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Abstract 
In this paper we discuss the importance of scene registration for several tasks in the automated 

interpretation of aerial imagery. These tasks are structure matching, stereo matching, and stereo 
visualization. While the processes of registration and matching have traditionally been treated as 
separate problems, particularly in the case of stereo matching, we describe techniques that may unify 
these processes. We also demonstrate the automatic generation and matching of control points in 
complex aerial imagery and show that the resulting registration is comparable to that achieved using 
manual control point selection. Finally, methods for the generation and visualization of stereo disparity 
images and stereo ground truth scene segmentations are described. 

1. Introduction 
Scene registration is a fundamental requirement for a number of image analysis tasks such as stereo 

matching, multi-image matching for temporal changes, and image sequence or motion analysis. As a 
result there exists a rich variety of techniques to perform scene registration. For example scene 
registration can be accomplished by identification of image points to a common frame-of-reference via 
control points whose three-dimensional location is accurately known. Registration can also be 
accomplished in a relative manner by identifying corresponding points between one or more images, 
i.e., the establishment of image-to-image control points. The position of these points need not to be 
known in the three-dimensional world. For some applications registration can be accomplished with 
respect to a cartographic map, a photomosaic, or an orthophoto that has been warped in order to remove 
position distortions due to terrain relief. 

Depending on the type of registration there arise many issues in accuracy. Accuracy is generally 
evaluated within the context of a particular task requirement. Often techniques with some inherent 
inaccuracy can suffice in many task situations. If we look at traditional photogrammetric techniques for 
recovering the position of an image we require detailed information of the camera, its focal length and 
lens characteristics, the platform coordinates in terms of height above the ground and its three-
dimensional position (pitch and yaw). Inaccuracies arise when we are unable to know any of these 
parameters precisely. In the case of digital imagery, the image formation process can introduce 
additional errors. For example, the sampling process, in terms of geometric precision and radiometric 
accuracy, is rarely modeled for digital imagery generated by digitizing photographic film. There are a 
variety of digitization apparatus including rotating drum scanners, flatbed optical scanners with a single 
optical element, scanners composed of linear arrays of elements or a full three-dimensional element 
array. Each has its own inherent inaccuracy. The kinds of errors introduced include those due to 
sampling a continuous tone photograph into a discrete intensity range over an arbitrary sampling 
window and limitations in the sensors' dynamic response. The geometric accuracy with which the 
scanner is positioned and moved over the film varies greatly between scanning methods. Even once we 
have accurate image, sensor, and platform information our ability to locate ground control points 
accurately in digital imagery is independent of the inherent accuracy of those control points. 

This paper raises issues in how scene registration can be achieved in digital imagery and illustrates the 
importance of accurate registration for three analysis tasks. In Section 2 we discuss some general issues 
in registration in computational vision. These issues include use of a spatial database to provide coarse 
ground control information, the selection of manual control points, and the automatic determination of 
control points. In Section 3 we discuss the importance of registration to three particular tasks in the 
interpretation of aerial imagery. These tasks are the correlation (or fusion) of monocular analysis from 
partially overlapping views, computational stereo matching techniques, and the visualization of stereo 
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matching results. We also discuss the interrelationship between registration and matching. In Section 4 
we describe the results of a fully automatic scene registration from initial coarsely registered stereo pair 
to a final three-dimensional interpretation. Finally, in Section 5, we present conclusions and discuss 
future directions for our research. 

2. Scene Registration 
In this section we describe some basic principles of stereo photogrammetry, a part of computational 

photogrammetry [25], The primary goal of stereo photogrammetry is to determine the three-
dimensional position of any object point that is located in the overlap area of two images taken from two 
different camera positions. The determination of the orientation of each camera at the moment of 
exposure and the relationship between the cameras is a necessary step in the photogrammetric process. 
In Section 2.1 we discuss the problem of camera orientation that determines the relationship between the 
image points and ground points in the scene. In Section 2.2 we describe the classical epipolar geometry 
for stereo imagery. When two images are registered in the epipolar geometry the spatial relationship 
between corresponding points in the left and right images is greatly simplified. 

2.1. Camera orientation problem 
The solution to the general camera orientation problem has four components: the interior orientation, 

the exterior orientation, the relative orientation, and the absolute orientation. 

The interior orientation refers to the perspective geometry of the camera. The parameters of the 
camera are generally known a priori and can be determined by precise calibration. This includes the 
focal length, the position of the principal point in the image plane of the camera and the geometric 
distortion characteristics of the lens system. These parameters are intrinsic to the camera and are 
generally detailed on a standard camera certificate. 

The exterior orientation characterizes the orientation of the camera during the image event. It is 
defined by the geographic position of the optical center in a three-dimensional rectangular coordinate 
system and the direction of the optical axis. Therefore, the exterior orientation determines the projective 
relationship that exists between the image coordinates of the image points and the ground coordinates of 
the corresponding object points in the scene. In the context of stereo photogrammetry, the exterior 
orientation can be decomposed into the relative orientation and the absolute orientation. 

The relative orientation determines the relative three-dimensional position of the two images in the 
stereo pair with respect to each other. As shown in Figure 2-1 three lines characterize the exterior 
orientation of the two cameras. Two lines are the rays emanating from an object point P and passing 
through each of the optical centers, C L and C R , of the two cameras. These lines are P to P L (passing 
through CjJ and P to P R (passing through C R ) . The third line is C L to C R passing through each of the 
optical centers. This is called the baseline of the stereo model. These three lines are represented in a 
three-dimensional rectangular coordinate system and must be coplanar. This coplanarity relationship 
gives an equation with twelve parameters that defines the exterior orientation of the two cameras. Of 
the twelve parameters, just five are necessary to define the relative orientation of the two cameras. In 
order to determine the five parameters, we need five pairs of corresponding points (PL>PR) * n the left m & 
right image. Each left/right pair defines one coplanarity equation. 

After the relative orientation is accomplished, the stereo model must be scaled, translated, and leveled 
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Figure 2-1: Relative orientation of stereo imagery 

with respect to a ground reference system. The process of orienting a stereo model into an absolute 
reference system is called the absolute orientation. It relates the absolute coordinates of an object point 
in the ground reference system to its coordinates in the model coordinate system of the camera. Each 
control point, for which the ground coordinates are known, gives rise to three projective transformation 
equations when its model coordinates are measured. Three control points are necessary to define all the 
parameters of the absolute orientation. 

In our work we consider that the interior orientation or calibration has been already performed since 
we assume an ideal pinhole camera. Therefore, the calculation of the relative orientation is the 
registration problem [12]. Knowing the relative position and attitude of the two images in the 
stereoscopic pair with respect to each other defines the relationship between the two images of the 
scene. All of the results presented in this paper will be relative measurements. However, as we have 
discussed, these relative measurements could be used to calculate absolute metrics, such as height, 
length, and area by using three-dimensional ground control points to establish the absolute orientation. 

2.2. Epipolar geometry 
After we have established the relative orientation of the two images, it is possible to reformulate this 

relationship into the epipolar geometry. The epipolar geometry defines a constraint based on the 
geometric relationship that the plane containing the two optical centers of the cameras, C L and C R , and 
the ground point P, intersect the two image planes on two lines. These lines are called the conjugated 
epipolar lines. As shown in Figure 2-2 these lines, E L to P L and E R to P R , contain the two image points 
P L and P R . These lines emanate from a common epipolar center, E L and E R . This epipolar center 
corresponds to the intersection of the image plane and the stereo baseline C L to C R . Thus, the points in 
the left and right image (P L and P R ) correspond to a single three-dimensional scene point (P) and are on 
the same conjugate epipolar lines E L to P L and E R to P R . After this relationship has been established, it 
is common to register the two images so that the conjugated epipolar lines become corresponding 
scanlines in the left and right image. Therefore the corresponding points are on the same scanline in 
each image and the displacement between the points, or disparity, corresponds to the relative height of 
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P 

Figure 2-2: The epipolar geometry 

the three-dimensional scene point 

This epipolar geometry is a common framework for most stereo matching algorithms: [1], [5], [6], 
[22], [24]. These stereo matching techniques assume that the registration is ideal and that the epipolar 

constraint is completely satisfied. Some researchers have attempted to explicidy account for the 
inaccuracy of the image registration and have attempted to improve it by preprocessing the imagery 
before beginning the matching process [8], [9], [11], [29]. Modeling inaccuracy in image registration 
has most often been studied within the context of the robotic applications where it is common to have a 
good deal of control over the cameras [10] and where a detailed preregistration and calibration step is 
possible. However, for many applications in aerial image analysis one is often simply given overlapping 
images or partial image areas where the epipolar geometry must be derived. 

In the following section we present two methods for scene registration given overlapping stereo 
imagery. The first method performs a coarse registration using landmarks from a spatial database. The 
second method uses pairs of corresponding points in the two images to perform a relative orientation. 
As we will see, many of the techniques used in computer vision to establish scene registration are 
approximations to the photogrammetric ideal. These approximations cause the scene registration to be 
inaccurate. The effect and implications of these inaccuracies will be explored within the context of two 
matching tasks. 

2.3. Coarse registration using a spatial database 
The most common method to establish the relative orientation between two images is to select pairs of 

corresponding points in the two images. One alternative method is to independently tie each image to a 
common frame of reference. A cartographic coordinate system such as <latitude,longitude,elevation> is 
one possible frame of reference. Thus, the two images are related to a ground coordinate system, or 
map. The use of landmarks with known <latitude,longitude,elevation> is a common method to orient 
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each image. The overall accuracy of the registration is dependent on the accuracy of the three-
dimensional position of the landmark and the accuracy with which we can recover the image position of 
the landmark. We use the landmark database component of CONCEPTMAP, a spatial database system 
that integrates imagery, terrain, and map data to provide landmark descriptions [17, 18]. Each landmark 
description in the database has a reference image fragment, and a ground position definition which 
contains the <latitude,longitude,elevation> information, its position in the reference image fragment, and 
a brief textual description of the landmark for the user. Each image in the CONCEPTMAP database is put 
into correspondence using manual selection of landmarks. 

CONCEPTMAP database registration Figure 2-4: Right image DC38007 with 
CONCEPTMAP database registration 

Figure 2-3 and 2-4 show a stereo image pair of an industrial area taken from the CONCEPTMAP 
database. These images were digitized from standard nine inch format mapping photography taken at 
the altitude of 2000 meters by a 153 millimeters camera. One pixel corresponds to 1.3 meters on the 
ground. The left image is a 512 x 512 sub-area selected from 2300 x 2300 image. The right image 
sub-area was generated by calculating the <latitude,longitude> for the comer points of the left image 
and projecting those points onto the complete right image. This projection is then used to extract the 
image sub-area from the complete right image. We have superimposed a set of gridlines on both images 
in order to make it easier to see the actual misregistration. Typically CONCEPTMAP provides a 
registration accuracy of between ten to thirty meters for imagery digitized to a 1.3 meter ground sample 
distance. 

2.4. Fine registration using image control points 
As we have seen, the computation of the relative orientation can be accomplished by selecting pairs of 

corresponding points in the two images. After the relative orientation is calculated, two images can be 
transformed so that they satisfy the epipolar constraint We begin the fine registration with the coarse 
registration described in the previous section. 



SCENE REGISTRATION IN AERIAL IMAGE ANALYSIS 6 

We make several assumptions that simplify the relative orientation model. We assume that the 
cameras are metric and have the same interior orientation. We also assume that their optical axes are 
parallel and are, in fact, vertical. Because we are using aerial imagery taken by the same camera along 
the same flightline, these assumptions are not unreasonable. The largest source of error is whether the 
camera platforms were at precisely the same altitude and orientation at each imaging event. Given these 
assumptions, the transformation between the left and right image is only a translation and a rotation, 
because the image planes are the same. Therefore, of the five parameters describing the general relative 
orientation, only two remain to be solved. The absolute distances in the two images are preserved 
and the epipolar lines are already parallel. After the transformation the epipolar lines correspond to the 
scanlines. 

Problems with the accuracy of point selection lead us to use more points to determine the 
transformation between the two images. On some images this model was not flexible enough to account 
for the variation in the ground elevation and the variations to our ideal sensor model. As a result we 
developed a polynomial transformation adjusted by least squares to fit the selected corresponding points. 
In the following sections we discuss the manual and automatic selection of image control points. 

2.4.1. Manual selection of common points 
The classical method to select corresponding points in order to perform interior orientation is by the 

manual identification of landmark points in stereo imagery. Typically, man-made features such as road 
intersections, boundary comers of fields or parking lots, or markings such as road centerlines are used 
because of the ease with which they can be found in the imagery. We chose to manually select shadow 
comers since these points were the focus of our experimentation in automatic landmark detection. 
Given that we are working in an urban environment, shadow comers have the advantage that they are 
generally on the ground and therefore in the same plane, assuming only small changes in terrain 
elevation. Although the shadow position changes as the sun moves, if we have imagery taken at nearly 
the same time, as is common in aerial mapping photography, the shadow comers will fall on the same 
point in the three-dimensional scene. Such comers also tend to be uniformly distributed in scenes 
containing large numbers of buildings. The manually selected shadow comers give us a baseline against 
which we could measure the accuracy of the automatic landmark selection process. Figures 2-5 and 2-6 
show the manually selected shadow comers in the left and right images respectively. 

2.4.2. Automatic selection using shadow corners 
Clearly, one requirement for automated registration is the automatic selection of corresponding points 

in the stereo pair images. There are actually two problems that must be solved. First we must 
automatically detect potential landmarks in each image, and then we must determine those landmarks 
that have been found in both images. General landmark matching is an unsolved problem and most 
automatic registration techniques relie on the matching of characteristic points [21] that often have no 
physical significance or reference with respect to landmarks. 
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Figure 2-5: Manual selection of points Figure 2-6: Manual selection of points 
[left image] with coarse registration [right image] with coarse registration 

Figure 2-7: Automatic selection of points Figure 2-8: Automatic selection of points 
[left image] with coarse registration [right image] with coarse registration 

For this experiment, we assume that a coarse registration of the two images, such as described in 
Section 2.3 has already been performed. Using this coarse correspondence, we are able to limit the 
search to find corresponding features in the images. Most of the remaining error is translational rather 
than rotational which simplifies the determination of corresponding points. 

As described in the previous section, shadow comers are good candidates for automatic detection and 
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correspondence as well as for manual selection. We use a monocular detection of shadow regions and 
determine the boundary line between the shadow and the building [14]. This boundary is used to 
determine the position of the shadow comer in the left and the right images [2]. After removing comers 
that were inconsistent with shape and orientation constraints imposed by the sun angle, we selected sets 
of shadow comers that were detected in both images. Figures 2-7 and 2-8 show these corresponding 
shadow comers on the two images. Note that the comers selected differ from those selected manually. 

Figures 2-9 and 2-10 show the results of the fine registration using shadow points selected 
automatically. This registration is obviously better than the coarse registration using the CONCEPTMAP 
database shown previously in Figures 2-3 and 2-4. In the following section we attempt to quantify the 
registration quality. 

Figure 2-9: Left image of the fine registration Figure 2-10: Right image of the fine registration 

2.4.3. Quality of registration 
Tables 2-1 and 2-2 show the local accuracy of the different scene registrations performed on DC38008 

and LAX stereo image pairs.1 The first three rows of each table characterize the quality of the 
CONCEPTMAP registration using three set of control points: the points selected manually, the points 
generated by automatic detection of shadow comers, and the points derived from structure matching. In 
the case of DC38008 11 conjugate point pairs were manually selected, 26 shadow comer pairs were 
automatically extracted, and 16 point pairs were found using structure matching. In the case of the LAX 
stereo pairs, these numbers are 14, 13, and 16, respectively. Because the CONCEPTMAP coarse 
registration is derived by a polynomial fit for the entire scene (2300x2300 for DC38008 and 2000x4000 
for LAX), it is interesting to evaluate the quality of the local fit for the 512x512 image sub-areas using 
each set of independently derived control points. The CONCEPTMAP registration produced a translation 
to within approximately 12 pixels (16 meters) of the the true registration for both images. This 
registration was quite consistent across all three sets of test points. 

*We will introduce some matching results for the LAX airport scene in Section 3.1.2. 
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For the other two types of scene registration, isometrical and polynomial, we evaluated the quality of 
registration with respect to the manually derived control points. That is, the solutions for manual, 
corner, and structure matching were validated using the manual points. In all cases both registrations 
achieved significantly better results than the CONCEPTMAP coarse registration. In several cases the 
registrations achieved by matching shadow corners and structures is quite comparable to the manual 
registration. However, the manual registration is in all cases as good as any of the automatic control 
point experiments. In all cases the manual selection of corresponding points produced a registration of 
less than one meter, or subpixel accuracy. In some cases similar subpixel results were achieved using 
the automatic point selection. Finally, the polynomial approach led to better results although the simpler 
isometrical model gave comparable results. 

Statistics on the quality of the different registrations for DC38008 
Type of Number Avg. row Std. row Min/Max Avg. col Std. col 

registration of points offset offset row off. offset offset 
Coarse manual 11 -12.4 1.6 -15/-8 905.5 1.2 
Coarse corner 26 -13.2 1.6 -18/-10 905.7 1.7 

Coarse structure 16 -12.1 1.6 -15/-8 909.3 3.4 
ISO manual 11 0.1 0.7 -1/2 1.3 1.3 
ISO corner 11 1.7 1.7 -1/7 5.1 1.2 

ISO structure 11 0.5 0.6 0/2 -3.4 1.4 
POLY manual 11 0.1 0.3 -1/1 0.1 0.5 
POLY corner 11 -0.2 1.8 -3/4 0.0 1.6 

POLY structure 11 0.1 0.5 -1/1 -3.3 1.5 

Table 2-1: Statistics for different registrations on DC38008 stereo pair 

Statistics on the quality of the different registrations for LAX 
Type of Number Avg. row Std. row Min/Max Avg. col Std. col 

registration of points offset offset row off. offset offset 
Coarse manual 14 10.6 0.9 9/13 1866.6 0.7 
Coarse corner 13 10.9 0.7 9/12 1866.8 1.4 

Coarse structure 16 10.9 0.4 10/12 1869.3 1.7 
ISO manual 14 -0.4 0.9 -2/2 0.6 0.7 
ISO corner 14 -0.4 0.9 -2/2 1.6 0.7 

ISO structure 14 -0.4 0.9 -2/2 -2.4 0.7 
POLY manual 14 0.0 0.1 -1/1 0.1 0.7 
POLY corner 14 1.3 1.0 -1/3 1.5 0.9 

POLY structure 14 -0.3 0.7 -1/2 -2.9 0.9 

Table 2-2: Statistics for different registrations on LAX stereo pair 

One additional issue is how well our local solution performs as a global registration in other areas of 
the complete stereo pair. In Table 2-3 we show the results of using our local fine registration for both 
the isometrical and polynomial methods in four quadrants of the complete stereo pair. In each of the 
four quadrants we manually selected 12 control points and used the manual solutions for DC38008 to 
calculate residual errors. Because of the large variation in the row and column offsets, it is clear that the 
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local model can not be treated as a global model even though the row residuals stay within reasonable 
bounds. However, it is the case that the fine solution should be a better global solution than the 
CONCEPTMAP coarse registration. 

Quality of the registrations for the complete image DC38008 
Type of Region Avg. row Std. row Min/Max Avg. col Std. col 

registration in image offset offset row off. offset offset 
ISO manual North 1.7 1.5 0/4 4.5 0.8 

West -1.3 0.4 -2/-1 1.4 1.2 
East 1.3 0.6 0/2 -2.4 1.5 

South -2.5 0.8 -5/-1 3.1 1.1 
POLY manual North -1.6 1.2 -4/0 -70.5 16.6 

West -1.3 0.7 -2/0 -2.4 3.0 
East -0.1 0.3 -1/1 2.7 3.7 

South 0.8 0.7 -2/2 -51.5 14.3 

Table 2-3: Statistics for different registrations on DC38008 stereo pair 

Although traditional error analysis can give us an idea of relative accuracy for each of these 
approaches, this does not necessarily translate into the effectiveness of the registration. That is, for 
many tasks in scene analysis a coarse-grain registration to within 10 to 30 meters is quite adequate, 
especially considering that the imagery covers several square kilometers. For instance, tasks that require 
assembling a collection of image subareas taken over time for change detection and analysis can be 
supported using this level of accuracy. However, for other tasks, such as matching and stereo analysis, 
the effect of mis-registration may become more critical. In Section 3 we will see how such tasks are 
affected by coarse and fine registration. 

3. Tasks Requiring Accurate Scene Registration 
In this Section we describe three scene analysis tasks that require or support scene registration. These 

tasks are matching structures derived by monocular analysis of overlapping imagery, traditional stereo 
matching using area-based and feature-based matching techniques, and die construction of a three-
dimensional image to present matching results to a human using a stereo display monitor. 

In the case of matching of monocular structures, we can acquire additional information about the 
actual structure of the objects, including their height, as a result of the matching process, and also 
generate new automatic control points to refine the registration. The goal is to match high-level 
structures in two overlapping images, where the actual detection and delineation of the structures is 
likely to contain significant errors, and matching is complicated due to a large numbers of false alarms 
produced by the structure generation process. 

In stereo analysis the goal is to automatically match points in the left and right images of the 
stereopair in order to establish a disparity between these points. This disparity can be used, along with 
the camera model, to calculate the actual height of the matched point in the three-dimensional scene. 

Finally, it is becoming increasingly important for researchers to be able to visualize the three-
dimensional models that their analysis programs are generating. Such a visualization tool allows us to 
directly compare these results to three-dimensional ground truth models for performance evaluation. 
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3.1. Correlation of monocular analysis 
There are many situations where overlapping coverage imagery is available but may not be suitable 

for stereo matching due to sensor acquisition parameters, temporal or seasonal changes, or image scale. 
The issue then becomes one of how to relate the results of independent monocular analysis. One of the 
first examples in the literature was symbolic change detection [26, 27] and the matching of coarse 
regions such as lakes, fields, and forests based upon relationships that were largely invariant over small 
rotations in the image plane (< 45 degrees) and relatively large scale changes (factor of 10 resolution). 
These techniques have been generalized to the matching of semantic network descriptions generated by 
separate monocular analysis or from a baseline cartographic description [28]. 

Our interest in matching of monocular interpretations arises from our desire to relate structure 
descriptions generated from a building hypothesis system. The BABE Built-up Area Building Extraction 
system [4], performs monocular analysis on an image by extracting lines and comers and generating 
structure hypotheses. This work is similar to Huertas and Nevatia [13], but differs in that a large 
number of hypotheses are purposely generated such that buildings are rarely missed. These structures 
are then evaluated by a number of techniques such as shadow verification, shadow prediction, and 
shadow grouping [14]. The processes of verification, prediction, and grouping are used to rank order or 
prune the large number of BABE structure hypotheses. 

3.1.1. Structure Verification 
First of all monocular matching can be viewed as another form of structure verification. That is, sets 

of independently derived hypotheses from different images are matched using the scene registration 
model to relate absolute ground position in the two images. The results of this matching provide 
information that is not available in a single image, including an estimate of structure height and the 
reliability of each hypothesis. For example, because matching allows multiple hypotheses in one image 
to correspond with a single hypothesis in the second image, we can use this fact to guide a re­
examination of the structure delineation in the first image. The fragmentation of structures is a common 
source of error in computer vision, and understanding fragmentation requires some external process to 
predict its occurrence or to identify situations where it has occurred. Even in cases where there is a 
good one-to-one match between structures, different viewing angles, accidental alignments of objects in 
the scene, or differences in imaging conditions will produce differences in the segmentation which can 
be recognized as cues for further interpretation. 

The use of high-level image cues such as aligned or oriented structures composed of lines, corners, 
and surfaces for perceptual grouping and stereo matching has recently seen some research 
activity [7, 23]. In our examples we have focused on the verification and grouping of hypotheses in 
order to improve monocular analysis. The determination of height is only one component of the 
matching process, rather than the primary result. We also used this matching as another way to select 
control points automatically and to perform scene registration. 

3.1.2. A Matching Experiment 
In this section we describe our matching results on a portion of a stereo pair of Los Angeles 

International Airport (LAX) used by Huertas and Nevatia in their building extraction research [13]. 
Figures 3-1 and 3-2 show the results of BABE hypothesis generation on the left and right image, 
respectively. The BABE results have been pruned automatically using shadow analysis [4]. As is 
evident in these results, BABE generates hypotheses for most of the buildings in the scene. However, it 
is apparent that there are differences in the quality of the delineation and in detection errors between the 
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two images. In the ideal case, we should have the same number of building hypotheses in each image. 
Further, the roof delineation of each building should be quite similar but not identical, because of the 
displacement due to height. 

Figure 3-1: BABE building hypotheses for Figure 3-2: BABE building hypotheses for 
LAX [left image] LAX [right image] 

Figure 3-3: BABE results superimposed on the 
left image using coarse registration 

Figure 3-4: BABE results superimposed on the 
left image using fine registration 
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Figure 3-4 shows the superimposition of BABE results on the LAX left image using the fine registration 
technique described in Section 2.4 while Figure 3-3 shows the accuracy of the coarse registration 
described in Section 2.3. This superimposition allows us to see directly the structure correspondence as 
well as the differences between the two monocular analysis results in Figures 3-1 and 3-2. The 
horizontal displacement between the hypotheses for the fine registration can be related to the relative 
height of the structures because of the epipolar constraint. Coincident structure hypotheses give very 
strong support for hypotheses of buildings. This is due to the fact that the feature extraction process 
rarely fails in exactly the same way in each of the images. 

To automate matching between the hypotheses in the left and right images we utilize geometric 
constraints. We take each BABE hypothesis from the left image and find the best corresponding 
hypothesis on the right image. To evaluate the effects of the registration, we performed this matching 
on both the coarse registration using the CONCEPTMAP scene model, and the fine registration described 
above. Figure 3-5 shows the matching results using the CONCEPTMAP registration while Figure 3-6 
shows the matching results of the fine scene registration. In both cases we have chosen a small area 
from the left-center of the LAX scene to illustrate the details of matching. The light (dotted) structures 
are hypotheses from the left image while the dark (solid) structures are from the right image. 

The matching process is a global search between two sets of boxes according to local limitations in the 
search area. The epipolar geometry of the fine registered images can be used to constrain the search 
area to a range of scanlines in the images. Then we use a simple criteria to select potential matches: the 
position of the hypothesis center-of-mass projected into a rectangular search space and amount of 
overlap between the pairwise structures. 

This simple matching process allows us to consider arbitrarily complex polygonal structures because 
we are not performing discrete vertex or structure matching to establish a stereo correspondence such as 
in Mohan and Nevada [23]. This is required given the relatively complex imagery and imprecise 
segmentation delineation provided by BABE. In many cases detailed high-level structure matching (as in 
[23]) will be defeated by errors in monocular feature detection due to occlusion, texture, and accidental 

alignments of objects and background. These are precisely the errors that cause area-based and feature-
based matching to fail, although propagated to a high-level matching process. 

Because our matching criteria are not very selective, we must disambiguate among many plausible 
matches. However, even if we devised a more specific set of match criteria, it is unclear whether we 
could account for situations in built-up urban areas where the buildings are very close, and have very 
similar shapes, orientations, and heights simply by using a set of local optimal matches. There are 
several examples of the alignment of similar buildings even within the LAX imagery. Thus, there is a 
virtue in the application of weak constraints because they do not require detailed high-level knowledge 
about the mis-registration. Instead of trying to disambiguate the matches locally we use global 
considerations based on the plausibility of the matched sets of structures. We define four different 
situations that occur depending on whether several structure hypotheses share the same correspondence 
with a hypothesis structure in the other image. 
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Figure 3-5: Matching of buildings using a coarse registration 

Results of the matching of boxes for the coarse registration 

Type of Left box Right box Corres. rel. height rel. line 
corres. score estimate offset corres. 

1 2 7 0.92 4.0 18.2 
8 11 0.73 3.5 21.0 
9 27 0.85 4.4 16.4 
10 29 0.94 3.7 18.3 
25 6 0.83 3.8 17.4 
30 31 0.93 4.2 18.2 

2 7 10 0.73 -9.3 16.9 
28 12 0.89 -0.1 17.5 
29 12 0.80 4.4 17.1 

3 5 3 0.75 -10.0 22.0 
26 3 0.87 4.5 21.5 

4 11 13 -44.5 19.6 -24.9 
12 13 -34.5 16.0 -18.5 

Table 3-1: Matching Results For LAX Building Hypotheses with coarse registration 
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Figure 3-6: Matching of buildings using a fine registration 

Results of the matching of boxes for the fine registration 
Type of Left box Right box Corres. rel. height rel. line 
corres. score estimate offset 

1 2 7 0.92 3.1 0.2 
8 11 0.73 2.5 3.0 
9 27 0.86 3.4 -1.6 
10 29 0.94 2.7 0.3 
25 6 0.83 2.8 -0.6 
30 31 0.93 3.2 0.2 

2 5 10 0.75 3.7 4.9 
28 12 0.89 -1.1 -0.5 
29 12 0.81 3.4 -0.9 

3 26 3 0.87 3.5 3.5 
4 7 10 -11.4 -10.3 -1.1 

11 31 -44.6 -35.5 -1.6 
12 13 -51.5 15.0 -36.5 

Table 3-2: Matching Results For LAX Building Hypotheses with fine registration 
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Tables 3-1 and 3-2 show the results of the monocular matching using the coarse and fine scene 
registration. In this experiment we search for the best match for each of the building hypotheses 
produced by BABE in the left image. A similar analysis could be performed on the structures generated 
from the right image. Four different situations can occur during matching that correspond to the 
application of local and global properties: 

• Type 1 This case corresponds to the "ideal" situation where we have a unique 
correspondence between a single hypothesis in the left and right image. The score of the 
correspondence gives us an estimate of the quality of the match between the two structures. 
A match score greater than 0.9 indicates that the two structures are quite similar. Pair 
(10,29) is an example of such a good match. A lower match score, as in the case of Pair 
(8,11), indicates that while there is a correspondence between structures their BABE 
delineation is not completely consistent between the left and right image. 

• Type 2 This case occurs when a structure in the left image shares a right structure 
correspondence with other structures in the left image. This correspondence is therefore 
ambiguous. In this case the match score is not sufficiently different to disambiguate 
between the multiple choices. However, knowledge of a reasonable height range for these 
structures could be used to select the correct correspondence. For example, Pair (28,12) and 
Pair (29,12) have a significant difference of 4.5 meters in their height estimate. However, 
neither height is sufficiendy unusual to prefer one interpretation over another without some 
external information. However, in the case Pair (7,10) for the coarse registration, this 
match could be discounted due to a height interpretation that is below the local terrain. 

• Type 3 This case occurs when several matches were possible with different structures in 
the right image, for example Pair (26,3). The correspondence selected has the highest 
confidence match but other correspondences are possible, i.e., Pair (26,10). Once again, 
knowledge about the reasonable height range for structures could be used to select the 
appropriate correspondence. 

• Type 4 This case occurs when structures in the left image do not have any reasonable 
correspondence in the right image such as in Pair (11,13). Nevertheless the best 
correspondence is given. The utility of such a match is to provide another analysis process 
with a context to search for new structures in the right image or to eliminate this structure 
from further analysis. 

As we have seen, the ability to perform scene registration allows for the efficient correlation of 
monocular analysis. There appears to be no major difference between the matching results using the 
coarse or fine scene registration. In the case of good matches, i.e., Type 1, having a high score, the 
results are identical for the coarse and the fine registration. Even if, according to the registration, 
different types of matching are possible for the ambiguous matches, this technique still seems to be quite 
robust. However, different scene clues can be derived by the analysis of the absolute match score, the 
match type, the estimated height, and the relative row offset for the different registrations. For example, 
in Type 2, matching a choice between two competing interpretations must be made. A verification 
process could be invoked to locate a better matching and delineation of the structures. The estimate of 
structure height in the fine registration can be compared to the results of specific stereo matching 
algorithms. We can also characterize the quality of the scene registration (epipolar geometry in 
particular), by the relative row offset results for the matching of a given set of accurate structure 
delineations. For example, given a reference manual segmentation of buildings in the left and right 
images we can use the local translations in rows and columns between the matched structures in the 
coarse registration (i.e. the estimated height and the relative row offset) as estimates of the 
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misregistration. Actually a simple analysis of the translations for the good matches in the coarse 
registration is used to set a spatial constraint to reduce the search window while refining the matching 
process. The relative row offset in the coarse registration is approximately 18 pixels. This can be 
derived by averaging the row offset of the good matches and can be verified by subtracting the relative 
row offset of the fine registration from that of the coarse registration. 

Thus, the matching of high-level structures extracted from monocular analysis can be used for 
evaluation of the quality of the structure delineation, height estimation, or provide a refined estimate of 
the scene registration. In the following section we discuss in more detail the use of structure matching to 
refine the registration. 

3.1.3. Structure Matching for Registration 
As we have seen, starting from the coarse registration, we are able to perform structure matching that 

provides an estimate of the local offsets in rows and columns for the center-of-mass of the structures 
generated by BABE in the left and right images. We can consider these corresponding points as control 
points selected automatically and then perform a registration of the stereopair exactly as with the 
shadow comers. 

This observation can be generalized, and we can consider the automated registration more globally. 
As we have seen, one requirement for automated registration is the automatic selection of corresponding 
points in the stereo pair images. Classically these points are physical features of the images like shadow 
comers, road intersections or specific marks, but we can also think of "virtual geometric points" defined 
by a geometrical relationship to real features in the images. The center-of-mass of the structures 
generated by BABE belong to this category. 

With such a definition of control points, the automated registration can be performed using many 
different features such as isolated points, edges, boundary contour, regions, and structures. The problem 
is, as before, to perform accurate matching in order to end up with control points whose position is 
accurately known. Our ability to match various features is the characteristic that tends to limit our 
choice of techniques. 

The traditional "characteristic points" approach is often accurate in point position, but because it is 
highly local in nature it is very difficult to find an accurate one-to-one correspondence. The more 
inherent complexity in the feature selected as a match point, the more constrained the matching 
becomes. For example, single intensity points in the images are very accurate in position but the 
matching process to find the correspondences is very difficult. On the other hand, very complex 
structures can be very easily disambiguated to find good correspondences. The problem is that as we 
match high-level structures our ability to determine match point positions becomes less accurate. 
Because complex features such as road intersections, building outlines, unique terrain points require a 
detailed analysis, their detection and delineation may be inexact. From these inexact corresponding 
structures we must generate "virtual" control points whose position in the feature is less sensitive to 
these errors. 

The Figure 3-7 shows the "virtual" control points we selected in the images using the matching of 
structures generated by BABE. The structures generated by BABE in the left image are shown in white, 
the right image structures are shown in black. The automatic control points selected correspond to the 
good structure matches. Given that BABE does a fairly good job in structure delineation and generates 
consistent hypotheses in both images, the set of control points considered is quite reliable. In fact, the 
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residuals of the registration shown in Table 2-2 are comparable to the registrations using a manual set of 
control points. 

Figure 3-8 represents the BABE results superimposed on the left image using the isometric 
registration derived using these control points. The results are nearly identical to those derived using 
manual registration and show a good superimposition of the building structures. 

Figure 3-7: Structure matching using coarse Figure 3-8: Superposition of structures using 
scene registration structure matching registration 

3.2. Registration for stereo matching 
The central issue in computational stereo is the solution of the correspondence between features 

visible in two overlapping images. The correspondence of a point feature visible in the left and right 
image of a stereo pair can be used to generate the three-dimensional description of that point in the 
scene. Points need not be the only feature matched. As we have seen, the result of matching structures 
generated by monocular analysis can be considered as stereo matching and yields a relative height 
estimate. 

In Section 2.2 we discussed how the epipolar constraint is used to simplify stereo matching by 
reducing it to a one-dimensional problem. This is because the epipolar lines in the imagery are 
registered to be corresponding scanlines in the left and right image. The assumption that the scene 
registration is ideal and that the epipolar constraint is totally satisfied is rarely warranted in imagery 
digitized from aerial photography. This is due to all of the orientation problems previously discussed as 
well as inaccuracies inherent to the digitization process primarily due to rotation of the image. In the 
following section we discuss the effect of coarse and fine scene registration on two stereo matching 
algorithms. 
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3.2.1. Two stereo correspondence algorithms 
Algorithms for stereo correspondence can be grouped into two major categories: area-based and 

feature-based matching. Examples of area-based matching include correlation techniques for matching 
image intensity patches using various evaluation functions including normalized cross-correlation, 
mean-square-difference, or surface fitting residual error. Feature-based techniques match image features 
derived from edge, line, or boundary detection. Area-based techniques provide a dense disparity map 
with an estimate generated at every point in the image. Feature-based approaches provide depth 
information only at points where the features are generated, often points of intensity discontinuity that 
may correspond to discontinuities in depth. 

Both classes of techniques, area-based and feature-based, have advantages and drawbacks that 
primarily depend on the task domain and the three-dimensional accuracy required. For complex urban 
scenes, feature-based techniques appear to provide more accurate information in terms of locating depth 
discontinuities and in estimating height. However, area-based approaches tend to be more robust in 
scenes containing a mix of buildings and open terrain. For this reason we have developed two stereo 
matching algorithms. Si is an area-based algorithm and uses the method of differences matching 
technique developed by Lucas [15, 20]. S2 is feature-based using a scanline matching method that treats 
each epipolar scanline as an intensity waveform. The technique matches peaks and troughs in the left 
and right waveform. Both are hierarchical and use a coarse-to-fine matching approach. Each is quite 
general as the only constraint imposed is the order constraint for the feature-based approach. The order 
constraint should generally be satisfied in our aerial imagery except in cases of hollowed structures. 

Both matching algorithms assume the epipolar geometry but have different sensitivity to its accuracy. 
The SI area-based approach uses a hierarchical set of reduced resolution images to perform a coarse-to-
fine matching of small windows in the two images. At each level the size of the windows for the 
matching process depends on the resolution of the reduced image. An initial disparity map is generated 
at the first level. Subsequent matching results computed at successively finer levels of detail are used to 
refine the disparity estimate at each level. Therefore the amount of error in the scene registration that 
can be tolerated by this matching algorithm depends on the size of the matching windows. However, 
since there is a relationship between the matching window size and the level of accuracy, simply using 
larger matching windows may not be desirable. 

The S2 feature-based approach matches epipolar lines in the left and right image. It uses a hierarchical 
approximation of the intensity waveforms to match peaks and valleys at different levels of resolution. 
To avoid mismatches it uses inter-scanline consistency that enforces a linear ordering of matches 
without order reversals. It also applies an intra-scanline consistency that considers the matches in 
adjacent scanlines. Application of intra-scanline constraint is used to increase the confidence of matches 
found to be consistent across multiple scanlines and to delete improbable matches. 

Figure 3-9 is a complex industrial area scene and was the focus of our discussion on coarse and fine 
scene registration in Sections 2.3 and 2.4. This scene contains many of the difficulties found in stereo 
matching, including occlusion, complicated textures, large depth discontinuities, and complicated three-
dimensional objects. The Figure 3-10 shows the results of the matching for the CONCEPTMAP coarse 
registration using the area-based algorithm SI. In all of the disparity match results presented in this 
paper, brighter regions are closer to the camera and have greater height. Darker regions are at or below 
the relative terrain ground plane. The results using the coarse registration are quite errorful. We can 
barely discern the general shape of the taller buildings in the middle and the upper left areas of the 
scene. The S2 algorithm is completely unable to use a coarse registration since the scanline matching 
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assumes that the epipolar constraint is satisfied. 

Figure 3-9: Intensity image of the scene Figure 3-10: Si disparity map using 
coarse registration 

Figure 3-11: SI disparity map using Figure 3-12: S2 disparity map using 
fine registration fine registration 

Figure 3-11 shows the results of the matching using the Si algorithm with the fine registration 
produced by the manual selection of shadow comer points. The matching results are significantly better 
with the bright areas again representing the highest regions and corresponding to most of the buildings 
in the scene. Although the delineation is not crisp there are few major mismatches, and we have an 
adequate impression of the range of heights in the scene. The SI algorithm has many of the advantages 
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and drawbacks of any area-based technique. As we can see in Figure 3-11 most of the errors are due to 
abrupt changes in height due to man-made structures. 

Figure 3-12 shows the results of the matching using the S2 algorithm with the same fine scene 
registration in Figure 3-11. This technique performs very well on the disparity discontinuities caused by 
man-made structures, and therefore we have a much better delineation of the buildings than in Figure 
3-11. Nevertheless, despite post processing of the disparity results, the resulting disparity image is 
noisy. As expected, the S2 algorithm can not provide robust matches in areas of uniform intensity or in 
highly textured areas. 

The results of the two stereo matching algorithms are quite complimentary, and we believe that it is 
possible to take advantage of the different failure modalities in order to form a composite disparity map 
that gives a more accurate three-dimensional representation of the scene. It is also clear that stereo 
matching relies on a more accurate scene registration than is provided by the coarse registration 
described in Section 2.3. Even when the matching window size for an area-based stereo algorithm is 
larger than the inherent mis-registration, it may be difficult for the matching algorithm to recover from 
mis-matches due to poor scene registration. This is in contrast to the results in structure matching 
presented in Section 3.1 that appear to be much less sensitive to a coarse scene registration. 

3.3. Registration for visualization 
A practical means for three-dimensional visualization is needed in order to understand the quality of 

the stereo results. This can be achieved by the construction of a left and right stereo image from the 
original unregistered overlapping imagery. The goal is to reconstruct the scene as the human eyes will 
naturally interpret it: the left eye sees the left image of the scene and the right eye simultaneously sees 
the right image. Thus, we need a stereo pair already registered and satisfying the epipolar constraint. 
To see the relief we look at the scene with our vision baseline parallel to the scanlines (epipolar lines), 
and we accommodate at the infinite. 

There are two common techniques to present stereo images to a user. The simplest is anaglyph stereo 
where the left/right images are presented in blue/red channels of the display and the user wears glasses 
with blue/red filters. This is the technique commonly used for viewing 3-D movies in commercial movie 
theatres. A superior but more cosdy approach is to use polarized glasses to separate the left and right 
images. Several manufactures use a liquid crystal shutter to display the two stereo fields alternating at 
l/60th or 1/120th of a second. The detail and quality of the polarized stereo is much crisper and easier 
for viewers to fuse than using the anaglyph technique. For our experiments, we have used the anaglyph 
method, however the construction of a synthetic stereo image is identical regardless of viewing method. 

3.3.1. Construction of the right image from the left image 
Given a left and right image registered into the epipolar geometry, as are the intensity images after 

fine registration, we can display them using different stereo viewing methods as described above. This 
is the most common way to achieve stereo visualization. However, a more interesting approach is to use 
this representation to generate a stereo pair (left and right image) from the three-dimensional 
information we have computed by stereo matching in order to directly visualize the matching results as a 
three-dimensional scene. We call the generation of a stereo pair from three-dimensional information 
derived from stereo analysis synthetic stereo reconstruction. Synthetic reconstruction can be used to 
visualize and compare the results of stereo matching by direct visualization. 
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Figure 3-13: S2 stereo matching result [left] Figure 3-14: S2 stereo matching result [right] 

Figure 3-15: Ground truth left image Figure 3-16: Ground truth right image 
for DC38008 scene for DC38008 scene 

A relative height computation, or disparity, is the result of most stereo matching algorithms. The 
disparity is usually encoded in a representation related to the geometry of the left image. In this 
disparity map, the values of each point in the map correspond to the relative height of that point in the 
left image. In order to generate a synthetic reconstruction containing the information extracted by the 
matching process we must generate a new right image. Each point in the right image is the 
corresponding point in the left image displaced by the relative height estimate in the disparity map. This 
process is exacdy the opposite of that used to generate the disparity map. However, we do not have to 
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solve the matching problem. The computed right image is, by definition, perfectly registered since there 
are only local horizontal shifts between the left and the right image. Thus, we satisfy the epipolar 
constraint. Figure 3-14 and Figure 3-13 shows reconstructed synthetic stereo images for the stereo 
matching results produced by S2 in Figure 3-12. 

3.3*2.3D segmentation for ground truth determination 
The visualization of scenes and stereo matching results is a powerful tool for the qualitative 

comparison of different scene interpretation techniques. One technique is the side-by-side comparison of 
the original stereo scene and the automated reconstruction. Such a comparison allows us to quickly see 
those buildings that are missing or have errors in height or ground position. 

However, a quantitative approach is also possible and is potentially more useful. Using the anaglyph 
display techniques we can generate a three-dimensional segmentation that allows us to store the 
structure of each building in the scene. The form of the data is simply a segmentation description file 
containing collections of left image points and their relative height. From that representation we can 
infer a partial three-dimensional representation of the buildings guessing the shape of the invisible parts, 
much as is done with simple wireframe models. We can also use this representation as a baseline 
reference representation for buildings in order to compare and contrast the various processing results. 

Figures 3-15 and 3-16 show how this technique can be used to construct a simple three-dimensional 
ground truth segmentation that can be visualized as a stereo scene. We simply represent the building 
roofs as horizontal surfaces and displace these surfaces proportionally to the actual height of the 
buildings that we got from the three-dimensional segmentation of the roofs. Such a stereo pair is very 
useful in order to compare the results of automatic scene matching. 

4. Automatic scene registration 
As we have seen, structure matching, stereo matching, and visualization all rely on the quality of the 

stereo registration. The registration and the matching process are therefore interdependent. Structure 
matching appears to be a task that we can reliably perform even with a coarse scene registration. 
Further, the results of structure matching provides a method to automatically refine the initial coarse 
scene registration. In this Section we demonstrate a complete end-to-end scenario of automatic structure 
matching, fine registration, and stereo analysis. Thus, we can automatically generate a three-
dimensional representation of the scene starting from the CONCEPTMAP image database. 

We began with the DC38008 test area corresponding to Figures 2-3 and 2-4, previously shown in 
Section 2.3. We then utilize the BABE structure results and perform structure matching to select reliable 
control points. The structures generated by BABE are fragmented and are not as consistent as those 
generated for the LAX stereo pair. Nevertheless, we are able to find a number of good matches, well 
distributed across the image, as shown in Figure 4-1. Subjectively, the registration quality is good, as 
seen in Figure 4-2, where many of the building fragments are now aligned. The overall registration 
quality is detailed in Table 2-1 (ISO structure) in Section 2.4. While it is not as accurate the registration 
derived by manual ground control selection, it is clearly comparable. 

Finally using this automatically registered stereo pair we performed stereo matching to get a dense 
disparity map of the scene. Figures 4-3 and 4-4 show the results for the SI and the S2 matchers. The 
results are comparable to those in Figures 3-11 and 3-12 achieved using manual selection of control 
points. Thus we have shown the feasibility of end-to-end processing to establish precise local 
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registration using automatic ground control point estimation. 

Figure 4-3: SI disparity map using Figure 4-4: S2 disparity map using 
structure matching registration structure matching registration 

5. Conclusions 
The importance of scene registration in the automated interpretation of aerial imagery can not be 

overstated. Scene registration is required for monocular matching, stereo analysis, scene visualization, 
accurate mensuration, and for many other photo-interpretation tasks. Most work in computational stereo 
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has ignored the problem of scene registration assuming that the left/right image pairs were already in 
epipolar geometry. As we have seen, this may limit the utility of many feature-based and some area-
based matching techniques, especially in cases where there are significant residual errors in the 
registration process. 

Traditionally we have separated the stereo analysis of digital images in two problems, registration and 
matching, and have attempted to solve each independently. However, the results of matching, whether 
structural or using a stereo model, are actually the ultimate form of scene registration since the matching 
solves the correspondence between different objects in the images. In some sense registration and 
matching are corresponding processes that are performed at different representational levels. 
Registration relies on mathematically modeling the image acquisition in the three-dimensional world, 
while matching defines the relationship between corresponding points in two images. Registration is 
generally necessary to constrain search during matching, but at least a sparse matching is necessary to 
perform the registration. 

5.1. Future Work 
There are several areas for future work focused on improving techniques for scene registration. First, 

using the image-to-map correspondence, we need to improve the accuracy of the landmarks stored in the 
CONCEPTMAP database. It may be necessary to include accurately surveyed geodetic control points in 
addition to those that are acquired from map sheets. However, given the high resolution of the imagery 
that we are working with, it may actually be quite difficult, using these control points, to improve on the 
current level of accuracy. More complex known landmarks such as road networks may be utilized to 
accurately register imagery to maps for automated scene registration [16]. 

For direct image-to-image correspondence we have seen some limitations in automatic extraction of 
shadow comer points in complex urban imagery for registration. Additional sources of reliable 
registration points should be available using monocular extraction of man-made structures such as the 
road networks. From our previous work in road detection [3] and tracking [19] it seems quite 
reasonable to use these structures as potential landmarks for scene matching. Furthermore the model of 
transformation between the two images should be enhanced to get a better registration once we have 
accurate control points. 

Finally, we need to pursue the experiment of iterative refinement of registration via coarse-to-fine 
matching. The basic idea is to perform a coarse registration using road networks, or known ephemeris 
data. This coarse registration would be followed by feature matching using structure matching or 
shadow comers to generate an estimate of the error in the registration. This estimate can be refined 
using a hierarchical approach using high-level features that are easily matched but have inaccuracies in 
position, to low level features that are difficult to match but have unambiguous positions in the stereo 
pair. The process of registration and matching would then iteratively converge to a complete matching 
of the scene. Whether this approach can achieve high registration accuracy equal to manual 
correspondence is a topic for further research. 
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