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Abstract

Machine vision can greatly benefit from the development of accurate reflectance
models. There are two approaches to the study of reflection: physical and geometrical
optics. While geometrical models may be construed as mere approximations to physical
models, they possess simpler mathematical forms that often render them more usable than
physical models. However, geometrical models are applicable only when the wavelength of
incident light is small compared to the dimensions of the surface imperfections. Therefore,
it is incorrect to use these models to interpret or predict reflections from smooth surfaces,
and only physical models arc capable of describing the underlying reflection mechanism.

This paper is directed towards unifying physical and geometrical approaches to de-
scribe reflection from surfaces that may vary from smooth to rough. More specifically, we
consider the Beckmann-Spizzichino (physical optics) model and the Torrance-Sparrow (ge-
ometrical optics) model. We have chosen these two models in particular as they have been
reported to fit experimental data very well. Each model is described in detail, and the condi-
tions that determine the validity of the model arc clearly stated. From studying the behaviors
of both models, we propose a model comprising three reflection components: the diffuse
lobe, the specular lobe, and the specular spike. The dependencies of the three components
on the surface roughness and the angles of incidence and reflection are analyzed in detail.

11



1 Introduction

Most machine vision problems involve the analysis of images resulting from the reflection of
light The apparent brightness of a point depends on its ability to reflect incident light in the
direction of the sensor: what is commonly known as its reflectance properties. Therefore, the
prediction or interpretation of image intensities requires a sound understanding of the various
mechanisms involved in the reflection process. While shape extraction and object recognition
methods are being refined, it is also essential for the vision community to research and utilize
more sophisticated reflectance models. Once a "general" reflectance model is made available,
we are free to make reflectance assumptions that are reasonable for the vision application at
hand The resulting more specific model may then be used to develop efficient perception
techniques.

Various reflectance models have been used in the areas of machine vision and graph-
ics. Horn [8] used the Lambertian diffuse reflectance model and the double-delta specular
reflectance model to develop shape-from-shading algorithms for machine vision. Horn [7]
has also provided an excellent review of some of the early models used in graphics for
hill shading. Phong [19] proposed a parametrized continuous function to represent specular
reflectance, and used the model to produce computer-synthesized images of objects. Wood-
ham [32] used the Lambertian model to determine object shape by means of photometric
stereo. Dceuchi [12] used the double-delta specular model to determine the shape of specular
surfaces by photometric stereo. Pentland [18] developed a local shape-from-shading algo-
rithm that assumes Lambertian reflectance. Coleman and Jain [4] proposed the four-source
photometric stereo, which discards specular reflections and uses the diffuse reflections and
the Lambertian model to determine shape information. Sanderson, Weiss, and Nayar [24]
have used the double-delta specular model to determine the shape of specular surfaces by
means of the structured highlight technique. Recendy, Nayar, Ikeuchi, and Kanade [16] have
developed the photometric sampling method that uses a hybrid reflectance model, comprised
of both Lambertian and specular models, to extract the shape and reflectance of Lambertian,
specular, and hybrid surfaces.

The above applications have proven that the Lambertian model does reasonably well
in describing diffuse reflections. Moreover, its simple functional form has made it a popular
reflectance model in the vision research community. On the other hand, the specular models
used above perform well only when the object surface is veiy smooth, in which case, most
of the reflected light is concentrated around the specular direction. Specular reflection from
rough surfaces, however, requires careful examination, and its dependence on the imaging
and illumination geometry can only be obtained by a formal treatment of optics. There
are two different approaches to optics, and thus two different approaches to the study of
reflection. The physical optics approach uses electromagnetic wave theory to study the
reflection of incident light The geometrical optics approach, on the other hand, uses the
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short wavelength of light to simplify the reflection problem. Hence, geometrical models may
be viewed as approximations to physical models.

The Beckmann-Spizzichino physical optics model and the Torrance-Sparrow geomet-
rical optics model have recently attracted considerable attention. Both models have been
developed to describe specular reflection mechanisms, and both have been found to fit ex-
perimental data quite well [11] [30]. Owing to its simpler mathematical form, the Torrance-
Sparrow model is more popular than the Beckmann-Spizzichino model, and has been used in
the areas of computer vision and graphics. Healey and Binford [6] have used the Torrance-
Sparrow model to determine local shape from specular reflections. Wolff [31] has used the
model to develop spectral and polarization stereo methods. Cook and Torrance [5] have
modified the model and used it to render images of objects. Tagare and Figueiredo [29] have
discussed both the Beckmann-Spizzichino and the Torrance-Sparrow models in their survey
of various reflection mechanisms.

When applying physical and geometrical models, it is important to satisfy the con-
ditions that determine the validity of the models. This requires an understanding of the
restrictions imposed by,the assumptions made while developing the models. Most of these
assumptions are related to the microscopic shape and physical properties of the reflecting
surface. In this paper, we seek answers to the following questions: How are surface shapes
modeled, and when is a surface rough? How are physical optics and geometrical optics
models developed? Under what conditions are the Beckmann-Spizzichino and the Torrance-
Sparrow models valid? How do the reflectance curves predicted by the two models compare
with one another, and how are the surface roughness parameters of the two models related to
each other? What are the primary components of surface reflection, and which model should
be used to represent each of the primary components? How are the reflection components
dependent on the surface roughness, and on the angles of incidence and reflection?

In section 2 of this paper, we define radiometric concepts that are useful in the analysis
of surface reflection. In section 3, we look at different approaches to modeling surface
profiles. In section 4, we highlight the main steps that are involved in the derivation of
the Beckmann-Spizzichino and Torrance-Sparrow models, and clearly state the assumptions
made in the process of their development On the basis of the reflectance curves predicted
by the two models, we propose a reflectance model that has three primary components:
the diffuse lobe, the specular lobe, and the specular spike. In section 5, we study these
reflectance components in detail.

2 Radiometric Definitions

In this section, we present deinitiois of radioraetric tains that are useful in the study
of surface reftectioiL Detailed derivations and descriptions of these terms are given by
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Figure 1: Basic geometry needed to define radiometric terms.

Nicodemus et al. [17]. As shown in Figure 1, all directions are represented by the zenith
angle 9 and the azimuth angle <f>. The light source is assumed to lie in the x-z plane and is
therefore uniquely determined by its zenith angle 6t. The monochromatic flux d$i is incident
on the surface area dAs from the direction 0h and a fraction of it, &$r* is reflected in the
direction (9n <f>r). The irradiance Is

l of the surface is defined as the incident flux density:

(1)Is - d A '

The radiance Lr of the surface is defined as the flux emitted per unit fore-shortened area per
unit solid angle. The surface radiance in the direction (0n <f>r) is defined as:

(2)
dA$cos&rduor

The BRDF (Bi-Directional Reflectance Distribution Function) fr of a surface is a measure cf
how bright the surface appears when viewed from a given direction* when it is illuminated

: Irradiaiice is usually [8] denoted by the symbol E, In the following sections, we will be using E to denote
the electric §dd, and therefore we will denote irradiance by / to avoid confusion.



from another given direction. The BRDF is defined as:

/ = - (3)
*s

In the following sections of this paper, we will frequently use the above radiometric defini-
tions.

3 Surface Model

The manner in which light is reflected by a surface is dependent on, among other factors,
the microscopic shape characteristics of the surface. A smooth surface, for instance, may
reflect incident light in a single direction, while a rough surface will tend to scatter light
in various directions, maybe more in some directions than others. To be able to accurately
predict the reflection of incident light, we must have prior knowledge of the microscopic
surface irregularities; in other words, we need a model of the surface. All possible surface
models may be divided into two broad categories: surfaces with exactly known profiles and
surfaces with random irregularities. An exact profile may be determined by measuring the
height at each point on the surface by means of a sensor such as the stylus profilometer. This
method, however, is quite cumbersome and also inapplicable in many practical situations.
Hence, it is often convenient to model a surface as a random process, where it is described
by a statistical distribution of either its height above a certain mean level, or its slope with
respect to its mean (macroscopic) slope. In this section, we discuss these two approaches
to surface modeling in greater detail and explain how surface roughness is pertinent to the
study of reflection.

3.1 Height Distribution Model

The height coordinate h of the surface may be expressed as a random function of the coor-
dinates x and y, as shown in Figure 2. The shape of the surface is then determined by the
probability distribution of k For instance, let h be normally distributed, with mean value
<k> = 0, and standard deviation cr*. Then, the distribution of h is given by:

1 T

Ph{h) . -JLr-« W . (4)

The standaid dbviation <r* is also the root-mean-square of h and represents the roughness
of the surface. The surface is not uniquely described by the statistical distribution of h
however, as it -does not tell us anything about the distances between the hills and valleys of



Figure 2: Surface height as a random function of the spatial coordinates.

the surface. In Figure 3, both surfaces (a) and (b) have the same height distribution function,
i.e. the same mean value arid standard deviation. In appearance, however, the two surfaces
do not strongly resemble each other. In order to strengthen our surface model, we use
an autocorrelation coefficient C(r) that determines the correlation (or lack of independence)
between the random values assumed by the height h at two surface points (x\,y{) and fe?)^),
separated by a distance r . We describe the autocorrelation coefficient by the fairly general
function:

C(T) = (5)

where T is the correlation distance; for which C(r) drops to the value e~l. We see that the
surfaces (a) and (b) shown in Figure 3 have small and large correlation distances, respectively.
By varying the parameters ah and T of our surface model, we can generate surfaces that match
in appearance almost any rough surface met in practice. Moreover, if we are dissatisfied with
the performance of the model, we can always use another height distribution function and/or
another autocorrelation function than the ones given above.

3.2 Slope Distribution Model

It is sometimes convenient to think erf a surface as a collection of planar micro-facets, as
illustrated in Figure 4. A large set of micro-facets constitutes an infinitesimal surface patch
that has a mean surface orientation n. Each 'micro-facet, however, has its own orientation,
which may deviate from the mean surface orientation by an angle a. We will use the



(a) ± h = 0

(b) h = 0

Figure 3: Random surfaces with (a) small, (b) large correlation distances.

n

Figure 4: Surface modeled as a collection of planar micro-facets.



parameter a to represent the slope of individual facets. Surfaces can be modeled by a
statistical distribution of the micro-facet slopes. If the surface is isotropic, the probability
distribution of the micro-facet slopes can be assumed to be rotationally symmetric with
respect to the mean surface normal n. Therefore, facet slopes may be described by a one-
dimensional probability distribution function. For example, the surface may be modeled by
assuming a normal distribution for the facet slope QJ, with mean value <a> = 0 and standard
deviation aa:

pa(a) = - _ - e ±°« . (6)
V2wcra

The surface model in this case is determined by a single parameter, namely, <rQ9 unlike
the height distribution model, which requires two parameters. Larger values of <ra may be
used to model rougher surfaces. While the importance of an autocorrelation coefficient was
shown for the height model, the concept of slope correlation is more difficult to interpret and,
therefore, is not of much use in the generation of surfaces. The advantages of using a single
parameter come with the cost of a weaker model when compared to the height model. Given
a probability distribution function for a, it is difficult to visualize the shape of the surface
and to estimate the root-mean-square height of the surface. However, the slope distribution
model is popular in the analysis of surface reflection, as the scattering of light rays has been
found to be dependent on the local slope of the surface and not the local height of the surface.
For this reason, the slope model, though relatively ambiguous, is more directly appHcable
to the problem of surface reflection. Shortly, we will see how both height and slope models
are used to develop surface reflection models.

33 What is a Rough Surface?

One would expect humans to respond to this question with a variety of answers. We seem
to have a rather loose definition of the term "roughness." A surface that appears to be rough
from a short distance may appear to be smooth from far away. In some cases, by changing the
direction of illumination, surface imperfections can be made less visible and a rough surface
can be made to appear smooth. If the observer is unable to discern from its appearance how
rough the surface is, he or she is inclined to feel the surface and make a judgment on the
basis of the resulting sensation.

In contrast to the human definition of roughness, surface reflection theories offer a
stronger definition: one that relates surface irregularities to the wavelength of incident light
and the angle of incidence. For incident light of a given wavelength, the roughness of
a surface may be estimated by studying the manner in which the surface scatters light in
different directions. If the surface irregularities are small compared to the wavelength of
incident light, a large fraction of the incident light will be reflected specularly in a single



direction. On the other hand, if surface irregularities are large compared to the wavelength,
the surface will scatter the incident light in various directions. Conversely, the same surface
can be made to appear smooth or rough by varying the wavelength of incident light; or for
the same wavelength it can be made to appear smooth or rough by varying the angle of
incidence.

Raleigh suggested a way of relating surface roughness to wavelength and angle of
incidence, and established a simple criterion for classifying surfaces as smooth or rough.
Consider rays 1 and 2 in Figure 5, incident at an angle /? on a surface with irregularities
of height H. Since the two rays strike the surface at locally smooth patches, both rays are
specularly reflected. The rays originate from a source plane that is perpendicular to the rays,
and they are received by a detector plane that is perpendicular to the reflected rays. We

source

detector

Figure 5: Analyzing surface roughness from the view point of reflection.

are interested in finding the difference between the paths traveled by the two rays. Using
basic geometry it can be shown that ray 2 and the imaginary ray 3 travel the same distancx*
Therefore, the path difference Ad between rays 1 and 2 is equal to the path difference AOB



between rays 1 and 3, and is determined as:

Ad = 2Hsin/3 . (7)

If A is the wavelength of the incident rays, the phase difference between the rays received
by the detector may be determined from the path difference as:

. (8)

When AQ is very small, the two rays received by the detector will be almost in
phase with each other, and the received energy will be nearly equal to the sum of the
energies carried by the two rays* In this case, the surface reflects light specularly. However,
as the phase difference approaches TT, the the two rays will be in phase opposition and will
tend to cancel the effects of each other. In fact, at Aft = re no energy will flow in the
direction of the detector. The incident energy is thus redistributed in other directions, and
the law of conservation of energy is preserved Hence, the extreme cases are: AQ = 0,
when the surface reflects light specularly and is thus smooth; and AQ- TT, when the surface
scatters light and is rough. We can thus classify surfaces as smooth and rough by picking
an arbitrary threshold between AQ = 0 and AQ = TT. By selecting a threshold value of n/2
we have the Raleigh criterion that states that a surface is considered to be rough when:

This is, of course, a rather simple approach to determining the roughness of a surface.
Some papers that discuss the height distribution model have defined a rough surface as one
whose root-mean-square height is much greater than the wavelength of incident light, i.e. ah

» A. More sophisticated criteria have been developed since the Raleigh criterion was first
proposed. We will not pursue these criteria here but direct the interested reader to [1] for a
more detailed treatment In fact, we have described the Raleigh criterion only to bring forth
the concept of roughness and to emphasize its significance in the study of surface reflection.

4 Reflection Model

When light is incident on a boundary interface between two different media, it is reflected ac-
cording to well-known laws. There are two different approaches to optics and, consequently,
two different approaches to the study of reflection. Physical or wave optics is based directly
on electromagnetic wave theory and mt$ Maxwell's equations to study the propagation of
light Geometrical or ray optics* on the otter hand, uses the short wavelength of light to
simplify many of the light propagation problems. Geometrical optics is generally able to



explain the gross behavior of light when the wavelength is small compared to the pertinent
physical dimensions of the system (in our case, the surface imperfections).

In this section, we study surface reflection from the perspective of physical and
geometrical optics. More specifically, we discuss a physical optics reflection model, namely,
the Beckmann-Spizzichino model, and a geometrical optics reflection model, namely, the
Torrance-Sparrow model We highlight the main steps that are involved in the derivation of
both models and clearly state the assumptions made in the process of their development The
derivations will draw on the surface modeling approaches discussed in the previous section.
Later, the two models are compared by plotting the predicted reflectance as functions of
viewer and source directions.

41 Physical Optics Model

Light is an electromagnetic phenomenon. Therefore, in a strict sense, optics should be
studied as a branch of electrodynamics. Optics is usually treated as a separate field because
it was studied long before its electromagnetic character was realized. Before we address the
scattering of incident light waves by smooth and rough surfaces, we feel that a very brief
introduction to electromagnetic waves is in order.

4X1 Electromagnetic Waves

In the atomic theory of matter, electromagnetic effects are considered to arise from the forces
exerted on each other by elementary charged particles. The elementary positive and negative
particles are the proton and electron, respectively. Consider two charged particles placed in
the vicinity of each other. Due to their respective charges, the particles will exert a fcmx
on each other* If the particles are at: rest, they will experience a constant electrostatic force
resulting from the electric field generated by them. However, if the particles have different
relative velocities with respect to a common frame of reference, the force acting between them
win differ from the electrostatic force. This statement can be verified by simple experiments
[2]. The discrepancy between the fences experienced when the particles are at rest and when
they are in relative motion suggests the presence of another field, namely, the magnetic
field* in addition to the electric field In fact, Maxwell's equations may be intefprcted
as a mathematical foniiaHzation of the following physical phenomenon: associated with a
time-varying electric field is a magnetic field. Therefore, the forces experienced by a moving
charge can be conveniently represented by means of electromagnetic field vectors: the electric
field intensity E and the magnetic field intensity H. Conversely, an electromagnetic field miy
be generated by applying forces and physically moving charges in some region of space. Tte
electnxnagnetic field 'does not nxprirc a medium for its existence. Therefore, electramipctk
energy can be radiated from the space in which the charged particles are moving, to fonn

10



a traveling electromagnetic wave. The field equations for the electromagnetic wave can be
derived directly from Maxwell's equations.

Consider the light waves radiated by a point source of light. When the source is at a
large distance from the point of observation, the spherical waves radiated by the source may
be assumed to be plane waves? like the one shown in Figure 6. The electric and magnetic
field vectors of the plane wave may be expressed as follows:

E = £ . e e

H = /y .h«-*- r e f c * (10)

where k is the wave propagation vector, r is the displacement vector that determines the
observation point in space, the unit vectors e and h correspond to the directions of the
electric and magnetic fields, respectively, and the complex coefficients Eo and Ho represent
the strengths of the electric and magnetic fields, respectively. It is important to note that, in
general, the above expressions give E and H complex values. However, the actual field is
determined only by the real components of the field vectors, Le. Re[E] and Re[H], and the
complex notation is used only for ease of mathematical manipulation. Bearing this point in
mind, we will continue to use the complex forms of E and H.

The first exponential term in the above field equations suggests that the magnitudes of
electric and magnetic fields vary sinusoidally as a function of the distance along the direction
of propagation. The direction of the vector k corresponds to the direction of propagation
of the wave, while its magnitude k, called the propagation constant, determines the spatial
frequency of the wave. The propagation constant is related to the wavelength A of the plane
wave as follows:

If the wavelength lies between 400 nano-meters and 700 nano-meters, the wave can be
detected by the human eye and is called monochromatic light.

The second exponential term in the field equations indicates that the field intensities
also vary sinusoidally as a function of time at a radian frequency of oscillation, a;. The
functions that describe the spatial and temporal field variations are dependent on the function
that represents the forces applied to the charged particles to generate the wave. In most
engineering applications dealing with plane waves, the field is considered to be sinusoidal
steady state. Using Maxwell's equations, it can be shown that the unit vectors e and hare
orthogonal to each other and both these vectors are orthogonal to the propagation vector k.
The direction of either e or h determines the polarization of the plane wave. In Figure 6, the
plane wave is shown at a particular instant in time. At that instant, all points on the plane P
experience the same electric and magnetic field intensities, namely, 12 and H\ respectively.
Therefore, the plane wave can be thought of as being constituted of infinitely large "equi-
field" planes, where each plane is peipendicular to the propagation direction k.
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electric field

magnetic field

h

Figure 6: A plane electromagnetic wave.

Since time variations in the electric field are the cause of the magnetic field,
vice-versa, the amplitudes Ea and Ho of die two fields are dependent on each other, and are
related as follows:

xi *
where e and /i are the permittivity and permeability of the medium, respectively. The
coefficient ^/e//i is often referred to as the wove impedance of the medium. Die to the
above stated dependencies between the electric and magnetic field vectors, we see thai an
electromagnetic wave is completely defined by either of the two field vectors, E or H.

WMle studying surface reflection, we wM be interested in detmnking the energy of
light reflected by the surface in various directions. However, as we will see shortly, reflection
moctels based on physical optics estimate the electromagnetic field scattered by the surface
rather than the energy* Therefore, a relationship between the field and the energy carried
by an electromagnetic wave would be useful* The rate of flow of complex energy per unit
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area in an electromagnetic wave can be described by a vector S called the complex Poynting
vector [2]. S is defined as:

S = E x H* , (13)

and the quantity

Sfl = Re[S] = i Re[E x H*] (14)

defines the time-averaged rate of flow of physical energy per unit area and has the dimensions
watts/meter2. Let E, //, and Sa be the scalar values of the E, H, and Sa, respectively. Then
the average rate of flow of energy per unit area is determined from equations 14 and 12 as:

(15)

This equation will be used later to find the radiance of a surface from the electromagnetic
field scattered by the surface.

4.1.2 Beckmann-Spizzichino Model

The Beckmann-Spizzichino model uses physical optics to describe the reflection of plane
waves from smooth and rough surfaces- Owing to the electromagnetic character of light, this
model is directly applicable to the reflection of light by surfaces. A detailed derivation of
this model can be found in [1]. Our intention is to highlight the key steps involved in the
derivation of the model and to clearly state the assumptions made during its development.
Later, we will study the reflectance curves predicted by the model for surfaces of differing
roughness.

Consider a plane wave incident on a surface, as shown in Figure 7« All vectors and
surface points are defined using the Cartesian coordinates JC, y, z with origin O and unit
vectors x, y, and z. The height of die surface is determined by the function h = h(x,y\
and the mean level of the surface is the plane z = 0. The location of a surface point Q is
described by its displacement vector r:

r =*x + yy + h(x,y)z. (16)

All quantities associated with the incident field will be denoted by the subscript 1 and all
those associated with the scattered field by the subscript 2. We will represent the plane wave
by its electric field intensity only, keeping in mind that the magnetic field intensity may be
determined from the electric field The incident field at the surface point Q may be written
as:

E^E* **-*»*€*"' (17)

where Eoi represents the electric field amplitude, Ci is the direction of the electric field, ki
is the wave propagation vector, and u; is the radian frequency of field oscillation.

13



Figure 7: A plane wave incident on a rough surface, scattered in various directions.

We are interested in the instantaneous scattering of the incident plane wave by the
surface. Hence, we can drop the second exponential term in the above equation, which
represents the temporal variation of the incident field The incident propagation vector ki
will be assumed to always Me in the x-z plane of the coordinate frame- The angle of incidence
Bi of the plane wave is die angle between the propagation vector ki and the z axis of oor
coordinate frame. If we are interested in the field scattered by the surface in the direction k2s

the corresponding scattering angle 9r is the angle between k2 and the z axis. For scattering
directions that lie outside the plane of incidence (ki, z), we must introduce an additional
angle <f>r9 as shown in Figure 7, The propagation constant k corresponding to the propagation
vectors kt and k2 is related to the wavelength A of the incident wave by equation 1L

The polarization of the incident wave is determined by the direction of the vector e^
For parallel polarization, Ci lies in the the plane of incidence; for perpendicular polarization,
Ci is normal to the plane of incidence. An unpoiarized incident wave is one whose ei vector

14



is neither parallel nor perpendicular to the plane of incidence, and in general, can vary in
direction as a function of time. We will see later how the polarization of the incident field
Ei affects the intensity of the scattered field E2. We will not, however, concern ourselves
with the polarization of the scattered field E2, as we are only interested in the intensity of
E2. From here on, we will assume the polarization of the incident wave to be either parallel
or perpendicular, and the incident field will be denoted by the scalar Ei, where:

£ i = e i . E i . (18)

What happens when the incident plane wave strikes the surface? A simplistic descrip-
tion of the physical situation is as follows. A conducting surface will have an abundance of
electrons that are very loosely bound to their atoms. When these electrons are subjected to
the electromagnetic field earned by the incident wave, they experience forces. These forces
result in a movement of the electrons, often referred to as surface currents. The surface cur-
rents give rise to new electromagnetic fields that interact with the incident field to determine
the resultant field at the surface- Mathematically, the resultant field (E)s at a surface point Q
must satisfy the wave equation1:

A2(E)S + k?(E)s = 0 , (19)

where k is once again the propagation constant. Therefore, the field (£)s at the surface may
be determined by solving the wave equation for the boundary conditions imposed by the
surface profile.

The field scattered by the surface in any direction can be determined from the field
at the surface. Let P be the point of observation, and let the variable R' denote the distance
between P and points on the surface 5, as shown in Figure 7, We would like to find the
scattered field E% at the point P. To this end, let us consider a volume V that is bounded
almost everywhere by the surface S but is extended such that the point P lies just outside
the volume. Then, it is reasonable to assume that the field (£)$ is continuous, and the above
wave equation must therefore be satisfied everywhere inside V. Furthermore, the point inside
the volume that is nearest to P will experience almost the same field as the point P. Using
these assumptions and Green's first and second theorems, the scattered field Ei at the point
P can be determined [1] from equation 19 as:

! £ - * ( ! ) , ) * • (20)

where:

V' = f ^ - - (21)

2It cm be shown [2] that for a source-free region of space, Maxwell's equations reduce to the wave equation.
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This is called the Helmholtz integral, which gives us the solution of the wave equation at
any point inside (P is almost inside) a region in terms of the values of the function (surface
field (Zs)s) and its normal derivative on the boundary (the surface S) of the region. A detailed
derivation of the Helmholtz integral is provided in [1]. Though it is derived for a closed
surface, it is also applicable to open surfaces like the one in Figure 7.

In order to evaluate the above integral, we must find (E)s and (dE/dri)s, i.e. the field
and its normal derivative on the surface 5. In general, these two quantities are unknown.
Kirchojfs assumption may be used to approximate the values of the field and its normal
derivative at each point on the surface. The approximation is obtained by assuming that the
surface does not have any sharp edges, and thus the field at a point on the surface is equal
to the field that would be present on a tangent plane at that point Under this assumption,
the field on S may be determined as:

(E)s » ( 1 + F ) £ i . (22)

And, by differentiating this equation, the normal derivative of the field is determined as:

i . n ' , (23)

where n' is the normal to the surface at the point under consideration and F is the Fresnel
reflection coefficient for a smooth plane.

Consider a plane wave incident on a smooth surface, as shown in Figure 8. As
described above, the intensity of the reflected wave is determined by the surface field (£)$,
which in turn is dependent on the surface currents. The surface currents induced by the
incident wave are determined by the angle of incidence, the polarization of the incident
wave, and the electrical properties (permittivity, permeability, and conductivity) of the surface
medium. A fraction of the incident electromagnetic energy, determined by these factors, will
be reflected by the smooth surface, and the remaining energy transmitted by the surface. The
Fiesnel reflection coefficient F determines the fraction of incident energy that is reflected by
the smooth surface. It is often written as F(0{, 77'), where &{ represents the angle of incidence,
and rf is the complex index of refraction whose value is determined by the electrical properties
of the surface medium. In equations 22 and 23, F represents the fraction of the incident field
that is reflated by a smooth surface. As we have shown before, the reflected energy may be
determined from the reflected field by using equation 15- In deriving their reflectance model,
Beckmann and Spizzichino have assumed that the incident wave is of either perpendicular
or parallel polarization* The Fresnel coefficients for parallel and perpendicular polarization
are-, respectively [1]:

- J(Y2 - si/^)
y , C24)
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incident wave reflected wave
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boundary

transmitted wave

Figure 8: Light waves incident on a smooth surface.

perp

- y/(Y2 - Sirffy

^ - sin20\)
(25)

It is important to note the difference between the angle of incidence 9-t shown in Figure 7
and the angle of incidence B\ in the above equations. As shown in Figure 9, the angle Q\ is
the "local" angle of incidence, Le. the angle between the incident wave propagation vector
ki and the normal vector ri at the surface point under consideration. Therefore, the angle 9[
will have different values at different points on the surface, while Oi is constant for a given
incident wave- The term Y in the above equations is called the normalized admittance of the
surface medium and is a function of the complex index of refraction rf. Hence, Y is also a
function of the electrical properties of the medium. For a conductor, Y approaches infinity,
while for a dielectric (non-conductor), Y is almost zero-

Let us now return to the problem of finding the scattered field E% by evaluating the
Helmholtz integral given by equation 20. Let us assume that the surface under consideration is
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Figure 9: The "local" scattering geometry. The local angle of incidence ff{ and the local
surface orientation n' may differ from the global angle of incidence #,* and the mean surface
orientation n. -

a rectangular patch of area A and dimensions IX and 27 in the x and y directions, respectively;
Le. A = 4X7. Further, we assume that the observation point P is at a great distance from
the surface compared to the physical dimensions of the surface patch and, as a result, the
vector k2 is constant over the entire surface area. Therefore, it can be seen from Figure 7
that, for any surface point, the distance /?' can be expressed in terms of the distance R& and
the displacement vector r as:

kRf = kRo - k 2 r . (26)

By substituting equations 22, 23, and 26 in equation 20, we can express the scattered field
Ei as:

EJke^o rx rY ,-v r
E2 = —T~Z— / / {aHx +cny — b) e"% dxdy, (27)

a m (1 -F)$m0i + (1 *tF)$in0rC0S$r

b » (
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c = - (1 + F)sin6rsin<j>r (28)

If the admittance of the surface is finite, we can see from equations 24 and 25 that the Fresnel
reflection coefficient F is an involved function of the local angle of incidence #-. For a rough
surface, the local orientation will depend on the local slope of the surface* In other words,
the factors a, ft, and c in equation 27 will not be constant over the surface area. Therefore,
for finite admittance, the integral becomes very cumbersome to evaluate, and no solution to
the scattering problem is known that is general and exact at the same time. This leads us to
our next assumption: the surface medium is considered to be a perfect conductor, Le. Y —•
oo. From equations 24 and 25, we then see that:

Fpara = / , and Fperp = - 7 (29)

and the terms a, b, and c in equation 27 are independent of x and y. We also assume the
incident wave to be of perpendicular polarization, ix . F = Fp€rp = — 7.

The terms Hx and h!y in equation 27 denote the slopes of the surface h{x,y) in the
x and y directions, respectively. If the surface is perfectly smooth, we see that h = 0, h!x =
0, and h!y = 0. A perfectly smooth surface will reflect light only in the specular direction
dr = Oi, and for this direction we see that v.r = 0. Therefore, the field E2SS scattered in the
specular direction by a smooth perfectly conducting surface is:

Eoiy^0 rx rY

E2ss = °A D * / / icosQidxdy (30)
4wRo J-XJ-Y

The magnitude of the field scattered in the specular direction by the smooth perfectly con-
ducting surface is:

E.ACOS&J
- (32)

We see that for a perfectly smooth surface, the scattered field is obtained with ease.
However, a perfectly smooth surface is only the limiting case of a rough one. We will assume
that our surface has random irregularities. By using a statistical model for the irregularities,
we can predict the reflection characteristics of the surface* The uncertainty in height of a
surface point can be described by a probability distribution function. Though Beckmann and
Spizzichino have discussed a variety of distributions, they consider the normal distribution
to be the most important and typical of a rough surface.

The normal height distribution model was described in the previous section. The
surface height has the mean value <h> = 0, standard deviation crk, and correlation distance T.
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The normal distribution ph {h) is given by equation 4 and the autocorrelation function C(r) by
equation 5. Since h and the scattered field E2 are related by equation 27, the statistics of E2

can be determined from the statistics of h. Beckmann and Spizzichino have derived in detail
the mean field and mean power scattered by the surface in an arbitrary direction for any
given angle of incidence. They normalize the field and introduce the scattering coefficient p
= E2/E23S, and present a detailed derivation of the first and second order statistics of p . This
normalization gets rid of the factor in front of the integral in equation 27 and helps reduce the
number of terms involved in the derivation. Since Ezss is constant, p and E2 are proportional
to each other, and the statistics of E2 can be determined from those of p . It turns out that
the mean field <E2> will be non-zero in the specular direction (0r = 0,-) but will tend rapidly
toward zero as 6r deviates from the specular direction. Since <E2> is a complex quantity, a
physical interpretation of its dependency on B% and 9r is not obvious. For example, it does
not follow from <Ei> = 0 that <| E2 |> = 0. Therefore, Beckmann and Spizzichino have only
used <E2> as a stepping stone to derive the mean scattered power <E2E2*> = <| £2 |2>- For
an incidence angle 9l9 the mean power scattered in the direction (9rj <j>r) by a rough surface,
whose height h is normally distributed with mean value <h> = 0, standard deviation ah, and
correlation distance T, is given by:

where

g = (2x^(awft + cw0r))
2 (34)

p& = sine (vJQ sine (vyY) (35)

cos9icos8r — sin&isin9rcos<f>r\ - „
COS0i(COS$i + COSd) )

f + v/ (37)

In die previous ^ t i o n , the Raleigh aritaion was described to iHusteate how tte
of a surface is related to the wavelength of incident light We see from equatiot

34 that the factor g in equation 33 is proportional to the square of <TpJ\. Therefore, g rqpieseats
Ac rougimess of the surface, and tfie thrw ca^s g «C 1, g « 1, and # >• 1 correspond to
smooth surfaces*9 moderately rough surfaces, and mii^A surfaces, respectively. It is impartutt
to iM>te that tte m-odel u n t o consideration only attempts to describe the reflection mecluuiism
that iŝ  often refeired to by Htm vision research community as "specular reflectionts. As seen
from eqeatioii 33, the meaa scattered power is the sum of two terms. The first term, €~&p}*

define a smoollt $iiif«x as one tint is ettber perfa^Iy smooth cr ̂ slightly**
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is the specular spike component of the specular reflection. It is seen from equation 35
that when the surface dimensions are small, po becomes a very sharp function of 0; and
9r and is equal to zero for all scattering directions except a very narrow range around the
specular direction. Since the mean slope of the surface is constant and is independent of the
roughness of the surface, a privileged scattering in the specular direction is expected. The
second term in equation 33 corresponds to the specular lobe4, i.e. the diffusely scattered
field that results from the roughness of the surface. As we will see shortly, the specular lobe
component is distributed around the specular direction. For a perfectly smooth surface, g = 0
and the specular lobe vanishes, while the specular spike is strong. As the roughness measure
g increases, the spike component shrinks rapidly, while the lobe component increases in
magnitude. The exponential series given by the summation in the lobe component may be
approximated for smooth (g <C 1) and very rough (g ;> 1) surfaces. The approximations
result in simpler expressions for the scattered power for these two extreme surface conditions:

wtpm E0
2A2cos29i „ / 2 wT2D2g _v :

The above equations for scattered power represent the Beckmann-Spizzichino re-
flectance model. Before we study the reflectance curves predicted by this model, it is
important to understand the conditions that ensure the validity of the model. We therefore
summarize the assumptions we have made during the derivation of the model and discuss
the restrictions imposed by these assumptions.

413 Assumptions and Related Comments

• The surface height is assumed to be normally distributed. However, Beckmann and
Spizzichino have derived reflectance models for surfaces with other height distributions,
and also surfaces with periodic profiles.

• The radius of curvature of surface irregularities is large compared to the wavelength
of incident light (Kirchoff *s assumption). This assumption is required to approximate
the electromagnetic field and its normal derivative on the surface. The approximation
will break down if the surface iiTegularities include sharp edges or sharp points.

4Beckmann and Spizzichino have referred to this component as the "diffuse" component. The term "diffuse"
has historically been used by the vision community to describe the reflection component that results from other
mechanisms such as multiple reflections ami internal scattering. To avoid confusion we win refer to the diffuse
component of specular reflection as the specular lobe.
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The surface is assumed to be a perfect conductor. This assumption forces the quantities
a9 b, and c in equation 27 to be constants, thus making it easier to evaluate the
Helmholtz integraL Beckmann and Spizzichino claim that this assumption is not as
severe as it may first appear and that surface roughness has a greater effect on the
scattered field than the electrical properties of the surface medium. Moreover, it is
possible to approximate the scattered field and power for finite conductors by averaging
the Fresnel coefficient F over the entire surface area and using the resultant value <F>
as a constant in the Helmholtz integral. This way the mean field and mean power
scattered by a finite conductor are found [1] to be

<E2

E2E2*

>f =

>f =

<F>

<FF*

<E2>oo

> < E2E2* >oo,

(40)

(41)

where the indices/and oo denote finite and infinite conductivity, respectively.

We have ignored the masking and shadowing of surface points by adjacent surface
points. Adjacent points may obstruct either the wave incident at a given point or the
waves scattered from it Clearly, these effects are functions of the angles of incidence
and reflection. It is possible to compensate for the shadowing and masking effects by
replacing the height function h{x,y) by S(x,y)h(x,y), where S(x,y) is the shadowing
function [27] that tends toward unity for surface points that are illuminated and zero
for those that are not

We have assumed that the incident wave is reflected only once and does not bounce
between surface points before it is scattered in the direction of the observation point
P. Without this assumption it would be very difficult to compute the scattered field;
no closed-form solution that takes multiple scatterings into account is known at the
present time. •

The incident wave is assumed to be perpendicularly polarized. The mean field ami
power can also be determined for parallel polarization. Beckmann and Spizzichino
have also discussed possible approaches to solving the scattering problem when the
polarization vector ei of the incident wave is neither parallel nor perpendicular to the
plane of incidence.

The incident wave is assumed to be a plane wave. This assumption is reasonable whco
the source is at a great distance from the surface, relative to the physical dimaaskw
erf the surface. If the source is relatively close to the surface, the incident waves mutt
be considered to be spherical waves. We have also assumed the observation point to
be sufficiently far removal from the surface to regard the scattered waves as plane
waves.
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4.1.4 Surface Radiance and Image Irradiance from Scattered Field

The physical optics reflection model predicts the mean field and mean power scattered by a
rough surface. We are interested in the radiance of the surface since we know that radiance
can be related to image irradiance [10]. Radiance was defined in Section 2 as:

OUJr QAS COSVT

Consider the image formation geometry shown in Figure 10. For convenience, we will use

image
plane

Figure 10: Image formation: light waves radiated by the surface area dAs and gathered by
the lens are projected onto an area dA^ on the image plane. Adapted from [10].

the areas and solid angles shown in the figure to determine the surface radiance. The surface
element dAs is projected by the lens onto an area dA^ on the image plane. Since the solid
angles subtended from the center P of the lens by both areas dAs and dA^ are equal, we can
relate the two areas as:

dAs = (43)

As the viewing direction 6r changes, we see that the surface area dAs that is projected onto
the same image element (pixel) area changes as a function of 9r. Since the image element
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Urn*

area M^ is constant for a given sensor, the surface area dAs must be determined from dAh

All light rays radiated from dAs that are incident on the lens area dAt are projected onto tt
image aiea dA^. Therefore, dur in equation 42 corresponds to the solid angle subtended fa
the lens when viewed from from the area dAs, and is determined as:

By substituting equations 43, 44, and 45 into equation 42, we obtain:

/ [JTRo
2f2 <E2E2">

^ = 2V7"

The flux £$T in equation 42 is the energy of light received by the lens area dAh and can b
determined from equation IS as:

(45

m
It Is a t possible to detenniite the exact value of the radiance from the statistics of the scateos
field The radiance Lr in the above equation is actually the mean (expected) radiance, <£̂ >
The mean scattered powa: <EzE2*> was determined as an integral over the entire area of An
surface. la Figure 10, we see that the image element dA^ receives light radiated only ^
the surface element dA, and, therefore, die mean scattered power must be computed m m
integral over tfae siflface area A * dA$. Since the image element area dA^ is constant fm'§
fkwiag direction! in de arm of integration dAs is determined by equation 43. Thus, tori
gitea latiietee angle % die radiance in the direction (8n <j>r) of a rough surface, whose W ^
i is nonsalfy diftribuied with nwan value </P> = 0, standard deviation <7A, and corretitii
distanoe T9 Is ghto as;

Similarly, from equations (38) and (39), the surface radiance for smooth and rough swftm
may be written as •.
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the light energy incident per unit area of the surface. If E2 is the scalar value of the incident
plane wave Ei , the surface irradiance can be obtained by once again using equation 15:

/ , = SaCosOi = - J- < EJEJ* > cosOi (50)
2 V e

where the term cosOi accounts for the fact that the same amount of incident energy is received
by a greater surface area when the angle of incidence 0£ is increased. Hence, the BRDF of
the surface is determined using equations 47 and 50 as fr = Lr/Is.

Using the imaging geometry shown in Figure 10, Horn [10] has established a rela-
tionship between surface radiance Lr and image irradiance 7^. The image irradiance is found
to be proportional to surface radiance and is given by:

(51)

When the image covers only a narrow angle of the scene, we see that y « 0 and it is
reasonable to assume that cosy « 1 in the above equations.

4.1.5 Radiance Diagrams

The performance of a physical optics reflectance model is usually illustrated by scattering
diagrams [1] in which either the scattered field or the scattered power is plotted as a function
of the source and viewing angles. In radiometry, surface reflectance is often represented by
the BRDF/r(#i; 0r, <j>r) normalized by the B R D F , ^ , in the specular direction [30]. Since we
are interested in interpreting image irradiance values, however, and since image irradiance is
proportional to surface radiance, we will illustrate surface reflectance properties by radiance
diagrams, where absolute surface radiance is plotted as a function of viewing angle (9n <f>r)
and incidence angle 0;. Radiance diagrams will be plotted for different values of the surface
roughness parameters. For simplicity, we will assume that the observation point P lies in the
plane of incidence, i.e. <f>r = 0. In this section, we will plot radiance as a function of the
viewing angle 6r for fixed values of the incidence angle #;. Later, we will investigate how
the radiance changes as a function of 6l9 for fixed values of 6r.

As mentioned earlier, the parameter g in equation 47 represents the roughness of the
surface. We see from equation 34 that g is a function of the ratio aJX. In Section 3 we
have also seen that the shape of a normally distributed surface can be represented by the
ratio <TfJT. We would like to see how the radiance diagram changes with the two ratios a^JX
and <Tk/T. We will vary the values of the two ratios by keeping ah constant and varying A
and T. Figure 11 shows radiance diagrams for different values of 0&/A. All the radiance
diagrams are generated by using the general radiance expression given by equation 47. The
specular lobe component of the radiance was computed by summing the first 100 terms of the
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exponential series. In Figure lla, we see that <JA/A = 0.002, i.e. g « 0. From equation 47 we
see that when g « 0, the lobe component is near zero and the spike component is dominant.
The surface behaves in a mirror-like manner and reflects light only in the specular direction
9r =s 9i. Also note that the radiance in the specular direction is constant for different values
of 0,-. This is consistent with our real-world experience; when we look at a perfect mirror
from the specular angle, we see a virtual image of the source. Further, the image appears the
same irrespective of the angle of incidence. We have found that this mirror-like behavior is
observed when a*/A < 0.025. In Figure l la , the spike component look like a delta function.
However, from equation 35 we see that the spike component is really a sine function. This
is seen in Figure l ib, where one of the radiance curves in Figure l l a is magnified-

As <TA/A is increased above the value 0.025 (Figures l ie and lid), we find that the
spike component decreases rapidly in magnitude5. However, the spike component is still very
strong for large values of 8r and 0;. This is because g (equation 34) is a function not only of
<Th/K but also of (cos&i+ cosOr). Therefore, for large values of 0; and 6r9 g approaches zero,
the spike component increases, and the surface tends to behave like a mirror. However, we
see that when cr^/X is increased further (Figures l i e and llf), the spike component fades
away, and the lobe component begins to dominate the radiance value. We have found that
when ah/\ > L5, the spike component disappears, and the radiance value is determined
solely by the lobe component

Figure 12 and Figure 13 illustrate how the radiance diagram is affected by the surface
roughness ratio <?k/T. For the radiance diagrams in Figure 12, a*/A = 0.002. We see that the
spike component is unaffected by changes in the correlation distance T. In other words, for a
given wavelength of incident light, the spike component would be the same for two surfaces
with different shapes but the same root-mean-square height a^ However, in Figure 13 we
see that the shape and magnitude of the lobe component are greatly dependent on the ratio

In Figure 13a, we compare the radiance diagrams generated by using the general
radiance expression (equation 47) and the approximate radiance expression for rough surfaces
(equation 49) for ahf\ = 10.0 and ak/T = 0 .1 . We see that the expression Z^a^ approximates
the lobe component of the L+ quite well, and may be used when the spike component is
negligible. In Figure 13b, we see that the lobe component is sharp and concentrated around
the specular direction. We have found that when ah/T < 0.02, the shape of the lobe component
resembles that of the spike component However, the magnitude of the lobe peak increases
with the incidence angle $*% This effect results from the term \lcosBr in equation 49. From
Figure 13e-13f, we see that as the ratio <r^/T increases, the lobe gets wider and the lobe
peak decreases in magnitude. In fact, for a^/T < 0.05 the lobes may be approximated by

% the radiance or die BRDF is normalized by the cofiespoeding valoe in the s p e c i f
in Hie spike component is not observed. It is.for this reason dial we have chosen to plot the absolute radiance
value.
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Note change of scale between (d) and (e) .

Figure 11: Radiance diagrams predicted by the Beckmane-SpizacMoo model for different
values of cr /̂A.
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(a) ah = 0.001, T = 0.05, X = 0.5 (b) °h = 0.001, T

• 1-0
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(c) a h = 0.001, T = 0.01, X = 0.5 (<j) ah = 0.001, T = 0.006, X = 0.5

Figure 12: Radiance diagrams of the specular spike component predicted by the Beck-
mann-Spizzichino model for different values of crh/T.
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Figure 13: Radiance diagrams of the specular lobe component predicted by the Beck-
mann-Spizzichiiio model for different values of a*/7*.
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Gaussian functions with mean values corresponding to the specular direction 0t- = 6r. For
larger values of <rhjTy however, the the lobes lend to peak at viewing angles greater than
the specular angle; these are called off-specular peaks. Also note that as 9r approaches 90
degrees, the radiance values approach infinity. By using a shadowing function, this effect
can be minimized, while preserving the shape of the radiance curves for smaller values of

4.2 Geometrical Optics Model

An outstanding feature of visible light is its short wavelength. Often, the wavelength of
incident light is far shorter than the physical dimensions of the surface imperfections it
encounters, and in such cases it is possible to solve the problem of reflection in an approximate
way. The approximation that is valid for short wavelengths of light is known as geometrical
optics, and it allows us to treat the reflection problem in a way far simpler than the physical
optics approach of solving Maxwell's equations.

In this section, we will discuss the Torrance-Sparrow model, which uses geometrical
optics to describe the specular reflection mechanism. To their specular reflection model,
Torrance and Sparrow have appended the Lambertian model to account for internal scattering
and multiple reflection mechanisms. We will very briefly describe the Lambertian model6 and
proceed to explain the Torrance-Sparrow model, once again highlighting the important steps
and assumptions. Later, we will present radiance diagrams predicted by the Torrance-Sparrow
model for different surface roughness values, and compare it to the Beckmann-Spizzichino
physical optics model

4,2.1 Lambertian Model

Lambert [15] was the first to investigate the mechanisms underlying diffuse reflection. Sur-
faces that satisfy Lambert's law appear equally bright from all directions. In other words, the
radiance of a Lambertian surface is independent of the viewing direction. Broadly speaking,
there are two mechanisms that produce Lambertian reflection. In one case, the light rays
that impinge on the surface are reflected many times by surface undulations before they are
scattered into space, as shown in Figure 14a. If these multiple reflections occur in a random
manner, the incident energy is distributed in all directions, resulting in diffuse reflection.
Another mechanism leading to Lambertian reflection is the internal scattering of light rays.
In this case, the light rays penetrate the surface and encounter microscopic inhomogeneities
in the surface medium, as shown in Figure 14b. The light rays are repeatedly reflected and
refracted at boundaries between regions of differing refractive indices. Some of the scattered

6Lambensan reflection is normally categorized as "body" reflection rather than surface reflection. The model
is discussed hoe only because it is used later to represent one of the primary reflection components.
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rays find their way to the surface with a variety of directions, resulting in diffuse reflec-
tion. When diffuse reflection produced by either or both of the above mechanisms produce
constant surface radiance in all directions, we have Lambertian reflection.

Multiple Reflections Internal Scattering

Figure 14: Diffuse reflection resulting from multiple reflection and internal scattering mech-
anisms.

The surface radiance Lr of a Lambertian surface is proportional to the irradiance Is

(incident energy per unit area) of the surface. Consider an infinitesimal surface area dAs

illuminated by an infinitesimal source area dAir as shown in Figure 15. The flux incident on
dAs may be determined from the source radiance L, as:

iAi. (52)

(53)

(54)

From the solid angles subtended by the surface and source areas, we obtain:

dAs
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Substituting equations 53 and 54 into equation 52, we obtain:

The surface irradiance is determined from the above equation as:

(55)

"--sir- (56)

Since surface radiance is proportional to surface irradiance, and since it is meaningful only
when it attains positive values, it can be expressed as:

>, (LidiOiCosOi)], (57)

where K^ determines the fraction of the incident energy that is diffusely reflected by the
surface.

dA,

n

dw

Figure 15: Dependence of the incident light energy on the source direction.

42*2 Torrance-Sparrow Model

The Tonmice-Sprarow model was developed with die mm of describing the mechanism for
spceiiar reflection by ratigh stirftces. Based cm geometrical optics, this model is valid cmly
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when the wavelength of light is much smaller than the root-mean-square surface roughness.
The surface is modeled as a collection of planar micro-like facets. As explained in Sec-
tion 3.2, the surface has a mean surface orientation n, and the slope a of each planar facet
with respect to the mean orientation is described by a probability distribution. Each facet
reflects incident light in the specular direction determined by its slope. Since the facet slopes
are randomly distributed, light rays are scattered in various directions. Therefore, it is pos-
sible to assign a specific distribution function to the facet slopes and determine the radiance
of the surface in any given direction.

Torrance and Sparrow have assumed the facet slopes to be normally distributed.
Further, they have assumed the distribution to be rotationally symmetric about the mean
surface normal n. Hence, facet slopes may be represented by a one-dimensional normal
distribution:

a (58)

where c is a constant, and the facet slope a has mean value <a> = 0 and standard deviation
cra. As we have stated earlier, for this surface model, roughness is represented by the
parameter aa.

Consider the geometry shown in Figure 16. The surface area dAs is located at the
origin of the coordinate frame, and its surface normal points in the direction of the 2-axis.
The surface is illuminated by a beam of light that lies in the x-z plane and is incident on the
surface at an angle 0*. We are interested in determining the radiance of the surface in the
direction (9n <f>r). Only those planar micro-facets whose normal vectors lie within the solid
angle du are capable of specularly reflecting light flux that is incident at the angle 9t into
the infinitesimal solid angle (kor. From the angles 9l9 9r, and <f>r9 we can determine the local
angle of incidence 9\ and slope a of the reflecting facets:

Q\ ss ~ cos~2 (cos6rcos0i — sin0rsindicos<f>r) , (59)

' 1 (cosdi cos6[ + sinOi sin9\ cos( sirT1a = cos'1 (cosdi cos6[ + sinOi sin9\ cos( sirT1 (sin<f>r sin9r / siriZ9\))) . (60)

The number of facets per unit area of the surface that are oriented within the solid
angle dJ is equal to (pa(a) dJ). Therefore, the number of facets in the surface area dAs that
are oriented within dJ is equal to (pa(a) dkJ dAs). Let a/ be the area of each facet Then,
the area of points in dAs that will reflect light from the direction 9-t into the solid angle cLor

is equal to (a/pa(a) dJ dAs). All the reflecting facets are assumed to have the same local
angle of incidence, 0J. From equation 55, the flux incident on the set of reflecting facets is
determined as:

£ JdAs)cos9t
i . (61)

The fraction of incident light that is reflected by each planar facet is determined
by the Fresnel reflection coefficient The Fresnel coefficients F^^a(9i% ?f) and FpmT(0i\ if)
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incident beam

reflected beam

Figure 16: Coadi&ate system used to cfcrivc the Tcmrance-Spairow model.
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determine the electromagnetic field reflected in the specular direction by a planar surface
when the incident wave is of parallel and perpendicular polarization, respectively. In this
section, however, we are interested in the reflected flux, i.e. the energy flowing through a
unit area. The reflection coefficients for energy reflectance may be determined from those
for field reflectance as:

> rf) f , and F W ( J / , rf) = | F w (* / , rf) f . (62)

Let us assume that the polarization vector ei of the incident light wave lies outside the plane
of incidence, and let h and v represent the magnitudes of the resolved components of ei in the
parallel and perpendicular polarization planes, respectively. The Fresnel coefficient F'(#/, 77')
for the incident wave may be expressed as a linear combination of the Fresnel coefficients
for parallel and perpendicular incident waves [25]:

, rf) = hFpara{9!, 77O + vF^ifii, r,1), (63)

where
A, v > 0 and h + v = 1 . (64)

Torrance and Sparrow have also considered the masking and shadowing of one micro-
facet by adjacent facets. Adjacent facets may obstruct flux incident upon a given facet or
the flux reflected by i t In order to compensate for these effects, the geometrical attenuation
factor1 G(0i, 8n <j>r) is introduced- The obstruction of incident or reflected light will depend
on the angle of incidence and the angles of reflection. Each facet is assumed to be one
side of a V-groove cavity, and light rays are assumed to be reflected only once. A detailed
derivation of G(8^ 9n <f>r) is given in [30], and the final expression is found to be:

. / , 2cosacos6r 2cosaco$di\ , _
= nan \l,.——, -—^-) • (65)

Taking the Fresnel reflection coefficient and the geometrical attenuation factor into consider-
ation, the flux £$r reflected into the solid angle dmr may be determined from the flux
incident on the reflecting facets as:

, rf) GQh On M <?$i . (66)

The radiance Lr of the surface dAs in the direction (6n 4>r) is defined as:

' ( 6 7 )

7This factor {days the role of the shadowing function S mentioned in the previous section.
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Using equations 61 and 66, equation 67 may be written as:

{, rf) G(8h $n 4>r)Ljdb>i iflfpjfx) dJ dA,

du>r dAs cos9r

(68)

Earlier we stated that only facets with normals that lie within the solid angle du; are
capable of reflecting light into the solid angle du>r. Therefore, dJ and dujr are related to
one another. Though Torrance and Sparrow have only used this relationship and have not

incident beam reflected beam

Figcure 17: The source-viewer plane* illustrated to establish the relationship between d$J and

derived it, we fed that it is a very Important one and deserves at least an informal proof.
To this end, let us consider the plane shown In Figure 17, which includes the Incident and
reflected beams. We will assume aE incident rays of light are parallel This assumption is
vaEd when the somce Is at a large distance from the surface. We we that the areas dAr and
dAm subtend the same solid angle from the point /, and that IR = HP. Therefore, we can
relate the two areas as dAm = dAJ4. Similarly, we see that dA" and dAm subtend the same
sold angle dJ from tie point 0 . Noting that OP = cm^h we can relate the two areas as
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dA!' = dA^/cos2^ Further, the area dA' is a projection of the area dA!' onto the surface of
the unit sphere, i.e. dA' = dA'fcos0t. Using the above relations, we can relate dA! to dAr: dA'
= dArl4cosQ'r Since dJ = dA! and dur = dAr (areas on the unit spheres), we have:

Hence, for a given dL>r, the shape and size of the coifesponding dJ is dependent on the
local angle of incidence 9\, which is in turn dependent on the angle of incidence 0< and the
angles of reflectance ($n <f>r) (equation 59). Note that for a perfectly smooth surface, the
parallel incident rays will be reflected in a single direction (the specular direction) and will
not be scattered into a cone as shown in Figure 17. Therefore, for this limiting case, the
above relationship between du and du>r will not be valid.

Substituting equations 58 and 69 into equation 68, we obtain:

(70)

where

- • (71)

Note the similarity between the above equation and the expression for the specular
lobe predicted by the Beclanann-Spizzichino model (equation 49). Thus, the Torrance-
Sparrow specular reflection model describes only the lobe component of specular reflection;
there is no term in the above equation that represents the spike component of specular
reflection. The radiance is determined only by the roughness parameter cra, and unlike
the Beckmann-Spizzichino model, there is no dependence on the wavelength A of incident
light However, from the physical optics model we have seen that the spike component
is significant only when ah/X < 15. Torrance and Sparrow have clearly stated that their
model is only valid when crk/\ » L0. Therefore, this model must not be used to predict
or interpret reflection from very smooth surfaces, Le. when ahj\ « 1.0. To make their
model more generic, Torrance and Sparrow have appended the Lambertian model to their
specular model to account for diffuse reflection that may result from multiple reflections or
internal scattering. Thus, for an angle of incidence 9iy the radiance in the direction (8n <f>r)
of a rough surface whose facet slopes are normally distributed with standard deviation ca

may be expressed as:

r , .«*
U * K^maxlO, (LiduncosBi)] + K^^—^e 2^7 , (72)

COSur

where K^ and KSP&: determine the fractions of incident energy that are reflected as components
of the diffuse and specular lobes, respectively. From the radiance and irradiance, the BRDF
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of the surface may be obtained as/ r = Lr/Is. Once again, we will summarize the assumptions
we have made during the derivation of this model and discuss the restrictions imposed by
these assumptions*

4.23 Assumptions and Related Comments

• The surface is modeled as a collection of planar micro-facets, and the facet slopes
are normally distributed. Other distributions, however, may be used to describe the
facet slopes. For example, if the surface height is assumed to be normally distributed
with standard deviation <TH and correlation distance T, the slope distribution may be
determined from the height distribution as [1]:

(
2crh/TJ

(73)

• The size of the planar facets is much greater than the wavelength of incident light,
Le. crk » A. Therefore, we can assume that the light rays are reflected by each facet
in its specular direction only. Furthermore, ah » A implies that the spike component
of reflection is negligible and that the model determines only the lobe component of
reflection.

• The geometrical model takes the Fresnel reflection coefficient F* into account There-
fore, the polarization of incident light and the conductivity of the surface medium need
not be constrained. As a result, the model is capable of predicting reflections from
both conductors and dielectrics.

• Each facet comprises one side of a symmetric V-groove cavity. With this assumption,
the shadowing and masking effects are compensated for by using the geometrical
attenuation factor G.

• The source is assumed to be at a great distance from die surface, so that all light rays
that are incident upon the surface area dAs are nearly parallel to one another. This
assumption simplifies the relationship between the solid angles du> and dujr (equa-
tion 69).

• The final model includes die Lambertian model to account for diffuse reflection mech-
anisms such as multiple reflection and internal scattering,

4X4 Radiance Diagrams

Torraiice and Sparrow have evaluated the performance of their model by plotting the ratio
of the BRDF in a given direction to the BRDF in the specular direction. The normalized
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BRDF distributions predicted by the model for a dielectric (MgO) and a conductor (Al)
were found to fit the experimental data very well. We feel that plots of the normalized
BRDF could lead to misinterpretation of the reflectance characteristics, however. Since
image irradiance is proportional to surface radiance, we once again choose to plot absolute
radiance diagrams. Since our intention is to compare the Torrance-Sparrow model with the
Beckmann-Spizzichino model, we will neglect the Lambertian component of the Toirance-
Sparrow model. Further, since the Torrance-Sparrow model is valid only when an » A,
we will only compare it with the Beckmann-Spizzichino model for rough surfaces given by
equation 49.

/
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Figure 18: Typical plot of the Fresnel reflection coefficient as a function of the local incidence
angle.

Consider the Fresnel coefficient F(9i',rj') and the geometrical attenuation factor
G(&i,9n<f>r) in equation 71. A typical plot of F(6i\rf) as a function of B\ is shown in
Figure 18. For metals and many other surfaces, it is observed [20] that F has a nearly
constant behavior until the local angle of incidence ^ approaches 90 degrees. Therefore, we
will assume that F is constant with respect to Bt and 0r. Figure 19 shows G(dh dr, 0) plotted
as a function of Br, for different values of 0,-. We see that, for angles of incidence not near
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Figure 20: Radiance 'diagrams predicted by the Torrance-Sparrow model for different values
of a^
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Hgure 21: Radiance diagrams predicted by the Torrance-Sparrow model for different values
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with the angle of incidence 0,-. As in the case of the physical optics model, this effect results
from the term l/cos0r (equation 70). It is also clear that the width of the lobe increases
with the roughness parameter aa. In fact, for relatively small values of cra, the lobe may be
approximated by a Gaussian function that is symmetric with respect to the specular direction.
However, for higher values of aa (Figure 21), the lobe peak occurs at reflection angles greater
than the specular angle- As with the physical optics model, these off-specular peaks result
from the term l/cos9r (equation 70). For large values of 0; and near-grazing values of 0r, the
radiance values approach infinity. From Figure 19 we see that G approaches zero for near-
grazing values of 9r. Torrance and Sparrow have proved that G approaches zero at a faster rate
than the rate at which the plotted radiance approaches infinity. Hence, in practice, the surface
radiance equals zero when 9r = 90 degrees. In Figure 21d, we have compared the radiance
diagrams predicted by the Torrance-Sparrow model and the Beckmann-Spizzichino model.
Though the two models were developed using different approaches and different surface
models, we see that the resemblance between the two radiance diagrams is remarkable. In
the following section, we relate the roughness parameters of the two models.

5 Observations

5.1 Primary Reflection Components

From the physical and geometrical optics reflection models, we see that surface radiance may
be decomposed into three primary reflection components, namely, the diffuse lobe, specular
lobe, and specular spike. Polar plots of these three components are illustrated in Figure 22.
The sum of the three lobe components determines the surface radiance detected by the
viewer for a fixed position of the source. The diffuse lobe is represented by the Lambertian
model, and is constant with respect to the viewing direction. The specular lobe tends to
be distributed around the specular direction, and has off-specular peaks for relatively large
values of surface roughness. The specular spike is concentrated in a small region around
the specular direction. The strengths of the specular lobe and specular spike components are
related to one another. For a smooth surface, the specular spike component is many orders
of magnitude greater than the specular lobe component As the surface roughness increases,
the spike component shrinks rapidly, and the specular lobe begins to dominate. We have
seen from the radiance diagrams for the physical optics models that, for a given wavelength
of incident light, the spike and lobe components are comparable to one another only for a
small range of roughness values.

Owing to its simplicity and its conformity with experimental data [30], the specular
component of the Torrance-Spairow model may be used to approximate the specular lobe
component However, this model does not have a spike component, so the spike component
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Figure 22: Polar plots of the three reflection components as functions of the viewing angle

for a fixed source direction.
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of the Beckmann-Spizzichino model may be used. We see from equation 47 that the shape
of the spike component is determine by the term po. Since po is a very sharp function of
ft and 9r, we can approximate po by a Gaussian function with low standard deviation or a
double-delta function. Using the above approximations, the image irradiance equation, for
fixed source direction and varying sensor direction, may be written as a linear combination
of the three reflection components:

= Cdl + ^ ^ \ 2 V * ) + Css6(6i " 6r)6((f>r) , (74)

where, the constants C<#, Csu and Css represent the strengths of the diffuse lobe, specular
lobe, and specular spike components, respectively.

5.2 Moving Source and Fixed View

In all the radiance diagrams we have presented so far, surface radiance was plotted as a
function of viewing direction ft, for fixed values of the incidence angle ft. In shape extrac-
tion techniques such as photometric stereo, structured highlight, and photometric sampling,
however, images of the observed object are obtained by varying the source direction while
keeping the viewing direction constant Note that when the viewing direction is fixed, the
term l/cos9r in the specular component of the Torrance-Sparrow model (equation 72) is
constant, and the shape of the specular lobe is dependent solely on the term

(75)

Since a = 0 when ft = 9iy the specular lobe is found to be symmetric with respect to the
specular direction. A similar analysis is applicable to the physical optics model for rough
surfaces (equation 49). The only term that is significantly affected by variations in ft is the
term e~Vxy2TI4**l<7^\ Further, it can be shown [1] that

tana = - ^ , (76)

where, as with the slope distribution model, a is the angle between the bisector of the incident
and viewing directions and the surface normal vector n. Let us assume that tan ao-2 aJT.
Then, we can write:

(77)
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Many rough surfaces are gently varying, and the slopes (a) of most facets are small. There-
fore, we may approximate the tangents in equation 77 by their arguments, obtaining:

^ ' (78)

From equations 78 and 75, we see that the roughness parameters of the Torrance-Sparrow
model and the Beckmann-Spizzichino model may be related as:

—- < 7 9 )

Figure 23 shows radiance diagrams plotted for surfaces with different roughness
values using the Beckmann-Spizzichino model (left column) and the Torrance-Sparrow model
(right column). Here again, only the specular lobe component is considered. Note that these
radiance diagrams differ from aU of the previous ones in that radiance is plotted as a function
of the source angle 6t for fixed values of the viewing angle 9r, rather than vice-versa. Once
again we assume that <f>r = 0, the geometrical attenuation factor equals unity, and the Fresnel
reflection coefficient is constant For each aiJT ratio in the left column, we have used
equation 79 to find aa for the corresponding diagram in the right column. Three important
observations can be made from these radiance diagrams:

• When the source direction, viewer direction, and surface normal are coplanar, the
radiance curves can be represented by Gaussian functions. This statement can be
proved analytically by setting <f>r = 0 in the specular lobe component of both models.

• The peak for each radiance curve is observed at the specular angle, i.c. B\ = 9r.
Varying source direction, rather than viewing direction, prevents off-specular peaks
from occurring* In addition, the radiance value exhibits reflection symmetry with
respect to the viewer-normal plane.

• The radiance diagrams predicted by the physical optics and the geometrical optics
models resemble each other very strongly. Therefore, even though the two models use
two different surface modeling parameters (height and slope, respectively), equation 79
does very well in relating the-physical roughness parameters of the two models.

We can further illustrate the difference between varying source direction and varying
viewer direction by mtroducing a new representation of the reflection components. Figure 24
shows polar plots of the diffuse lobe, specular lobe, and specular spike. This time, however,
the magnitudes of the three components of the radiance value in the viewing direction are
determined by intersections made by the lobes with the line joining the source and the
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Figure 23: Radiance diagrams predicted by the Beckmann-Spizachino mockl and the Tor-
ranee-Sparrow model In these diagrams, radiance is plotted as a function of §i for fixed
values of Br. 47
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Figure 24: Polar plots of the three reflection components as functions of the source angle
for a fixed viewing direction.
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origin. In this case, the diffuse component varies with the position of the source, since it is
proportional to the surface irradiance. Note that the specular lobe is symmetric with respect
to the source specular angle 0; = 6r, and the spike is concentrated around the same angle.
From the above observations, the image irradiance equation, for fixed sensor direction and
varying source direction, may be written:

+ KuS{0i - er)8(<j>r), (80)

where the constants K<u9 Ksi, and K^ represent the strengths of the diffuse lobe, specular
lobe, and specular spike components, respectively. Note that the ratio Ksl/Kss is dependent
on the surface roughness and the angles of incidence and reflection. Seldom are Ksi and
Kss comparable to one another. In most instances, one of the two specular components is
significant, while the other is negligible.

6 Concluding Remarks

• We propose a reflection model with three primary components: the diffuse lobe com-
ponent, the specular lobe component, and the specular spike component

• The Lambertian model may be used to represent the diffuse lobe component. This
model has been used extensively to test shape-from-shading and photometric stereo
techniques, and the results have indicated that it performs reasonably well. More
accurate models [14] [21] may be used at the cost of functional complexity.

• The Beckmann-Spizzichino physical optics model predicts both the specular lobe and
spike components. For a very smooth surface (&& <C A), the spike component dominates
and the surface behaves like a mirror. As the roughness increases, however, the spike
component shrinks rapidly, and the lobe component begins to dominate. The two
components are simultaneously significant for only a small range of roughness values.

• A sharp specular component may result from the specular spike component when the
surface is smooth (<r̂ /A < 1.5), and/or from the specular lobe component when the
surface is gently undulating (crJT < 0.02).

• The Torxance-SpaiTOw geometrical optics model provides a good approximation to
the specular lobe component of the Beckmann-Spizzichino model. Both models are
successful in predicting off-specular peaks in the specular lobe component Owing to
its simpler mathematical form, the Torrance-Spairow model may be used to represent
the specular lobe component
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