'new-function the-replacement))

This works for the first one, but the second one is only callable interactively, such as from the debugger.

Here is a more complete example:
(let ((my-food 'milk)

(my-color 'greenish-blue))
(do ()

((not (bad-food-color-p my-food my-color)))
(restart-case (error 'bad-food-color

:food my-food :color my-color)
(use-food (new-food)

:report "Use another food."
(setq my-food new-food))

(use-color (new-color)
:report "Use another color."
(setq my-color new-color))))

;; Can't get here until my-food and my-color are compatible.
(list my-food my-color))

Handlers written for bad-food-color errors can use the find-restart/invoke-restart
idiom to supply a different food for the given color or a different color for the given food. See section
42.7 for a discussion of encapsulating this idiom for programmer and user convenience.

restart-bind ({binding}*) {form}* [Function]
This macro executes each form in a dynamic context where the given restart bindings are in effect. Each
binding is of the following form:

(name function {keyword value}*)
Name may be nil to indicate an anonymous restart, or some other symbol to indicate a named restart.
Function should evaluate to a function that performs the restart. If invoked, this function either transfers
control non-locally or simply returns, and it takes whatever arguments the programmer desires.
Invoke-restart and invoke-restart-interactively are the only ways to call it, either
from a piece of code or as the result of a debugger command. In the case of interactive invocation, where
the arguments are not supplied, the second function named calls the : interactive-function
option (see below).

The valid keyword/value pairs are:

: interactive-function form
The form evaluates in the current lexical environment and should return a function of
no arguments that returns a list of arguments to which
invoke-restart-interactively applies the restart function. The function
may prompt using *query-io*.

: report-function form
The form evaluates in tide current lexical environment and should return a function
that takes a stream as an argument and prints on it a summary of the action that this
restart will take. The system calls this function whenever the restart is printed with
print-escape bound to nil.

This is considered a significantly lower-level primitive than restart-case, and its intended purpose
is that of building higher-level abstractions such as restart-case. It still has uses for inclusion in
general coding, but typically it appears in macros that define other constructs.

ERROR SYSTEM 47

4.9. Finding and Manipulating Restarts

compute-re st arts [Function]
This function returns a list of the restarts currently active in the dynamic state of a program, see
restart-bind and restart-case. Each restart represents a function that performs some recovery
action, typically a dynamic transfer of control. Restart objects are implementation-dependent, but they
always have dynamic extent relative to the scope of the binding form.

The result of compute-restarts is ordered from more recentiy established restarts to those first
established in time. All elements of the fist are valid, including anonymous restarts, even though some
may have the same name as others and would not be found by find-restart because of this.

Portable programs do not rely on whether multiple calls to compute-restarts in the same dynamic
environment share elements or are disjoint (not eq), and it is an error to modify the resulting list,

restart-name restart [Function]
This function returns the name of the given restart object. If it is unnamed, this returns nil.

find-restart identifier [Function]
This function searches for a particular restart in the current dynamic environment.

If identifier is a symbol, this returns the most recentiy established restart with that name. If none is
found, this returns nil.

If identifier is a restart object, this returns the object if it is currendy active. If it is inactive, this
returns nil.

Although anonymous restarts have nil as a name, it is an error to supply the symbol nil for identifier.
If your application seems to require this, consider rewriting it to use compute-restarts.

invoke-restart restart firest arguments [Function]
This function calls the function associated with restart on arguments. Restart must be a restart objea
or the non-nil name of a currendy valid restart If the argument is invalid, this signals a
control-error error. Note, restart functions (see section 4.2.7), such as abort and continue,
call this function, not vice versa.

invoke-restart-interactively restart [Function]
This function invokes the function associated with restart. If restart has an associated interactive method
(see restart-bind (page 46) and restart-case (page 44)), this function calls the method to
provide arguments for restarts function. Restart must be a restart object or the non-nil name of a
restart that is valid in the current dynamic context. If it is invalid, this function signals an error of type
control-error.
If no interactive method is associated with restart, then it is an error for the restarts function to require
arguments.

4.10. Restart Functions

48 CMU COMMON LISP USER'S GUIDE

abort [Function]
This function transfers control to the restart named abort, and if none exists, it signals an error of type
control-error. This is generally used to return to previous command levels.

continue [Function]
This function transfers control to the restart named continue, and if none exists, it returns nil. This is
generally used with simple and obvious restarts, such as in break and cerror, whether in user or
system code.

muffle-warning [Function]
This function transfers control to the restart named muffle-warning, and if none exists, it signals an
error of type control-error. Warn signals warning conditions in an environment where this
restart causes warn to immediately return.

store-value value [Function]
This function transfers control, passing value, to the restart named store-value, and if none exists, it
returns nil. Code that signals errors of type cell-error and type-error may establish this restart
for handlers that can supply replacement data to be stored permanently to correct the situation.

use-value value [Function]
This function transfers control, passing value, to the restart named use-value, and if none exists, it
returns nil. Code that signals cell-error errors may establish this restart for handlers that can
supply a replacement value to be used once only to correct the situation.

4.11. Debugging Utilities

break ^optional format-string firest format-arguments [Function]
This function prints the message described by format-string and format-arguments and then enters the
debugger. While in the debugger, there is a continue restart that causes break to return nil
immediately. If format-string is unsupplied, this generates a default message.

By way of example, break could be defined as follows:
(defun break (&optional (format-string "Break")

&rest format-arguments)
(with-simple-restart (continue "Return from BREAK.")

(invoke-debugger
(make-condition ' simple-condition

: format-string format-string
:format-arguments format-arguments)))

nil)

invoke-debugger condition [Function]
* debugger-hook* [Variable]

This function invokes an interactive mechanism for handling condition, which must be a condition
object. This never directly returns; some non-local transfer of control must occur, such as the use of a
restart, aborting to top level, etc.

When the variable * debugger-hook* is non-nil, it is a function invoke-debugger calls instead
of executing any standard debugger interface. The function takes condition and the value of
•debugger-hook* as arguments, and if it returns, invoke-debugger enters the standard debugger
anyway. While executing *debugger-hook*, this variable is nil, so if this interface evaluates code

ERROR SYSTEM 49

on the user's behalf, it may want to iebind *debugger-hook* to the second value passed in to handle
recursive errors with the same interface.

4.12. System Defined Types

Restart is the data type used to represent a restart

A sketch of the condition type hierarchy looks like this:
CONDITION

I

I I I
SIMPLE-CONDITION SERIOUS-CONDITION WARNING

I I
I I
| SIMPLE-WARNING

I I
I I

ERROR STORAGE-CONDITION
I
I

I I I
I I I

SIMPLE-ERROR ARITHMETIC-ERROR CONTROL-ERROR
I I

Typically programs do not direcdy instantiate conditions of the non-terminal types in the above tree (for example
condition, warning, storage-condition, error, arithmetic-error, etc.); the system provides
these primarily for type inclusion purposes.

The design of the condition system permits implementations to support non-portable synonyms for these types, as
well as to introduce other types above, below, or between the types shown in this tree as long as the indicated
subtype relationships are not violated.

The types simple-condition, serious-condition, and warning are pairwise disjoint The type
error is disjoint from types simple-condition and warning.

The following describes all the predefined condition types:
condition All types of conditions, whether error or non-error, must inherit from this type,
warning All types of warnings inherit from this type. This is a subtype of condition,
serious-condition

All serious conditions (conditions serious enough to require interactive intervention if not
handled) inherit from this type. This is a subtype of condition.

error All types of error conditions inherit from this condition. This is a subtype of
serious-condition.

simple-condition

50 CMU COMMON LISP USER'S GUIDE

Conditions signalled by signal when given a format string as a first argument are of this
type. This is a subtype of condition. The system supports the initialization keywords
: format-string and : format-arguments for the slots, which can be accessed using
simple-condition-format-string and
simple-condition-format-arguments. If : format-arguments is unsupplied
with make-condition, the format-arguments slot defaults to nil.

simple-warning
Conditions signalled by warn when given a format string as a first argument are of this type.
This is a subtype of warning. The system supports the initialization keywords
: format-string and : format-arguments for the slots, which can be accessed using
simple-condition-format-string and
simple-condition-format-arguments. If : format-arguments is unsupplied
with make-condit ion, the format-arguments slot defaults to nil. In implementations
supporting multiple inheritance, this type will also be a subtype of simple-condition.

simple-error Conditions signalled by error and cerror when given a format string as a first argument
are of this type. This is a subtype of error. The system supports the initialization keywords
: format-string and : format-arguments for the slots, which can be accessed using
s imple-condition-format-string and
simple-condition-format-arguments. If : format-arguments is unsupplied
with make-condit ion, the format-arguments slot defaults to nil. In implementations
supporting multiple inheritance, this type will also be a subtype of simple-condition.

storage-condition
Conditions related to storage overflow inherit from this type. This is a subtype of
serious-condition.

type-error Errors in the transfer of data in a program inherit from this type. This is a subtype of error.
For example, conditions signalled by check-type inherit from this type. The system supports
the initialization keywords : datum and : expected-type for the slots, which can be
accessed using type-error-datum and type-error-expected-type:

simple-type-error
Conditions signalled by facilities similar to check-type may use this type. The system
supports the initialization keywords : format-string and : format-arguments for the
slots, which can be accessed using simple-condition-format-string and
simple-condition-format-arguments. If : format-arguments is unsupplied
with make-condition, the format-arguments slot defaults to nil. In implementations
supporting multiple inheritance, this type will also be a subtype of simple-condition.

program-error Errors related to incorrect program syntax statically detectable inherit from this type, regardless
of whether they are statically detected. This is a subtype of error. This is not a subtype of
control-error. The errors resulting from naming a go tag or return-f rom tag which is
not lexically apparent are program errors.

control-error Errors in the dynamic transfer of control in a program inherit from this type. This is a subtype
of error. This is not a subtype of program-error. The errors resulting from giving
throw a tag which is not active or from giving go or return-f rom a tag which is no longer
dynamically available are control errors.

package-error Errors occurring during operations on packages inherit from this type. This is a subtype of
error. The system supports the initialization keyword : package for the slot, which can be
accessed using package-error-package.

stream-error Errors occurring during input from, output to, or closing a stream inherit from this type. This is
a subtype of error. The system supports the initialization keyword : stream for the slot,
which can be accessed using stream-error-stream

end-of-f ile The error resulting when reading from a stream with no more input inherits from this type. This
is a subtype of stream-error.

file-error Errors occurring during an attempt to open a file, or during some low-level transaction with a
file system, inherit from this type. This is a subtype of error. The system supports the
initialization keyword : pathname for the slot, which can be accessed using

ERROR SYSTEM 51

file-error-pathname.
cell-error Errors occurring while accessing a location inherit from this type. This is a subtype of error.

The system supports the initialization keyword : name for the slot, which can be accessed using
cell-error-name.

unbound-variable
The error resulting from trying to access the value of an unbound variable inherits from this
type. This is a subtype of cell-error.

undefined-function
The error resulting from trying to access the value of an undefined function inherit from this
type. This is a subtype of cell-error.

arithmetic-error
Errors occurring while doing arithmetic type operations inherit from this type. This is a subtype
of error. The system supports the initialization keywords : operation and : operands for
the slots, which can be accessed using arithmetic-error-operation and
arithmetic-error-operands.

division-by-zero
Errors occurring because of division by zero inherit from this type. This is a subtype of
arithmetic-error.

floating-point-overflow
Errors occurring because of floating point overflow inherit from this type. This is a subtype of
arithmetic-error.

floating-point-underflow
Errors occurring because of floating point underflow inherit from this type. This is a subtype of
arithmetic-error.

CMU COMMON LISP USER'S GUIDE

Chapter 5

Debugging Tools

By Jim Large, Steve Handerson, and Bill Chiles

5.1. Function Tracing

The tracer causes selected functions to print their arguments and their results whenever they are called. Options
allow conditional printing of the trace information and conditional breakpoints on function entry. Currendy,
compiling a traced function compiles the encapsulation function (see below) and not the function being traced.
Compiling a traced function from a Hemlock buffer changes the original definition of the function, i.e., it does the
correct thing.

t r a c e i r e s t specs [Macro]
Invokes tracing on the specified functions,1 and pushes their names onto the global list in
* t r a c e d - f u n c t i o n - l i s t *. Each spec is either the name of a function, or the form

(function-name
trace-option-name value
trace-option-name value
. . .)

If no specs are given, t r a c e returns the fist of all currendy traced functions,
* t r a c e d - f u n c t i o n - l i s t *.

If a function is traced with no options, then each time it is called, a single line containing the name of the
function, the arguments to the call, and the depth of the call will be printed on the stream
* t r a c e - o u t p u t * . After it returns, another line will be printed which contains the depth of the call and
all of the return values. The lines are indented to highlight the depth of the calls.

Trace options can cause the normal printout to be suppressed, or cause extra information to be printed.
Each traced function carries its own set of options which is independent of the options given for any other
function. Every time a function is specified in a call to trace, all of the old options are discarded. The
available options are:

A form to eval before before each call to the function. Trace printout will be
suppressed whenever the form returns n i l .
A form to eval before each call to the function. If the form returns non n i l , then a

breakpoint loop will be entered immediately before the function call.
l ike : b r e a k , but the form is evaled and the break loop invoked after the function

T r a c * docs not work on macros or special forms yet.

:condition

: break

: break-after

53

54 CMU COMMON LISP USER'S GUIDE

call.
: b r e a k - a l l A form which should be used as both the : b r e a k and the : b r e a k - a f t e r args.
: w h e r e i n A function name or a list of function names. Trace printout for the traced function

will only occur when it is called from within a call to one of the : w h e r e i n
functions.

: p r i n t A list of forms which will be evaluated and printed whenever the function is called.
The values are printed one per line, and indented to match the other trace output.
This printout will be suppressed whenever the normal trace printout is suppressed.

: p r i n t - a f t e r l ike : p r i n t except that the values of the forms are printed whenever the function
exits.

: p r i n t - a l l This is used as the combination of : p r i n t and : p r i n t - a f t e r .

u n t r a c e firest function-names [Macro]
Turns off tracing for the specified functions, and removes their names from
* t r a c e d - f u n c t i o n - l i s t * . If no function-names are given, then all functions named in
* t r a c e d - f u n c t i o n - l i s t * are untraced.

e x t e n s i o n s : * t r a c e d - f u n c t i o n - l i s t * [Variable]
A list of function names maintained and used by t r a c e , u n t r a c e , and u n t r a c e - a l l . This list
should contain the names of all functions currendy being traced.

e x t e n s i o n s : * t r a c e - p r i n t - l e v e l * [Variable]
e x t e n s i o n s : * t r a c e - p r i n t - l e n g t h * [Variable]

* p r i n t - l e v e l * and * p r i n t - l e n g t h * are bound to * t r a c e - p r i n t - l e v e l * and
* t r a c e - p r i n t - l e n g t h * when printing trace output. The forms printed by the : p r i n t options are
also affected. * T r a c e - p r i n t - l e v e l * and * t r a c e - p r i n t A l e n g t h * are initially set to n i l .

e x t e n s i o n s : * m a x - t r a c e - i n d e n t a t i o n * [Variable]
The maximum number of spaces which should be used to indent trace printout. This variable is initially
set to 40.

5.1.1* Encapsulation Functions
The encapsulation2 functions provide a clean mechanism for intercepting the arguments and results of a function.

E n c a p s u l a t e changes the function definition of a symbol, and saves it so that it can be restored later. The new
definition normally calls the original definition. Compiling a function that has been encapsulated compiles the
encapsulation function and not the original one. Compiling an encapsulated function from a Hemlock buffer
changes the original definition of the function, i.e., it does die correct thing.

The original definition of the symbol can be restored at any time by the u n e n c a p s u l a t e function.
E n c a p s u l a t e and u n e n c a p s u l a t e allow a symbol to be multiply encapsulated in such a way that different
encapsulations can be completely transparent to each other.

Each encapsulation has a type which may be an arbitrary lisp objea. If a symbol has several encapsulations of
different types, then any one of them can be removed without affecting more recent ones. A symbol may have more
than one encapsulation of the same type, but only the most recent one can be undone.

2Encapsulation does not work for macros or special forms yet.

DEBUGGING TOOLS 55

extensions: encapsulate symbol type body [Function]
Saves the current definition of symbol, and replaces it with a function which returns the result of
evaluating the form, body. Type is an arbitrary lisp object which is the type of encapsulation.

When the new function is called, the following variables are bound for the evaluation of body:

extensions:argument-list
A list of the arguments to the function.

extensions:basic-definition
The unencapsulated definition of the function.

The unencapsulated definition may be called with the original arguments by including the form
(apply extensions:basic-definition extensions:argument-list)

Encapsulate always returns symbol.

extensions: unencapsulate symbol type [Function]
Undoes symbol's most recent encapsulation of type type. Type is compared with eq. Encapsulations of
other types are left in place.

extensions: encapsulated-p symbol type [Function]
Returns t if symbol has an encapsulation of type type. Returns nil otherwise. Type is compared with

5.2. The Single Stepper

step form [Macro]
Evaluates form with single stepping enabled or if form is T, enables stepping until explicitly disabled.
Stepping can be disabled by quitting to the lisp top level, or by evaluating the form (step ()).
While stepping is enabled, every call to eval will prompt the user for a single character command. The
prompt is the form which is about to be evaled. It is printed with *print-level* and
print-length bound to *step-print-level* and *step-print-length*. All
interaction is done through the stream *query-io*. Because of this, the stepper can not be used in
Hemlock eval mode. When connected to a slave lisp, the stepper can be used from Hemlock.

The commands are

n (next)

s (skip)

q (quit)

p (print)

b (break)

e (eval)

? (help)

r (return)

g

Evaluate the expression with stepping still enabled.
Evaluate the expression with stepping disabled.

Evaluate the expression, but disable all further stepping inside the current call to
step.
Print current form. (does not use *step-print-level* or
step-print-length.)
Enter break loop, and then prompt for the command again when the break loop
returns.

Prompt for and evaluate an arbitrary expression. The expression is evaluated with
stepping disabled.
Prints a brief list of the commands.

Prompt for an arbitrary value to return as result of the current call to eval.
Throw to top level.

56 CMU COMMON LISP USER'S GUIDE

e x t e n s i o n s : * s t e p - p r i n t - l e v e l * [Variable]
e x t e n s i o n s : * s t e p - p r i n t - l e n g t h * [Variable]

* p r i n t - l e v e l * and * p r i n t - l e n g t h * are bound to these values while printing the current form.
* S t e p - p r i n t - l e v e l * and * s t e p - p r i n t - l e n g t h * are initially bound to 4 and 5, respectively.

e x t e n s i o n s : *xnax- s t e p - i n d e n t a t i o n * [Variable]
Step indents the prompts to highlight the nesting of the evaluatioa This variable contains the maximum
number of spaces to use for indenting. Initially set to 40.

5.3. The Debugger
The debugger is an interactive command loop that allows a user to examine the function call stack. Whenever a

serious-condition condition is signaled, and it is not handled, the debugger is invoked. Whenever e r r o r is called,
and the condition it signals is not handled, the debugger is invoked. The debugger never directiy returns, but
commands are provided for proceeding errors, throwing to top level, and returning values from arbitrary frames.

Most commands refer to the current stack frame, though some take an optional argument that specifies a frame on
which to operate. A number is assigned to each frame, starting with zero at the top, and the debugger's prompt
includes the number of the current frame. Some debugger commands are symbolic (that is, the name of a symbol
entered is interpreted as a command), and others are handled exactly as if they were valid forms one would type to
the top level read-eval-print loop. There are two notable consequences of this: a user has a full Lisp read-eval-print
loop at his disposal, but if he wants to evaluate certain symbols (those that are interpreted as debugger commands),
he must enter (e v a l ' <symbol>). Except for processing the symbolic commands, the command loop maintains
*, +» A -»and friends.

The debugger can not be used in Hemlock's eval mode. When connected to a slave Lisp, the debugger can be
used from within Hemlock.

See the Error chapter for a description of the d e b u g function.

5.3,1- Frame Changing Commands
These commands move to a new stack frame and print the name of the function and the values of its arguments in

the style of a Lisp function call. The printing is controlled by * d e b u g - p r i n t - l e n g t h * and
* d e b u g - p r i n t - l e v e l * . A frame is visible if it has not been hidden by d e b u g : h i d e (described below).

u Move up to the next higher visible frame. More recent function calls are considered to be
higher on the stack.

d Move down to the next lower visible frame.
t Move to the highest visible frame.
b Move to the lowest visible frame.

f [n] Move to a given frame, visible or not. Prompts for the number if not supplied,

s [function-name [n]]
Search down the stack for function. Prompts for the function name if not supplied. Searches an
optional number of times, but doesn't prompt for this number, enter it following the function.

r [Junction-name [n]]
Search up the stack for function. Prompts for the function name if not supplied. Searches an
optional number of times, but doesn't prompt for this number, enter it following the function.

DEBUGGING TOOLS 57

5.3.2. Exiting Commands
These commands get you out of the debugger,

q Throw to top level.
proceed [n] Invokes the nth proceed case as displayed by the e r r o r command. If n is not specified, the

available proceed cases are reported.

go Calls p r o c e e d on the condition given to debug. If there is no proceed case named proceed,
then an error is signaled.

abort Effectively calls a b o r t on the condition given to debug. This is useful for popping debug
command loop levels and aborting to top level, as the case may be.

(debug.debug-return expression \frame])
From the current or specified frame, return the result of evaluating expression. If multiple
values are expected, then this function should be called for multiple values.

53.3. Information Commands
Most of these commands print information about the current frame or function, but a few show general

information. A frame is visible if it has not been hidden by d e b u g : h i d e (described below).

h Displays a synopsis of debugger commands.

? Calls D e s c r i b e on the current function, displays number of local variables, and indicates
whether the function is compiled or interpreted.

1 Lists the local variables in the current function. The values of the locals are printed, but their
names are no longer available. An index is associated with each that can be used with
d e b u g - l o c a l .

p Displays the current function call as it would be displayed by moving to this frame.
pp Displays the current function call using * p r i n t - l e v e l * and * p r i n t - l e n g t h * instead of

* d e b u g - p r i n t - l e v e l * and * d e b u g - p r i n t - l e n g t h * .
error Prints the condition given to debug and the active proceed cases.
backtrace [n] Displays all the visible frames from the current to the bottom. Only shows n frames if

specified. The printing is controlled by * d e b u g - p r i n t - l e v e l * and
* d e b u g - p r i n t - l e n g t h * .

g Grinds the current frame.
(debug.local n [Frame'])

Returns the value of the nth local variable in the current or specified frame,
(debug-.argument n [frame])

Returns the nth argument of the current or specified frame.
(debug:debug-function [n])

Returns the function from the current or specified frame.
(debug:function-name [n])

Returns the function name from the current or specified frame.
(debug.pc [frame]) Returns the index of the instruction for the function in the current or specified frame. This is

useful in conjunction with d i s a s s e m b l e . The pc returned points to the instruction after the
one that was fatal.

53A. Other Commands
These commands deal with pushing command levels and hiding frames.

push Recursively calls d e b u g on the same condition object. This is useful in conjunction with the
other commands in this section, since aborting command loop levels restores previous hiding

file:///frame

58 CMU COMMON LISP USER'S GUIDE

filters. Use the abort command to unwind command loops.
(debugrhide option [what])

Makes the described stack frames invisible to the frame movement commands. The second
argument may be a symbol or a list of symbols; the function returns the hidden members of the
category. When what is not supplied, the current hidden items are returned, option is one of:

: function (s) Calls to the named functions will not be visible.
: frame-type (s)

Specified frame types will not be visible. Currently, the only types of
frames that can be talked about are : catch frames. These are hidden by
default

(debug:show options what)
Cancels the effect of the corresponding debug:hide.

(debug:show-alI) Make every frame visible, even those hidden by default.
(debug:hide-defaults)

Make only the default things hidden.

5.3-5. Specials
These are the special variables that control the debugger action.

extensions: *debug-print-level* [Variable]
extensions: *debug-print-length* [Variable]

print-level and *print-length* are bound to these values during the execution of some
debug commands. When evaluating arbitrary expressions in the debugger, the normal
print-level and *print-length* are in effect These variables are initially set to 3 and 5,
respectively.

extensions: *debug-hidden-functions* [Variable]
A list of functions which are hidden by default These functions can be made visible with the
debug: show-all command.

Chapter 6

The Compiler

6.1. Calling the Compiler

Functions may be compiled using compile, compile-file, or compile - from- st ream. Compile
operates exacdy as documented in Common Lisp: the Language.

compile- file & optional input-pathname &key : out put -file : error-file [Function]
:lap-file :errors-to-terminal :load

This function is an expanded version of that described in the Common Lisp: the Language. If
input-pathname is not provided compile-file prompts for i t Output-file and
Error-file default to T, producing a fasl file and a compilation log with extensions .fasl and .err.
Lap-file defaults to nil, indicating that the lap code should not be stored in a file. Any of these
options may be t, nil, or the string name of a file to write to. Errors-to-terminal defaults to T; if
specified and nil the compilation log goes only to the .err file. If load is specified and non-nil the
compiled file is loaded after the compilation.

extensions:compile-from-stream input-stream [Function]
This function takes a stream as input and reads lisp code from that stream until end of file is reached. The
code is compiled and loaded into the current environment No output files are produced.

6.2. Open and Closed Coding

When a function call is "open coded," inline code whose effect is equivalent to the function call is substituted for
that function call. When a function call is "closed coded", it is usually left as is, although it might be turned into a
call to a different function with different arguments. As an example, if nthcdr were to be "open coded" then

(nthcdr 4 foobar)
might turn into

(cdr (cdr (cdr (cdr foobar))))
or even

(do <<i 0 (1+ i))
(list foobar (cdr foobar)))

((= i 4) list)).

If nth is "closed coded"
(nth x 1)

might stay the same, or turn into something like:
(car (nthcdr x 1)) .

59

60 CMU COMMON LISP USER'S GUIDE

6.3. Compiler Switches

Several compiler switches are available which are not documented in the Common Lisp: the Language. Each is a
global special symbol and is described below.

compiler::*peep-enable*
If this switch is non-nil, the compiler runs the peephole optimizer. The optimizer makes the
compiled code faster, but the compilation itself is slower. *peep-enable* defaults to t.

compiler::*peep-statistics*
If this switch is non-nil, the effectiveness of the peephole optimizer (number of bytes before and
after optimization) will be reported as each function is compiled. *peep-statistics*
defaults to t.

compiler::*inline-enable*
If this switch is non-nil, then functions which are declared to be inline are expanded inline. It is
sometimes useful to turn this switch off when debugging. *inline-enable* defaults to t.

compiler::*open-code-sequence-functions*
If this switch is non-nil, the compiler tries to translate calls to sequence functions into do loops,
which are more efficient. It defaults to t.

compiler: :*optimize-let-bindings*
If this is t, optimize some let bindings, such as those generated by lambda expansions and setf
based operations. If it is :all, optimize all lets. If it is nil, don't optimize any. It takes
significant time to do all. The optimization involves replacing instances of variables that are
bound to other variables with the other variables. Defaults to t.

compiler::*examine-environment-function-information*
If this is non-NIL, look in the compiler environment for function argument counts and types
(macro, function, or special form) if you don't get the information from declarations. Defaults
to t.

compiler::*complain-about-inefficiency*
If this switch is non-nil, the compiler will print a message when certain things must be done in
an inefficient manner because of lack of declarations or other problems of which the user might
be unaware. This defaults to nil.

compiler::*eliminate-tail-recursion*
If this switch is non-nil, the compiler attempts to turn tail recursive calls (from a function to
itself) into iteration. This defaults to t.

compiler::*all-rest-args-are-lists*
If non-nil, this has the effect of declaring every &rest arg to be of type list. (They all start that
way, but the user could alter them.) It defaults to nil.

compiler: : *verbose*
If this switch is nil, only true error messages and warnings go to the error stream. If non-nil,
the compiler prints a message as each function is compiled. It defaults to t.

6.4. Declare switches
Not all switches for d e c l a r e are processed by the compiler. The f t y p e and f u n c t i o n declarations are

currently ignored.

The o p t i m i z e declaration controls some of the above switches:
• c o m p i l e r : : * p e e p - e n a b l e * is on unless c s p e e d is greater than s p e e d and space .

• c o m p i l e r : : * i n l i n e - e n a b l e * is on unless s p a c e is greater than speed.

• c o m p i l e r : : * o p e n - c o d e - s e q u e n c e - f u n c t i o n s * is on unless s p a c e is greater than speed.

THE COMPILER

• compiler: : *eliminate-tail-recursion* is on if speed is greater than space.

CMU COMMON LISP USER'S GUIDE

Chapter 7

Efficiency

By Rob Maclachlan

In CMU Common lisp, as is any language on any computer, the way to get efficient code is to use good
algorithms and sensible programming techniques, but to get the last bit of speed it is helpful to know some things
about the language and its implementation. This chapter is a summary of various hidden costs in the
implementation and ways to get around them.

7.1. Compile Your Code

In CMU Common Lisp, compiled code typically runs at least 100 times faster than interpreted code. Another
benefit of compiling is that it catches many typos and other minor programming errors. Many l isp programmers
find that the best way to debug a program is to compile the program to catch simple errors, then debug the code
interpreted, only actually using the compiled code once the program is debugged.

Another benefit of compilation is that compiled (fasl) files load significandy faster, so it is worthwhile compiling
files which are loaded many times even if the speed of the functions in the file is unimportant

Do Not be concerned about the performance of your program until you see its speed compiled. Some techniques
that make compiled code run faster make interpreted code run slower.

7.2. Avoid Unnecessary Consing

Consing is the Lispy name for allocation of storage, as done by the cons function, hence its name. Cons is by
no means the only function which conses, so does make-array and many other functions. Even worse, the l isp
system may decide to cons furiously when you do some apparentiy innocuous thing.

Consing hurts performance in the following ways:
• Consing reduces your program's memory access locality, increasing paging activity.

• Consing takes time just like anything else.

• Any space allocated eventually needs to be reclaimed, either by garbage collection or killing your lisp.

Of course you have to cons sometimes, and the Lisp implementors have gone to considerable trouble to make
consing and the subsequent garbage collection as efficient as possible. In some cases strategic consing can improve

63

64 CMU COMMON LISP USER'S GUIDE

speed. It would certainly save time to allocate a vector to store intermediate results which are used hundreds of
times.

7.3. Do, Don't Map

One of the programming styles encouraged by l isp is a highly applicative one, involving the use of mapping
functions and many lists to store intermediate results. To compute the sum of the square-roots of a list of numbers,
one might say:

(a p p l y # ' + (mapcar # ' s q r t l i s t-of - n u m b e r s))

This programming style is clear and elegant, but unfortunately results in slow code. There are two reasons why:
• The creation of lists of intermediate results causes much consing (see 7.2).

• Each level of application requires another scan down the list. Thus, disregarding other effects, the
above code would probably take twice as long as a straightforward iterative version.

An example of an iterative version of the same code:
(do ((num. l i s t-of - n u m b e r s (c d r num))

(sum 0 (+ (s q r t (c a r num)) sum)))
((n u l l num) sum))

Once you feel in your heart of hearts that iterative Lisp is beautiful then you can join the ranks of the l isp efficiency
fiends.

7.4. Think Before You Use a List

Although Lisp's creator seemed to think that it was for LISt Processing, the astute observer may have noticed that
the chapter on list manipulation makes up less that ten percent of Common Lisp: the Language. The language has
grown since Lisp 1.5, and now has other data structures which may be better suited to tasks where lists might have
been used before.

7.4.1. Use Vectors
Use Vectors and use them often, lists are often used to represent sequences, but for this purpose vectors have the

following advantages:
• A vector takes up less space than a list holding the same number of elements. The advantage may vary

from a factor of two for a general vector to a factor of sixty-four for a bit-vector. Less space means less
consing (see 7.2).

• Vectors allow constant time random-access. You can get any element out of a vector as fast as you can
get the first out of a list if you make the right declarations.

The only advantage that lists have over vectors for representing sequences is that it is easy to change the length of
a list, add to it and remove items from i t likely signs of archaic, slow lisp code are n t h and n t h c d r . If you are
using these function you should probably be using a vector.

7.4.2. Use Structures
Another thing that lists have been used for is the representation of record structures. Often the structure of the list

is never explicitly stated and accessing macros are not used, resulting in impenetrable code such as:
(r p l a c a (c a d d r (c a d d d r x)) (c a d d r y))

EFFICIENCY 65

The use of d e f s t r u c t structures can result in much clearer code, one might write instead:
(s e t f (b e v e r a g e - f l a v o r (a s t r o n a u t - b e v e r a g e ac)) (b e v e r a g e - f l a v o r y))

Great! But what does this have to do with efficiency? Since structures are based on vectors, the de f s t r u c t
version would likewise take up less space and be faster to access. Don't be tempted to try and gain speed by trying
to use vectors directly, since the compiler knows how to compile faster accesses to structures than you could easily
do yourself. Note that the structure definition should be compiled before any uses of accessors so that the compiler
will know about them.

7.4.3. Use Hashtables
Before using an association list (alist) or a symbol property, you should consider whether a hash-table would do

the job better. There are two arguments: efficiency and style.

Since a s s o c is implemented directiy in assembler code when the test argument is e q or e q l , it is fairly fast
when there are only a few elements, but the time goes up in proportion with the number of elements. In contrast, the
hash-table lookup has a somewhat higher overhead, since a function call is involved, but the speed is largely
unaffected by the number of entries in the table. For an e q u a l hash-table or alist, hash-tables have an even greater
advantage, since the test is more expensive and the alist lookup is not done in assembler code. Whatever you do, be
sure to use the most restrictive test function possible.

The style argument observes that although hash-tables and alists overlap in function, they do not do all things
equally well.

• Alists are good for maintaining scoped environments. They were originally invented to implement
scoping in the Lisp interpreter, and are still used for this in CMU Common Lisp. With an alist one can
non-destructively change an association simply by consing a new element, on the front. This is
something that cannot be done with hash-tables.

• Hashtables are good for maintaining a global association. The value associated with an entry can easily
be changed by doing a setf. With an alist, one has to do go through contortions, either r p l a c d ' i n g the
cons if the entry exists, or pushing a new one if it doesn't The side-effecting nature of hash-table
operations is an advantage here.

Experienced Lisp programmers will notice that I am suggesting that hash-tables be used for things which symbol
properties are often used for. There are a number of reasons to use hash-tables instead of properties:

• Hash-tables can be more efficient if the average property list length is sufficientiy large.

• A hash-table is inherentiy anonymous, while a property is usually a symbol. A new set of associations
can be created simply by making a new hash-table. A similar effect could be obtained by using
gensyms as property names, but this is apt to cause nausea.

• A hash-table is one objea rather than a bunch of stuff scattered across dozens of property lists. This
means that modularity is improved and bugs find it harder to propagate.

7.4.4. Use Bit-Vectors

Another thing that lists have been used for is set manipulation. In some applications where there is a known,
reasonably small universe of items bit-vectors could be used to improve performance. This is much less convenient
than using lists, because instead of symbols, each element in the universe must be assigned a numeric index into the
bit vector. Using a bit-vector will nearly always be faster, and can be tremendously faster if the number of elements
in the set is not small. The logical operations on simple bit vectors are implemented in assembler code.

66 CMU COMMON LISP USER'S GUIDE

7.5. Simple Vs Complex Arrays

If an array is a simple-string, simple-vector or simple-bit-vector, more efficient code is
generated if the compiler is told the type. Declare Your Vector Variables. If you don't the compiler will be forced
to make worst-case assumptions. Example:

(defun iota (n)
(let ((res (make-array n)))

(declare (simple-vector n))
(dotimes (i n)

(setf (aref res i) i))
res))

Arrays with more than two dimensions are accessed by l isp code, thus accessing any such array is many times
slower than accessing a vector or two-dimensional array.

7.6. To Call or Not To Call

The usual Lisp style involves small functions and many function calls; for this reason Lisp implementations strive
to make function calling as inexpensive as possible. CMU Common Lisp on the IBM RT PC for Mach is fairly
successful in this respect However, function calling does take time, and thus is not the kind of thing you want going
on in the inner loops of your program.

Where removing function calling is desirable you can use the following techniques:

Write the code in-line
This is not a very good idea, since it results in obscure code, and spreads the code for a single
logical function out everywhere, making changes difficult.

Use macros A macro can be used to achieve the effect of a function call without the function-call overhead,
but the extreme generality of the macro mechanism makes them tricky to use. If macros are
used in this fashion without some care, obscure bugs can result

Use inline functions
This is often the best way to remove function call overhead in Common Lisp. A function may
be written, and then declared inline if it is found that function call overhead is excessive.
Writing functions is easier that writing macros, and it is easier to declare a function inline than
to convert it to a macro. Note that the compiler must process first the inline declaration, then the
definition, and finally any calls which are to be open coded for the inline expansion to take
place.

Any of the above techniques can result in bloated code, since they have the effect of duplicating the same
instructions many places. If code becomes very large, paging may increase, resulting in a significant slowdown.
Inline expansion should only be used where it is needed. Note that the same function may be called normally in
some places and expanded inline in other places.

7.7. Keywords and the Rest

Common Lisp has very powerful argument passing mechanisms. Unfortunately, two of the most powerful
mechanisms, rest arguments and keyword arguments, have a serious performance penalty in CMU Common Lisp.
The main problem with rest args is that the assembler code must cons a list to hold the arguments. If a function is
called many times or with many arguments, large amounts of consing will occur. Keyword arguments have the
problem that a significant amount of time is spent parsing the list of keywords and values on each function call.
Neither problem is serious unless thousands of calls are being made to the function in question, so the use of

EFFICIENCY 67

argument keywords and rest args is encouraged in user interface functions.

A way to avoid keyword and rest-arg overhead is to use a macro instead of a function, since the rest-arg and
keyword overhead happens at compile time. If the macro-expanded form contains no keyword or rest arguments,
then it is perfectiy acceptable to use keywords and rest-args in macros which appear in inner loops.

Note: the compiler open-codes most heavily-used system functions which have keyword or rest arguments, so that
no run-time overhead is involved.

7.8. Numbers

CMU Common lisp provides six types of numbers for your enjoyment: fixnums, bignums, ratios, short-floats,
long-floats and complexes. Only short-floats and fixnums have an immediate representation; the rest must be
consed and garbage-collected later. In code where speed is important, you should use only fixnums and short-floats
unless you have a real need for something else. Ratio and complex arithmetic are implemented in l isp rather than
assembler, this results in orders of magnitude slower execution.

7.9. Timing

The first step in improving a program's performance is to make extensive timings to find code which is time-
critical. The time macro is the best way currendy available to do timings. For things which execute fairly quickly
it may be wise to time them more than once, since there may be paging overhead in the first timing. The times that
time gets are only accurate to a certain number of decimal places, so for small pieces of code it may be a good idea
to write a compiled driver function which calls the function to be tested a few hundred times. If one finds the time
and divides by the number of iterations, then fairly accurate statistics can be collected.

CMU COMMON LISP USER'S GUIDE

Chapter 8

MACH Interface

By Rob Maclachlan and Skef Wholey

CMU Common Lisp attempts to make the full power of the underlying environment available to the l isp
programmer. This is done using combination of hand-coded interfaces, automatically generated MACH RPC stubs
and foreign function calls to C libraries. Although the techniques differ, the style of interface is similar. This
chapter provides an overview of the facilities available and general rules for using them, as well as describing
specific features in detail. It is assumed that the reader has a working familiarity with Mach, Unix and X, as well as
access to the standard system documentation.

8.1. Lisp Equivalents for C Routines

The MACH documentation describes the system interface in terms of C procedure headers. The corresponding
l isp function will have a somewhat different interface, since l isp argument passing conventions and datatypes are
different

The main difference in the argument passing conventions is that l isp does not support passing values by
reference. In Lisp, all argument and results are passed by value. Interface functions take some fixed number of
arguments and return some fixed number of values. A given "parameter" in the C specification will appear as an
argument, return value, or both, depending on whether it is an In parameter, Out parameter, or In/Out parameter.
The basic transformation one makes to come up with the Lisp equivalent of a C routine is to remove the Out
parameters from the call, and treat them as extra return values. In/Out parameters appear both as arguments and
return values. Since Out and In/Out parameters are only conventions in C, you must determine the usage from the
documentation.

Thus, the C routine declared as
kern_retum_t lookup (servport, portsname, portsid)

port servport;
char *portsname;
int *portsid; /* out */

{

*portsid = <expression to compute portsid field>
return (KERNJ5UCCESS) ;

>

has as its l isp equivalent something like

69

70 CMU COMMON LISP USER'S GUIDE

(defun lookup (ServPort PortsName)

(values
success
<eacpression to compute portsid field>))

An extra twist that comphcates this 4'translation" process but makes programming easier is this: when the routine
returns a record value, the components of that record may be returned as multiple values. This eliminates the need
to extract fields from Allen structures (see below) and frees the programmer from having to explicitly deallocate
such structures.

So, the C routine declared as
void getevent(servport, event)

port servport;
keyevent *event; /* out */

{

keyevent->cmd = <eaqpression to compute Cmd £ield>
keyevent->ch = <expression to compute Ch field>
keyevent->region = <expression to compute Region £ield>
keyevent->y = <eaepression to compute Y field>
keyevent->x = <expression to compute X field>

>

would be written like this in Lisp:
(defun getevent (servport)

(values
<expression to compute Cmd field>
<expression to compute Ch field>
<expression to compute Region field>
<expression to compute Y field>
<eacpression to compute X f ield>))

Fortunately, CMU Common Lisp programmers rarely have to worry about the nuances of this translation process,
since the names of the arguments and return values are documented in a way so that the describe function (and
the Hemlock Describe Function Call command, invoked with C-M-Shift-A) will list this information.
Since the names of arguments and return values are usually descriptive, the information that describe prints is
usually all one needs to write a call to a Matchmaker-generated function. Most programmers use this on-line
documentation nearly all of the time, and thereby avoid the need to handle bulky manuals and perform the
translation from barbarous tongues.

8.2. Type Translations

Lisp data types have very different representations from those used by conventional languages such as C. Since
the system interfaces are designed for conventional languages, Lisp must translate objects to and from the l isp
representations. Many simple objects have a direct translation: integers, characters, strings and floating point
numbers are translated to the corresponding Lisp object A number of types, however, are implemented differently
in Lisp for reasons of clarity and efficiency.

Instances of enumerated types are expressed as keywords in Lisp. Thus, an instance of the enumerated type
defined by

MACH INTERFACE 71

Type KeyHowWait = (KeyWaitDiffPos, KeyDontWait, KeyWaitEvent);
would be written in Lisp as a keyword: : k e y w a i t d i f f pos , : keydontwai t , or i k e y w a i t e v e n t .

Records, arrays, and pointer types are implemented with the A l i e n facility (see page 83.) Access functions are
defined for these types which convert fields of records, elements of arrays, or data referenced by pointers into lisp
objects (possibly another object to be referenced with another access function):

• A record of type type can be constructed with a function make-type. A field named field of a record of
type type may be accessed with a function type-field, and set with s e t f of that function.

• An array of type type can be constructed with a function make-type; if the array type allows for a
variable upper bound on indices, these bounds may be specified. Elements of such an array may be
accessed with the function type-ref, and may be set with s e t f of that function.

• A pointer of type type to an object may be dereferenced with a function i n d i r e c t -type. To create an
object and get a pointer of type type to that object, one can call the function make -type. If the pointer
type references an array of objects, indices may be provided as optional arguments to the indirect
function, and if the array has a variable upper bound, it may be specified when calling the constructor
function.

One should dispose of A l i e n objects created by constructor functions or returned from remote procedure calls
when they are no longer of any use, freeing the virtual memory associated with that object. Since A l i e n s contain
pointers to non-Lisp data, the garbage collector cannot do this itself. If the A l i e n was created using MACH
memory allocation (e.g. v m _ a l l o c a t e) , then the storage should be freed using d i s p o s e - a l i e n . If the
memory was obtained from a foreign function call to a routine that used m a l l o c , then s y s t e m : f r e e should be
used on the s y s t e m : a l i e n - s a p of the A l i e n .

Note that in some cases an address is represented by a Lisp integer, and in other cases it is represented by a real
pointer. Pointers are usually used when an object in the current address space is being referred to. The MACH
virtual memory manipulation calls must use integers, since in principle the address could be in any process, and Lisp
cannot abide random pointers. Because these types are represented differentiy in Lisp, one must explicitiy coerce
between these representations.

s y s t e m : a l i e n - s a p alien [Macro]
The function a l i e n - s a p is used to generate a system area pointer (a virtual address that points into the
section of l isp 's address space reserved for A l i e n objects) from an A l i e n .

NOTE: Usually a pointer from a system interface function is an A l i e n , but whenever a pointer is passed in, it
must be passed as a system area pointer. This strange calling convention was adopted to eliminate the necessity of
constructing an A l i e n value just for the purpose of passing a pointer. The programmer interface is simplified,
since a simple function call can be made in most places without the need to declare a local variable, construct an
A l i e n value, and deallocate that A l i e n value (or use a l i e n - b i n d for those three things).

s y s t e m : s a p - i n t sap [Macro]
s y s t e m : i n t - s a p int [Macro]

The function s a p - i n t is used to generate an integer corresponding to the system area pointer, suitable
for passing to the kernel interfaces (which want all addresses specified as integers). The function
i n t - s a p is used to do the opposite conversion.

72 CMU COMMON LISP USER'S GUIDE

8.3. Unix System Calls

You probably won't have much cause to use them, but all the Unix system calls are available. The Unix system
call functions are in the "mach" package. The basic name is prefixed with " u n i x - " to prevent name conflicts. The
associated constants usually don't have any prefix. To find out how to use a particular system call, try describing it.
If that doesn't help, look at the source in syscalLlisp or consult your system maintainer.

The Unix system calls indicate an error by returning n i l as the first value and the Unix error number as the
second value. If the call succeeds, then the first value will always be non-null, often t.

mach:get-unix-error-msg error [Function]
Return a string describing the Unix error number error.

8.4. Making Sense of Return Codes

Whenever a remote procedure call returns a Mach error code (such as kern_return_t), it is usually prudent to
check that code to see if the call was successful. To relieve the programmer of the hassle of testing this value
himself, and to centralize the information about the meaning of non-success return codes, CMU Common l isp
provides a number of macros and functions.

system: gr-error function gr &optional context [Function]
Signals a l isp error, printing a message indicating that the call to the specified function failed, with the
return code gr. If supplied, the context string is printed after the function name and before the string
associated with the gr. For example: m

* (gr-error 'nukegarbage 3 "lost big")

Error in function GR-ERROR:
NUKEGARBAGE lost big, no space.
Proceed cases:
0: Return to Top-Level.
Debug (type H for help)
(Signal #<Conditions:Simple-Error.5FDE0>)
0]

system: gr-call function firest args [Macro]
system: gr-call* function firest args [Macro]

These macros can be used to call a function and automatically check the GeneralReturn code and signal
an appropriate error in case of non-successful return, gr-call returns nil if no error occurs, while
gr-call* returns the second value of the function called.

* (gr-call mach:port_allocate *task-self*)
NIL

system:gr-bind {{var}*) {function {arg}*) {form}* [Macro]
This macro can be used much like multiple-value-bind to bind the vars to return values resulting
from calling the function with the given args. The first return value is not bound to a variable, but is
checked as a GeneralReturn code, as in gr-call.

MACH INTERFACE 73

* (gr-bind (port_list port_list_cnt)
(xnach:port_select *task-self*)

(format t "The port count is ~S." port_list_cnt)
port_list)

The port count is 0 .
#<Alien value>

8.5. Packages

The functions and constants that make up each Matchmaker-generated interface usually reside in their own
package, and the public symbols of that package aie exported. Thus, one usually uses the package for an interface
one wishes to use. A program that used the Mach kernel, the CLX interface to the X window manager, and the
Message Name server might begin with:

Package: Hack -*-

A silly graphics hack.
Written by Joe Schmoe.

(in-package "HACK" :use '("LISP" "XLIB" "MACH" "MSGN"))

Note that all of the standard interfaces are built into the CMU Common Lisp core image, and one doesn't need to
load any other files to use these facilities. Here is a list of the packages that hold the built-in interfaces.

MACH Holds the MACH interface and the Unix system calls.
MSGN Holds code for message name server calls.

XLIB % Holds the CLX interface to the X window manager version 11. See the CLX documentation for
details.

TS, EVAL Holds Matchmaker interfaces used to control l isp client processes from Hemlock.

8.6. Useful Variables

The information passed to the process in its startup message is available in the values of global variables.

system: *nameserverport* [Variable]
Port to the message name server.

system: *task-self * [Variable]
system: *t ask-data* [Variable]
system: *task-notify* [Variable]

The initial ports for the l isp process.

8.7. Reading the Command Line

The shell parses the command line with which Lisp is invoked, and passes a data structure containing the parsed
information to Lisp. This information is then extracted from that data structure and put into a set of Lisp data
structures.

74 CMU COMMON LISP USER'S GUIDE

e x t e n s i o n s : * c o m m a n d - l i n e - s t r i n g s * [Variable]
e x t e n s i o n s : * c o m m a n d - l i n e - u t i l i t y - n a m e * [Variable]
e x t e n s i o n s : * c o m m a n d - l i n e - w o r d s * [Variable]
e x t e n s i o n s : * command- l i n e - s w i t c h e s * [Variable]

The value of * c o m m a n d - l i n e - w o r d s * is a list of strings that make up the command line, one word
per string. The first word on the command line, i.e. the name of the program invoked (usually " l i s p ")
is stored in * c o m m a n d - l i n e - u t i l i t y - n a m e * . The value of * command- l i n e - s wi t c h e s * is a
list of command— l i n e - s w i t c h structures, with a structure for each word on the command line
starting with a hyphen. All the command line words between the program name and the first switch are
stored in * comma n d - l i n e - words *.

The following functions may be used to examine c o m m a n d - l i n e - s w i t c h structures.

e x t e n s i o n s : c m d - s w i t c h - n a m e switch [Function]^
Returns the name of the switch, less the preceding hyphen and trailing equal sign (if any).

e x t e n s i o n s : c m d - s w i t c h - v a l u e switch [Function]
Returns the value designated using an embedded equal sign, if any. If the switch has no equal sign, then
this is null.

e x t e n s i o n s : c m d - s w i t c h - w o r d s switch [Function]
Returns a list of the words between this switch and the next switch or the end of the command line.

8.8. Reading and Writing Virtual Memory Without Aliens

It is sometimes necessary to bypass the Alien type system and access virtual memory direcdy. The following
functions are used to examine virtual memory:

system: sap-ref-8 sap offset [Function]
Returns the 8-bit byte at offset bytes from the sap as an integer in the range 0 to 255.

system: sap-ref-16 sap offset [Function]
Returns the 16-bit word at offset words beyond the sap as an integer in the range 0 to 65535.

system: sap-ref-32 sap offset [Function]
Returns the 32-bit dualword at offset (16-bit) words beyond the sap as a signed 32-bit integer.

Setf may be used with the above functions to deposit values into virtual memory.

8.9. The Software Interrupt System
There are default handlers for most of the Unix signals. The most interesting signal is the one that indicates an

emergency message has arrived. Emergency message interrupts are enabled by default. When an emergency
message arrives, the object-set mechanism is used to find a handler function (see page 77). It is as though s e r v e r
was called asynchronously.

MACH INTERFACE 75

s y s t e m : a d d - p o r t - d e a t h - h a n d l e r port function [Function]
s y s t e m : r e m o v e - p o r t - d e a t h - h a n d l e r port function [Function]

a d d - p o r t - d e a t h - h a n d l e r makes function a handler for port death on port There may be any
number of port death handlers for a port When the port dies, all the handlers are with the port as an
argument

r e m o v e - p o r t - d e a t h - h a n d l e r undoes the effect of a d d - p o r t - d e a t h - h a n d l e r .

s y s t e m : * p o r t - r e c e i v e - r i g h t s - h a n d l e r s * [Variable]
s y s t e m : * p o r t - o w n e r s h i p - r i g h t s - h a n d l e r s * [Variable]

These variables hold hashtables from ports to functions. When an ownership or receive rights message is
received on a port, the port is looked up in the appropriate table. If there is a handler function, then it is
called with the port as an argument.

s y s t e m : * p o r t - d e a t h - h a n d l e r s * [Variable]
s y s t e m : * p o r n o g r a p h y - o f - d e a t h * [Variable]

The d a t a p o r t , on which port death messages are sent, is associated with a function that consults
another hash table, * p o r t - d e a t h - h a n d l e r s * . If no associated function is found, then the port death
handler quietly returns, unless * p o m o g r a p h y - o f - d e a t h * is n i l , in which case a warning is
printed. If a handler is found, it is called with the dead port.

Because interrupt handlers may do arbitrarily hairy things, one must be careful when writing non-reentrant code
that might be called from an interrupt handler. The macro (w i t h o u t - i n t e r r u p t s (page 13)) may be used to
execute forms with the interrupt system effectively turned off and should be used in such situations.

CMU COMMON LISP USER'S GUIDE

Chapter 9

Event Dispatching with SERVER

By Rob Maclachlan

It is common to have multiple activities simultaneously operating in the same Lisp process. Furthermore, l isp
programmers tend to expect a flexible development environment. It must be possible to load and modify application
programs without requiring modifications to other running programs. CMU Common lisp achieves this by having
a central scheduling mechanism based on an event-driven, object-oriented paradigm.

An event is some interesting happening that should cause the Lisp process to wake up and do something. The two
main kinds of events are MACH IPC messages and X events. It is also possible to wait for data on Unix file
descriptors. This capability is somewhat different, and is described later.

MACH IPC and X events are conceptually fairly similar, so server handles them in much the same way. Both
contain an object capability and an operation code. In a Mach IPC message the object capability is the remote port
in the message header, and the operation code is the message ID. In an X event, the window ID is the object
capability and the X event type is the operation code.

9.1. Object Sets

An object set is a collection of objects that have the same implementation for each operation. Externally the
object is represented by the object capability and the operation is represented by the operation code. Within Lisp,
the object is represented by an arbitrary l isp object, and the implementation for the operation is represented by an
arbitrary Lisp function. The object set mechanism maintains this translation from the external to the internal
representation.

system:make-object-set name ^optional default-handler [Function]
Makes a new objea set Name is a string, which is used only for purposes of identifying the object when
it is printed. Default-handler is the function which is used as a handler when an undefined operation is
done on an objea in the set. Initially the objea set has no objects and no defined operations.

system: object-set-operation object-set operation-code [Function]
Return the function which is the implementation of the operation corresponding to operation-code in
object-set. When set with setf, changes the implementation. Usually this function is not called
directly, since the object set operation is implicitiy set by the serve-operation functions in the X
interface or Matchmaker generated interface.

77

78 CMU COMMON LISP USER'S GUIDE

system: add-acwindow-ob ject window object object-set [Function]
system: add-port-object port object object-set [Function]

These functions add a new object to object-set. Object is an arbitrary Lisp object that is associated with
the object capability window or port. Window is an X window ID, and port is a MACH IPC port. When
an event happens, object is passed as the argument to the handler function

9.2. The SERVER Function

The server function is the standard way for an application to wait for something to happen. For example, the
l i sp calls server when it wants input from X or an ASCII terminal. The idea behind server is that it knows the
appropriate action to take when any interesting event happens. If an application calls server when it is idle, then
any other applications with pending events can run. This allows several applications to run "at the same time"
without interference, even though there is only one thread of control. Note that if an application is waiting for input
of any kind, then other applications will get events.

system: server ^optional timeout [Function]
Wait for an event to happen, and then dispatch to the correct handler function. If specified, timeout is the
number of seconds to wait before timing out A time out of zero seconds is legal and will cause server to
poll to see if any events should be processed. Server returns T if at least one event has been serviced, and
NIL otherwise. When using server and it returns T, it should be called repeatedly (with a timeout of 0)
until it returns NIL.

If a MACH IPC message is received, then the system: server-message global Alien variable will
contain the received message. Similarly, if an X event is received, then system: server-event will
hold the event See the MACH Interface chapter (page 69) for the details of using port objects.

If input is available on any designated file descriptor, then the appropriate handler function will be called.
See *f ile-input-handlers* below.

Since events for many different applications may be arriving simultaneously, an application that is
waiting for a specific event must loop calling server until the desired event happens. Since programs
such as Hemlock call server to do input, applications such as Matchmaker servers usually don't need
to call server at all; Hemlock will process the requests when it goes into an input wait

system: serve-all ^optional timeout [Function]
The function serve-all is similar to server, except that it serves all the pending events rather than just
one. It returns T if at least one event is serviced and NIL otherwise.

system: *f ile-input-handlers* [Variable]
This variable is an alist from Unix file descriptors to handler functions. If input is available on any of the
file descriptors, then the corresponding function will be called with the file descriptor as its argument

9.3. Using SERVER with Matchmaker Interfaces

We define the Object-Set to be a collection of objects (ports) with some set of operations (message ID's) with
corresponding implementations (functions).

Matchmaker uses the Object-Set operations to implement servers. For each server interface XXX, a function of
two arguments serve-XXX is defined. The serve-XXX function establishes the function which is its second
argument as the implementation of the XXX operation in the object-set which is its first argument The function is

EVENT DISPATCHING WITH SERVER 79

called with the object given to a d d - p o r t - o b j e c t as its first argument, and the input parameters as the remaining
arguments. The return values from the function are used as the output parameters for the message (if any).
serve-XXX functions are also generated for each "server message" and asynchronous user interface.

In order to use a Lisp server, create an object set, define some operations on it using serve-XXX functions,
create an object for every port you want to receive on, and then call the s e r v e r function to serve an RPC request.

In case it isn't obvious why things are done this way, consider that object sets allow there to be many servers in
the same lisp which can function without knowing about each other. There can even be multiple different
implementations of the same interface. This property is especially useful when handling emergency messages, since
emergency message handling now uses the same mechanism.

9.4. Using SERVER with the X Interface

When an X event is available on the current display, then s e r v e r uses the object associated with the window ID
to find the. handler function. Each X event type has a hand-generated serve-XXX function similar to those
generated for Matchmaker interfaces.

9.5. A SERVER Example

This section presents a very simple example of the use of the server functioa It defines a *xwindows* object set,
sets up a handler for the X keypressed event, and makes calls to server to serve the keypressed events.

CMU COMMON USP USER'S GUIDE

(in-package "SERVER-EXAMPLE" ruse '("LISP" "XLIB"))

(defvar *xwindows* (system:make-object-set "X Windows"))

(defun key-pressed (hunk event-key event-window root child
same-screen-p x y root-x root-y
modifiers time key-code send-event-p)

"Key-pressed is called when a key press event is generated by X."
(declare (ignore hunk event-key root child same-screen-p ac y

root-x root-y modifiers time send-event-p))
(format t "Key-pressed (Window = ~D) = ~D.~%"

(xlib:window-id event-window)
key-code))

(ext:serve-key-press *xwindows* #'key-pressed)

(def\in server-example ()
"An example of using the server function."
;; Open the display and create an X window.
(let* ((display (ext: open-clx-display))

(screen (display-default-screen display))
(black (screen-black-pixel screen))
(white (screen-white-pixel screen))
(window (create-window :parent (screen-root screen)

:background black
:border white
:border-width 5
:x 0
:y 0
:width 200
:height 200
:event-mask '(:key-press))))

;; Wrap code in unwind-protect, so we clean up after ourselves.
(unwind-protect

(progn
;; map the window to the screen.
(map-window window)
;; Add the window to the *xwindows* object set.
(system: add-xwindow-object window window *xwindows*)
;; Make sure the window gets displayed.
(display-force-output display)
;; Enable event handling on the display.
(ext:enable-clx-event-handling display

#'ext:object-set-event-handler)
;; Call server for 1 0 0 , 0 0 0 events.
(dotimes (i 100000) (system: server)))

;; Disable event handling on this display.
(ext: disable-clx-event-handling display)
;; Remove the window from the object set before destroying it.
(system: remove-xwindow-ob ject window)
;; Destroy the window.
(destroy-window window)
;; Make sure X destroys window NOW.
(display-force-output display)
;; Close the display.
(xlib:close-display display))))

EVENT DISPATCHING WITH SERVER 81

Other X events could be handled by selecting the various event types and adding servers for the event type to X
window object set

CMU COMMON LISP USER'S GUIDE

Chapter 10

The Alien Facility

By Rob Maclachlan

10.1. What the Alien Facility Is

Aliens provide a mechanism in Lisp for manipulating objects which are foreign to the Lisp environment.
Aliens are used in the foreign function calling interface, matchmaker interfaces to the Mach specific system calls
and the name server, and to call Unix system calls. The Alien functions and macros described in this chapter
allow Lisp objects to be converted from the Lisp representation to other representations as expected in C code or
IPC messages and vice versa.

10.2. Alien Values

Objects in messages are manipulated via typed pointers to the data involved. These typed pointers are called Alien
values. An Alien value is a Lisp object which consists of three components:

address The address of the object pointed to. This is a word address, which may in general be a ratio,
since objects need not be word aligned.

size The size in bits of the object pointed to. This information is used to make sure that accesses to
the object fall within it.

type The Alien type of the object pointed to. Since Alien values have a type, functions that use
them can check that their arguments are of the correct type.

10.3. Alien Types

Alien types are tags attached to Alien values that may be checked to assure that they are not used
inappropriately. When types are compared the comparison is done with the l isp equal functioa Types are
typically represented by symbols or lists of symbols such as the following:

string
(directory-entry type-file)
(signed-byte 7)
string-char

A convention which is encouraged, but not enforced, is that an ordinary type is represented by a symbol, and a type
with some subtype information, such as a discriminated union is represented as a list of the main type and the

83

84 CMU COMMON LISP USER'S GUIDE

subtype information.

10.4. Alien Primitives

This section describes the defined Alien primitives. Some of these primitives are intended to be used only in
code generated by matchmaker, while others might be used by mere mortals.

system:make-alien type size fioptional address [Function]
Make an Alien object of type type that is size bits long, address may be either a number, : static or
: dynamic. If address is a number, then that becomes the returned alien's address. If address is
: static or : dynamic then storage is allocated to hold the data. Aliens that are allocated statically are
packed as many as will fit on a page, resulting in increased storage efficiency, but disallowing the
deallocation of the storage. Since static aliens are allocated contiguously, the save function can arrange
to save their contents, permitting initialization of such Aliens to be done only once. Dynamic Aliens are
allocated on page boundaries, and may be deallocated using dispose-alien.

system: alien-type alien [Function]
system: alien-size alien [Function]
system: alien-address alien [Function]

These functions return the type, size and address of alien, respectively.

system: alien-sap alien [Function]
This function returns the address of alien as a system-area-pointer. If the address is not an integer, an
error will be signaled, since it cannot be represented as a system-area-pointer.

system: copy-alien alien • [Function]
Copy the storage pointed to by alien and return a new Alien value that describes it.

system:alien-assign to-alien front-alien [Function]
Copies the bits in front-alien into to-alien. The alien values must be of the same size and type.

system: dispose-alien alien [Function]
Release any storage associated with alien. Any reference to alien afterward may lose horribly.

system: alien-access alien ^optional lisp-type [Function]
alien-access returns the object described by alien as a Lisp object of type lisp-type. An error is
signalled if the type of alien cannot be converted to the given lisp-type. For most lisp-types the
corresponding Alien type is identical. If the Lisp type is uniquely determined by the type of the alien
then lisp-type need not be supplied.

lisp-type must be one of the following types:

(unsigned-byte n)
An unsigned integer n bits wide, as in Common lisp.

(signed-byte n)
A signed integer n bits wide.

boolean A one bit value, represented in Lisp as t or nil.
(system: enumeration name)

Access a value of the enumeration name. Enumerations are defined by the macro
defenumeration (page 85).

THE ALIEN FACILITY 85

s t r i n g - c h a r An eight-bit ASCII character.

s i m p l e - s t r i n g The corresponding A l i e n type is s y s t e m : p e r q - s t r i n g which is a Perq Pascal
string (a string whose first byte is a count of the remaining characters). A second
A l i e n type s y s t e m : n u l l - t e r m i n a t e d - s t r i n g has been defined which
allows passing and receiving C style strings.

s y s t e m : p o r t A Mach IPC port
s h o r t - f l o a t l o n g - f l o a t

There are two alien types one for s h o r t - f l o a t and one for l o n g - f l o a t . The
l o n g - f l o a t type is used as is without any loss of precision Deporting a
s h o r t - f l o a t from Lisp causes the four lowest mantissa bits to be set to 0 in a 32
bit word. Importing a s h o r t - f l o a t causes the four lowest order mantissa bits to
be lost If you want accuracy, you must use the l o n g - f l o a t format.

s y s t e m : s y s t e m - a r e a - p o i n t e r
Return as a system-area-pointer the long-word described by alien. It is an error for
the address not to be in the system area. This lisp type may also be used with the
a l i e n alien type.

If a l i e n - a c c e s s is set with s e t f then the inverse type conversion is done, and the alien set to the
new value. When setting, additional types are available:

(s y s t e m : p o i n t e r type)
type may be any unboxed Lisp type such as s i m p l e - s t r i n g ,
s i m p l e - b i t - v e c t o r and (s i m p l e - a r r a y (u n s i g n e d - b y t e 8)) .
When an object of such a type is stored the address of the first data word is stored in
the corresponding location.

(s y s t e m : a l i e n type [size])
This lisp type is used to access a pointer as an alien value. When read, an alien value
created out of the pointer, type and size is returned. When set, the address of the alien
values is written When read, the size must be specified, when set it is ignored.

s y s t e m : d e f e n u m e r a t i o n name {{element}* I { (element value) }+}* [Macro]
Define an enumeration type for use with a l i e n - a c c e s s . The enumeration may be used with the
e n u m e r a t i o n A l i e n type by specifying its name. Each successive element is assigned a numeric
value, starting at zero. Each element must be a keyword symbol. Example:

(d e f e n u m e r a t i o n e r a : s t o n e - a g e : m e d i e v a l mow : s p a c e - a g e)

(s e t f (a l i e n - a c c e s s (l a n g u a g e - e r a (a l i e n - v a l u e p a s c a l))
(e n u m e r a t i o n e r a))

: s t o n e - a g e)

The numeric value for an element may be specified by using a list of the keyword and the numeric value.
If the value is specified for any element then it must be specified for all. Each value must be an integer,

(d e f e n u m e r a t i o n s i l l y (: a -32) (: b 15) (: c 1000000))

10.5. Alien Variables

An Alien variable is a symbol that has an Alien value associated with it. An Alien variable is not a Lisp
variable - in order to obtain the value of an Alien variable, the special form alien-value must be used. The
reason for using Alien variables as opposed to Lisp variables is that various additional information can be
associated with the Alien variable which may permit code which refers to it to be compiled more efficientiy.

86 CMU COMMON LISP USER'S GUIDE

system: alien-value name [Specialform]
Return the value of the Alien variable name.

system: alien-bind ({{name value type [aligned]) }*) {form}* [Special form]
Alien-bind defines a local Alien variable name having the specified Alien value. Bindings are
done serially, as by let*. If aligned is supplied and is non-nil, then the value is asserted to be word
aligned. Hopefully this feature will be replaced with something less silly.

system: defalien name type size [address] [Macro]
Defines name as an Alien variable, creating a value from type, size and address as for make-alien
(page 84). Name and type are not evaluated. Since the alien-value for a defalien created variable is kept
in the value cell of the symbol it is not necessary (but legal) to use a l i e n - v a l u e to obtain the value.

10.6. Alien Stacks

For some purposes it is useful to have stack allocation of Alien values. Alien stacks are used by Matchmaker
to receive messages into, since a software interrupt may cause an interface to be entered recursively.

system: define-alien-stack name type size [Macro]
Defines a stack of static Aliens having the specified type and size. The stack has no maximum size,
since new Aliens are allocated whenever they are needed.

system:with-stack-alien (var name) {form}* [Specialform]
Binds the Alien variable var.to an Alien value from the Alien stack with the specified name during
the evaluation of the forms.

10.7. Alien Operators

An Alien operator is a function which returns an Alien value. When an Alien operator is defined via the
def o p e r a t o r macro, the type of the result and all of the Alien valued arguments is specified. If an argument to
an Alien operator is not the of the correct type an error is signalled. Because of the way an Alien operator is
specified, it can be compiled much more efficiently than a function that does the same thing.

s y s t e m : def o p e r a t o r (name result-type) ({ (arg arg-type) I arg}*) [doc-string] body [Macro]
This macro defines name as an A l i e n operator returning a value of type result-type. Doc-string, if
supplied, becomes the function documentation for the function created.

The args to the operator are similar to the binding specifiers to a l i en-bind (page 86). If the type of
the argument is specified, then the argument must be an A l i e n value of the specified type, otherwise it
may be any Lisp value.

Def o p e r a t o r is similar to the complex form of d e f s e t f or d e f m a c r o in that the body is evaluated
at compile time, the result of the evaluation being the desired code. When the body is evaluated, Lisp
variables having the arguments9 names are bound to markers which must appear in the resulting code
where a reference to that argument is desired. Normally the form which results from the evaluation of the
body consists solely of combinations of a l i e n - i n d e x and a l i e n - i n d i r e c t on arguments and
simple numeric functions thereof.

THE ALIEN FACILITY 87

system:alien-index alien offset size [Function]
This function indexes into alien by offset bits and returns an Alien value size bits long. It is an error for
the field so selected not to fit inside alien. Normally this function is used only within the definition of an
Alien operator, so the type of the resulting value is nil to indicate that it has no particular type

system: alien-indirect alien size [Function]
This function takes a word at the place described by alien and treats them as a pointer, returning a new
Alien value which describes the piece of memory pointed to by that pointer which is size bits long. It is
an error for alien not to describe a piece of storage suitable for use as a pointer. l ike alien-index,
this is normally only used within the definition of an Alien operator, and its result type is nil.

system: long-words n [Function]
system: words n [Function]
system: bytes n [Function]
system: bits n [Function]

These functions are equivalent to multiplication by thirty-two, sixteen, eight and one respectively. They
also assert their argument to be an integer. Use of these function in the definition of Alien operators
can make the definition clearer, and give additional information that can be used to produce better
compiled code.

10.8. Examples

This C declaration might be translated into the following Alien operator definitions:

struct foo {
« int a;

struct foo *b[100];
In­

struct foo f;

< = >
;;; This operator selects the A field from a Foo. The type of the
;;; resulting Alien is (signed-byte 32), which is what a C int is.
;;; It takes one argument called Foo which is an Alien value of type
;;; Foo. Since A is the first field in the record, we index into
;;; the Alien by zero bits. The size of the result is thirty-two bits,
;;; or one long-word. Alien-Value must be used on the parameter,
;;; since it is an Alien variable.

(defoperator (foo-a (signed-byte 16)) ((foo foo))
*(alien-index (alien-value ,foo) 0 (long-words 1)))

;;; This operator extracts the B field from a Foo. The result type is
;;; (ref (array (ref foo) 100)), indicating that it is a pointer to an
;;; array of pointers to foos. Note the use of list Alien types to
;;; indicate subtype information, but remember that this is merely a
;;; convention. The B field is one long-word into the record, and since
;;; it is a pointer, it is thirty-two bits, or one long-word long.

(defoperator (foo-b (ref (array (ref foo) 100))) ((foo foo))
*(alien-index (alien-value ,foo) (long-words 1) (long-words 1)))

88 CMU COMMON LISP USER'S GUIDE

;;; This operator dereferences a pointer to an (array (ref £00) 1 0 0). The
;;; size of the resulting Alien is one hundred long-words, since the array
;;; contains one hundred thirty-two bit pointers

(defoperator (deref-array-ref-foo-100 (array (ref foo) 100))
((ra (ref (array (ref foo) 1 0 0))))

*(alien-indirect (alien-value ,ra) (long-words 1 0 0)))

;;; Index into an (array (ref foo) 1 0 0). Here we have a non-alien-valued
;;; parameter I, which is the index into the array.

(defoperator (index-array-ref-f00-IOO (ref foo))
((a (array (ref foo) 100)) i)

Malien-index (alien-value , a) (long-words ,i) (long-words 1)))

;;; Dereference a pointer to a foo. A foo is two long-words.
R 7 r
(defoperator (deref-f00 foo) ((rf00 (ref foo)))

x(alien-indirect (alien-value ,rf00) (long-words 2)))

;;; Define F as an Alien variable, whose type is foo and is three words
;;; long. Storage to hold the foo will be allocated.

(defallen f foo (long-words 2))

With this definition, the following C expression could be translated in this way:

f.b[7].a

<=>

(alien-access
(foo-a (deref-f00 (index-array-ref-f00-IOO

(deref-array-ref-foo-100 (foo-b (alien-value f)))
7))))

If instead of getting the A out of the seventh foo, we wanted a vector containing the first F.A foos in the array
F.B, we could do this:
;; Find how many foos to use by getting the A field,
(let* ((num (alien-access (foo-a (alien-value f))))

(result (make-array num)))

;; Bind the Alien value for the array so we don't have to keep
;; recomputing it.
(alien-bind ((a (deref-array-ref-foo-100 (foo-b (alien-value f))))

(array (ref foo) 100))
r r
;; Loop over the first N elements and stash them in the result vector.
(dotimes (i num)

(setf (svref result i)
(deref-f00 (index-array-ref-f00-100 (alien-value a) i))))

result))

Chapter 11

Foreign Function Call Interface

By David B. McDonald

11.1. Introduction

The foreign function call interface allows a l isp program to call functions written in other languages. The current
implementation of the foreign function call interface assumes a C calling convention and thus routines written in any
language that adheres to this convention may be called from Lisp. Several functions and macros are made available
to load object files into the currendy running Lisp, to define data structures to be passed to or received from foreign
routines, and to define the interface to a foreign function.

The foreign function call interface relies heavily on the primitives provided by the alien facility. If you intend to
use the full power of the foreign function call interface, you will need to become familiar with the facilities provided
by aliens. See the previous chapter for details.

l isp sets up various interrupt handling routines and other environment information when it first starts up and
expects these to be in place at all times. The C functions called by Lisp should either not change the environment,
especially the interrupt entry points, or should make sure that these entry points are restored when the C function
returns to Lisp. If a C function makes changes without restoring things to the way they were when the C function
was entered, there is no telling what will happen.

11.2. Loading Unix Object Files

There is a single function that loads in one or more Unix object files into the currentiy running Lisp.

e x t e n s i o n s : l o a d - f o r e i g n files ^ o p t i o n a l libraries linker base-file env [Function]
Load-foreign loads a list of Unix object files into the currendy running lisp. Files should be a simple-
string specifying the name of a single Unix object file or a list of such strings. Libraries should be a list
of simple-strings specifying libraries in a format that Id, the Unix linker, expects. The default value for
libraries is '("-1c") (i.e., the standard C library). Linker should specify the Unix linker to use when
linking the object files. The default is 7usr/cs/bin/ld". Base-file is the file to use for the initial symbol
table informatioa The default is the l isp start up code ("Aisr/misc/.lisp/bin/lisp"). Env should be a list of
simple strings in the format of Unix environment variables (i.e., "A=B", where A is an environment
variable and B is its value).The default value for env is the environment information available at the time
Lisp was invoked. Unless you are certain that you want to change this, you should just use the default.

Load-foreign runs a Unix linker (default "/usr/cs/bin/ld") on the files and libraries (in the order given to

89

90 CMU COMMON LISP USER'S GUIDE

load-foreign) creating an absolute Unix object file. This object file is then loaded into a memory at the
correct location. All the external symbols that define either routines or variables are placed in a hash
table for use by the macros that define interfaces to foreign routines. Note that load-foreign must be run
before the any references to foreign functions or variables are made.

11.3. Defining Foreign Data Types

There are several data types that are pre-defined and can be used directly for defining interfaces to routines.
There are also facilities for defining more complicated data structures such as arrays, structures, and pointers.

The following table gives a list of the pre-defined data types and the corresponding l isp data type provided by the
foreign function interface:
C Data Type Lisp Data Type

int or long (signed-byte 32)
unsigned int or long (unsigned-byte 32)
short (signed-byte 16)
unsigned short (unsigned-byte 16)
char (signed-byte 8)
unsigned char (unsigned-byte 8)
float short-float
double long-float
procedure pointer systemx-procedure

If you need to know how many bits are being used to represent a particular data structure, you can use the
following function.

extensions:c-sizeof c-type [Function]
C-sizeof accepts a C type specification and returns the number of bits needed to represent it. For
example, (c-sizeof 'int) returns 32.

113.1. Defining New C Types

extensions: def-c-type name spec [Macro]
Def-C-Type defines the symbol name to be a C type as specified by spec. Spec can either be a previously
defined C type, or an alien type such as (signed-byte 32) or (system:null-terminated-string 256). This
mechanism provides a short hand for referring to a particular type in other definitions.

For example, int above is defined by the following call to def-c-type:
(def-c-type int (signed-byte 32))

113.2. Defining C Arrays

extensions: def-c-array name element-type ^optional size [Macro]
Def-C-array defines a C array type with name name. Element-type specifies the type of each element of
the array. The optional parameter size specifies the number of elements in the array.

Def-C-array creates the following functions and forms that can be used to manipulate a C array:

make-name This function is used to allocate an array. Note that def-c-array does not actually
create any storage for the array. You must use this routine to do that. If the size

FOREIGN FUNCTION CALL INTERFACE 91

parameter is specified in the call to def-c-array, then make-name accepts no
arguments and returns an alien value of the appropriate size. Otherwise, it accepts
one argument which should be the number of elements desired for this particular
instantiation of the array. In either case, an alien value is returned and can be used to
refer to the storage for the array.

name-Tef This setfable form allows you to refer to a particular element of an array. It accepts
two arguments an alien value such as returned by make-name and an index. It picks
up the correct element out of the array and returns it as the value. You can use setf on
this form to set an element of an array.

For example, it is possible define an array type, create an instance of it, and set the first element of the newly
created instance with the following code:

(def-c-array arr int 10)
(setq x (make-arr))
(setf (alien-access (arr-ref x 0)) 10)

113.3 . Defining C Records

extensions: def-c-record name { (sname stype) }* [Macro]
Def-c-record defines a C record. This macro actually defines two C types Name is the name of the record
and *Name is the name of the pointer to the record. This is useful for record structures that have pointers
to themselves as one or more of the slots. Following the name of the record are a list of (sname stype)
pairs. These are the name and the type of a slot, respectively. As with def-c-array, def-c-record does not
allocate any storage to hold data. It just defines the type. It also defines the function make-name which
can be used to create an instance of the record. This will allocate storage to hold the record and return an
alien value that refers to that particular record. For each field in the record, a setfable operator (named
name-sname) is created, so that it is possible to reference and set particular fields of a record.

As an example, the following C structure definition and lisp def-c-record define equivalent data structures:
struct c-struct {

short x, y;
char a, b;
int z ;
c-struct *n;

};

(def-c-record c-struct
(x short)
(y short)
(a char)
(b char)
(z int)
(n *c-struct))

To create an instance of c-struct and assign values to fields, the following code could be used:
(setq cs (make-c-struct))

(setf
(setf
(setf

(alien-access (c-struct-x cs)) 20)
(alien-access (c-struct-a cs)) 5)
(alien-access (c-struct-n cs) 'alien) cs)

92 CMU COMMON LISP USER'S GUIDE

113.4. Defining C Pointers
C allows one to have pointers to other C-types. This can be done using the def-c-pointer macro as follows:

extensions:def-c-pointer name to [Macro]
Def-c-pointer defines name to be a C type that is a pointer to the C type specified by to.

For example, it is possible to define a pointer to an int by the the following:
(def-c-pointer *int int)

11.4. Defining Variable Interfaces

It is sometimes necessary to be able to refer to a global C variable. The macro def-c-variable allows this.

extensions: def-c-variable name type [Macro]
Def-c-variable makes global C variables accessible from Lisp. Name should be a simple-string with the
exact capitalization of the C variable to which you want to be able to refer (C is case sensitive and so
must be the name provided). This macro creates a Lisp symbol with name (uppercased) whose value is
an alien value with type type that can be used to access the global C variable.

For example, it is often necessary to read the global C variable ermo to determine why a particular function call
failed. It is possible to define ermo and make it accessible from l isp by the following:

(def-c-variable "ermo" int)
Now it is possible to get the value of the C variable ermo by doing the following:

(alien-access errno)

11.5. Defining Routine Interfaces

There is a single macro that defines the interface to a C function. Note that all the types that it uses must be
defined before you define the interface, otherwise errors will occur.

e x t e n s i o n s : d e f - c - r o u t i n e name rtype fcrest spec [Macro]
Def-c-routine defines a Lisp function that interfaces to a C routine. Name should be a simple string with
the exact capitalization of the C function (since C is case sensitive) or a list of two elements. The first
element should be a simple-string as above and the second should be a symbol which is used as the l isp
name of the function. If this second form is not used, a symbol with name uppercased is used as the name
of the Lisp function.

Rtype is the type of the return value and should be one of the builtin C-types or a user defined one. The
special type extensions:void can be used if the C routine returns no useful value as its standard return
value. Currently, double floats can not be returned by C functions. If the function returns a pointer and
the result coming back is C NULL (0), then the function will return NIL. Also, if the result is a C String,
then a Lisp string is returned instead of the alien value pointing to the C string.

Spec is bound to a list of the rest of the forms in the call to def-c-routine. Each element of this list should
have the following form:

{aname atype [amode] {op t ions}*)
Where aname should be a symbol and is used as the name of the argument. Atype should be a symbol
that is associated with a C type. If you are passing floating point numbers to a C routine, you should

FOREIGN FUNCTION CALL INTERFACE 93

declare the type of the parameter as a long-float or double. This is because C passes all floating point
parameters as double floats. The routine may be called with any type of number, since it will be coerced
to a long-float before being passed on to C Options is currendy ignored. Amode should be one of the
following:

:in This specifies that the argument is passed by value. This is the default. No value for
this argument is returned by the Lisp function when this mode is used.

:out The type of the argument must be a pointer to a fixed sized object (such as a record or
fixed size array). An object of the correct size is allocated and passed to the C routine
by reference. When the C routine finishes, the contents of this object are returned as
one of the values to the calling function. If the object returned is a record or amy, it
will be copied to a new alien value which will be returned.

:copy This is similar to :in, but the argument is copied to a pre-allocated object and a
pointer to this object is passed to the C routine.

:in-out A combination of :copy and :out. The argument is copied to a pre-allocated object
and a pointer to this object is passed to the C routine. On return, a new alien value is
allocated for the object and returned as a multiple value.

For example, the C function cfoo with the following calling conventions:
c f o o (a , i)

c h a r a ;
i n t i ;

{
/ * Body of c f o o . * /
}

can be described by the following call to def-c-routine:
(d e f - c - r o u t i n e (" c f o o " l f o o) (vo id)

(a c h a r)
(i i n t))

11.6. Calling Lisp routines from C

It is sometimes necessary to pass a procedure pointer to a C routine so that at some later time C code can call the
procedure. An example of this is menus, where associated with each menu item is a procedure to call when that
menu item is selected. A simple mechanism has been built into the foreign function interface to make it possible to
pass an object which looks like a C procedure pointer into C from Lisp. When this procedure objea is invoked a
Lisp function will be called instead of normal C code.

e x t e n s i o n s : d e f - c - p r o c e d u r e symbol nargs function [Macro]
Def-c-procedure sets the value of symbol to a structure that can be passed as a parameter to a foreign
function that expects a pointer to a procedure object Nargs should be the number of parameters the
procedure is going to be called with. Function should be a lisp object which can be invoked by apply.
Function should accept the number of arguments specified by nargs, if not an error is signalled When C
calls this procedure object, function will gain control. There are no restrictions on what this function can
do. It may call other C routines, throw to a catch tag above where C code was initially invoked, invoke
the Lisp error system, etc.

For example, if you have the following C code:

94 CMU COMMON LISP USER'S GUIDE

Calllisp(p)
int (*p) () ;

{ int i;

i = <*P) (5) ;
printf("I = %d.\n", i) ;

}
You can invoke it from Lisp as follows:

(def-c-routine "calllisp" (void) (p system:c-procedure))
(def-c-procedure foo 1 # ' (lambda (ac) (+ x 5)))
(calllisp foo)

If you do (calllisp foo) outside of Hemlock, since the C code is doing output, you should get the following results:
I = 1 0 .

11.7. An Example

This section presents a complete example of an interface to a somewhat complicated C function. This example
should give a fairly good idea of how to get the effect you want for almost any kind of C function.

Suppose you have the following C function which you want to be able to call from Lisp in the file cfun.c:
struct cfunr {

int x;
char *s;

In­

struct cfunr *cfun (i, s, r, a)
int i;
char *s;
struct cfunr *r;
int a [1 0] ;

{ int j;
struct cfunr *r2;
printf("i = %d\n", i);
printf("s = %s\n M, s);
printf ("r->x = %d\n M, r->ac) ;
printf("r->s = %s\n M, r->s);
for (j = 0 ; j < 1 0 ; j++) printf("a[%d] • %d.\n", j, a[j]);
r2 = (struct cfunr *) malloc (sizeof(struct cfunr));
r2->x = i + 5;
r2->s = "A C string";
return (r2) ;

};
It is possible to call this function from l isp using the file cfun.lisp whose contents is:

FOREIGN FUNCTION CALL INTERFACE

;;; Package: test-c-call; Mode: Lisp -*-
(in-package "TEST-C-CALL" :use '("LISP" "SYSTEM" "EXTENSIONS"))

;;; Define c-string as a null-terminated string of up to 256 characters,
(def-c-type c-string (null-terminated-string 256))

;;; Define a *c-string to be a pointer to a c-string.
(def-c-pointer *c-string c-string)

;;; Define the record cfunr in Lisp.
(def-c-record cfunr

(x int)
(s *c-string))

;;; Define the C array ar to have 10 elements of type int.
(def-c-array ar int 10)

;;; Define the C type pointer to the array above.
(def-c-pointer *ar ar)
;;; Load in the C object file with the function definition.
(load-foreign "cfun.o")

;;; Define the Lisp function interface to the C routine. It returns a
;;; pointer to a record of type cfunr. It accepts four parameters: i,
;;; an int; s, a pointer to a string; r, a pointer to a cfunr record;
;;; and a, a pointer to the array defined above,
(def-c-routine "cfun" (*cfunr)

(i int)
(s *c-string)
(r *cfunr)
(a *ar))

;;; A function which sets up the parameters to the C function and
;;; actually calls it.
(defun call-cfun ()

(let ((arr (make-ar)) ; Make an array,
(rec (make-cfunr))) ; Make a record,

(alien-bind ((a arr ar t)
(r rec cfunr t))

(dotimes (i 10) ; Fill array.
(setf (alien-access (ar-ref (alien-value a) i)) i))

(setf (alien-access (cfunr-x (alien-value r))) 20)
(setf (alien-access (cfunr-s (alien-value r)) 'pointer)

"A Lisp String")
(let ((rec2 (cfun 5 "Another Lisp String"

(alien-sap (alien-value r))
(alien-sap (alien-value a)))))

(format t "Returned from C function.~%")
(alien-bind ((r2 rec2 cfunr t))

(let ((cs (alien-access (cfunr-s (alien-value r2)) 'alien)))
(alien-bind ((s cs (null-terminated-string 256) t))

(values (alien-access (cfunr-x (alien-value r2)))
(alien-access (alien-value s))))))))))

To execute the above example, it is necessary to compile the c routine as follows:
cc -c cfun.c

96 CMU COMMON LISP USER'S GUIDE

Once this has been done, you should start up lisp, and do the following:
lisp
;;; Lisp should start up with its normal prompt.

;;; Next compile the lisp file
* (compile-file "cfun.lisp")
Error output from cfun.lisp 17-Mar-87 17:09:57.
Compiled on 18-Mar-87 17:33:16 by CLC version Ml.6 (16-Mar-87).

INDIRECT-*C-STRING compiled.
MAKE-CFUNR compiled.
INDIRECT-*CFUNR compiled.
CFUNR-X compiled.
CFUNR-S compiled.
MAKE-AR compiled.
AR-REF compiled.
INDIRECT-*AR compiled.
CFUN compiled.
Warning in CALL-CFUN:

Could not show 32 bit store to be word-aligned:
(AR-REF A I)
CALL-CFUN compiled.

Finished compilation of file "/usr/dbm/cfun. lisp" .
0 Errors, 1 Warnings.
Elapsed time 0:00:10, run time 0:00:09.

;;; Now load the file:
* (load "cfun")
;;; Lisp prints out the following information:
[Loading foreign files (cfun.o) ...

[Running Id ... done.]
[Reading Unix object file ... done.]
[Loading symbol table information ... done.]

done.]
T

FOREIGN FUNCTION CALL INTERFACE 97

;;; Now call the routine that sets up the parameters and calls the C
;;; function.
* (test-c-call::call-cfun)

The C routine prints the following information to standard output. r r t

i = 5
s = Another Lisp string
r->x
r->s
a [0
a[l
a [2
a [3
a[4
a [5
a [6
a [7
a [8
a [9

20
A Lisp string
0 .
1 .
2 .
3 .
4.
5 .
6 .
7 .
8 .
9 .

;;; Lisp prints out the following information.
Returned from C function.
;;; Return values from the call to test-c-call::call-cfun.
10
"A C string"

If any of the foreign functions do output, they should not be called from within Hemlock. Depending on the
situation, various strange behavior occurs. On the console, you will see no output; under X, the output goes to the
window in which Lisp was started; on a terminal, the output will be placed in the current buffer but will not be
recognized by Hemlock. This means it will overwrite information already in the window and be overwritten by
Hemlock. This will not have any impact on the contents of the buffer, since the output is coming from a source that
Hemlock does not know about

CMU COMMON LISP USER'S GUIDE

Chapter 12

User-Defined Assembler Language Routines

By David B. McDonald

12.1. Introduction

The CMU Common Lisp implementation on the IBM RT PC has been modified to make it relatively easy for a
user to write assembler language routines (miscops) that can be executed from Lisp. It is important to note that a
miscop has access to the state of the Lisp system, and thus has the potential of clobbering the l isp beyond recovery.
In particular, there are several conventions used in coding miscops that must be adhered to. These conventions and
restrictions are described in a later section of this chapter.

12.2. Notation

The IBM RT PC numbers the bits of a register differently from many other machines. Bit 0 is the leftmost bit,
and bit 31 is the right most bit. The notation CO specifies the leftmost byte of a register. The notation C3 specifies
the rightmost byte of a register.

12.3. Defining User Miscops

All the assembler instructions are internal to the compiler package. To define miscops, you should have a file that
has only miscops in i t The first form before any miscops should be:

(i n - p a c k a g e ' c o m p i l e r)
This will give you access to the assembler instructions, as well as some macros and constants that will aid you in
writing miscops.

Defining a miscop is easy, just do the following:
(d e f i n e - u s e r - m i s c o p name

*•
)

Where name is the name of the miscop you are defining. The A; are one of the following:
• A keyword which becomes an external label that you can branch to from another miscop as well as the

current one.

• A symbol which becomes a label which you can branch to from somewhere else in the current miscop.

99

100 CMU COMMON LISP USER'S GUIDE

• A list which is either a IBM RT PC assembler instruction or a call to a macro. If it is a macro, the
macro is expanded, and the assembler splices the resulting list into the instruction stream and starts
assembling i t If it is an IBM RT PC instruction, then it is just assembled. Note that macros can expand
into calls to other macros.

12.4. The Assembler

compiler: assemble-file input-pathname &key : output-file : error-file [Function]
:listing-file :unixy-lap-file

Assemble-file assembles the miscops contained in the file input-pathname with default extension romp.
The : output-file argument specifies where the assembled code should go. The default is the same
name as input-pathname with extension fasl. The : error- file argument specifies where the error
messages should be printed. The default is the same name as input-pathname with extension err. The
argument : listing- file specifies where a listing of the code generated should go. The default is
not to generate a listing file. If specified as T, the name of the listing file is the same name as
input-pathname with extension list. The argument runixy-lap-file specifies a listing file (with
default extension s) should generated that is acceptable to a Unix assembler.

The assembler accepts instructions in the following format:
(opcode 01 0 2 . . . O N)

Where opcode is a mnemonic for one of the IBM RT PC instructions, and the 0{ are the operands to the instruction.
These operands take one of several forms:

• It may be a register, which should bb specified as one of the following:
Register Number Normal Use
NLO 0 Non-lisp Temporary.
AO 1 First argument to miscop.
NL1 2 Non-Lisp Temporary.
Al 3 Second argument to miscop.
A3 4 Fourth argument to miscop.
A2 5 Third argument to miscop.
CS 6 Control stack pointer.
L0 7 Lisp function local 0.
LI

oo l isp function local 1.
L2 9 Lisp function local 2.
L3 10 Lisp function local 3.
L4 11 Lisp function local 4.
BS 12 Binding stack pointer.
FP 13 Frame pointer for current function.
AF 14 Active function pointer for current function.
PC 15 Return PC.
Registers 5 and below can be destroyed by the miscop. The return value for the miscop should be left in
AO. Only one value may be returned by a miscop. There is no way to return multiple values directiy
from a miscop. Registers 6 through 14 must either be untouched or restored to the correct value when
the miscop returns. Register IS contains the return address back to compiled Lisp code. If any
arguments are passed on the stack, they must be popped off the stack before returning to compiled Lisp
code.

• It may be a fixnum in which case that value is used as the operand.

• It may be a Lisp expression, in which case it is evaluated and the resulting fixnum value is used as the
operand.

• If the opcode is a branch instruction, then the branch target should be a symbol which is assumed to be a
label. If a label is not defined in the current miscop, it is assumed to be external by the assembler. This

USER-DEFINED ASSEMBLER LANGUAGE ROUTINES 101

allows you to call other miscops from within a miscop.

12.5. Assembler Instructions

This section contains a list of all the IBM RT PC instructions supported by the assembler. The meaning of the
symbols used in the instruction definitions are:

• R - a register, may be indexed if more than one register is required by the instruction.

• 0/(R) - a register, however, if the register is register 0, use the value 0, otherwise use the contents of the
register. This is useful in certain circumstances where you don't want to use a base register.

• 14 - an immediate value, may be a fixnum or a Lisp expression which will be evaluated and must
evaluate to a fixnum. Only the low order 4 bits of the fixnum are significant

• 116 - as 14, but the low order 16 bits are significant This is an unsigned value.

• SI16 - as 116, but signed.

• L - a label, which should be a symbol that must be a label in the current miscop or exist as an external
label when labels are resolved at load time.

The IBM RT PC supports several classes of instructions. These will be dealt with in separate sub-sections below.

12.5.1. Storage Access
The storage access instructions are used to refer to memory. These instructions can load or store the contents of

registers from or to memory. To perform any operation, it is necessary to get the data into a register. None of these
instructions set the condition codes.

Load character short: (lcs Rj R 2 14)
The byte addressed by R 2 +14 is loaded into the low order byte Rx and the high order bytes are
zeroed.

Load character: (lc R x R 2 SI16)
Similar to lcs, except the offset is a signed 16 bit quantity.

Load half algebraic short: (lhas R x R 2 14)
The signed 16 bit quantity addressed by Rj + 2*14 is signed extended and loaded into register
R r

Load half algebraic: (lha R x R 2 SI16)
Similar to lha, except the offset is not shifted and is a signed 16 bit quantity.

Load half short: (Ihs R 1 R 2)
The unsigned 16 bit quantity addressed by R 2 is loaded into R r The upper half word of Rj is
set to zero.

Load half: (I h R ^ S I ^)
The unsigned 16 bit quantity addressed by R 2 + SI16 is loaded into the low half word of Rv

The upper half of Rj is cleared.
Load short: (Is R 1 R 214)

The word addressed by R 2 + 4 * 14 is loaded into R 1 #

Load: a R x R 2 SI16)
Load is similar to load short, except the offset is a signed 16 bit quantity.

Load multiple: (lm R x R 2 SI16)
Load multiple loads the word at R 2 + SI16 into register R p loads the word at R 2 + SI16 + 4 into
R 2 + 1, etc. This process continues until R15 has been loaded.

Test and set half: (tsh Rx R 2 SI16)

102 CMU COMMON LISP USER'S GUIDE

The upper half of Rj is set to 0, the lower half is set to the half word addressed by R 2 + SI 16.
Immediately after reading the half word, the upper byte of the half word is replaced by 1 's. The
lower byte is left unchanged.

Store character short: (stcs R x R 214)
The character addressed by R 2 +14 is replaced by the low order byte of R r

Store character: (stc Rx R 2 SI16)
is similar to store character short, except the offset is a signed 16 bit quantity.

Store half short: (sths Rt R 214)
The half word addressed by + 2 * 14 is replaced by the low order half word of R r

Store half: (sth R x R 2 SI16)
The half word addressed by R 2 + SI16 is replaced by the low order half word of R r

Store short: (sts Rx R 214)
The word addressed by R 2 + 4 * 14 is replaced by the contents of Rv

Store: (st R x R 2 SI16)
The word addressed by R 2 + SI16 is replaced by the contents of Rv

Store multiple: (stm R x R 2 SI16)
Store multiple stores the contents of Rj into the word addressed by R 2 + SI16, stores the
contents of Rx + 1 into the word addressed by R^ + SI16 + 4, etc. This process continues until
R1S has been stored.

Note that the IBM RT PC is a byte addressed machine. When addressing a half word, the low order bit of the
address should be 0. If it is not, then the low order bit is forced to 0, and then the operation is performed. This can
cause some strange results. Note also, that the short instructions use the 4 bit immediate field differently depending
on the size of the storage element being referenced. It refers to the Fth element of that particular size. The long
instructions do not follow this convention, they just use the immediate value as is.

12.5.2, Address Computation
The address computation instructions operate only on registers. None of these instructions set the condition

codes.

Compute address lower half: (cal Rt R 2 SI16)
The value 0/(R2) + SI16 is placed in register Rv

Compute address lower half 16-bit: (call6 R x R 2116)
The low order half of Rx is replaced by O/CRj) + 116. The upper half of Rj is replaced by the
upper half of 0/(R2).

Compute address upper half: (cau Rx R 2116)
The low order half of Rx is replaced by the low half of 0/(R2). The high order half of Rx is
replaced by the high half of 0/(R2) +116.

Compute address short: (cas Rx R 2 R 3)
Register Rx is replaced by the contents of R 2 plus 0/(R3).

Compute address 16 bit: (cal6 R1 R 2)
The low order halves of Rx and R 2 are added together and replace the low order half of R r The
high order half or R 1 is replaced by the high half of R 2 .

Increment: (inc Rx 14)
The immediate value 14 is added to the contents of R r

Decrement: (dec R x 14)
The immediate value 14 is subtracted from the contents of Rv

Load immediate short: (lis Rx 14)
The immediate value 14 replaces the contents of Rj.

USER-DEFINED ASSEMBLER LANGUAGE ROUTINES 103

12.5.3. Branching
For most of the branching instructions, there are two forms. One form is the standard form and just branches

normally. The other form is an execute form which executes the following instruction at the same time a branch is
taken. If a branch is not taken, the following instruction is executed in the normal sequence. For the branch and link
with execute instructions, the address stored in the link register is 4 bytes beyond the current instruction. This
means that if the following instruction is only a 2 byte instruction, a 2 byte noop instruction must be inserted, so that
the correct instruction is returned to. Some instructions can not be the target of a branch with execute instruction.
These instructions include all the branch instructions, all the trap instructions, the load program status instruction,
the supervisor call instruction, and the wait instruction. Those instructions which have an execute counterpart are
specified by a trailing [execute] in the name and a trailing [x] in the instruction mnemonic.

None of these instructions alter the condition code bits.

Branch and link absolute [execute]: (bala[x] 124)
The 24 bit immediate field is used as an address and control is transferred to that address. At the
same time, the address of the next instruction [+ 4] is stored in register R15.

Branch and link immediate [execute]: (bali[x] R x L)
The label L is represented as an offset from the bali[x] instruction and thus has to be within
range. However, this is a large range, and if you manage to get outside of this range, you have
written too much assembler code by at least two orders of magnitude. The address of the next
instruction [+ 4] is placed in Rv This is the instruction you should use to call other miscops.

Branch and link [execute]: (balr[x] R 1 R 2)
R 2 should contain the address of some code. Control is passed to this address. The address of
the next instruction [+ 4] is placed in Rj.

Branch condition immediate: (bcc[x] L)
The cc specifies the condition to branch on. The legal values are:

<none> Unconditional branch.
eq Branch if eq condition bit is set.
ne Branch if eq condition bit is not set
It Branch if It condition bit is set.
gt Branch if gt condition bit is set.
ge Branch if It condition bit is not set
le Branch if gt condition bit is not set.
[n]ov Branch if the overflow bit is [not] set.
[n]tb Branch if the test bit is [not] set
[n]c0 Branch if the carry bit is [not] set.

If the execute form is used and the branch is taken, the next instruction is executed while the
instruction at the target address is being fetched from memory.

Branch condition: (brcc[x] R x)
This instruction is similar to the branch condition immediate instruction, except the target
address is in a register. The cc have the same meaning as above. The instruction:

brae PC
< l a s t i n s t r u c t i o n o f m i s c o p >

should be used to return to lisp code from a miscop.

12.5.4. Traps
The trap instructions cause an exception to be generated if the condition associated with the trap instruction is not

met None of these instructions affect the condition code bits.

Trap on condition immediate: (ti 14 R 1 SI16)
The value of Rj is compared with the sign extended 16 bit value SI16. The 14 field specifies the
condition on which the trap is enabled:

104 CMU COMMON LISP USER'S GUIDE

8 Trap if the value in R 2 is less than SI16.
4 Trap if the value in Rj is equal to SI16.
2 Trap if the value in Rj is greater than SI16.

These values can be ored together to get more than one trap condition.

Trap if register greater than or equal: (tgte Rj R 2)
If the contents of Rj is greater than or equal to R 2 , a trap occurs.

Trap if register less than: (tit R x R 2)
If the contents of register R 2 is less than R 2, a trap occurs.

12.5.5. Moves and inserts
These instructions move data between registers, and between registers and the test bit of the condition code.

Except for the test bit, none of the condition code bits are altered.

Move character zero from three: (mc03 R x R 2)
Byte CO of Rx is replaced by byte C3 of R 2.

Move character one from three: (mcl3 R1 R 2)
Byte CI of Rx is replaced by byte C3 of R^

Move character two from three: (mc23 Rl R 2)
Byte C2 of Rj is replaced by byte C3 of R 2.

Move character three from three: (mc33 R x R 2)
Byte C3 of Rx is replaced by byte C3 of R^

Move character three from zero: (mc30 Rx R 2)
Byte C3 or Rl is replaced by byte CO of R 2.

Move character three from one: (mc31 Rx R 2)
Byte C3 of R{ is replaced by byte CI of R^

Move character three from two: (mc32 Rx R 2)
Byte C3 of Rx is replaced by byte C2 of R 2 .

Move from test bit: (mftb Rx R 2)
The bit of Rx specified by bits 27-31 of R 2 is set to the value of the test bit in the condition code.

Move from test bit immediate lower half: (mftbil R114)
The bit of the lower half of Rx specified by 14 is set to the value of the test bit in the condition
code.

Move from test bit immediate upper half: (mftbiu R x 14)
The bit of the upper half of R1 specified by 14 is set to the value of the test bit in the condition
code.

Move to test bit: (mttb R x R 2)
The test bit of the condition code is set to the bit of Rx specified by the value of bits 27-31 of R^.

Move to test bit immediate lower half: (mttbil R 1 14)
The test bit of the condition code is set to the value of bit in the lower half of Rx specified by 14.

Move to test bit immediate upper half: (mttbiu R114)
The test bit of the condition code is set to the value of bit in the upper half of Rx specified by 14.

12.5.6. Arithmetic Operations
The arithmetic instructions set various condition code bits. The description of each instruction gives the set of

condition code bits that are set by the instruction.

Add: (a Rt R 2) The contents of R 2 is added to the contents of R{ leaving the result in R r Condition code bits It,
eq, gt, cO, and ov are modified.

USER-DEFINED ASSEMBLER LANGUAGE ROUTINES 105

Add extended: (ae R 1 R 2)
The contents of R 2 plus the value of the cany bit is added to the contents of Rj leaving the result
in R r Condition code bits It, eq, gt, cO, and ov are modified.

Add extend immediate: (aei R x R 2 SI16)
The contents of R 2 plus SI16 plus the value of the carry bit replaces the contents of Rv

Condition code bits It, eq, gt, cO, and ov are modified.
Add immediate: (ai Rx R 2 SI16)

The contents of R 2 plus SI16 replaces the contents of Rv Condition code bits It, eq gt, cO, and
ov are modified.

Add immediate short: (ais R t 14)
The value 14 is added to R^ Condition code bits It, eq, gt, cO, and ov are modified.

Absolute: (abs R x R 2)
The absolute value of R 2 replaces the contents of Rv Condition code bits It, eq, gt, cO, and ov
are modified.

Ones complement: (onec Rx R 2)
The ones complement of R 2 replaces the contents of Rv Condition code bits It, eq, and gt are
modified.

Twos complement: (twoc R1 R 2)
The twos complement of R 2 replaces the contents of Rv Condition code bits It, eq, gt, cO, and
ov are modified.

Compare: (c Rj R 2)
The signed twos complement numbers in Rj and R 2 are compared. The It bit is set to 1 if Rj is
less than R 2 , the eq bit is set if Rx is equal to R 2, and the gt bit is set if Rx is greater than Rv

Compare immediate short: (cis R x 14)
The signed twos complement number in Rj is compared to the immediate value 14. Condition
code bits It, eq, and gt are modified as above.

Compare immediate: (ci Rx SI16)
The signed twos complement number in R{ is compared to the signed number SI16. Condition
code bits It, eq, and gt are modified as above.

Compare logical: (cl R± R 2)
The unsigned numbers in Rx and R 2 are compared for magnitude only. Condition code bits It,
eq, and gt are modified.

Compare logical immediate: (cli R x 116)
The unsigned 32 bit number in Rj is compared to the unsigned 16 bit immediate value 116
extended to the left with 16 O's. Condition code bits It, eq, and gt are modified.

Extend sign: (exts Rj R 2)
The lower half of R 2 replaces the lower half of R r Bit 16 (the sign bit of the half word) of R^
replaces bits 0-15 of Rj. Condition code bits It, eq, and gt are modified.

Subtract: (s R± R 2) The contents of R 2 is subtracted from the contents of Rx leaving the result in Rv Condition
code bits It, eq, gt, cO, and ov are modified.

Subtract from: (sf R 2 R 2)
The contents of Rx is subtracted from the contents of R 2 leaving the result in Rv Condition
code bits It, eq, gt, cO, and ov are modified.

Subtract extended: (se Rx R 2)
The ones complement of R 2 is added to the contents of Rv This result is added to the value of
the cO condition code bit The result is placed in Rv Condition code bits It, eq, gt, cO, and ov
are modified.

Subtract from immediate: (sfi R± R2 SI16)
The contests of R 2 is subtracted from SI 16 leaving the result in Rv Condition code bits It, eq,

106 CMU COMMON LISP USER'S GUIDE

gt, cO, and ov are modified.
Subtract immediate short: (sis R x 14)

The value 14 is subtracted from Rv Condition code bits It, eq, gt, cO, and ov are modified.

Divide step: (d R x R 2)
If you really want to do a divide step see IBM RT PC Hardware Technical Reference Manual
See section 12.7 for a miscop routine that does division.

Multiply step: (m R x R 2)
Again, you don't really want to use this instruction. See 12.7 for a miscop that does
multiplication.

12.5.7. Logical Operations
The logical operations treat the registers as 32 bit unsigned quantities. Condition code bits are set according to

the result as a 32 bit twos complement number.

Clear bit lower half: (clrbl R x 14)
The bit specified by 14 in the lower half of Rj is set to 0.

Clear bit upper half: (clrbu R x 14)
The bit specified by 14 in the upper half of Rx is set to 0.

Set bit lower half: (setbl R x 14)
The bit specified by 14 in the lower half of Rj is set to 1.

Set bit upper half: (setbu R x 14)
The bit specified by 14 in the upper half of Rx is set to 1.

And: (n R1 R 2) The logical and of Rj and R^ replaces the contents of Rx:
And immediate lower half extended zeroes: (nilz R x R 2116)

The logical and of R 2 and 116 extended on the left by 16 O's replaces the contents of Rv

And immediate lower half extended ones: (nikr R x R 2116)
The logical and of R 2 and 116 extended on the left by 16 Ts replaces the contents of Rv

And immediate upper half extended zeroes: (niuz R x R 2116)
The logical and of R 2 and 116 extended on the right by 16 O's replaces the contents of Rj.

And immediate upper half extended ones: (niuo R x R 2116)
The logical and of R 2 and 116 extended on the right by 16 Ts replaces the contents of Rv

On (o R x R 2) The logical or of Rx and R 2 replaces the contents of Rv

Or immediate lower, (oil R x R 2116)
The logical or of R 2 and 116 extended on the left by 16 O's replaces the contents of Rv

Or immediate upper (oiu R x R 2116)
The logical or of Rj and 116 extended on the right by 16 O's replaces the contents of Rj.

Exclusive or (x R x R 2)
The logical exclusive or of Rj and R 2 replaces the contents of Rv

Exclusive or immediate lower half: (xil R x R 2116)
The logical exclusive or of R 2 and 116 extended on the left by 16 O's replaces the contents of Rv

Exclusive or immediate upper half: (xiu R x R 2116)
The logical exclusive or of R 2 and 116 extended on the right by 16 O's replaces the contents of
Rv

Count leading zeroes: (clz R x R 2)
The contents of Rj is replaced by count of the leading zeroes in the low half word of R 2 . If the
low half of R 2 is 0, Rj is set to 16.

USER-DEFINED ASSEMBLER LANGUAGE ROUTINES 107

12.5.8. Shifts
Shift instructions set the condition code bits It, eq, and gt according to the result of the shift as a twos complement

number. For shift amounts in registers, the low order 6 bits are used as a shift count Except for the algebraic shifts,
0's are shifted into vacated bits of a register. For algebraic shifts, the sign bit replaces vacated bits.

Shift algebraic right: (sar R x R2)
The contents of register Rj is shifted right by the amount specified in R 2 . The original sign of
Rj replaces any bits vacated by the shift

Shift algebraic right immediate: (sari Rx 14)
The contents of register R j are shifted right by the amount specified by 14.

Shift algebraic right immediate plus sixteen: (saril6 R x 14)
The contents of register R j are shifted right by the amount specified by 14 + 16.

Shift right: (sr R x R 2)
The contents of register Rj is shifted right by the amount specified by R 2 .

Shift right immediate: (sri R114)
The contents of register R j is shifted right by the amount specified by 14.

Shift right immediate plus sixteen: (sril6 R114)
The contents of register R j is shifted right by the amount specified by 14+16.

Shift right paired: (srp R x R 2)
The value in Rj is shifted right by the amount specified by R 2 . The result is placed in the twin
of Rj rather than Rj. Each even/odd set of registers are paired. The twin of an even register is
the odd one of the pair, similarly for the odd register.

Shift right paired immediate: (srpi R x 14)
is similar to srp, except the shift amount is specified by 14.

Shift right paired immediate plus sixteen: (srpil6 Rt 14)
is similar to srp, except the shift amount is specified by 14 + 16.

Shift left: (slR x R 2)
The contents of Rj is shifted left by the amount specified by R 2.

Shift left immediate: (sli R x 14)
The contents of Rj is shifted left by the amount specified by 14.

Shift left immediate plus sixteen: (slil6 R x 14)
The contents of Rj is shifted left by the amount specified by 14 + 16.

Shift left paired: (sip Rj R 2)
is similar to shift right paired, except the shift is to the left.

Shift left paired immediate: (slpi R x 14)
is similar to sip, except the shift amount is specified by 14.

Shift left paired immediate plus sixteen: (slpil6 R x 14)
is similar to slpi, except the shift amount is specified by 14 + 16.

12.5.9. System Control
Move to SCR: (mts R x R 2)

The contents of system control register R j is replaced by R^
Move from SCR: (mfs R x R 2)

The contents of system control register Rj replaces the contents of R 2.
Clear SCR bit: (clrsb Rx 14)

The bit specified by 14 of the lower half of system control register Rj is set to 0.
Set SCR bit: (setsb Rx 14)

108 CMU COMMON LISP USER'S GUIDE

The bit specified by 14 of the lower half of system control register Rj is set to 1.

Load program status: (lps R x R 2 SI16)
This is here for completeness. You should never use this instruction from within Lisp. This is a
privileged instruction and should cause an exception.

Wait: (wait) Puts the processor in wait state. However, this is privileged instruction, and should cause an
exception.

Supervisor call: (svc 0 R x SI16)
The lower order 16 bits of 0/(Rj) + SI16 specifies a system call code. The host operating system
gains control and performs some operation. There should be no need for you to use this
instruction.

12.5.10. Input/Output
These instructions are privileged and should not be used from lisp.

Input/output read: (ior R x R 2116)
The contents of Rj is replaced by data transferred from an IO device specified by 0/(R2) + 116.

Input/output write: (iow R x R 2116)
The contents of Rj are transferred to the IO device specified by 0/OR^ +116.

12.6. Useful Macros

This section contains a set of useful macros that have been developed to make writing miscops easier.

12.6.1. Saving and Restoring Registers
(save-registers R x . . . R n)

The register R v R n are saved on the stack. If you need to use more registers than the first six
registers, you must save them first.

(restore-registers R x . . . R n)
The registers R p R n are restored from the stack. There should be a matching save-registers
call. The arguments to both macros should be exactly the same.

(save-registers-pc R1... R n)
is similar to save-registers, except that the PC register to return to l isp code is also saved on the
stack. Note that if no registers are specified, just the PC is saved on the stack.

(restore-registers-pc R 2 . . . R n)
is similar to restore-registers, except that the PC register to return to Lisp code is restored
correctly.

(save-registers-internal-pc R1... R n)
is similar to save-registers-pc, except the PC register contains a return address in miscop space
rather than in l isp code space.

(restore-registers-internal-pc R x . . . R n)
is similar to restore-registers-pc, except it restores an address to a miscop.

12.6.2. Storage Allocation
(allocate register type length tempi temp2)

allocates a Lisp object from the current allocation space. A pointer to the resulting object is
placed in register. Type specifies the type of the object and must be one of the symbols:
type-bignum, type-ratio, type-long-float, type-complex, type-string, type-bit-vector, type-i-
vector, type-g-vector, type-array, type-function, type-symbol, or type-list. Length specifies the

USER-DEFINED ASSEMBLER LANGUAGE ROUTINES 109

length of the object to allocate and may be either a constant or a register. The length must
include space for any header. The following symbols specify the lengths of some of the more
common objects: bignum-header-size, long-float-size, string-header-size, bit-vector-header-size,
i-vector-header-size, g-vector-header-size, array-header-size, function-header-size, symbol-size,
cons-size. Tempi and temp2 are two temporary registers. These registers can not be NLO.
Note that this only allocates the storage, it does not set up any headers or store information into
the object You must do this yourself. See the document Internal Design of Common Lisp on
the IBM RT PC for the format of l isp objects. Also note that this macro does not check to see if
a garbage collection should be done. Most of the miscops that perform allocation must do this
themselves. If you are allocating large amounts of storage without doing any computations from
Lisp you may run out of storage. If you think you might be having this trouble, the following
sequence of code should be used to exit a miscop that is returning a newly allocated object in
register AO.

(lr NLO AO)
<subtract length allocated from N L O
(x NLO AO)
(niuz NLO NLO #acFFFE)
(breq PC)
(b maybe-gc)

The above code will check to see if the allocation went over a 64K boundary. If it did, then it
may be time to GC. Maybe-gc is a miscop that calls out to Lisp to check if it is time to GC. The
Lisp Maybe-gc function is passed the object in AO and returns it as if the miscop returned,

(static-allocate register type length tempi temp2)
Static-allocate is similar to allocate, except that it allocates storage in static space rather than the
space specified by current-allocation-space.

12.6.3. Error reporting
There are three macros that you can use to invoke the Lisp function %SP-Intemal-Error. %SP-Intemal-Error will

report the error to the user.

(enrorO error-code)
This macro invokes %SP-Intemal-Error with no optional arguments. Error-code should be a
literal fixnum specifying the error code. See the manual Internal Design of Common Lisp on the
IBM RT PC for a list of the current error codes.

(errorl error-code object)
is similar to errorO, except one optional argument is passed to %SP-Intemal-Error. This
argument should be the object that has caused the error. For example, if you are expecting a
symbol, and get something else, then the something else would be passed out to %SP-Intemal-
Error. Object should be a register containing the object in question.

(error2 error-code object1 object^)
is similar to errorl, except two arguments are passed to %SP-Intemal-Error.

12.6.4. Type Checking
Several macros are provide that check the types of objects in registers. These macros make assumptions about the

register usage. In particular, register NLO and/or NL1 may be destroyed by these macros. These macros are
normally used on miscop entry and thus NLO and NL1 will contain nothing important. You must follow this
convention if you want to use these macros.

(verify-type register type error &optional ignore-nil)
This macro verifies that register contains an object of type type. If it does not, then the macro
generates code that will branch to the label error. The label Error need not be defined in the
current file, but it must be defined when references are resolved. The optional argument
ignore-nil is used when type is type-symbol. If it is non-nil, NIL is not valid as a symbol.

(verify-not-type register type error)

110 CMU COMMON LISP USER'S GUIDE

This macro is similar to verify-type, except that register should not contain an object of type.
(test-nil register label)

branches to label if register contains NIL.
(test-not-nil register label)

branches to label if register does not contain NIL.
(test-t register label)

branches to label if register contains T.
(test-not-t register label)

branches to label if register does not contain T.
(test-trap register label)

branches to label if register contains the trap object
(test-not-trap register label)

branches to label if register does not contain the trap object
(get-type register type-register)

extracts the type code from the object in register and places the five bit type code in
type-register zeroing the high order bits. Note that this macro generates best code when
register is AO and type-register is NLO or register is Al and type-register is NL1.

(type-equal register type label)
branches to label if register contains the type code for type.

(type-not-equal register type label)
is similar to type-equal, except it branches to label if register does not contain the type code for
type.

12.6.5. Miscellaneous
(noop) This macro generates a two byte instruction which does absolutely nothing. This is often used

after a branch and link with execute instruction if the executed instruction is a two byte one.
(pushm register) pushes the contents of register onto the control stack.
(popm register) pops the top of the control stack into register.
(IT RJ R 2) The contents of R 2 is copied to R 2 .
(loadi R X I) The immediate value I is loaded into R t using the best sequence of code. Up to a 32 bit number

can be loaded with this macro,
(cmpi Rx I) The value in Rx is compared with the immediate value I using the appropriate instruction. The I

value can be a 16 bit signed number.
(loadc Rx R 2 &optional (offset 0))

Uses the short or long form of the load character instruction depending on the value of offset

(loadha R1 R 2 &optional (offset 0))
Uses the short or long form of the load halfword algebraic instruction depending on the value of
offset

(loadh Rx R2 &optional (offset 0))
Uses the short or long form of the load halfword instruction depending on the value of offset.

(loadw R1 R 2 &optional (offset 0))
Uses the short or long form of the load instruction depending on the value of offset

(storec Rx R 2 &optional (offset 0))
Uses the short or long form of the store character instruction depending on the value of offset.

(storeha Rx R 2 &optional (offset 0))
Uses the short or long form of the store halfword instruction depending on the value of offset

(storew Rv R 2 &optional (offset 0))

USER-DEFINED ASSEMBLER LANGUAGE ROUTINES 111

Uses the short or long form of the store instruction depending on the value of offset
(multiply R x R 2) multiplies Rj by R 2 leaving the high order result in Rj and the low order result in R 2. Note that

this is a 32 bit by 32 bit multiply.

12.6.6. Floating Point
The following macros allow you to access the floating point accelerator card from a miscop. You should see the

manual IBM RT PC Hardware Technical Reference Manual for more information about the floating point card.

There are two floating point formats: a short (or single) format using 32 bits and a double (or long) format using
64 bits. There are sixteen 32-bit floating point registers accessible to Lisp. These registers are never saved by Lisp,
since they are only modified during the execution of miscops. The Lisp miscops return the resulting value in Lisp
format and never leaves information in the floating point registers. Register 14 and 15 of the floating point set are
reserved for special purposes. The other fourteen can be used by a miscop for whatever purpose it needs. For 64 bit
floats, the even register of a pair contains the high order data (including exponent) and the odd one of the pair
contains the low order data (the least significant bits of the mantissa).

In the following descriptions,-gr stands for a general purpose register, fr stands for a floating point register, and
base is a general register used to provide addressability to the floating point accelerator card. If more than one
general or floating point register is needed in an instruction, the gr's and fr's are numbered.

(rdfr gr fr ^optional (base 'NLl))
loads the contents of fr into gr.

(rdstr gr &optional (base 'NLl))
loads the contents of the floating point status register into gr.

(wtfr gr fr &optional (base 'NLl))
writes the contents of gr to fr.

(wtstr gr &optional (base 'NLl))
writes the contents of gr to the floating point status register.

(cisl gr fr ^optional (base 'NLl))
converts the 32 bit floating pointer number in gr to a 64 bit floating point number leaving the
result in fir pair.

(els frl fr2 &optional (base 'NLl))
converts the 64 bit floating point number in frl pair to a 32 bit floating point number leaving the
result in fr2. F r l is not changed.

(cils gr frl fr2 &optional (base 'NLl))
writes the contents of gr which is the high half of the a 64 bit flonum to frl, converts the frl
pair to a single float leaving the result in fr2.

(corns frl fr2 &optional (base 'NLl))
compares the single floats in frl fr2 and sets the floating point condition codes appropriately.
You need to read the floating point status register to get the results of the comparison,

(comis gr frl fr2 &optional (base 'NLl))
writes the contents of gr to frl and compares this value with the contents of fr2 setting the
floating point condition codes appropriately.

(coml frl fr2 &optional (base 'NLl))
compares the two long floats in frl and fr2 pairs, setting the floating point condition codes
appropriately.

(comil gr frl fr2 &optional (base 'NLl))
writes the contents of gr (which should be the high half of a 64 bit float) to frl and compares the
long floats in frl and fr2 pairs setting the floating point condition codes appropriately.

(fixnum-to-short gr fr & optional (base 'NLl))
converts the 32 bit integer in gr to a 32 bit floating point number leaving the result in fr.

112 CMU COMMON LISP USER'S GUIDE

(fixnum-to-long gr fr &optional (base 'NL1»
converts the 32 bit integer in gr to a 64 bit floating point number leaving the result in fr pair.

(abss frl fr2 & optional (base 'NL1))
takes the absolute value of frl leaving the result in fr2.

(absl frl fr2 &optional (base 'NLl))
takes the absolute value of frl pair leaving the result in fr2 pair.

(adds frl fr2 &optional (base 'NLl))
The 32 bit float in frl is added to the 32 bit float in fr2 leaving the result in fr2.

(addis gr frl frl &optional (base 'NLl))
The 32 bit float in gr is written to frl. F r l is added to fr2 leaving the result in fr2.

(addsi gr frl fr2 &optional (base 'NLl))
The 32 bit float in gr is written to fr2. F r l is added to fr2 leaving the result in fr2.

(addl frl frl &optional (base 'NLl))
The 64 bit float in frl pair is added to the long float in fr2 pair leaving the result in fr2 pair.

(addil gr frl frl ^optional (base 'NLl))
The high order 32 bits of the long float in gr is written to frl. F r l pair is added to fr2 pair
leaving the result in fr2.

(addli gr frl fr2 &optional (base 'NLl))
The high order 32 bits of the long float in gr is written to fr2. F r l pair is added to fr2 pair
leaving the result in fr2.

(divs frl fr2 &optional (base 'NLl))
The 32 bit float in fr2 is divided by frl leaving the result in fr2.

(divis gr frl fr2 &optional (base 'NLl))
The 32 bit float in gr is written to frl. Fr2 is divided by frl leaving the result in fr2.

(divsi gr frl fr2 &optional (base 'NLl))
The 32 bit float in gr is written to fr2. Fr2 is divided by frl leaving the result in fr2.

(divl frl fr2 &optional (base 'NLl))
The long float in fr2 pair is divided by frl pair leaving the result in fr2 pair.

(divil gr frl fr2 &optional (base 'NLl))
The high order 32 bits of the long float in gr is written to frl . Fr2 pair is divided by fr2 pair
leaving the result in fr2 pair.

(divli gr frl fr2 &optional (base 'NLl))
The high order 32 bits of the long float in gr is written to fr2. Fr2 pair is divided by frl pair
leaving the result in fr2 pair.

(mills frl fr2 &optional (base 'NLl))
The 32 bit float in frl is multiplied by the 32 bit float in fr2 leaving the result in fr2.

(mulis gr frl fr2 ^optional (base 'NLl))
The 32 bit float in gr is written to frl. F r l is multiplied by fr2 leaving the result in fr2.

(mulsi gr frl fr2 &optional (base 'NLl))
The 32 bit float in gr is written to fr2. F r l is multiplied by fr2 leaving the result in fr2.

(mull frl fr2 &optional (base 'NLl))
The 64 bit float in frl pair is multiplied by the long float in fr2 pair leaving the result in fr2 pair.

(mulil gr frl fr2 &optional (base 'NLl))
The high order 32 bits of the long float in gr is written to frl. F r l pair is multiplied by fr2 pah-
leaving the result in fr2.

(mulli gr frl fr2 &optional (base 'NLl))
The high order 32 bits of the long float in gr is written to fr2. F r l pair is multiplied by fr2 pair
leaving the result in fr2.

(negs frl fr2 &optionaI (base 'NLl))
negates the value of frl leaving the result in fr2.

USER-DEFINED ASSEMBLER LANGUAGE ROUTINES 113

(negl frl fr2 &optional (base 'NLl))
negates the value of frl pair leaving the result in fr2 pair.

(subs frl fr2 ^optional (base 'NLl))
The 32 bit float in frl is subtracted from fr2 leaving the result in fr2.

(subis gr frl fr2 &optional (base 'NLl))
The 32 bit float in gr is written to frl. F r l is subtracted from fr2 leaving the result in fr2.

(subsi gr frl fr2 &optional (base 'NLl))
The 32 bit float in gr is written to fr2. F r l is subtracted from fr2 leaving the result in frl.

(subl frl fr2 &optional (base 'NLl))
The long float in frl pair is subtracted from fr2 pair leaving the result in fr2 pair,

(subil gr frl fr2 &optional (base 'NLl))
The high order 32 bits of the long float in gr is written to frl. F r l pair is subtracted from fr2
pair leaving the result in fr2 pair.

(subli gr frl fr2 &optional (base 'NLl))
The high order 32 bits of the long float in gr is written to fr2. F r l pair is subtracted from fr2
pair leaving the result in frl pair.

12.7. Useful Miscops

Most of the miscops should be called by the following sequence:
(save-registers-pc non-pc-registers-to-be-saved)

load AO with first argument.
load Al with second argument.
load A2 with third argument.
load A3 with fourth argument.
store rest of the arguments on the stack.
(ball PC miscop)

(restore-registers-pc non-pc-registers-saved-in-order)
Unless otherwise noted, the above calling sequence is the way to call a miscop from a miscop. Unless otherwise
mentioned, miscops are free to destroy any of the first six registers (i.e., NLO, NLl, AO, Al, A2, and A3).

For some internal miscops, the arguments are passed in different registers. Also, rather than using the normal PC
register, some use A3 for the return address. This convention is used to reduce the overhead of saving and restoring
registers in some important cases.

The manual Internal Design of Common Lisp on the IBM RT PC describes many of the miscops that you can use.
Under no circumstances, repeat never, use any of the allocation miscops. These miscops assume that they are being
called from l isp and may decide to see if it is time to invoke a garbage collection. This is done by escaping to l isp
code and thus a miscop will never regain control if a test for a GC is invoked,

multiply (X Y) multiplies the 32 bit number X by the 32 bit number Y. X is passed in NLO and Y is passed in
NLl. The return address is in A3. The high order result is returned in NLO and the low order
result is returned in NLl, This miscop does not modify any other registers. It does modify the
MQ system control register and the condition codes.

divide (X Y) divides the 32 bit number X by the 32 bit number Y. X is passed in NLO and Y in NLl. Y
should not be -1 , 0, or 1. These cases should be checked for before this miscop is called. The
remainder is returned in NLO and the quotient in NLl. This miscop modifies A3, the MQ
system control register and the condition codes.

fpa-convert-bignum-to-single (x)
converts a bignum to a 32 bit flonum. The return address is in A3. The resulting 32 bit flonum

114 CMU COMMON LISP USER'S GUIDE

is returned in NLO.
fpa-convert-bignum-to-long (x)

converts a bignum to a 64 bit flonum. The return address is in A3. The high order part of the
flonum is returned in NLO, the low order part in NLl.

fpa-convert-ratio-to-single (x)
converts a ratio to a 32 bit flonum. The return address is in A3. The resulting 32 bit flonum is
returned in NLO.

fpa-convert-ratio-to-long (x)
converts a ratio to a 64 bit flonum. The return address is in A3. The high order part of the
flonum is returned in NLO, the low order part in NLL

12.8. Loading Miscops

Once a file containing miscops has been assembled, it can be loaded as follows:
(l o a d " m i s c o p s . f a s l ")
(s y s t e m : r e s o l v e - l o a d e d - a s s e m b l e r - r e f e r e n c e s)

The first line just loads in a file containing miscops. However, any external references made by the miscops will not
be resolved. If you have several files with miscops that refer to one another, you should load in all the files, before
doing (resolve-loaded-assembler-references). The call to resolve-loaded-assembler-references resolves all the
external references of the files loaded up to the point that resolve-loaded-assembler-references is called.

12.9. Invoking User Miscops

Once a miscop has been loaded into a running Lisp, it is possible to call i t Assume you have loaded a miscop
named foo into l isp, you can call it by typing:

(e x t e n s i o n s : c a l l - u s e r - m i s c o p c l c : : £ o o Arg x ... Argn)
This will invoke the miscop with the arguments specified. Note that a miscop accepts a fixed number of arguments.
You can not have optional or any other form of argument passing.

You can compile a function having a call to a user miscop. The compiler will generate the appropriate code to
call the miscop. Any compiled files that reference a miscop must be loaded after the miscop has been loaded. If
you don't do this, an error will be generated because the miscop will be undefined.

12.10. Tak Example

; ; ; L i s p c o d e for TAK.

(de fun t a k (x y z)
(d e c l a r e (f ixnum x y z))
(i f (n o t (< y x)) z

(t a k (t a k (t h e f ixnum (1 - x)) y z)
(t a k (t h e f ixnum (1 - y)) z x)
(t a k (t h e f ixnum (1 - z)) x y))))

USER-DEFINED ASSEMBLER LANGUAGE ROUTINES 115

Define a function that calls the tak-miscop. This
function should be compiled and loaded after the tak
miscop has been loaded. This must be in a separate
file.

(defun call-tak-miscop (z y z)
(extensions:call-user-miscop clc::tak x y z))

Following is miscop code for Tak, a simple benchmark. The code here is much better than that generated by the
compiler.

(in-package 'compiler)

(define-user-miscop tak
(save-registers-pc LO LI L2 L3 L4 BS FP AF)

(bali PC tak-aux) ; Go do real work.

(restore-registers-pc LO LI L2 L3 L4 BS FP AF)
(br PC) ; Return to caller.
; end of tak.

(define-user-miscop tak-aux
(lr
(c

A3 AO)
A3 Al)

(brlex PC)
(lr AO A2)

(cal
(stm
(lr
(lr
(lr

CS CS 24)
RIO CS -20)
R14 A3)
R13 Al)
R12 A2)

Save X.
Compare X and Y.

Return to caller with result.
Move Z into return register.

Enough room for 6 regs.
Save registers.
Save arg registers.

(balix PC tak-aux)
(ai AO R14 -1)

(lr Rll AO)

(ai AO R13 -1)
(lr Al R12)
(balix PC tak-aux)
(lr A2 R14)
(noop)
(lr RIO AO)

(ai AO R12 -1)
(lr Al R14)
(balix PC tak-aux)
(lr A2 R13)
(noop)

Call tak-aux.
First arg = X - 1.
Rest are set up.
Save result for later.

First arg = Y - 1.
Second arg = Z.
Call tak-aux.
Third arg = X.
Padding for balix.
Save result for later.

First arg = Z - 1.
Second arg = X.
Call tak-aux.
Third arg = Y.

(lr
(lr
(lr
(lm
(b

A2 AO)
AO Rll)
Al RIO)
RIO CS -20)
tak-aux)

Get third arg.
Get saved value as first.
Get saved value as second.
Restore registers.
Do tail recursive call.

116 CMU COMMON LISP USER'S GUIDE

Assume the tak miscop code is in the file takm.romp, the tak lisp code is in tak.lisp, then to execute the above
code you could type:

(c l c : a s s e m b l e - f i l e "takm. romp")
(l o a d " t a k m . f a s l ")
(sy s t em: r e s o l v e - l o a d e d - a s s e m b l e r - r e f e r e n c e s)
(c o m p i l e - f i l e " t a k . l i s p ")
(l o a d " t a k . f a s l ")
(c a l l - t a k - m i s c o p 18 12 6)

In case you're wondering, the tak miscop runs in about 0.27 seconds of elapsed time compared to the compiled
function time of 0.78,

USER-DEFINED ASSEMBLER LANGUAGE ROUTINES

Index

CMU COMMON LISP USER'S GUIDE

Index
INTERRUPTS 13
SEARCH-LIST 16
TIME FORMATTING 18
TIME PARSING 18
UNIX INTERRUPTS 13

a b o r t function 48
a d d - p o r t - d e a t h - h a n d l e r function 75
a d d - p o r t - o b j e c t function 78
add-xwindow-ob j e c t function 78
a l i e n - a c c e s s function 84
a*l ien-addresa function 84
a l i e n - a s s i g n function 84
a l i e n - b i n d special form 86, 8 6
a l i e n - i n d e x function 87
a l i a n - i n d i r a c t function 87
a l i e n - s a p function 84
a l i e n - s a p macro 71
a l i e n - s i z e function 84
a l i e n - t y p e function 84
a l i e n - v a l u e special form 86
aliens 70
a r i t h m e t i c - e r r o r condition 5 1
a r i t h m e t i c - e r r o r - o p e r a n d * function 51
a r i t h m e t i c - e r r o r - o p e r a t i o n function 51
a s s e m b l e - f i l e function 100
a s s e r t macro 39

b i t * function 87
break function 48
* b r e a k - o n - s i g n a l s * variable 34
• b r e a k - o n - w a r n i n g * * variable 35
b y t e * function 87
* b y t e s - c o n s e d - b e t w e e n - g c s * variable 8

c - * i z e o £ function 90
c e a s e macro 43
c e l l - e r r o r condition 51
c e l l - e r r o r - n a m e function 51
c e r r o r function 34
c h e c k - t y p e macro 38
cmd-switch-name function 74
c m d - * w i t c h - v a l u e function 74
cmd-*witch-word* function 74
* command-line - s t r i n g s * variable 74
* command-line - s w i t c h e s * variable 74
* c o m m a n d - l i n e - u t i l i t y - n a m e * variable 74
•command- l ine-words* variable 74
c o m p i l e - f i l e function 59
c o m p i l e - f rom-stream function 59
c o m p u t e - r e s t a r t s function 47
c o n d i t i o n condition 4 9
c o n t i n u e function 48
c o n t r o l - e r r o r condition 5 0
c o p y - a l i e n function 84
e t y p e c a s e function 41

: d a t e - f i r s t keyword
for Format -Universa l -T ime 18

* d e b u g - h i d d e n - £ u n c t i o n s * variable 58
* debug - p r i n t - l e n g t h * variable 58
* d e b u g - p r i n t - l e v e l * variable 58
debugger-hook variable 48
d e f - c - a r r a y macro 90
d e f - c - p o i n t e r macro 92
d e f - c - p r o c e d u r e macro 93
d e f - c - r e c o r d macro 91
d e f - c - r o u t i n e macro 92

d e f - c - t y p e macro 90
d e f - c - v a r i a b l e macro 92
d e f a l i e n macro 86
: d e f a u l t - d a y . . . keyword

for p a r s e - t i m e 18
: d e f a u l t - h o u r s keyword

for p a r s e - t i m e 18
d e f a u l t - i n t e r r u p t function 14
: d e f a u l t -minute s keyword

for p a r s e - t i m e 18
: de f a u l t - s e c o n d s keyword

for p a r s e - t i m e 18
de f enumerat ion macro 84, 85
d e f i n e - a l i e n - s t a c k macro 86
d e f i n e - c o n d i t i o n macro 37
defmodule macro 10
d e f o p e r a t o r macro 86
d e s c r i b e function 9
* d e s c r i b e - i m p l e m e n t a t i o n - d e t a i l s * variable 9
* d e s c r i b e - i n d e n t a t i o n * variable 9
* d e s c r i b e - l e v e l * variable 9
* d e s c r i b e - p r i n t - l e n g t h * variable 9
* d e s c r i b e - p r i n t - l e v e l * variable 9
* d e s c r i b e - v e r b o s e * variable 9
dispose-alien 71
d i s p o s e - a l i e n function 84
d i v i s i o n - b y - z e r o condition 51

e c a s e macro 42
e n a b l e - i n t e r r u p t function 14
e n c a p s u l a t e function 55
e n c a p s u l a t e d - p function 55
e n d - o f - f i l e condition 50
:env keyword

for run-program 17
e r r o r function 33
e r r o r condition 4 9
: e r r o r - f i l e keyword

for a s s e m b l e - f i l e 100
for c o m p i l e - f i l e 59

: e r r o r - o n - m i s m a t c h keyword
for p a r s e - t i m e 18

t e r r o r s - t o - t e r m i n a l keyword
for c o m p i l e - f i l e 59

e t y p e c a s e macro 41

f i l e - e r r o r condition 50
f i l e - e r r o r - p a t h n a m e function 50
* f i l e - i n p u t - h a n d l e r * * variable 78
f i n d - r e s t a r t function 47
f l o a t i n g - p o i n t - o v e r f l o w condition 51
f l o a t i n g - p o i n t - u n d e r f l o w condition 51
Format-Decoded-Time function 18
Format -Universa l -T ime function 18
free 71

* g c - n o t i f y - a f t e r * variable 8
* g c - n o t i f y - b e f o r e * variable 8
* g c - v e r b o s e * variable 8
g e t - u n i x - e r r o r - m s g function 72
g r - b i n d macro 72
g r - c a l l macro 72
g r - c a l l * macro 72
g r - e r r o r function 72

h a n d l e r - b i n d macro 36
h a n d l e r - c a s e macro 35

119

120 CMU COMMON LISP USER'S MANUAL

: i f - i n p u t - d o e s - n o t - e x i s t keyword
for run-program 1 7

i g n o r e - e r r o r s macro 3 6
* i g n o r e - f l o a t i n g - p o i n t - u n d e r f l o w * variable 5
i g n o r e - i n t e r r u p t function 1 4
: i n i t - f u n c t i o n keyword

for s a v e - l i s p 1 5
: i n p u t keyword

for run-program 1 7
i n s p e c t function 1 0
i n t - s a p macro 7 1
i n t e r n a l - t i m e - u n i t s - p e r - s e c o n d constant 8
invo ice -debugger function 4 8
i n v o k e - r e s t a r t function 4 7
i n v o k e - r e s t a r t - i n t e r a c t i v e l y function 4 7

: l a p - f i l e keyword
for c o m p i l e - f i l e 5 9

: l i a t i n g - f i l e keyword
for a s s e m b l e - f i l e 1 0 0

. l o a d keyword
for c o m p i l e - f i l e 5 9

l o a d - f o r e i g n function 8 9
* l o a d - i f - s o u r c e - n e w e r * variable 1 0
: l o a d - i n i t - f i l e keyword

for s a v e - l i s p 1 5
l o n g - w o r d s function 8 7

m a k e - a l i e n function 8 4 . 8 6
m a k e - c o n d i t i o n function 3 8
m a k e - o b j e c t - s e t function 7 7
malloc 71
* m a x - s t e p - i n d e n t a t i o n * variable 5 6
* m a x - t r a c e - i n d e n t a t i o n * variable 5 4
m u f f l e - w a r n i n g function 4 8

nameaerverport variable 7 3

object sets 7 7
o b j e c t - s e t - o p e r a t i o n function 7 7
: o u t p u t . . . keyword

for run-program 1 7
: o u t p u t - f i l e keyword

for a s s e m b l e - f i l e 1 0 0
for c o m p i l e - f i l e 5 9

p a c k a g e - e r r o r condition 5 0
p a c k a g e - e r r o r - p a c k a g e function 5 0
p a r s e - t i m e function 1 8
pointers 7 1
• p o r n o g r a p h y - o f - d e a t h * variable 7 5
* p o r t - d e a t h - h a n d l e r s * variable 7 5
* p o r t - o w n e r s h i p - r i g h t s - h a n d l e r s * variable 7 5
* p o r t - r e c e i v e - r i g h t s - h a n d l e r s * variable 7 5
: p r i n t - h e r a l d keyword

for s a v e - l i s p 1 5
: p r i n t - s e c o n d s . . . keyword

for Format -Universa l -T ime 1 8
: p r o c e s s - c o m m a n d - l i n e keyword

for a a v e - l i s p 1 5
program-error condition 5 0
p r o v i d e function 1 0
: p u r i f y keyword

for s a v e - l i s p 1 5

r e m o v e - p o r t - d e a t h - h a n d l e r function 7 5
r e q u i r e function 1 0
* r e q u i r e - v e r b o s e * variable 1 0
r e s t a r t - b i n d function 4 6 , 4 7
r e s t a r t - c a s e macro 4 4 , 4 7

r e s t a r t - n a m e function 4 7
: r o o t - s t r u c t u r e s keyword

for s a v e - l i s p 1 5
run-program function 1 7

* s a f e - d e f s t r u c t - a c c e s s o r s * variable 6
s a p - i n t macro 7 1
s a p - r e f - 1 6 function 7 4
s a p - r e f - 3 2 function 7 4
s a p - r e f - 8 function 7 4
s a v e - l i s p function 1 5
s e r i o u s - c o n d i t i o n condition 4 9
s e r v e - a l l function 7 8
s e r v e r function 7 8
s i g n a l function 3 4
s i m p l e - c o n d i t i o n condition 5 0
s imple -concUt ion- forznat -arguments function 4 9 ,

5 0
s i m p l e - c o n d i t i o n - f o r m a t - s t r i n g function 4 9 , 5 0
s i m p l e - e r r o r condition 5 0
s i m p l e - t y p e - e r r o r condition 5 0
s i m p l e - w a r n i n g condition 5 0
s t e p macro 5 5
* s t e p - p r i n t - l e n g t h * variable 5 6
* s t e p - p r i n t - l e v e l * variable 5 6
s t o r a g e - c o n d i t i o n condition 5 0
s t o r e - v a l u e function 4 8
s t r e a m - e r r o r condition 5 0
s t r e a m - e r r o r - s t r e a m function 5 0
: s t y l e keyword

for Format -Universa l -T ime 1 8

* t a s k - d a t a * variable 7 3
* t a s k - n o t i f y * variable 7 3
* t a s k - s e l f * variable 7 3
t i m e macro 8
. t i m e z o n e keyword

for Format -Universa l -T ime 1 8
t r a c e macro 5 3
* t r a c e - p r i n t - l e n g t h * variable 5 4
* t r a c e - p r i n t - l e v e l * variable 5 4
• t r a c e d - f u n c t i o n - l i s t * variable 5 4
t y p e - e r r o r condition 5 0
t y p e - e r r o r - d a t u m function 5 0
t y p e - e r r o r - e x p e c t e d - t y p e function 5 0
types 70

u n b o u n d - v a r i a b l e condition 5 1
u n d e f i n e d - f u n c t i o n condition 5 1
u n e n c a p s u l a t e function 5 5
: u n i x y - l a p - f i l e keyword

for a s s e m b l e - f i l e 1 0 0
u n t r a c e macro 5 4
u s e - v a l u e function 4 8

. w a i t keyword
for run-program 1 7

warn function 3 5
warning condition 4 9
w i t h - e n a b l e d - i n t e r r u p t s macro 1 3
w i t h - i n t e r r u p t s macro 1 3
w i t h - s i m p l e - r e s t a r t macro 4 3
w i t h - s t a c k - a l i e n special form 8 6
w i t h o u t - h e m l o c k macro 1 4
w i t h o u t - i n t e r r u p t s macro 1 3 , 7 5
words function 8 7

