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Abstract

This report presents a new way to model and identify single-link flexible arms when Coulomb fric-
tion is present in the joint. In order to isolate the effects of this nonlineaiity, the arm model is divided
into two submodels: motor and beam. The two arc coupled through the torque at the base of the beam.

A systematic method is developed to obtain the dynamics of a lumped-mass flexible beam, and some
properties are obtained from this model. The influence of the payload on the model is given special
attention. This way of modelling is later extended to the general case of distributed-mass flexible aims.

Identification in the presence of Coulomb friction is carried out. A new method is proposed to estimate
this friction and to reconstruct the motor frequency response from experimental results, which are highly
distorted by this nonlinear friction.

Experimental results are presented and, finally, conclusions are drawn.
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1. Introduction

1.1. General Introduction

An important research effort has been carried out in the past few years to study the control of flex-
ible structures and, in particular, flexible arms. Several papers have appeared on this topic studying
different aspects: [1,2] are examples of controlling the endpoint position using state space techniques;
[3-5] used different schemes of adaptive controllers in order to take into account changes in the load.
Classical frequency domain techniques to control a flexible arm with two degrees of freedom were used in
[6]. However, very little effort has been devoted to the control of flexible arms when static and dynamic
frictions arc present in the joints, even though this case is very common in practice.

Our work is devoted to solving or at least minimizing problems due to nonlinear friction, which may
be very noticeable in lightweight flexible arms, or in flexible arms moving at low speeds and accelerations.
We propose a completely new way of modelling, identifying and controlling these arms that produces
simpler controllers than the other methods. Our final goal is to build and control a 3-joint flexible arm
with 3 degrees of freedom, but we have centered our work of the first year on the single-link case.

The results of our research during this first year are presented in three reports. This first one is devoted
to modelling and identification. The second one proposes a general control scheme and compares three
specific controllers for the tip position. The third studies a control scheme to deal with changing payloads.

L2. Introduction to Part I

First, we consider the problem of modelling a special class of single-link flexible arms: lumped-mass
flexible arms. They consist of massless flexible structures that have some masses concentrated at certain
points of the beam (see Figure 1). Only translations of these masses produce stresses in the flexible
structure; their rotations do not generate any torque in the beam. So, the number of vibrational modes in
the structure coincides with the number of lumped masses.

Little work has been done on the analysis and control of lumped-mass flexible structures. Book [7]
studied the case of two rigid masses connected by a chain of massless beams having an arbitrary number
of rotation joints. Our problem differs from this in the sense that our structure has only one rotation joint
and an arbitrary number of lumped masses along the structure.

These particular structures are studied here because:

• Their dynamics may be modelled easily compared to distribtited-ma&s flexible arms.

• Interesting properties for the control of flexible arms are deduced from their dynamic models.

• A method of easily controlling these aims is inferred from the structure of the model.

• The influence of changes in the tip's m^s is easily characterized.

• Some robots and robot applications can be reasonably approximated by these models.

• Given a distributed-mass flexible arm, there always exists a truncated dynamic model which is of
the s m e form as the lumped-mass flexible arm models, and which reproduces the dynamics of the



measured variables. This will allow us to generalize the above-mentioned control method to the
case of distributed-mass flexible arms.

The influences of changes in the carried load are studied in this report. Results of this study allow us to
tune the controllers to the particular payload, in order to keep the response of the system to changes in
the position reference approximately invariant.

Section 2 establishes the dynamic model of these beams, some properties of the model arc deduced
in Section 3 that arc useful in controlling these arms, and this modelling method is extended in Section
4 to the case of distributed-mass flexible beams.

A new method of identifying the dynamics of flexible arms in the presence of Coulomb friction (which
is a strong nonlinearity) is developed in Section 5. It also provides an accurate estimate of the average
value of the Coulomb friction over the range of working velocities. This method allows us to reconstruct
the motor frequency response from experimental results, which arc highly distorted by this nonlinear
friction.

In Section 6 these methods arc applied to a class of single-link lightweight flexible arms that we have
designed in our laboratory for experimental purposes. These arms arc very lightweight; they can perform
quick movements, but the friction torque, which is comparable to the couplmg torque between the motor
and the beam, precludes the use of other existing identification and control methods. Experimental results
arc given for two of these aims.

Finally, conclusions arc presented in Section 7.

2. Lumped-Mass Flexible Arm Modeling

We divide the model of our flexible arm into two submodels: the first one describes the behavior of
the motor; the second one describes the behavior of the mechanical structure using the angle of the motor
as its input These two submodels are coupled by the reaction torque of the beam on the motor (see Figure
2). This model is quite different from the models normally used in the control of flexible aims, which
consider the applied toique as the input to the beam (Truckenbiodt [8], Low [9]). Our model has some
advantages when identifying flexible arms with friction in the joints [10] (explained in Section 5), and
when trying to compensate for friction [11] (explained in Part II). We show here that another advantage
of our model is that it allows us to separate the dynamic-model parameters that depend on the geometry
of the beam from the parameters that depend on the lumped masses of the beam. Special attention is
paid to this issue in this section because it will be used in the control design.

2.1. Beam modelling

Consider the system of Figure L It represents a massless flexible beam with n point masses distributed
along the structure, the last mass being located at the tip of the beam. The inertia of the motor is included
in the motor submodel. Let mj, 1 < i < n be the values of the masses aod4the distances between
consecutive masses i - 1 and i, where l\ is the distance between the rotation axis of the motor and the
first mass. Let Li be the distance between mass mi and the axis of the motor. We assume that beam
deffectiQos mt small enough so that the distances between masses m (measured along the length of the
beam) arc equal to the distances between the masses' projections on the x-axis.



We establish two coordinate systems, both with origins at the motor axis: the x — y system is fixed in
space, while the x-y system moves with the motor shaft. Thus, the y-coordinate of a point represents the
deflection of the point on the beam from its initially straight configuration, corresponding to the *-axis.
We denote as F(JC) and T(x) the force and torque, respectively, at this point: Lc. the force and torque
acting on the beam just to the left of a point due to the action of the beam just to the right

An external force, FH9 and torque, Tny applied at the tip of the beam, are also considered in our model.
Fn represents the component of the resultant applied force that is normal simultaneously to the beam and
to the joint rotation velocity vector. Tn is the component of the resultant torque normal to the x-y plane.
These two quantitities represent the interaction of the beam with the environment and may be produced
in several ways, a few of which are: they may be the reaction forces when following the contours of
a surface, or the reaction of the next joint when dealing with a multilink arm; they may be produced
by a load; they can even represent the small effects of friction on the tip (for example, in flexible arms
mounted on an air table).

Assuming small deflections, a massless beam can be described by the static deflection relation:

If the stiffness E - / is constant throughout each interval of the beam, the deflection in the interval
[i — 1, i] is given by a third-order polynomial:

where ufJ are the polynomial coefficients, different in each interval, and LQ = 0. We assume in the
following analysis that E • / is constant throughout the beam.

2JJ. Geometric equations

Imposing continuity conditions between two consecutive intervals up to the second derivative we get
3 • in — 1) equations:

for the joint between [i — 1, i] and [i, i+ 1], 1 < i < n. The continuity condition between the motor and
the beam pves



yi(0) = ^ i ( 0 ) = 0 =• ui,o = 0, «ifi = 0, (3)

and the condition of the applied torque at the tip gives

The set of geometrical equations is completed expressing deflections at specific points i in terms of
these polynomials:

l<i<n (5)

212. Dynamic equations

If we apply Newton's equations to the n masses we get:

0<i<n (6)

0<i<n (7)

where %Lj) (= yiLj) + Bm - Lj) is the arc position of mass j with respect to the jc-axis (0m is the angle of
the motor). Taking into account that

(8)

and axskmmg #H8)t we get

: < n (9)

i*c*t I«H44 » - A j ** ̂ ^^^ «5cof*ig to (8).

2JJ . Dynamic model cf the beam

Eqwticms (2H5) aUow us to express the coefficients uij as linear functions of y(Ld and Tn. ma co-
effidcafs can be cKprc^ai in a compact farm:



"2,3
(10)

where U is a constant matrix that depends only on the dimensions of the beam and the location of the
masses.

Denoting as 0-t the angle between the x-axis and the radial line from the origin to mass i (see Figure
1), taking into account that 0,- = ^ p , and substituting (10) into (9), we get n linear equations of the form

Ki<n (11)

(12)

Equations (11) and (12) can be expressed in a compact form as:

M - FH, (13)

where M = diag{m\,ini,...,m^,eT = (0i,(h,... ,9H), A is an n x n constant matrix, and B,V and Q
are constant n x 1 column vectors. In particular, QT = (0 ,0 , . . . ,0 ,L~ l ) . La equation (13), .4,B,V and
Q depend only on the geometry of the beam. The values of the lumped masses only influence the matrix
M.

12 . Motor modelling

The dynamic model for a D.C. motor is simple and can be written as:

(14)

where K is the electromechanical constant of the motor, i is the current, / is the polar ineitia of the motor,
V is the dynamic friction coefficient, Ct is the coupling torque between motor and beam, and CF is the
Coulomb friction. Taking into account that Ct = — T(0) = —E • / • 2 • u\^$ we can express this torque as a
linear function:

= W • & hn+2 " (15)

and h^ 1 < i < n + 2, are imramelcrs that do not depend on the masses along
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the beam.

3. Properties of the Lumped-Mass Model

The behavior of the flexible arm as described by equations (13M15) is represented in Figure 2. We
assume that Fn and Tn are perturbations to the system. Then, in order to perform the analysis and design
of the control system, we make Fn = Tn = 0. Some interesting properties of the lumped-mass model then
follow:

1. From (13), using Laplace transforms we find that the transfer functions di(s)/9M(s) = Gi(s) for
1 < i < * have terms only of the form s^\ 0 < j < ft, n being the number of lumped masses. Then
the poles and zeros always come from factors of the form (s1 + z), z being a complex number in
general, and the following cases are possible:

a) z 6 3fc,z > 0 => two conjugate roots on the imaginary axis.

b) z e 3ft, z < 0 =» two roots on the real axis, of the same magnitude but opposite sign.

c) z € C, 9(z) ^ 0 => sets of four symmetrical roots with respect to both real and imaginary axes.

The mechanical structure is marginally stable because we assume there is no friction along the
beam (no energy-dissipating phenomena), and the friction on the tip is treated as a perturbation.
So the poles are always of case a). The zeros, however, may be of any of the three cases. Case b)
appears quite often and produces non-minimum phase systems. Control of these systems presents
some problems, as stated in [1].

2. The difference between the orders of the denominator and numerator of G[(s)9 Vj» is at least two.
This is a consequence of flexible arms. If the numerator and denominator were of the same
order, it would mean that an instantaneous change in the position of the motor would produce an
instantaneous diange in the position of the ith point of the flexible aim (Initial Value Theorem of
Laplace transforms; see Kuo [12]). This is not possible, however, because flexible beams need
some time to propagate the motion along the structure.

3* Separation Property. It was mentioned in the previous section that the influence of the lumped
masses on the dynamics of the arm may be perfectly separated from the influence of the geometrical
dimensions of the beam (see equations (13) and (IS)). This happens because the beam is modelled
as massless; thus, its shape is given by static deflection equations thai depend only on the position
coordinates. This property is used in the controller design.

4. Zeros Invariance Property. Zeros of the Gn(s) transfer function between the tip position 8m and the
angle of the motor 0m remain constant independent of the payload of the tip. This is easily proved
taking into account that:

and that the inverse of a squaie non-angular matrix A h given by A~! » ^ ^ ([13])- Thai the mh
row erf (M • i 2 - E • /»-4)""1 is independent of m*> as are the zeros of Gm(s).

5* The peftisbadons Fm and Tm affect the dynamic behavior of an the masses of the beam structure
linearly (equation (13)). Fn does not appear explicitly in (15); this is because the force applied to
the tip does not appear in the geometric equations.



4. Extension to Distributed-Mass Flexible Arm Modelling

This section extends the proposed modelling method to the case of flexible aims with distributed masses.
The following lemma is proposed:

Lemma: Let us assume that:

1. There are no internal energy-dissipating phenomena in the structure of a distributed-mass flexible
arm. Energy dissipation happens only in the joint in the form of friction. This means that property
1 of Section 3 remains true here. Property 2 is also true because the motion propagation from the
base to the tip of the structure is not instantaneous.

2. The state space model of the distributed-mass flexible arm may be truncated, keeping in the model
just the first few representative vibrational modes, and neglecting the other high-frequency modes.
This truncation is always performed as a preliminary step in the design of controllers for flexible
arms.

3. We measure the position at n points of the beam. We choose n equal to the number of vibrational
modes considered in the truncated model of the beam, Nv.

Then an equivalent lumped-mass flexible beam model:

.4. © + £.*„ (17)

^ (18)

can be defined that reproduces the dynamics of the distributed-mass flexible beam for the range of
frequencies of interest

This model represents the truncated dynamics of the distributed mass flexible beam. The external
perturbations Tn and Fn were assumed to be 0 when deriving this model Notice that now A and B
depend on the distributed mass of the beam.

The following procedure is proposed to obtain this model from experimental measurements on a
distributed-mass system.

Procedure.

1. Experimentally obtain the frequency response between the angle of the motor and the angle of t ie
tip.

2. Fit a transfer function <5f(s) that relates the angle of the tip to the angle of the motor to this
frequency daia. This transfer function must exhibit properties 1 and 2 of Section 3. The order of
the denominator divided by two is the number of vibratiooal modes Nv convened in the model.

3. Experimentally obtain the frequency responses, with respect to the angle of the motor, of other
(N¥ - 1) points of the structure. No special conditions about the location of these points arc
required a priori.



4. Identify other (Nv - 1) transfer functions Gi(s) from this data. The poles are common to the whole
system, so these transfer functions will have the same denominator as Gt(s).

5. The portion of the model described by equation (17) may be obtained from these identified transfer
functions 6 i , 6 2 , 6 3 , . . . ,6//v_i,6tfv (we denote 6 , as 6#v) by the following procedure:

Let 6 6 S ^ x l be the column vector that represents the measured angles 0i,02,. . . ,0NV
 a t

selected points of the structure:

1 < i < Nv (19)

w h e r e 5 r = ( l x* s*

Notice that Gi is of this form because of properties 1 and 2 of Section 3.

TTien:

(20)

If 2ij arc the elements of A, md hi the elements of & in equation (17), then substituting
(19H20) in (17) and identifying coefficients in the numerator we get:

0

The coefficients of (17) are obtained from:

(21)

XI
X2
X3 (22)

where rows xi € &l*Nv are calculated from:

( 0 m)- nmv-i-S= ( Xi 0 ) . (23)

6. Bxpewoii (18) for the motor-beam coupling tcwque Q may be obtained by the following steps:

(t) idcHttftoaitii! of the linear part of the dynamics of the motor: transfer function &m($) = •

(b) Dirtwtioi» in the icfcntificatic» because of the Coulomb friction may be avoided by using the
described in the next section.

10



(c) Denoting Ct(s) by ?M • 6m(s) and substituting in (14) (after making CF = 0) we get:

&~\s) = (/•/ + V-s)

And taking into account that dc(s) = 6-S (this is consequence of (15)), we determine / , V and
nds). K is obtained from catalogue.

(d) Equation (18) is obtained from polynomials «c and 4c by following an algebraic process similar
to that shown in step 5 of the procedure for obtaining this model (page 10).

The only constraint to consider when choosing the Nv — 1 sensed points is that the numerators m of the
identified transfer functions at the Nv points should be linearly independent to permit inversion of the
matrix that appears in (22). This means that very close points cannot be used for sensing.

A consequence of this section is that: it is not necessary to build distributed-mass flexible arms in
order to test control schemes for flexible arms. Lumped-mass flexible arms (which may be easier to build,
model and identify) may be used in many cases as prototypes of real flexible arms, allowing us to test
control laws on them before implementation in real arms.

5. Parameter Identification in Cases Involving Coulomb Friction in the
Joint

Several methods exist that identify transfer functions of dynamic systems. Because of the characteristic
of flexible arms having sharp resonant frequencies in the normal range of operation, frequency methods
seem to be better suited for identifying these systems, and have been used by many researchers [1,14].
However, they dealt with arms without friction in the joints. These methods can be easily extended to the
case of linear dynamic friction, but they give erroneous results when the Coulomb friction is significant
This is because they are based on linear models, but the Coulomb friction is nonlinear.

In this section we develop a new method of identifying flexible arms that extends the frequency
identification techniques to cases involving Coulomb friction.

The dynamics of the joint arc given by equations (14) and (15). The coupling torque Ct(t) is related to
the angle 0m(t) by a linear differential equation (or transfer function) obtained by assuming Tn = Fn = 0,
using Laplace transforms, and substituting 0 of (13) in (15). The term CF(t) is related to the velocity of
the motor.

Several models have been proposed to describe the friction of a DC motor, taking into account its
linear and nonlinear quantities (a recent review may be found in [15]). The Coulomb friction is the most
important quantity in all of than. This is especially true when dealing with direct-drive aims because the
range of motor speeds is relatively low and, consequently, the dynamic friction is also low. The dynamic
friction may be modelled as a first approximation by a linear term proportional to the speed of the motor,
and the Coulomb friction CF by a constant whose sign changes with the sign of the velocity of the motor.
Thus we use the following friction model:

Friction torque = CF + V-^& 0m(t) > 0

Friction torque = -CF + V • ̂  §Jt) < P

This simple model is a good description of the friction in many cases. The identification method that

11



we propose provides an averaged value of all the parameters (either friction or linear dynamics parameters)
of the ami because it uses the spectral characteristics of the input and output signals.

The proposed identification method is divided into three stages [10]. First, a high-gain position loop is
established around the motor in order to make it follow the reference position closely. The achievement
of this allows us to know the velocity of the motor and hence the shape of the temporal evolution of the
Coulomb friction. Then get the magnitude of the Coulomb Motion from this shape and from the spectral
analysis of the measured signals. Finally, this value is used to correct the experimental measurements of
the frequency response of the motor, which are distorted by this nonlinear friction tenn.

5.1. Control of Motor Position

The first stage of our proposed identification method is to design a closed-loop control system around
the position of the motor in order to force it to follow a specified trajectory. The design of this control
system is straigjhtforwanl, and a normal proportional-plus-derivative (PD) controller may be used for this
purpose. If we apply a sinusoidal reference trajectory to the closed-loop system, the angular velocity of
the motor will be approximately sinusoidal. The motor current will reflect both the torque needed to drive
the motor and beam (i.e. all the linear terms) and the torque needed to overcome the Coulomb friction,
which is ideally a square wave in phase with the velocity of the motor: The magnitude of the Coulomb
Motion remains to be determined. The block diagram of the identification setup is shown in Figure 3.

5.2. Calculation of Magnitude of Coulomb Friction

Assume that the closed-loop position control system for the motor is excited with a sinusoidal refer-
ence signal of frequency wo. If the system were linear, we would find that the current and the angle of the
motor would be represented by sinusoidal functions of the same frequency. Because of the nonlinearity
present in the system, however, the current will not be sinusoidal. Performing a spectral analysis of the
position and current signals ([16], e.g.), we find:

1. The motor position has a peak at frequency wo* with no other significant peak.

2. The motor current has a dominant peak at frequency wo, and other peaks of smaller but not negli-
gible magnitude at frequencies 3 • wo, 5 • wo, 7 • WQ>

An explanation of the second phenomenon concerning current may be pvcn in leims of the Fourier series
expansion of the Gouloinb friction toiqiie, represented by a square wave of frequency wo. The Fourier
series of a square wave can be written as

oo

CF(t) = J]A* - cos(f - uo • t+#, (24)
ml

where

C25)

12



CF is the magnitude of the Coulomb friction torque, and 4> is the phase angle of each harmonic, which
in this case is equal to 0 Vi (all the harmonics are in phase with the fundamental wave).

Equation (25) indicates that Coulomb friction generates odd harmonics of the fundamental frequency
u>o. Because these harmonics appear on the right hand-side of equation (14) and the angle of the motor
does not contain these harmonics, the current i which appears on the left hand-side of equation (14) must
contain these harmonics.

Using equation (25), we can now determine the magnitude of CF, based on the study of the third
harmonic.

If the system is excited with frequency u/o. then in equation (14), the fundamental component of the
current is given by

+J • %^ - a*z*"fr*>, (26)

where ii(u>o) is the polar representation of the first harmonic of the current at UQ, G(UO) is the frequency
characteristic function of the linear part of the motor model at frequency u?o, and LB is the phase of 0.
Notice that the term j • e/'^dm(f^ is added to express that the Coulomb friction leads the motor position
by 90 degrees; i.e., it is in phase with the velocity of the motor.

Also with the system driven at ô >, the third harmonic of the current is given by

£ ^ f . (27)

While OmsO * <*>o) is close to zero for arms without any flexibility, this is not the case for flexible
arms. When 3 • u?o is close to one of the natural frequencies of the beam, the position control system
is unable to completely compensate for the varying beam torque due to the oscillations that are excited
at that frequency. The control system does eliminate these oscillations sufficiently for us to consider
that the motor position still closely follows a sinusoid of frequency LOQ and thus equations (24) and (25)
approximately valid. However, the small high-frequency ripple that 9m now presorts should be considered
in equation (27) because the factor G~l(3 -UJQ) is very high (G(J*UJ) = 0 at the beam resonant frequencies).

We repeat this experiment now using a sinusoid signal of frequency 3 • u?o as a reference for the motor
position. This time we get the fundamental component of the current as

- G~l{3 - m). 0m0 • cm) + J - i ^ • e ^ ' - 0 ^ (28)
A. • If

Equations (27) and (28) constitute a system of two complex equations with two unknown complex
parameters, G~*(3 -wo) and CF. In theory, the value CF should be real, but because of sinal errors in the
measurements, it was found to have a small imaginary component. In order to get the real number CF
that gives the best approximation for equations (27) and (28), mi algorithm that minimizes the following
cost fimdtion was implemented:

13



Cost = h?(\ CF'jCF |) + (LCF*f, (29)

where CF* is defined from CF as follows:

1. For a given value of the Coulomb friction CFt obtain G~ l0 • CJO) from (28).

2. For the above G""1, obtain CF/ from (27).

In other words, a function is defined between CF and its associated cost according to the scheme:

CFr

my
• Cost CF

The value of CF that tninifniTgg this cost function was obtained using a simple direct search method.
Notice that (29) represents the magnitude of the ratio foC^yr), which is a complex number. This cost
function was chosen to give equal weight to errors in magnitude and phase.

Different values of CF must be obtained for different frequencies, and the average of them must be
taken as the estimated value for the Coulomb friction. This is because the values of CF may differ
considerably depending on UJQ (we had variations of 20% around the mean value in our experiments).

53 . Correction of Frequency Data

Once the man value of the Coulomb friction is obtained, the frequency response of die linear pan
of the model of the motor, G(u)t cm be expressed (from equation (25)) as:

00)

Equation 00) is solved usng the experimental data obtained previously for the current ifyj) and the
angle of the motor

14



Therefore, we have obtained the corrected experimental frequency data and an average value for the
Coulomb friction. Now a transfer function may be fitted to this data. This transfer function gives the
relationship between the current and the angle of the motor.

Also obtained from the experimental data was the transfer function between the angle of the motor and
the angle of the tip. This way of representing the dynamics of the system is quite different from the way
used in the other approaches, in which relations between current and angle of the motor, and between
current and angle of the tip are established. These two last relations are influenced by the Coulomb
friction, and the measurements taken to identify them are therefore distorted by this nonlinear quantity.
Our representation has the advantage that identifying the transfer function between the angle of the motor
and the angle of the tip produces a very clean transfer function that is independent of motor friction.
Consequently, nonlinear terms arc not present, allowing the use of conventional frequency identification
methods to obtain the dynamics of the beam.

6. Examples and Experimental Results

6.1. Experimental Setup

The mechanical system consists of a DC motor, a slender arm attached to the motor hub, and a mass at
the end of the arm floating on an air table. Figure 4 shows the major parts of the system. Optionally,
masses at intermediate locations of the beam may be added.

Figure 5 shows the arrangement of the single-mass beam used in the first example. In this case, the
' arm is a piece of music wire (7 inches long and 0.032 inches in diameter) clamped, to the motor hub.
The tip mass is a 1116-inch thick, 5 3/4-inch diameter fiberglass disk attached at its center to the end of
the beam with a freely pivoting pin joint The disk has a mass of 54 grams and floats on the horizontal
air table with minimal friction. Because the mass of the beam is small compared to that of the disk,
and because the pin joint prevents generation of torque at the end of the beam, this mechanical system
behaves practically like an ideal, undamped mass-spring system, being a minimum phase system.

In the second example, the wire is replaced by a longer one, and two masses aie attached, one at the
middle, and the other at the end of the wire. The second system has the characteristics of flexible arms
with distributed mass, being a non-minimum phase system.

An Inland direct-drive motor drives the aim. The amplifier current limit is set at 4.12 amp, which
corresponds to a 9.0 Ib.inch motor torque. The Coulomb friction of the motor is about .288 Ibdnch
(corresponding to .132 amp) and has a significant effect on the control when the torque to the arm is low,
as with our very slender arms.

Two sensors are used far the control of the system. A H%-inch* 360-degree potentiometer measures
the angle of the motor shaft A Hamamatsu tracking camera senses the x-y position of an infrared LED
mounted on the tip of the aim in the case of the single-mass flexible arm. In the case of the two-mass
flexible aim, a Seispot tracking camera is used that simultaneously senses the position of two infrared
LED's mounted on the two masses of the aim.

The control algorithm was implemented on an Onmibyte GB68K1 A, MC 68000-based computer with
512 Kbytes'dynamic RAM and a 10-MH clock. Because the control computer is relatively slow, real-time
computations were done in integer or short integer mode. Analog interfacing was provided with 12-bit
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A/D and D/A boards. The sampling period used to control both aims was 3 msec.

6*2. Single-Mass Flexible Arm

62J, Modelling

This is the simplest case. Following the procedure in Section 2, we have:

Geometric equations:

• There is no equation (2).

e Equation (3): uito = ui,i = 0.

• Equation (4): u\£ + 3 • h • u\$ = J£J.

• Equation (5): U^Q + h • I I W + 2? • ui^ + /? • «i^ = y(Li)

Dymmic equaticnis:

Dynamic model of the beam:

• Equation (10): u\$ = ( -33* JJ^EJ ) • | ^^ | .

Substituting y(L\) = ii -<#i — 0m) in the above equation, and combining it with the dynamic equation,
we obtain equation (13):

(31)

Dyaamic model of the rr.otor:

• We use (14) as it is.

• Goopiing tntqae (IS):

Ci»-2-E- / .« w «6-E. / . / i .* i3- r i^ (32)

Theie is dyomnic fiictkm between the air table and the disk. Therefore, F\ = — i/ - ̂ , i/ being the friction

cocffidenL AsaMning T| = 0, and substituting the mechanical parameters E = 30 • 1Q6 Ib/in?,! = *r>0

in.4,mi = 0.121 i&.f and It = 7 in. in equations (31) and (32), we get:
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43.1
s2+ 1.18-1/ -5 + 43.1

C, = 0.662 lb.in./rad.-(0m-9i) (34)

. Identification

Transfer functions of the motor and beam were obtained using the method described in Section 5. Figures
6 and 7 show the frequency responses of motor and beam, respectively. The transfer function fitted to
the corrected data of the motor was:

em(s) = 394.94 • (# + 0.06 -s + 43.75)
i(s) s-(s3+ 2.26 -5* + 165.7 -s + 103.56) *"

The transfer function fitted to the data of the beam was:

4 3 / 7 5

From these transfer functions, the following parameters were obtained:

Parameters of equation (14):

V = 0.01216 ibJn.frad.fsec.
iST = 2.184 Jb.in./amp. (value obtained from catalogue)
CFfK= 0.132 anip.

(15) gives:

C* = 0.674 Ibdn,frad.»(9m-0x), (37)

Equation (13) gives:

0.12136 - ̂  « -53095 - #i + 5.3095 -«« - 0.0072816 - ~ p

whore the last term on the right-hand ride of the equation represents the perturbation because of Ac
friction between the disk attached to the arm tip and the air table: P = 0.051 lb.sec.frad.

Comparing (33X34) with (36)-(37), we see that errors between theoretical and identified parameters
are less than 2%. So, the mechanical model of the beam may be accurately obtained from the theoretical
parameters obtained by using the equations in Section 2.
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Parameters / and K of equation (14) can be obtained from a catalogue, but V and CF have to be
experimentally estimated. Figure 8 shows friction characteristics of the motor obtained by using the
classical method of plotting the motor velocity versus the current needed by the motor to run at steady
velocity. Because of the stiction present in the system, the values of the currents at low velocities could
not be obtained. Using a linear extrapolation of the experimental data given in Figure 8, the value of the
current required for the Coulomb friction torque was found to be 0.161 amp for the positive velocity and
0.152 amp for the negative velocity. These values are different from the value obtained from the proposed
spectral method. Some motor ccmtrol experiments, which will be described in Part II, showed that the
value estimated from our method was more accurate than these values obtained from the classical method.
This is because Coulomb and dynamic frictions are estimated in the classical method by extrapolating
fiom high-speed measurements that are outside t te working range of velocities of this motor, while in
our method these values are estimated from low-velocity measurements inside this range.

63. Two-Mass Flexible Ann Modelling

We develop in this subsection the equations of the beam shown in Figure 9, and the coupling between
motor and beam. Identification is not done here because: 1) the parameters of equation (14), including
Coulomb friction, remain the same as in the previous example because here we use the same motor,
2) in the previous subsection we showed that differences between experimental and theoretical beam
transfer functions arc small. Thus, the beam transfer function can be accurately obtained by modelling
die mechanical system.

Now again following the procedure in Section 2, we obtain:

Geometric equations:

• Equations (2):

J*lfi + 2 -1*1,2 • ft +3 -1*13 - i f = 1*24

ft =16,2

• Equation (3): u\fi = 1*14 - 0.

• Equation (4): m^i + 3 -1% • M23 = §

• Equations (5):

+ h
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Dynamic equations:

• Equations (9):

6EI

6E-I F2

Dynamic model of the beam:

• Equation (10):

(38)

where

' ' " ""- -¥
• Substituting y(L\) = l\ • (0\ — 9m),y(L2) = (/i + fc) • (̂ 2 — #m) in the above equation, and combining

it with the dynamic equations, we obtain equation (13):

• (

^ , — . • * - • v J )+»-«J**>.Ji*a-fi. 09)

/ r / 1 + 3.Z2 + 2-
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Coupling torque (15):

2-E-I-yi

= H I 1 + ^n 2} Q 1 7% (40)

where

Substituting the mechanical parameter E = 30 • 106 to/in.2,/ = z£g*£ in.A,m\ = mj = 0.121
,, /j = /2 = 6 in. in equations (39) and (40), we get:

/ 0.12136 0 \ 4 = ( -176.6032 110.377 \ / 66.2262 \
\ 0 0.12136 j ; \ 27.59425 -22.0754 j \ -5.51885 J

( -0.047619 \ f
\ 0.017857 j ' V

A^uming T% = Fi = 0, we obtain from (39) the following transfer functions:

545.7- (J 2 * 106.10833)
5m(s) " s4 + 1637.1 - .y2 + 57903.3175

02(5) _ -45.465 - (s2 - 12733)
V + 1637.1 - s2 + 57903.3175

(42)

Theoretical natural frequencies of the beam were obtained from the poles of these transfer functions.
They arc: 6.014 rad/'sec. and 40,0116 rod.Isec. These frequencies were later measured experimentally,
and differences between them and these theoretical values were smaller than 5%. Finally, notice that the
last transfer function (equation (42)) is non-minimum phase exhibiting a positive zero at the theoretical
position of 35.683.

7. Summary and Conclusions

report has discussed the modelling and identification of single-link flexible anns with linnped masses.
flexible anus have their mass distributed along all the structure, but there are some applications

in which a model using lumped masses may be useful. A typical example is the case of a lightweight
flexible aim carrying a heavy load, Here, only cue vibrationa! mode is normally important, allowing
approximate modelling by a massless beam with a mass attached to the tip. Another reason to study
flexible arms with lumped masses is that some properties and control methods for these systems may be
easily extended to the distributed mass case.
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A new way of modelling these systems was presented in Section 2. In order to deal with nonlinear
Coulomb friction, two submodels have been defined: one that describes the behavior of the motor and
includes friction nonlinearities, and another linear submodel that describes the mechanical behavior of the
beam. Both submodels arc coupled by the torque at the base of the beam. In order to make the model
more general, perturbations in the tip, represented by a torque and a force, have been considered. These
perturbations allow us to consider the effects on the model of friction in the tip, changes in the carried
load, or reaction forces produced by the next joint (in the case of a multiple-link flexible arm).

Some properties were deduced from these dynamical models in Section 3. The most interesting one is
the Separation Property, which defines the influence of the masses on the beam. It permits representing
the product of the mass i and its angular acceleration by a linear combination of the deflections of the
beam at the points where there are masses. This linear combination depends only on the geometry of the
beam.

Modelling was generalized in Section 4 to the distributed-mass flexible arm case. Using the identifica-
tion procedure described in Section 4, the dynamics of distributed-mass flexible arms may be represented
by models of the same form as those represented by equations (13)-(15). Another conclusion drawn from
this section is that equivalent lumped-mass flexible aims may be used as prototypes of real flexible arms
in order to test control laws. This section does not make any statement about the influence of the tip
mass on the dynamics of the system. It seems that distributed-mass flexible arms may be considered as
the limit of lumped-mass flexible arms when n —• oo. But analytical proof of this has not been provided
yet. If it is true, then properties of Section 3 (which describe the influence of the tip mass on the model)
remain valid in the distributed-mass case. Further work is needed to verify this.

Section 5 described a new method of identifying the linear part of the model of a motor in the presence
of Coulomb fiiction (motor submodel of a flexible arm, described by equations (14)-(15)). In this method,
the Coulomb friction of the motor is obtained from frequency data instead of temporal data, as is the
case in other existing methods. The proposed method presents two advantages: 1) Coulomb friction is
estimated for the normal range of velocities at which the arm is operating, whereas the other methods
estimate the Coulomb fiiction by extrapolating from high-speed measurements; 2) the proposed method
gives an average value of the Coulomb friction over a range of velocities, whereas the other methods
determine the friction only at certain speeds. This method may be applied to any DC motor.

Finally, some modelling and experimental identification results were presented in Section 6. Modelling
has been applied to two lumped-mass flexible arms that we have built in our laboratory. The first one is
a minimum phase single-mass flexible aim, while the second is a non-minimum phase two-mass flexible
arm. The identification method has been applied to the single-mass flexible arm, and to the DC motor,
which is common to both aims. Experimental results agreed with the theoretical model
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