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Abstract

This report describes progress in vision and navigation for outdoor mobile robots at the Carnegie Mellon
Robotics Institute during 1988. This research was primarily sponsored by DARPA as part of the Strategic
Computing Initiative. Portions of this research were also partially supported by the National Science
Foundation and Digital Equipment Corporation.

In the four years of the project, we have built perception modules for following roads, detecting obstacles,
mapping terrain, and recognizing objects. Together with our sister "Integration" contract, we have built
systems that drive mobile robots along roads and cross country, and have gained valuable insights into
viable approaches for outdoor mobile robot research. This work is briefly summarized in Chapter 1 of this
report.

Specifically in 1988, we have completed one color vision system for finding roads, begun two others that
handle difficult lighting and structured public roads and highways, and built a road-following system that
uses active scanning with a laser rangefinder. We have used 3-D information to build elevation maps for
cross-country path planning, and have used maps o retraverse a route. Progress in 1988 on these
projects is described briefly in Chapter 1, and in more detail in the following chapters.
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Introduction

This report reviews progress at Carnegie Mellon from January 15, 1988 to January 14, 1989 on research
sponsored by the Strategic Computing Initiative of DARPA, DoD, through ARPA Order 5351, and monitored
by the US Army Engineer Topographic Laboratories under contract DACA76-85-C-0003, titied "Road
Following." Portions of this research were also partially sponsored by the National Science Foundation
contract DCR-8604199, by the Digital Equipment Corporation External Research Program, and by NASA
under contract NAGW-1175.

This first chapter of the report consists of an overview of accomplishments during the four years of the
contract; a compendium of our insights and practical advice for building mobile robots; discussion of
progress during 1988; a chronology; a list of personnel; and publications of the research group. The
following chapters provide more technical detail on particular areas or projects.

Overview of Accomplishments

Outdoor mobile robot research at CMU has been funded by DARPA since January 1985. Although the
contract is titled "Road Following", the research is much broader. The scope of the work has included
cross-country runs and obstacle detection as well as road following; direct 3-D sensors along with video
cameras; object recognition and terrain mapping; and close cooperation with the Warp group and with the
Naviab Integration work, to build complete mobile robot systems. Several specific results from the Road
Following contract have achieved wide recognition, and have been integrated and demonstrated at CMU
and elsewhere:
« Color-based Road Following. The culmination of our road-following work is a reliable

system that drives the Naviab along a narrow, twisting, tree-lined bicycle path. The heart of

the system uses adaptive color classification, which automatically adjusts for changes in road

appearance or lighting conditions. Variants of the system use two cameras, to extend the

dynamic range to handle deep shadows; find intersections of known shape; incorporate

additional features such as texture; and use the Warp processor for high speed. The latest

version uses the Warp to achieve a 2 second processing loop, allowing vehicle speeds of 1

meter / second even on our narrow test course.

« Terrain Representation and Obstacle Detection We have developed three levels of terrain
representation corresponding to different resolutions at which the terrain is described. At the
low resolution level we describe only discrete obstacles without explicitly describing the local
shape of the terrain. We used this level for fast obstacle detection and avoidance. At the
medium level, we include a description of the terrain through surface patches that
comrespond to significant terrain features. At that level, the resolution is the resoiution of the
operator used to detect these features. This level of representation is especially useful for
cross-country navigation in which we have to deal not only with large discrete obstacles but
also with the changing shape of the terrain. This representation has been successfully
demonstrated in conjunction with a path planner developed under the Integration contract.
Finally, the description with the highest resolution is a dense elevation map whose resolution
is limited only by the sensor. The techniques we developed for this representation provide a
complete description of the terrain including occluded regions and uncertainty After the low-
resolution obstacle detection was demonstrated as part of the Naviab, it was ported to Martin




Marietta. Work in conjunction with Martin reduced run time to less than one half second, the
frame rate of the ERIM scanner. This was the only project during the Martin ALV contract
that was developed outside of Martin, integrated into the ALV, and used in one of the ALV
main demos.

e Map Bulldlng and Matching In addition to extracting snapshot maps of the terrain from
range images, we have developed algorithms for matching and merging individual maps into
a single consistent representation. Again, the matching algorithms are applied to the three
levels of representation: At the lowest level discrete obstacles are matched in order to
compute the displacement between consecutive maps. At the medium level terrain features
are matched to compute the best consistent match between maps. At the highest resolution
maps are directly correlated to compute the displacement by a minimization technique. The
accuracy of the resulting displacement can be as good as the resolution of the map (as low
as 10 cms in our experiments).

+ Road Following by Active Sensing. Our ERIM scanner measures not only distance to
each point but also reflectance. If the road surface (e.g. asphalt) has much different
reflectance than the surroundings (e.g. grass), it is straightforward to detect and track the
road. For situations in which reflectances do not significantly differ, such as dirt shoulders,
we have to pay attention to details of signal attenuation, grazing angle, and surface fitting in
order to find the road border. Since the ERIM uses its own laser as its light source, it is
insensitive to shadows or lighting changes. This system has even driven the Navlab at night.
This method has also been ported to Martin Marietta, and has driven the ALV.

« Terrain and Object Mapping.

+ Systems. The Road Following Contract has provided perception modules for the systems
built by our Integration work. Highlights of these systems include:

« Navigating the Schenley Park bicycle path, starting with a crude map and producing an
updated map. This system included color vision for road-following; range data analysis
for mapping both discrete obstacles (trees) and terrain; intersection recognition and
navigation; aphnmthatﬁoﬂowedmemadandmudedobstacles andsaquemmgto
predctroadappearameandioteﬁ percepti i




highways. A model-based control program will take advantage of the structure of highways
to decide which features to track and how to track them. This approach should be robust as
well as efficient. Other current work is exploring new methods, such as an unsupervised
color classification scheme that uses shape information but does not need color data from
previous images. This scheme is not susceptible to quickly changing illumination, and can
find the road at the beginning of a run to initialize the color tracker.

¢ Calibration. Our multi-sensor perception experiments need to know the geometrical
relationship between sensors. Even for a single sensor, it is important to know the transform
from sensor to vehicle coordinates. Our best calibration system uses images of two grids of
points to build transform lookup tables, or to derive traditional camera parameters such as
location, piercing point, row and column vectors, etc.

* Object recognition. In order for a mobile robot to perform a meaningful mission, it must be
able to see and recognize known objects. Examples of our object recognition work are two
programs for recognizing cars, one using color data and the other using range images. Color
car recognition used hierarchical grouping, in which edges are grouped into lines; lines into
parallels; parallels into trapezoids; and trapezoids into connected sets that could be car
roofs, windows, trunks, or hoods. Starting with range data, the 3-D system first detected flat
surfaces, then applied single-surface constraints such as range of orientations allowed for a
roof or door, then used surface-pair constraints such as the angle between a roof and door.
Both methods work on several views of different cars.

Insights and Advice

Through the course of our work, we have developed some basic maxims of developing outdoor mobile
robots. While some of these are scientific insights, most of them have the flavor of pragmatic advice.
The most important include:

e Computing is a bottleneck. Our best results use the Warp, rather than a Sun, to gain
processing speed. The extra computer power is mostly used not to drive the robot faster but
to process images more frequently. Processing images more frequently in space means
easier predictions, more objects shared between successive images, and smaller changes in
apparent size and shape. Processing more quickly in time means less sensitivity to lighting
changes. The 100 MFilops of the Warp help give us a 2-second loop for our current color
vision algorithm. But processing remains a bottleneck. Even for the same algorithm, we
could use an additional factor of 60 to get to frame rate, times an additional factor of 64 to
process higher-resolution images.

« Development environments are a bottleneck. While the Warp gives us vast improvements in
processing, until recently it was difficult to harness that power. Hardware developers and
computer engineers tend to expect their users to have a few well-specified algorithms that
can be compiled once and run many times. But it 's the nature of research that programs
and parameters need to be changed frequently. To be useful, a supercomputer needs to
have debuggers, hardware diagnostics, easy access to display devices, and compilers that
run in reasonable amounts of time. Fortunately, those are now becoming available on the
Warp.

» Simplicity helps. Object models, algorithms, and systems should be no more complex than
needed. A road model, for instance, that attempts to derive too many geometric parameters
from a single interpreted image, may be subject to large instabilities due to small errors. We
have had much greater success in modeling our road as locally planar and straight. By
solving only for the x and theta of the road, we have a stable solution insensitive to minor
noise. And by processing quickly, we can track the road as it does eventually tum or pitch,
and compensate as we arrive at those points.

« The world changes. Our early outdoor stereo work was foiled by wind-biown trees. Early




color vision made assumptions about constant appearance, and ran afoul of variations in
grass color from place to place. Fairly sophisticated vision systems can be fooled by a cloud
suddenly covering the sun, which changes not only the intensity but also the color of
illumination. The appearance of the road changes from one run to the next, due to our own
tire tracks, oil drops, and other effects.

Sensors area bottleneck. Too much effort goes into overcoming insufficient dynamic range,
fighting noise, and modeling errors. Our solutions include using 2 cameras mounted very
close to each other, with different iris settings, to extend the dynamic range. This is an
engineering solution to a technology problem, and diverts effort from science. Yet this sort of
"hack" is needed to use many current sensors.

Direct sensing helps. Reasoning in 3-D is much easier when the data starts out in 3-D, such
as from a scanning laser rangefinder. Our ERIM data is not perfect, but gives us an
excellent starting point for obstacle detection, terrain mapping, and 3-D object recognition.

Image Understanding (lIl) is still needed. There is no direct sensor for "road" or "tree".
Furthermore, there are objects and tasks that we do not yet understand how to handle with
simple algorithms and models. So even with good 3-D and color sensing, it is still necessary
to do all the IU tasks of modeling and interpretation. Direct sensing may eliminate some of
the messy low-level interpretation, but does not eliminate the need for fundamental work in
U,

Integration is difficult but crucial. Capable mobile robots need multiple sensors, probably with
multiple sensor interpretation methods, and have multiple goals and multiple control
schemes. If the individual components are designed separately, they are not likely to work
together. Much of our design and testing effort has been devoted to working with our sister
Integration effort to build systems that can follow roads and avoid obstacles; that can look for
landmarks while looking for roads; and that can handle other conflicting demands.

Easy tasks are easier than expected, hard tasks are harder than expected. Following a
well-lit sidewalk, bordered by green grass, is nearly trivial. Folbwing awinding path with dirty
asphalt, bordered by trees, grass, dirt, and fallen leaves, with changing lighting, is much
more difficult.

Do not trust laboratory simulations, or runs on a few canned images. Simplified or reduced
test data is useful for first debugging, but success ‘in the lab does -not guarantee success
outdoors. There is no substitute for lots of experimental runs.

Mobile robot research is increasingly important. Results from our work have already been
directly applied to interpreting sonar data (for design studies of an underwater autonomous
vehicle) ami to mapping terrain for planning footfalls for a walking planetary rover. The ideas
and experience coming from our project have influenced many other mobile robots, ranging
from -underground mining vehicles to other road following efforts. And in general, the Road
Following work is part of a paradigm shift in image understanding research, moving from
generic interpretation of single frames A laboratory data to-goal-driven analysis of streams of
images from areal, -continually moving, outdoor robot.

1988 Progress

tn 1988 we -neared completion of one of our 'road’ fotovtfng programs, and began work on three new road
foitowers. Our range data processing built maps and, in conjunction will NASA sponsorship* began very
high resolution terrain analysis. The Wghlgfts of these projects, and of the systems that yse them, are
briefly dtsotoed beta*. Further detai on the major ©forts is in the iolbwtrig chapters.

SCARF: in 1988 we completed SCARF, our system for Supervised Classification Applied to FRoaci

»



Following. SCARF is the logical continuation of a long chain of road following programs that use color
classification. The first implementation of SCARF in 1986 ran on Sun workstations, with 32 by 30 pixel
images, in about 12 seconds per image. Later implementations of that version ran on the prototype Warp
and on production Warps, with speeds as fast as one image per 4 seconds.

Over the past year and a half, we have upgraded SCARF to use, first, higher resolution images (60 by
64), and, second, two images to increase dynamic range. This slowed our runs to tens of seconds per
image, even on a Warp.

Now, taking advantage of compiler upgrades for the Warp’s W2 language, and doing some code
restructuring, we have reimplemented SCARF on the Warp. Our processing time is now down to 2
seconds per image. We moved almost all of the code onto the Warp cells themselves. Further, we
reduced the number of calls to the Warp per image from 14 (last year) to 3 (earlier this year) to 1 (now).
After initialization, we pass the Warp cells each new image, and get back only the new road location. All
of the system state is saved on the cells from call to call. We also have debugging versions that can
extract classification information for display, but those extra Warp calls and data movement slow down
the system. Current running time is 1 second of Warp time per image.

The full formulation of the probability equation used in classification includes the log of the determinant of
each class. Early implementations of SCARF on the Warp have always avoided logarithms, since there is
no log function in W2. On benign data, this did not cause any problems. But running with the Naviab
outside on a snowy day, the system did not work correctly. In our standard test sequences, each class
had approximately the same size determinant (i.e., the classes had approximately equal variance), so we
could sately ignore that term. But on a snhowy day, the "snow™ and "road" classes each had very small
variance, while the "trees + parked cars + trash barrel” class had a much larger variance. This imbalance
caused improper classifications. We worked with the Warp group to include a log macro and to compile it
into our W2 code. The resuiting system performs no better on most of our images, but dramatically
improves performance on snowy days and under similar circumstances.

The resulting system has driven the Naviab many times, along our narrow bicycle path in Schenley Park.
The top speed at which we have run is one meter per second, the length of our test course (comparec
with 20 cnv/sec last year). With the fast processing loop and the complete formulation of probabilities, the
vision results are solid. While vehicle speed has always been a secondary concem of our work, we can
now drive at moderate speeds on our difficult test course, and should be able to use the same system to
drive at higher speeds on wider, straighter roads.

SCARF isdesuﬁ:edinChapterzothrepon.'CobrvisiontorRoadFonoww.
UNSCARF: One of our new road detection algorithms for this past year is UNSCARF, for UNSupervised

Classification Applied to Road Following. A large problem with our early road perception work was
dealing with rapidly changing illumination. If the sun is covered by a cloud, the lighting is diffuse and we




can follow roads with a single camera. lf the sun is out, there are problems with camera dynamic range,
but our methods that use two cameras work. But if the sun is quickly covered or uncovered by clouds,
then colors change and shadows change and the brightness changes. |f object appearance differs
greatly between successive processed frames, current methods have a hard time tracking the road.

UNSCARF places less emphasis on colors and more on shapes. Instead of classifying each pixel
according to statistics from previous images, it groups neighboring pixels using unsupervised clustering
methods. We have found that clustering with 5 parameters (R,G,B and row,col) gives us classes that are
both homogeneous in color and connected in the image. We then piece a road shape together out of
those clusters, instead of from individual pixels. Evaluating candidate roads uses shape cues such as
parallel edges, smooth edges, edges the right distance apart, and so forth. The combination of
unsupervised classification and evaluation with shape cues makes UNSCARF tolerant of the large
illumination changes that have given problems to previous systems.

UNSCAREF is also described Chapter 2, "Color Vision for Road Following".

FERMI: FERMI deals with public highways and roads, that have more structure and variation than our
Schenley Park test site. The key to handling diverse roads is explicit modeling of the colors, shapes, and
features of each road type. FERMI has a representation that lists width, maximum curvature, color,
surface type, location of lines, type of shoulders, presence of guard rails, type of adjacent vegetation or
soil, flumination conditions (sunny or cloudy), illumination direction, and so forth. Then by having many
simple experts, one for tracking each type of feature, we are able to follow many kinds of roads within the
same control framework. None of the individual trackers (edges, lines, color discontinuities, etc.) that we
explored in our early work were adequate in themselves for road following. But by incorporating many of
them into a single system, and intelligently selecting which tracker to use to follow which feature, we
expect FERMI to be reliable and flexible. In 1988, FERMI has been designed and partially constructed,

Details of the FERMI design are in Chapter 3, "Explicit Models for Road Following™.

ERIM Reflectance: A new project for 1988 is road tracking using the ERIM reflectance cata. Our ERIM
laser rangefinder produces not only range at each point but also magnitude of reflectance. Since the
scanner produces its own illumination, the reflectance images are not distorted by shadows or sunlight or
changing cloud cover. Reflectance is affected by distance (less of the illumination is reflected back to the
scanner from more distant objects), but this can be compensated for by using the range data. So many
of the sources of error in standard video images are not present in active reflectance data.

changes with grazing angle: the road at larger distances appears at a shallower angle, and reflects less.
Reflectance also changes from place to place along the road, as the road surface goes from dirty to clean
or from wet to dry. And finally, since reflectance is only a single channel (rather than the three channeis



of an RGB camera), not all objects have distinct appearances.

The solution to the grazing angle is to process each image as a series of horizontal bands, so within each
band the grazing angle is approximately constant. We keep separate appearance statistics for each of
the bands. We handle changes from place to place by updating our appearance models each image.
The problem of multiple objects with the same appearance is more difficult. Part of the solution is to limit
processing to a band around the predicted road location. Another answer is to use geometric constraints,
such as expecting road edges to be locally parallel. But the effectiveness of these solutions depends on
the materials that form the road and its borders. Asphalt and grass have much different reflectances, so
the portion of our test path that is grass-lined is easy to segment. Dirt, however, can appear much more
like asphalt, so in dirt-lined segments we have to use more detailed processing, such as tracking a single
road edge when the other edge is indistinct. ’

Qur program to follow roads using ERIM reflectance has run the Naviab many times, including runs at
night. This is the first time we have had a usable day/night road following system. The program was also
transferred to Martin Marietta, and successfully drove the ALV.

In addition, this work provides the first step in a new project in building and re-using maps. As we drive,
we record the position of the road (from reflectance analysis) and of obstacles (from range analysis).
When we later retraverse the same path, we use the detected positions of the road and obstacles to
locate the Naviab on the map. The map can then be used to predict upcoming obstacles or turns in the
road, and to plan paths past the current field of view.

cessing and road mapping is described in Chapter 4, "
navigaﬁngmpsdmadmaswmmaoﬁm&em

Terrain Mapping: The algorithms that build a terrain description made of polygonal regions have been
implemented and demonstrated on the Naviab. The resulting description is a mesh of polygons built from
an Erim image, each of which is a feature of the terrain. This terrain modeling program provides the type
ofMomationremiredbythenewpamma«m TheoombirtamionoﬂerraMmodeﬁngamdpathpslamm
hasbaemdemn@ra&edmﬂmNavhbmﬁrsamwstepbmﬂmss@wmvaath
m@emenwmdﬁm(:omsystem

Terrain mapping work is included as part of an overview of all our range data analysis research in the
past four years in Chapter 5, "3-D Vision Techniques for Autonomous Vehicles™.
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Chronology
Feb Final version of Expert System Road Finding
March Car recognition using range data complete
April LASSIE (car recognition with color data) complete
May Road simulator version 1
June ERIM reflectance used to follow roads
July SCARF implemented in C, drives Navlab

Simple steering / planning programs "quick” and "diny"
ERIM reflectance and mapping runs Martin Marietta ALV
Night runs of Naviab with ERIM

First offroad runs using Stentz planner with vehicle model
Retraverse route using map built on first run

Car recognition with multiple contexts 7??

UNSCARF runs Naviab

FERMI runs Naviab

SCARF on Warp runs Navlab, under 1 second Warp time

FEERRR8ZZ

Personnel

Directly supported by the project, or doing related and contributing research:

Faculty: Martial Hebert, Katsushi lkeuchi, Takeo Kanade, Eric Krotkov, Steve Shafer, Chuck Thorpe, Jon

Staff: Paul Allen, Mike Blackwell, Tom Chen, Jill Crisman, Thad Druffel, Eric Hoffman, Ralph Hyre, Bala

Visiting scientists: Yoshi Goto, Taka Fujimori, Keith Gremban, Hide Kuga, Masatoshi Okutomi

Graduate students: Omead Amidi, Jennie Kay, Karl Kluge, InSo Kweon, Dean Pomerleau, Doug Reece,
Tony Stentz

Publications
Selected publications by members of our research group, supported by or of direct interest to this
contract.

J. Crisman and C. Thorpe
Color Vision for Road Following
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In SPIE Conference on Mobile Robots, November, 1988
A different version appeared in the proceedings of SIMAP 88, University of Osaka, Japan, May 88.

J. M. Cuschieri and M. Hebert.

Sonar Applications for Underwater Vision.

In ASME Symposium on Current Practices and new Technologies in Ocean Engineering, pages 5-11.
ASME, January, 1988.

Y. Goto, S. A. Shafer, A. Stentz.

The Driving Pipeline: A Driving Control Scheme for Mobile Robots.

International Journal of Robotics and Automation, Volume 4, Number 1.

Also appeared as Technical Report CMU-RI-TR-88-8, Carnegie Mellon University, The Robotics Institute,
June, 1988.

K.D. Gremban, C.E. Thorpe, and T. Kanade.

Geometric Camera Calibration using Systems of Linear Equations.

In Proc. 1988 IEEE International Conference on Robotics and Automation, pages 562-567. Computer
Society Press, Philadelphia, Pennsylvania, April, 1988.

Also in 1988 Proc. of iImage Understanding Workshop, pages, 820-825.

Morgan Kaufmann Publishers, Inc., Massachusetts, April, 1988.

M. Hebert and T. Kanade.

3-D Vision for Outdoor Navigation by an Autonomous Vehicle.

In 1988 Proc. of Iimage Understanding Workshop, pages 593-601. Morgan Kaufmann Publishers, Inc.,
Cambridge, Massachusetts, April, 1988.

M. Hebert, T. Kanade, and I. Kweon.
3-D Vision Techniques for Autonomous Mobile Robots.
Technical Report CMU-RI-TR-88-12, Carnegie Melion University, The Robotics Institute, August, 1988.

K. Kluge and C. Thorpe.
Explicit Models For Road Following
submitted to IEEE Conference on Robotics and Automation, 1989.

I. Kweon, M. Hebert, and T. Kanade.
Perception for Rugged Terrain.
in Proc. of SPIE Conference on Mobile Robots. SPIE, November, 1988.

I. Kweon, M. Hebert, and T. Kanade.
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In Proc. of SOAR'88 Space Operations Automation and Robotics. NASA, Wright-State University,
Dayton, Ohio, July, 1988.

D. Pomerleau
ALVINN; An Autonomous Land Venhicle In a Neural Network.
To appear in Advances In Neural Information Processing Systems, Vol. 1, 1989, D.S. Touretzky (ed.),

Morgan Kaufmann.

C. Thorpe and T. Kanade.
1987 Year End Report for Road Following at Camegie Mellon. .
TechnicaI'Report CMU-RI-TR-88-4, Camegie Mellon University, The Robotics Institute, April, 1988.

C. Thorpe, M. Hebert, T. Kanade, and S. Shafer.
Visbn ami Navigation for the Carnegie-Meion Navlab.
PAM110(3), 1988.
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Color Vision for Road Fellowmg

Jxll D. Crisman and Charles E. 'l’horpe
Robotics Institute, Carmegic Mellofi University
Pittsburgh, PA 15213

October 12, 1988

Abstract

At Camegie Mellon University, we have two new vision systems for outdoor road follow-
mg.mmsylm.caldeCARF(SupuvdehssiﬁmmApphedwRoadFouowmg) is
designed o be fast and robiist when the vehicle is running in both' sunshine and shadows under
constant illumination. The second system, UNSCARF (UNSupervised Classification Applied to
Road Following), is slower, but provides good results evea if the sun is altesnately covered by
clouds or uncovered. Mmmwmmmmwmmmad
tracking by supervised classification. It is an adaptive supervised classification scheme using
color data from two cameras to form & aew six dimensional color space. The road is localized
by a Hough space technique. Mkmwymbmtmmmmme
WARP supercomputer, an experimental parallel architecture developed at Camegie Mellon.

UNSCAREF uses an unsupervised classification algorithm to group the pixels ia the image into
regions. The road is detected by findigg the set of regions which, grouped together, best match
the road shape. UNSCAREF can be expanded easily to perform unsupervised classification on any
number; of features, and to use any combination of constraints to select the best combination of
regions. The basic unsupervised classification segmentation will also have applications outside
the realm of road following.

1 Introduction

At Camegi¢ Mellon University, we have been building successful, color vision based, road following systems for several years
{6,7.9,10]. The main emphasis of our road following research is 10 find unstructiired roads in images that are complicated
by shadows, leaves or dirt lying on the road, lighting changes, and the liks. W initially used edge based techniques, that
searched for edges in the image 0 cotrespond with road edges in the scene. This proved inndequmee for our Schenley
- Park test site, since often image edges caused by shadows were more distinctive than edges formed from road boundries.
Currently we have been using a-color classification system, SCARF (Supervised Clagsification Applied to Road Following),
where each pixel in the image is labelsd as road or non-road based on the match of its ¢olor to previously: leamed colors.
The road is found by looking for the road shape that contains the most ‘road’ labeled pixels. We also use an unsupervised
classification algorithm, UNSCARF (UNSupervised Classification Applied to Road Following), that groups pixels that have
similar color and location, and then searches for the combination of groups that best matches the road shape. This paper
discusses these two systems.

Other groups have also been working on road-following.’ InGemmy,DnhnamsandGmfeBA]mwmadfoﬂowmg
as a control problem. They have developed an elegant coritrol formulation that incorporates a simple road edge detector
wnmmevehmlemodeltodﬁvemu'vehicleawlmbI(bkph They also use constraints of the autobahn shape

*This resesrch is sponsored by the Strategic Computing Initiative of DARPA, DoD, through ARPA Order 5351, and monitored by the
US Amy Engineer Topographic Laboratories under contract DACA76-85-C-0003, titled "Road Following.” Portions of this research were
also partially sponsored by the National Science Foundation contract DCR-8604199 and by the Digital Equipment Corporation External
Research Program. ’
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and markings. The autobahns are of constant width and are either straight, constant curvature, or clothoid in shape. The
rapid processing and structured, road model help to limit a search window in the image, and discard the extraneous edges
normally found by edge desectors. oyfever,ltseemsmatﬂlc:rtrackersc?uldbedis'mwdbymeshadows.puddluam
madunpufeamnsﬂmphghoﬁ ' k

The University of Maryland [2] has also been working on road following. Their system drove an autonomous vehicle
based on edge detection. Imqpedquwhaemked{xqubebonomot%unagetomempmmganedgedmwrma
window of the image. Omeaneggeubcawd,nuus«gmmmmeponmnmdmmmmnofuwnextwmdow Then
meedguwe:egmupedusinga'ﬂoughmfombﬁmﬁinewﬁichmgeedgufommebmmadedge This system
worhedwellwhenmcdommmedminmemagemmdedm but similar systems at CMU have failed when tracking
edges in strong shadows or when leaves or dirt lic on the roads.

At Martin Marietta, the VITS system (8] has achiéved impressive speeds on fairly unstructured roads. It projects the
three-dimensional color space (red, green, blue) into one dimension, or in later systems two dimensions. It then differentiates
the road from non-road by a linear discriminant function. The road/non-road threshold is selected by sampling a part of
the image that is guaranteed to be road. This system is similar to CMU road following, but emphasizes speed rather than
general capability. Their system works fast, up to 20 kph, on their test site, but it is doubtful that it will work on other test
sites, since the color projection is tuned for the features that are best to discriminate their road from their non-road.

Ouruohlismbuﬂdgemﬂcobrvuxonalgnﬁqmmawakmamdevntyofsmmqns In particular, we are
wmmwmgWvammofmmmmmmm To give our system
gmemlcapabiliﬂa wemwadmnthefonawingpmblems ,

: oThéobjectsinthemumdergospadalcmesinappwme Fotaunple,undersunlight.roadsappear
+ - to be ‘a"different color than'they appear in the shade.

. Ob;emiuhemundergomnpomlcham:inappmm 'l‘m:mayoccwwheucloudspassoverme
.. sun for instance. mcbangemﬂMmmmwmcmcmmﬂMWbmmﬁemmm&m
fmmetofmne .

" ‘@ The dynamic range of ouwr cameras is limited. Wecmmgidzememingﬁndanmdm'kshadowsofa
o bﬁghﬂysMhuge,mrcanweupmMindwbnghﬂymﬂkregiauohdskmge

. TheroadsinSchcnleyParkareveryw:rucm anocenterorhordmnglgmpmnwdonomm
as on highways. Many of the road edges are obscured or uneven. The pavement of our roads is deteriorating
in places, and the pavement may be covered with the same leaves, dirt, or snow, that appear off road.

Our two new systems, SCARF and UNSCAREF, were built to address these problems. Both systems deal with the
limited dynamic range of the cameras by using two cameras with different iris settings to capture béth dark and bright arcas
of the scene. SCAREF is designed to be a fast, adaptive system. Even though algorithm speed is not a goal of our research,
~ faster:algorithms have the advantage of more overiap:between frames, if the vehicle spoed is constant. When the images
. are procegsad closer in time and distance, the lighting conditions are less likely to change dramatically and the road position
in-the image will not move far between frames. UNSCARF tackies the tomporal and -spatial changes by processing each
image independently of the others. mmmmmmmwmmmwmmem
- spatial or temporal. changes in color. :

mmwmd&umwwmmﬂzmnddwcmmm lmscARFnsdetmledand
discnswdmmofollowmgsecnmmdﬂmnxmmmmltmeﬁmlsectionofmnpapet

i

o

2 SCARF
SCARF has evolved by adding more and more ¢

capabilities to,asnmpleqopdfoﬂgm%:ysmn. Ablockdmgramofthu
smemu;hownmﬁml SCARFumm 0,  one t‘nmeot‘dm. twocolormgesaered:mdby

ka:avamﬂlmandmtodwchmﬁu F«wﬁ%g reduced images, the classifier calculates a likelihood value
" “that describes how ‘well the pixel matches remembered non-road colors. The interpreter uses the likelihood values
wmmwmmmmmmmm “The road location is then-used to update the remembered
colors for: the next.frame. mmmumm»a«uvm Thlssyswnlusbwnknplawnedonthc

WARP supercomputer. i
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Figure 1: Block diagram of SCARF

Range of Single Camera

Opsn kis Camera

Figure 2: Extending the dynamic range using 2 cameras

2.1 TwoCameraSystem

. mmmmwdambmwmmmwofmemmmm&omﬁnmm
mounted on-our test vehicie, the Naviab. The cameras were positioned as closely together as pessible, and bore-sighted,
minimizing the diffcrence between the camers images. To avoid calibrating the two cameras, we treat the images as if they
_were taken from the same camera. mmmumfmwmsmmmmofwmmm
much smaller than the distance to the road.

mxmpmvementmdylmmmgegmltsﬁomchedift‘mntiﬁsseuingsofmetwocameraasshowninﬁgurez.
One of the cameras is set to capture the shadowed area of the scene by opening its iris. The second camera captures the
sunny areas by using a closed iris,

Whenmetwooobrmagesmdtgmzed.theymﬁmmduwdbyusmganavengmgmwr This not only reduces the
data size, b\nwmalaoreducememseeonwntofmexmage mmedmpmmqgumusedmmuhepmmn
tomcreuethespaecrdthepmcesslng

Two different methods for using the two input images were tested. The first approach is to combine the two reduced
images into one. We used a simple threshokding technique to extend the dynamic range-as shown in figure 2. If the closed
iris image pixel was too dark, then the pixel was selected from the open iris image, otherwise it was copied from the closed
iris image. The second approach was to use both reduced input images to form a six-dimensional color space. Then all six
features, the red, green, and blue bands from the two images, are used in SCARF.
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2.2 Classifler _
In standard pattern recognition theory, acmsiﬁaukuadsquunlmeumtvm x, and chooses the best class

label, w;, from a set of K classes, using a previobily tom .class conditional probebility, P(x|w;), for each class [S]. The
batclssumeclassdumxmimmeapomm robability, P(w;|x). The expression for the a posteriori probability is

normally derived from Bayes rule: .
Pjix) = __.m_( ke)Pw;)

Inmnme.eachp:xelpmvxdua6dimauiomlmem vector (d = 6), X = [R,G1B1R2G;2B,)7, formed by -
concatenating the red, green, andhhehmdsot'metwo inwtunages We use several classes to model road and .
non-road colors, typncallyl2mndmodelsand12mn-roadm@h giving 24 total color models (K = 24). We assume
that the class conditional probability models fmmmﬂmﬁ\ distributions, therefore, P(x|w;) can be completely
memvmmmmmmqmembdmmfmcm% We also assume that the

P(w)) is the ratio of the mmbaoquiuinu,,bl,muthe toul numbetofsampm N. Therefore,
zx-‘ﬂu_cu-me-iF—"ﬁ'C"“-"'» N;

'mmmngP(wjlx)amWememmwmmcm wj, that has the maximum

InP(w;|x). This can be further simplified by noticing that £(x) is identical for all of the classes, so that it can be eliminated
from all of the terms. Therefore our classifier selects the.class that maximizes the following likelihood measure:

Ay =10 5 @EAICHD - 26x - mTC7 (x — my.

2.3 Interpretation -

‘nlemmmﬂonmcexvesaﬁheﬁhoodmage.mﬁingA;,andaclamﬁunommage,oonuinmgw,.fmmmeclassxﬁer
By looking at the classification image, we can label-each pixel in the image as either ‘road’ or ‘non-road’. The interpreter
Riilidod using a voting scheme similar to the Hough technique. The
standard Hough algorithm searches for a line by voging.for.all af.the lies passing through an edge point. However, we
ﬁndamﬁbyvonngt‘oullthepouiblemadsconﬁning ‘road’ pixels and by voting against all possible roads containing
non-road’ pixels. Themmndiffmumuallofowpixelsvote.notjustpueklymgonmeedgeofmemad. We also
use the likelihood measure 10 determiine the weight:of sach vote. :
Weassumetheroadnslocallyneaﬂysnigm.-dcnbepmmetenzedmmgv,meeohmnwherememadcmwr
line crosses the horizon row, (or the vanishing point) and 0, mmmmmmmm;mmm
These two parameters are the dimensions of an accumulator used for collecting voles. Eaéhp:xelmmehkemmdlmage
votes for all the rosds that contain that pixel by adding its likelihood (o the: proper pasitions.in the accumuiator.
F«mhm&.ampiﬂm(r,c)wﬂlmﬁxamﬁmm&mmv,ndwasshown

‘J fnvx‘xﬁmre.‘s The stating column position, v,, comrespongls: the interpretation thet pixel-(7; ¢) liss:0n on ‘the: right hand edge of

ﬂw:mdm&emmmmmcolmmwmnthe(r,c)plxellyhgonulefthmnedgeofme
road.‘l'hevpomionsuealctﬂmdby‘ :

‘ v,-c+(r hoffz)hnﬂ (w/l)(r—horiz)
Vemc+(r— horiz)tan0+(w/l)(r-horiz)

'5wherehqﬁustbehonzon’iowmmenmage,wummmmmmdmwmlpﬂwmmthe
“‘hedmnmwmmébommofmeimage mmmmuinvalueofmeaccmnuhgoruclumtobedzmd.

P &
ERR

2.4 Model Formaﬁoa

';'Themwmdelmbecakuhwdmmgmmmwequumnamm

m o= 3 x m




Figure 3: Hough voting scheme

C; = Ex.’x. -mm;. | 0)

J-l

First we have to decide which pixels belong to each class. Once we have a ‘road’/‘non-road’ labeling, we calculate statistics
for the road and non-road classes. Then we reclassify each ‘road’ or ‘non-road’ pixel using only the road classes for ‘road’
pixels and only the non-road classes for ‘non-road’ pixels. We iterate the calculase statistics and reclassify steps until the
classes converge. '

mwmummmmmmamm,mmmmum. Using this
location, each pixel can be identified as: road ‘or nen-read. The road region and the non-road region of the image are shrunk,
forming a safety margin at the edge of the road. This is important so that the new color model is not corrupted due to the
wawwqmmaammwmamuymmm The reduced road and
non-madmmmednmbﬁecolcnofmdmdmm

Anwaﬁvcchmainguchﬂqmqulbdmﬁummmdmmmgfouowedfonhenon-mad
region. First, the road pixsis-are atbiteatily given one of the road class labéls. We assign the classes by indexing through
the rond pinels and sssigning the next road class. The color model, consisting of {N;, m;, C;} is caiculated for each of the
classes using equations (1) and (2). Thea all of the road pixels are relabeled by the class whose mean color is closest to the
pnxelnhm“tmeoh‘mﬂbmmmemw This "label/sample” loopkmpe.edu:mlmostof
thepnxelsnnhnmmd-l.

2.5 WARP Implementation

WehnWmdmecmmmmmmmmwmwm
[1]. The increase in processing spoed, although significant, was limited by the smail memory on each cell. Much:time was
spent down-loading code and-dats; at each function cail, typically 14 calls per step. Our new PC WARP has miore memory
on each processing unit, allowing larger programs and larger global data structures. Therefore, we have one large WARP
function rather than muitiple WARP functions, taking advantage of the larger program memory. 'l‘hxsmultsmgmaterspeeds
since data is only downloaded once and the WARP start-up sequence is executed once per image frame.

’ The inputs to the WARP program are the six reduced images and the statistical model for each clags. The WARP
fmnﬁmmu.mfmdmﬂnnewcdormodel. It outputs the road location and the new color.model.

2.6 Discussion

This program has been tested oit several sequences of images. The SCARF system has driven over all of the roads of our
test site successfully. We have driven the system a variety of weather conditions, on different road surfaces, and under
different lighting conditions. It adapts very well to different road surface types and differing off-road objects. Figure 4
shows SCARF running through severe shadow conditions from our test site. '




Figure 4: SCARF examples in dark shado s: The lines show the resulting road location.

Ovonnt
Figure s: E’ffects of upld illumination change

Lot

Ummmmmmmmmwummudamm We found that combining
- the.data.into a.single image provided a fast means of extending the dynamic range, however, using both input ihages was
- more reliable. Not only does the use of two images increese the effective dynamic range, it aiso inereased the-data available
o0 classify each pixel, thereby incressing classification confidence and accusacy. Moreover, using all the data.from both
cameras avoids the potential problems of picking a threshold for selecting data to foon a single image. ;

' mmmm»mummmammwmmmmgemwuym
frames. ummmmmmmm:«mmqmmmm ‘.

The Hough interpretation provides the robustness of the SCARF system. Smcenismareabasedtechmqm there is
~-mose data used in the interpretation than an edge based technique. This makes the system less sensitive to noise. Using this
.. interpretation, we have been able to drive our Naviab vehicle in a variety of 'weather-conditions. The results ar¢ good even
whenﬂumadmaybcmlymmdwﬁhﬁemmdm.orsmﬂutuoamenon-madpamofmeinmge

3 UNSCARF

: Wmmmmnmmmwmmmmwmcw In SCARF, models
of road and non-road colors, mkmﬁunﬁeptevmmae were used to label pixels in the current image. However, if
the color appearance of these objects changed dramatically, for any reason, then the color models no longer represented the
colasofmeobjectsmmemwmge.SCARFpa'tmnedwenasbngasmexllmnumnondldmchmsemoqmckly An
-example of a failure situation due to rapid i memﬁms.AMquormy
mdﬂmdedroadundnm—mndc“mammmushownmﬂnleﬁ. In the next image, that classifier. will fail, since
msmumwmmmmammqmmmmm ;
WmmmmmmcoumddaWummeBMmmmcoumdMum
in the image using an unsupervised classification algorithm as shown in figure 6. Then the pixels with the same labels, or




rithm, an meemmﬁtmmemm
ether, forms the best road shape.

31 Ump;nimd Clmw

MWWWWMWWWMWmemchgmqm
similar to the model update of the SCARF system. The main difference is that none of the pixsls havé a ‘road’ or ‘non-road’
label.WM'mmwmw‘mmaWMmW&mmmmepmhm
the new model, ‘This is repeated until the classes converge. |
;"',)hsﬁnfemu(d-sduieuedmmeclmmg: ’

x = [RED, GREEN, BLUE, row, cotwm}"

‘ﬂﬁsmmﬂyhe@.&dﬁsuﬂtdﬂmﬂmbymgﬁcmmaumw 'I'hesysnemhasa
- ixed number of tlasses irr-sach image, in our typically 24. First it labels each ‘pixel of the image with a class, insuring that
the classes ard ovenly scattéred ‘Suonghout the image. Next, a statisticsl color model, {N;, m;, C;}, is formulated for each
class, w;; for this class. sssignanentt using- equations (1) and (2). Then thic pinels are labelod using-a classification scheme
similar to that of SCARF and 4 new statistical-model is calcuiated: The *clissify/sample’ loop-is repested until most of the
pixels in the image remain in the same class. m“suallycmvu'gesqmﬁemkly mhngbetweenSandlSnmmunnl
95% of the pixels remain in the same class.

_‘ The classification scheme can have several different flavors. mﬁmtschemeusedwasaneamtmeanclmsxﬁer In
~ other words, the Pixéls were:iabelod with the ¢fass whose mean was closest-t0 the pixel value. This has a tendency to form
splierical clusiors in: the foatitié space. -Since we weré using the spatial parameters of (row, colimn) all of the regions formed
- from the final' clasy-labeling have a approximately ciecular shapes in the image. To allow elfiptical shapes to represent
clongated or linear objécts we used the nearest class as given by the Maklialanobis distance:

di=(x—m)'C (x - m).

'nusdismeemetncuededwbenumﬂnedmommofudmhadawﬂrcovmthananyoftheother
classes, then in the reclassification, even more pixels would be classified as the large class. This would balloon until all of
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Bad Maich « High Cost

Flgm? Roadcosm

the pixels were described by one class. Tonvoid&k,wenmnﬂizeﬂwdismemewic by dividing each element of the
covmimmieuoteachchubyﬂued‘mofmedfwmmwfummmx

C= GuiCl-
’rhentheMahahnobudxsmcemmquingC’
dj= (x - m))'C'~'(x — my).

This allows each class to have a.diffarent elliptical shape, while maintaining the same size for each class and thus preventing
one class ﬁomdommﬁngtheom

addmgthe(raw,cohmu)mm wemexpmlﬁngmccummﬁngobmmbcakwdmﬂwm*e. Theposmonal

‘WW

as in SCARF: v,mecommnawhicnme“mdmmemmma me'anglebetweenmccenmhmmdavmal

ir mmwmpﬂmughanofmemwmmuandevahmehow

weuthatmtupmamﬁtsmeregnnsofmeimage ’

o TomammwﬁntmmmmmmLﬁLMMM This is done by

i .mmglfﬂnwmofmofthezmlmmﬂnm Al of the regions-lying in the candidese sre-then grouped together
-and approximated with 3 conglomerase polygon. The ares between the road medel aad the edge of the conglomerate polygon

uMuammﬂmmmmmmmmembmwuumm

e e result. Figue 7 shaws he cost mtrc ofammm:ammuwm

33 Discussnon and Future Work i MR B B
: HCET
, ,Iuﬂusmm,mlwmdmmmmﬁmﬂmmwumwmbmmﬂ-mdmm
. -tation.uses only geometric constraints to localize the soad.-Therefose, the, different levelsof the system gre using completely
.. different constraints... Hmsmmummmmcmﬁmm segmentation, running on. a road scene.
Themsuwﬂwnzhtumeclmwmmwnwwdbyamﬁummmwmm The left
nnageshowsmepuelscolaedbythememvalwoflhﬁrchulabelmg The top pair of images is the initial scattered
classification used to build the initial models. ‘The middle-pair of images shows the classification and mean class colors after
two ‘classify/sample’ loops, and the bottom pair shows the results after five ‘classify/sample’ steps.

mmmgedmccwaammwo&mmmudmmmmmwﬂyuﬂdedmu

% total ‘cost. For example, we could add costs so that ail f the*toad regions sould have a similar color, different that those




Figure 8: Example Clustering: Top left image is the original image. Each pair'6f class images corresponds to
an iteration of the clustering algorithm. The right imeges have cach cliiss is assigned a different intensity, and
the left images have each pixel is colored by the mean RGB class value. The botiom ‘right pair is the final class

of the non-road regions. We could also add a cost insuring that the road region is similar in color to the road seen in the
previqus image. A cost can be added so that e polygons with straight edges ed over those with jagged
edges. Although these additional cost have 1ot been necessary on the iniages test n:ymybecanemaelmpommas
we become more experienced with this. interpretation system.

mmmmMS-wmmmwmlmmamM To speed up-the processing, we have
WMWWWWm:mMdeW Using this method,
we have achieved a speed up proportions to the number of Susts used.

We will expand the unsupervised classification algorithm in several ways.

o First, if the system could decide the number of classes needed to characterize the data, rather than having a
fixed number of classes specified, then the regions would be more representative of the data. As an initial
attempt, we will split and merge regions after each reclassification ssep. Large regions will be split, and regions
with very close mean values will be merged. This way, the system will decide how many regions it needs to
adequately represent the data.

e We will expand the road interpretation to detect intersections. We will apply the road searching that we have
currently impiemented. Then we will enumerate all of the possible branches from the road, and search for
intersection branches with the same cost evaluation method used for the main road. We may need to add a
color constraint to the algorithm, since in our test site sometimes the shadows of the trees can form intersection
shapes.

e We believe that the basic unsupervised segmentation algorithm described here can be used for many different
vision applications. To show this we will use this system to do terrain typing for our cross-country navigation
experiments.

4 | Results and Conclusions

SCARF and UNSCARF have been prototyped and tested individually. Our current efforts include speed and algorithmic
improvements to each system. We are also considering cooperation between SCARF and UNSCAREF. One idea is to use
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UNSCARFuaboocumpmmmduseSCARFumegmwfonowu IfSCARFslmuldreahzethmns

- 1 to improve the other. We intend, for instance, to track
the colors of ¢ b CARECY changes in colors over time may provide cues which
Y CAR of different methods for scene segmentation will
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| Explicit Models
for Robot Road Following

Karl Kluge and Chuck Thorpe

Abstract

R&ohmdltmnocxpldthofﬂmremwnmemmordenomWypumNelrdnavbata An
expiicit modet is information directly availabie 1o the program itselt, uudfurreatoﬂngmnwmwbok
for, how 10 look for it, and how O interpret what it has seen. We discuss the need for explicit models in
tive context of road following, smmmmufommmbywrmmmMrmmmswm
by not having ‘explick modeis. - Cur new road tracking system, FERMI, isbeingbummstudyexpﬂcn
modeis ‘and their use. FERMI includes: explicit ggometric models and multiple trackers, and will use
explicit modeis to select features to track and methods to track them. '

implicit Road Modeils considored Harmftul

‘We claim that vision systems need to have strong explicit models in order 1o do relisble recognition.
This.is especially true in difficult situations, such. as perception for an- outdoor robot operating in an
WMMWMMWW wmwummmm
following.

Duringthc last four years there has been intense reseanchon robot vision for following roads. Several
difm:mmhavobeendovobped mnyotﬂmnunderspomorshbofDARPAaspmmm
Autonomous Land Vehicle program. Auhwghthemhavebeonmnysoﬁdcomibtnbnstomad
following, there is still no reliable general purpose road tracking vision system. Most existing road
trackers work well for only a particular road, or only under benign ilumination. They have impoverished
modeis that do not allow them to reason about failures in their low level featurs. trackers. Weak modeis
wweakamnexmmmhmmmmemepmddmesuchas
disappearing features or ilumination changes.

Eachsystemhasamodeloﬂhoroad including expectations about road shape and appearance, and
the changes in shape, location, and appearance from one location to the next. The models are used to
guide recognition, predictinghowandwhemamﬂsmmdappearandwhatmempdsslwuldbousedto
find it. The modeis are aiso used for vehicle guidance, providing continuitywmle digitizing and processing
each image.

Aconphtemodolotthemadencomssesassunptbnsmadebytheprogramer and procedural
knowbdgolorroadroeoqvﬂon awuhmw@musﬁbxﬂuwwmwmn
jon mmwmmmmmmmwm subconscious models which are
implldtbmg“,f ver; implicit models, mamammmadebymepmgrmrmm
availabletotmmam wwmmm:mmmmwmmwmm

" 'Each kind of assumption is appropriate in some circumstances. ‘However.hthe more information is
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made explicitly available to the pmgrmmo‘wi&vthim of circumstances the program can handie

autonomously. This is especially tnia for modeia of higlily stgictured mads, such as well-marked streets
and highways.

Typical subconscious assumgpRions; for instance, abe that the roalt doesn't move, doesn't change color
at any one location, is continuously connected, doesn't bend so sharply that it goes entirely out of the
camera field of view, doesn't fold violently | In 3~ . Many of these assumptions derive from the
functionality of a road: if a narrow road makes | a sul Fight-angle bend, it is impossible for a vehicle to
foliow, and therefors,is np longer a."ad’, Assumptions at that level are safe, and.are applicable to a
wuevarmyotmads mmmdousassumbmarﬂmchmw _One road foliowing

hegins with_the (correct) implicit as 8- arq loca
(mcorractly) makes the ﬂmnscious assumﬂqg,;hu feamm-extractbn rqptms will find the correct
edges. This leads to,&astic errors in iaferred W when the subconscious.assumptions are vialated.
Such an assumption may be not only. wrong, b’nmmrd_tq pinpoint and eliminate, since it was never
consciously made or documented. o B o

implicit modeis show up in papers and in documentation, but not in code or data structures in any form
that the program itself can acosss or-modiiy.  Typical Mdnplick models ard it the road is locally nearty
straight, that the road is aiways brighter than its surroundings, ortlutthedomhamadgesinthescene
are the fdad borders. mmeoﬂmumwmmmwumamle
aigorithm for fecogrnizing that particular road typ; or for calculdting road geometry under that assumption.
mmmmﬂwmmwm“ummwmmmwwbmm
those cases where the underlying assumptions hold. In particular, for unstructured roads that do not
have lane or edge n'uarklnqsandthatdonottoilowrulesofwrvatureorshape the road model is very
limited. With such a limitéd road model, itmax notbepossbleorpractlcalfortheprogramnsenwusean
éxpﬁcitmodel Iftheralsonlyonefeamreihatcanbetrackeq;eﬁably andonlyonealgodthmtorfeawro
traddng.thenﬂuralsnoheodforexplicﬁpmgramraasorﬂng o .

Expiicit models are' most useful in the opposite case, mwnwnmqmmmmmmiummpe |
; and ‘appedtance, and thére aré many possible fesitires ‘and a variety of recognition aigorithms. Then the |
| program iself can select the torect features and aigorithms, and-can watehi for changes'in the road and |
‘ - change its strategy accordingly. Moreover, an explicit model-that includés road semantics can help tie
together separate phenomena. By "semantics” we mean labeis such as "Intersection” or "right tum lane",
and the associated rules anddeecﬂptbnsthatpmscrbe road appearanoe andshapo in those situations.
For instance, a pmgram with only implicit models may notice that a feature it had been trackinﬁ has now
disappeared. OnlywuhanexpucltmodelwmRbepossiblefortheprogramtounderstandthaﬂhefeatum
was a double yellow fine, that its  disappearance might mean an approaching intersection, and that it ls
now past time to start looking for crossing tratfic.

Roadfquowingpmqramtodateuseonlyw "fandfmpﬁcitmodols This_is_duepart% the
kinds of réads being tracked, which often db not havé nough ‘inucture to make strong models ecessary
orpossbio mmreases however, the road has ';,; ng structure, but the deskyner has iMade all the .

¥ imid fiave Bhly a single road-tracking aigorthi¥, and haye a
o pick the "best" method Tor Tolowing the road.
The resulting system appears relatively simple and etficient, since. it has only ong algorithm to code and
needs no higher-level reasoning.

| |
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Simple appearances are deceptive. Suchmphggﬁ . models de
mm.wum::,mmmnymdebumingan& naking enhancements. Furthermore, systems
based on such a pre model.of the world tend not to be as simple 3s they would at first
appear. &mmmmly as static as an implicit, preprogrammed, m&,mammsmod

many special cases, excopﬁom recovqry mechanisms, and other complications.

WQopmndMItapocsbloandadvamageoustomaketheroadrnodelexpﬂcit._andtonotomy
mmmmmmmmtmtoiwummmmmﬂ Moreover, using
such a model will make it easier to program and debug a road follower, andﬂbadhdﬂdunpmm
mewkawmmmummbysmwmmmwmmw
wmmmmmwmmwmmw

The first half of this paper reviews other road followers, and oumnee the road models and hidden
assumpﬂomusodbyeachpmgram in the second half, we introduce FERMI, the Folowing Explicit Road
Models Intelligently, and descr_jbe its construction and'performance.

smlns, Models. and Assumpthns

lnmissoctbn.mmmualsymms mmummwcﬁmmw
modets in each.

SCARF: Color Classification '
implicit model: road colors mostly constant from one image to the next, known road shape (either
known width, locally straight and parallel for Hough interpretation, or arbitrary but known for ground
swm wmmtbhnmmmwmammmmmmmm
road images

SCARF, mswmdcwmwwnoad Following, has bnendwelopedmmn last
three years at Carnegie Melion [5]. SCARF keeps color modsis for typical road and nonroad features,
typically 8 road and 8 nonroad features. Each color madel represents the means, and covariances.of the
color values for that feature, and the number of pixeis in that class. An-image is classified by comparing
each pixel to each class, and determining the most iikely classification for that pixel as well as the
probability of that classification. The most likely road is found by convoiving a known road shape. with the
classification output, looking for the road position that has the greatest sum of road probabiities inside the
road shape and nonroad pmbabimles outside the road shape. In practlce this can be done eﬂicienﬂy
using an adaptation of the Hough transform that votes for areas instead of lines.

Once the most likely road has been found, SCARF builds new color models by supervised

_clagsification. The area inside the road is used to build new road modeis, andthemmbldethe road
for the new nonroad classes.

SCARF was designed for use on a narrow, twisting, tree-lined bicycle path near the CMU wmpu.&
With constant illumination, it works well. Various color classes typically represent shady road, sunny
road, leaves, wet patches, dirt, and so forth. As the vehicle moves onto a new type of road, classes
adjust to represent the new appearances, as long as there is enough overlap between scenes that the
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ma]orttyoTthe road hagd been s««n and rrxxreled |n the prevrous |mage

*The brggest weakness'of SCARF is in changrng |IIum|nat|on If the Sun goes behind a cloud: between
*iage*; «*"appearance of read and nonro&d featlii can change, rerfdéfing ¢olormodeti ‘incorrect : A
second weakness is the rétlfee on knowA'road shape: *Ifthe rodd curvedstifiply. or ffit chandes Width,
the assumed shape model (locally nearly straight, known wrdth) is invalid. Finally, SCARF suffersJrom
the'lack of feafuresin its eh’\'/rronment It |s drffrcult to bqu explrcrt modéls smce |ts envrronmenv'has few
features the brcycle path has’ no Ons, sfrrdes guard rarts ofshoulders 8

UNSCAHF:UnsupivatkdClagsificattofl, . .. . . PR
ImpUctt-model: road » . collection -of - homogeneous regrons that together form a: road shape”
(currently known Wrdth strarght edges)

Subconscrous model»road edges aredean e N e

UNSCAREF, for UNSupervised CIasSification'AppIied t6 Road Following, was designed by Crisman at
CMU to overcome the problems of SCARF with rapid illumination change [1] UNSCARF does not keep
color models from image toiffiidge, and dole hoclassifypixels: at*rood-or nonroad. Instead, tor each
image, it starts from scratch and finds the cIasses that best describe the i image. It uses the classes to
divide thé image-info regions*of similar appearance thén“searches’ for thie conibination* of* regrons that
forms the best road. "Best", in this case, currently means closest match to known road shape® Other
heuristics being considered include shape constraints, such as edge smoothness and -straigtitnéss, and
colorconstraints: ...~ - . o o e ol 1|

"UNSCARF Uses a weaker ‘model than SCARF. By eliminating the subconscious assumption, that
lighting is constant, UNSCARF successfully finds roads in cases where that assumption is violated. But
.UNSCARF also gives up agreat deal of useful.information-for the many:occasions when:illumination.does
not change between successive images. A better solution would start by detecting illumination-changes
explicitly, and using colors from previous images if illumination is constant. This is one of the themes of
sour current:woik. “The best.solution would be.to improve-the illumination:model from a blhary-decision
.(changed /-constant) to a quantitative ‘analysis -of how -coldrs change :wfth :changingillumination.”~A
-complete-analysis requires understanding the dnteractions of direct lighting;"diffuse-Nomination from sky,
:clouds;-and leaves; object colorssand:highlights; camera sensitivity;:and. digitizer.effects. While work has
begun in:those directions [4], it: |sfar from berng applrcable to unconstrained- outdoor scenes. '

'I\/Iaryland _ . : -
> Irnptjcff model: srnal_l_-scale"r‘o'ad‘ edgef&{_:domfn_ate the _sc_é'ne,_:edge__s" am para_l_le_l_‘vehic_[e motion, is

E:

E___‘,Subconsciog_s_model: edge-finding is accurate, edge__s are clean and linked,. Unjted curvature |
e T B G Ll SR - . : e TN T T e i ) o

~ Davis-LeMoigne*Kushner, and Waxman:“at the University'of Maryland, havé along history of reséarch.
in perception for road following. Their strongest system, and the only one t6 actfially drive ¥an
autonomous.vehicle, is based on finding edges and grouping them into lines with_Hough transforms [8].
Durrng road trackrng an initiafwindow is pIaced al the bottofn of the image on the predrcted road Iocatron
The search for the road edge'in this Wrndow has two degrees of freedom, for location and orrentatron
Once this edge is Iocated other wrndows are pIaced above the initial window. In each succeedrng
window the road edge position is constrained by the Tower window, so the Hough search need only Took
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for orientation. This technique can work ac aly JOr:Seer inmmmmmmmmm
borders.. SmmmaCMUmdﬁweﬂbymm.W MMMw
wm:wbymmmwwchmwadgasmmedbylmorcﬁn

Besides road tracking, the Maryland research also considered 3-D shape reconstruction. The higher-
level attempts at 3-D interpretation of road scenes.were extremely sensitive to noise. DeMenthon [2]
shows how Waxman's model can lead to perceived uoadstoldmgbaekovermen\soms,andpmposesa
MWMWWNMM ‘

vITS

mucnmw comﬂtcobmmhinoneumage(roadhasatmostzclasus,tmsumyand
shaded)kmuvoﬁdemﬁonuﬂmadmdqﬂosndprocass

wm The color combination chosen is assumed to be always adequate dosplta
chmmminauon&dinomoad mismpﬁesmadappearanceusconstamfromdaytoday '

The Martin Marietta VITS system [6] has achieved some impressive goais. It has followed roads at
speeds up to 20 kph, and detected and avoided obstacles on the road. Their system projects the 3-D
color of each pixel onto a single dimension or, in later systems, onto a 2-D plane. Pixels are classified
into road or nonroad based on a linear discriminant function. Once each pixel is classified, blob coloring
gives the location of the road. The most interesting part of the Martin Marietta research is in selecting the
road / non-road threshoid. In each new scene, vehicle motion is combined with the previous road model
to caiculate the portion of the image guaranteed to contain road. This road area, called a power window,
is sampled to determine the typical road color for this image. The Martin system is a tlghtty-emineered
combination of perception, control, modeling, and highly tuned hardware. In manyways, their system is
similar to some of the CMU road-following, but driven by speed constraints rather than generality of -
experiments. Where CMU's SCARF uses full color (or even 6 channels of color from two cameras) to
track a variety of road appearances, they have selected the best combination of colors for their particular
road. SCARF keeps many different possible appearances for both road and offroad, while VITS has at
most two, againsacriﬂcingmnsmlcapabdnyfofspeed
‘Dickmanns and Grafe

Iimplicit modeis: gray-level edges of roads dominate the scene, road follows clothoid shape, physical
mesandtastprocessWMtwumm kmwnrelatbnshipbetwoonmadtemmbe
tracked.

Subconscious models: all interesting features are oriente@;édgés, no sinultaneous distmns

Dickmanns and Grafe have demonstrated road following with a Mercedes van equipped with special-
purpose computing [3]. They have achieved. impressive performance, tracking a new section of the
autobahn at speeds up to 100 kph. The heart of their system-is an elegant control formulation, in which
road geometry, vembmmmradusandspeed andttnlocationotvisuaﬂytradmdfaaturesarealﬂad
into a single filtered state model. When running at high speeds, their system takes advantage of-the
geometry of the German autobahn. The road consists of straight lines, constant radius curves, and
clothoids smoothly connecting curves and straights. German roads have known lane widths and well-
defined markings.

The major weakness of this system is its extremely simple perception model. They use a monochrome
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mnmammamn Thwrabidpweasslnganddtmmmadmdelhg!pﬁnmlo
detect’ar ; goiss edges, but it neve: wisappmstmm:moowg&dm
bysmdowapuddles roaulin&udmm crchﬁnoﬁiﬁimmlnaﬂon :

Mmmmmfomﬂmemuammmuemqmm Butmoftmm
has more than one means of tracking the road, or does any higher-level reasoning about the road, or has
any explicit road model available to the program. Yetltisimportamwmildandtouseexplicftmad
models. - Highways, Treeways, rural roads, even-Suburban streets navemmconsnms Modeling
theseoxpﬁcllymkesreasorﬁngeasmandmréroﬁaﬁl’é When a fthe tracker fails; for instance, an

and photometric reasonlng is vital for building reliable andvgeneral road trackers. .We are now building the

FERMlmadmckmsystembstudyexpucimndeling.mdtosmdymeuseonmmdobhbuiidng
reliable vision. e o F . -

wmumwmmlswmmmwm”mam Out' central
mﬁwmmﬁmm»pom ‘road fedfures; géometry, and-other éffecls: We are first
uwmmmmmmmmwm‘hwwmnmmdﬁmm -
' dwmomkm(wmstﬂpes) B

. roadcenter lines (yellow siripes) o e

,olypeandeobrolroadsuﬂaee
wGalsohavaanexpliclgeoMcmdelofmorgad Thismdelconsmofaarmoigonemazod
stripes. A generalized stripe is the 2-D analog of @ geniéraized cylindér. It consists of a spine curve
(wmmlyrestﬂetedtoamofwnstaﬁwwamre).andmdoacmtbndimmmh
uammmem Thomodolomnmadmm1 torlmanw mmummu«

» Spine: Curvature=0.0. =

e Feature 1: m—aumt15aﬂ,heigm0an.tweshoulder descrbtionasphan.

« Feature 2: starts —273 cm £ 0 cm, height cm, type line, description white.

* Feature 3: starts —262.cm £ 0 cm, h 0 cm, type road, description.

o Feature 4: starts —24 cm + 0 cm, hel 00m.tvpellnedescriptionyellow

o Feature 5: starts —7 cm + 0 cm, height 0 cm, type road, description asphalt. o o

o Feature 6: starts 7 cm + 0 cm, height 0. cm, type line, descriptionyeliow. =~

o Feature 7: starts 24 cm + 0 cm, height 0 cm, type road, description asphalt. .~ - .10,

,» Feature 8: starts 262 cm. + 0 cm, height 0 cm, type line, descriptionwhite. = . - = . ¢

o Feature 9: starts 273 cm + 0 cm, height 0 cm, type shoulder, description asphalt. e e
o Feature 10: stans304ant15cm,heigm0an.typeoﬁroad description grass. o

" The program will expilicitly note transiem road phenomena such C
- o shadows ‘
e local changes in road surface, e.9. patches N
« global illumination changes, such as the sun going behind a ctoud
.1+ ® camera changes (auto-iri, auto-gain) - , oSy A
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*3-D effects suchas goingupand down hits

Expilicitly modeling all these different features will be the basis for efficiency and reliabifity. The system
will.be efficient because the geometric constraints can specify subwindows of tihe image for each feature
tracker,. and tracker history from frame 1o frame can predict appsarance and shaps. ARolher reason for
efficiency is that many simple.trackers can be easily implemented on paraiiel hardware. Reliabiiity: will
come first because of the strong geometric constraints armong:tratkers, and the ability to detect and
ignore anomalous outputs. The ability to use a strong geometric model of the road to focus on a small
area of the image 10 6ok for &-festure reduces the chances of being misied by extraneous image
features. More impoitantly, the system will be reliable because one tracker; on discoveting®a shadow
edge or road curvature change, cmnassmmm«wommmm&mmmmm
w\tbymomphmwn .

Trackers

deﬁnkﬂv&dfoﬂntmnmmwywmvebpod thavedonesomopmlmnaty
expomlomusing.broumph mooﬂerudodgoopomwusedtodﬂvothonnrinwasanda
sm\plﬁodvoubnonhoeobrmmovohpodmww CMommmoufmnMerstofolow
lines, stripes, wmwmmemfw«andmmmwathanmgmmtrad(m
needed for our park scenes. . :

wanm!yhmburtndcmmhm.d :

o Oriented edge profile: intensity profiles are extracted from a training window oriented
perpendicular to the direction of the feature. These orert temm“mmmuy
correlation with intensity profiles from later images. The implict model is that the calor
intensity profiles of an edge are roughly uniform along the . ,

i
%
3l

model: assumes that the dominant color phenomenon in the training and search windows is
mmmbﬁmonﬂncobsofmemteawmmmbbemtmked

-Matd!odmortradersmautmnhgwindowisw In later search windows the
training window is correlated with the search window. The maximum correlation vaiue in
each row of the search window is selected as an edge point, and a fine is fit to the edge
pom Implicit model: mwdﬂnt@muwMemuwmcomlaﬁomobe

mrwm«mammams&emmmamnm if the featore is
narrow (i.e. a line or stripe), it selects a linear feature tracker. If the feature is wide (e.g. a lane of the
road), it chooses to track the edge of that feature, and selects an edge operator such as the oriented
edge ftracker. Figure 1 shows the road described earlier, with boundary and oriented edge trackers
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tracking the white lines on the left and right side of the rosdl and ihe ld‘wdboutherigmlane

nhmy«kmmmnm«ammmwmmmwmm
piacad on various featiures at various points in the image into & single estimate of where:the vehicle is
relative: 10. the spine of the. generalized stripe that is currently being-transversed. Thomﬂwodafﬁ:don
mnmmmmmoﬁmmmmmmmwsmm SR

mmmmmaam«mmammmmc Lﬂmwmmmmdmewm
stripe- is .a.straight line (the technique..extends in a straightforward way to arcs:of known constant
curvature). Since the road is likely to be almost siraight ahead of the vehicie, let's represent it as a line of
thefomy-m X + b, where the x-axis points straight ahead of the vehicle and the y-axis points to.the
left. Let's suppose we have a feature tracker tracking a white stripe whose center is offset from the road
spine by oﬂsetm” and that the tracker has returned (x;, y;) as it's estimate of the location of the center of
the strpa For a given m value, the y-intercept of the white stripe center line is given by Dyyige = ¥; - M
x;, and’ the y-imereept of the splne by b»im bmn + oﬂset,,,,” / cos(atan(m)). Flgure shpws the
relationship betweenmefeature position and the spineonhe associatad ‘generalized stripe. "

Each tracker votes for all possible spines that are consistent with its position estimate for fts teature.
The largest peak in the acwmlatorarrayistakenasmeposltbnofwroadspim Tr;d(erswm
position estimates are not consistent with that spine estima’te are ammalles which need to be explamed
Currently tﬁu pmmﬂ} does nottryto e)qplain tradterfgiurga ‘ ,

Intarpnmlons : o
At a higher level, we can use the semantics of the model to interpret tracker failurn Tracker failure
may be noticed by the tracker itselt, orfhﬂrad(armaygivaamsponseﬂmbmomistemmmdompm
of other trackers. In either.case, the mongtoring ‘system il notice the failire and will try to @i
undertying cause, u\dmmalexplanaﬁonhupqmohmodel Exmmsuchmasomme
o double yellow -> single dashed yeliow: :no change

o double yellow -> none: mnmnm pndddohrﬁnwdmmar.
intersection-traversal behavior

ommmo><mnym
« road / shouider: nothing '
-aﬂmadwithmhoMQr->ppasbbslderqadmmou g s
-unirnerpretable checkforoccusion . . . o
Currontsmus ’ | .
The program which currently exists contains
o Code for dealing with an explicit road model doscribed as generqlized stnpes wrth spmes )
which are arcs with constant curvature. , ,
ometourtrackersdescribodabove .
oAsImplafrwkerselectbnmeehanlsmtodecidewhlchtrad(ershouldtradtwhlchfeamre.-_

- . Prediction code that positions each tracker correctly-based on the pcmivedpoﬂbnonheg
madmmepreviousimearuthevehmsnnthn . -

-i‘radcer fusion using a Houohtacmique g ) duormhe the‘vehicle position mlaive wthe T
. spine.of the current road stripe.

o A simple facility for producing synthetic road images in order to test the eﬁects of errors in

Y
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Figure 1: Road with oriented edge and boundary trackers




36

~ﬂm obthé
Acircularamhasonlytwodemoﬂmedom Wetypicallyuseelghormmtrackefs, someofwhuch
return x,y position and some of which also include perceived feature orientation. This gives us a greatly
overconstrained system, and will make it possible to detect malfunctioning trackers. Trackers can also in
some instances give internal evidence of difficulties, for instance correlation values or residuals of line fits. ’ »
Once the program determines that a tracker is failing, tha‘next 'step is determining why it failed, and using
that diagnosis to prevent other trackers from falling into the same trap.

We also need to model the semantics of road markings. Cues such as a double yeliow line turning into
a dashed yellow line can predict the road becoming straight and fiat.

We aiso will build and test additional simple feature trackers as we gain experience with failure modes.
No one tracker is likely to be refiable in all circumstances, so the greater variety of trackers available the
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greater the chance of having one that works. fo: A -paniculas  condition. Perhaps more important than the
proliferation of operators is impiementing them emcinmy on the Warp, our high-speed experimental
paraliel processor [7]. Most of our processing time is consumed in local imue pmm operations
which are relatively easy to hnplm on paraliel handwara
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Chapter IV
Building and navigating maps of road scenes
~using an active sensor

Martial Hebert
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Building and navigating maps of road scenes using an active
sensor ! |

~ Martial Hebert

The Robotics Institute
Camegie Mellon University

Pitsburgh, PA 15213

AMM

This paper presents algorithms for building maps of road scenes using an active range and
" reflectance sensor and for using the maps to traverse a portion of the world already explored.
'Udngmmmlmmwacxhadwma It is independent of the illumination
' ’.udoanotremdncanplacalibmdoumorderwmwbmabsemdfmmsw
the vehicle's reference frame, and it provides 3-D terrain models as well as road models. Using
- the-map: buils from sensor daa facilitates navigation in two respects: The vehicle may navigate
faster:singe less perception processing is necessary, and the vekicle may:follow a more accurate
path since the navigation system does not rely entirely upon indccurate visual data. We present
- a complete system that includes road following, map building, and map-based navigation using
: tlummrmngcﬁnda We report on_experimentations of the system both on.the CMU
NAVLAB gnd the Martin Mgrietta ALV.

5351, monitored by the US Army Engineer Topographic Laboratories under contract DACA76-85-C-003
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Autonomous road following using visual information is an important application of mobile robots. In
addition to navigating on roads, the visual information can be used to build maps of the observed en-
vumm.hamdmchmuhppp}b?q ulocloletheloopbymmgthemapbmlt
ﬁumpmmohuewmsnzmdeﬂx gation of the world already explored. Such a
e.p-h.myofmpb.aeamm-muI oul Mptﬁmnmmmdmmhmm
dl"ﬂlﬂn! i i IR

¢ Faster navigation: Pucepﬁonistypimﬂytheboﬂlanckinmﬂmmnmobﬂesymsbecaue
images have to be processed as often as possibile to compensate for the lack of knowledge about the
world. If apriori knowledge of the environment is available from previous observations, perception
is needed only to periodically check that tlie vehicle stays on the path prescribed by the map. The
pemepuonboulcneckuthemfommduoed.mmdmgtofmnmmon.

. Motelehablcnmauon. Mmmnmmwmmmcfmmmmed
with any sensor data and processing, Rdmmontmgm:dmlg‘oumrdm
quneddnﬁngthemmofammplm.ﬁap jon should therefore provide

e Smphrpetm Ampmmvx&ﬁeupeﬂdmofhma.ym

mmmmwmdMMhMdeofun-

Mmmxmﬂkmwmmomfmmpkrmpm
Mhmghmapbmﬂnavigamnalgomhmsmld"beuaedwnhamdmthxp(éx ﬁommrveymg).

" using & map built from sensor information ddes ndt tnake any sssumptions on the amount'of knowledge

available to the system, thus leading to a fully autonomous systésh. ' This is also inpordnt siice it is
difficuit to obtain the resolution of a map built from sensor data by using surveying alone.

Most of the existing road following systems are based on intensity or color image processing [14,18,15].
In this paper, we investigate the use of active sensing, namely laser range finding, for both road following
and map building. Using such a sensing modality has some attractive features such as its stability with
respect to illumination conditions and the direct conversion to world coordinates without calibration. Our
goal is therefore to build a complete system from road following to map building using active seasing,
whereas previous research on active sensing for autonomous vehicles focused on 3-D map building or
obstacle detection [2,3,6,4).

The images used in the experiments reported in this paper are range and reflectance images from a
laser range finder, the ERIM scanner [17). The images are 64 rows by 256 columns 8-bit images. The
maximum range is 64 feet corresponding to a pixel value of 255. The vertical (resp. horizontal) field of
view is 30° (resp. 80°). Figure 1 shows a range image (top image) and the corresponding reflectance
image of a simple scene consisting of a road and two trees.

Even though the road followmg programs were dunonstmad on the Mmin Marietta vehicle (the

cle WNAVLAB) (10].




i mmwmmm'w |
2 Followiu roads using active reﬂectaace '_

Bulywkmmdblhum;ﬁmmemmfowxdmthemoﬁwdumﬂndtb:dmof
the road [11,1]. The drawback of this appro 'luaﬂlmﬂ‘ﬂcmﬁuwwmm
correspond to discostinuitits of the wirain surfiice. This assumptice Tifts seve of the
algorithms. ‘An' alteshative agiproach is to use the active’ reflectitice. imall ﬁhmﬁmﬂwwmg. Active
reflectance images hitve (o chiwatscristics that ‘make them attractive r fosd-following applications:
First, they are insensitive to outside illumination, that is no shadows are cast by: qbjects in reflectance
images and the influence of the level of ambiant light on the image is. minimal (in fact, any program
using reflectance images would work as well under night conditions). Second, each pixel in the reflectance
image is also a range pikel winde position:in speoe can be detived fvens the geometty of the scanner. This
allows us to compute the powition of the ‘edges of the road found in-& reflectance image in the vehicle's
3.Dmmmwummummuuwwm
algorithms (5].

Amﬁm&wbﬂdwmwuuhvﬂndhem&ancaeachml
depends on the value of the.range at that pixel {7,17,19]. In other wonds, the reflectance values decrease
as the square of the rangs (o0 :the measured surface. This effect can.be corrected to some extend by
calibrating the sengor with mspect t0 a surface of constant reflectance, that is'to fit a function 7&fleoprected =
S(reflossarved) TGN Cotoarvit) ©vET 3 portion of a training image of constant reflectamce {7]. The function f
is then used to build a correction lookup table. Such a calibration reduces the effects of the reflectance
but does not compietely remove them because of approximations in the sensor model and because the
surface portion used for the training does not exactly have constant reflectance.

Edge detection would be the natural way of finding road edges in grey level images. The nature of
the reflectance data, however, suggests the use of a region-based technique for two reasons: First, the
dynamic range of the image is low, many'spurious edges that are of similar strength as the road edges will
be found. Second; the intensity of the road ‘in reflectance images'is very sable because it is insensitive to
shadows and changes in illumination. ‘This is to be compared with video images in which the appearance
~ of the road region varies significantly; thus requiring the use of mulktiple classes of road and non-road
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regions (14]. i identifies the pixels
that are part o m a previous image.
The pris &; of the reflectance
values inside atistics are computed
on groups of s attenuation at long
range and for W et on a few scanlines
only instead g ed on the first image
by selecting tig§ reflectance image by
thresholding iy (m, Ci) are the values
computed on emove small isolated
regions. Therg ee Criteria the shape
of the bouncdas g the average with of

the road, and the position. ofJ|* . fl"’on . _e\m*g i§* predicted-from the prevrous image. Once the
road region is extracted drevaJ ues mee and 1Ti are computed for each swath i in order to process the next

image. This #n% |s only,tone Toag] "ss that |s,only one &t
of statistics, and thk r< tn**tes ctf wErt s S\Nath nstead of the entire
mne-

Thefrnal outpit of tbe‘groadfrnder pr

 "computed by B0ing twio v, H~ Irlrestothe "’f | ight edges of
parametrrzed‘ by’ acUrectron ?, wh}ch is the girectign of the [ Oad. cooungp.to both edges and the signed

'_: _drstanceeoftheIrnestotheorrgrn"lt andd(?fmgmbu@p ynputcd by mrnrmrzrng ,

dan ﬁggpmoftheroad Thelrners
'edges of the rpad palygon, i the two iloes are

-"Thecenter ||ne of theroad U;Ibc mrddle ||ne of (74) and (7 ’\) the wrdth of the mad |s,w «\dk <U\.

, .. Figure 3 show», theresultof the K" followingpr.ogr GQMWGMM The
left-part of Figure 3 'shows.the sequence of reflectance images, the tight pan:shows the;road edges and

- the center line of the road projected on the ground plane. s
: “In order todrive the.vehicle, two pointson the center line are-sent to-alocal path-planner. The path
. _planner-generates-a sequence-of circular arts using a "puiepmjoi”algorithm derived from [161; The
..road following program:drovesuccessfully two:vehicles, theGMU:NAVLAB:[9} and dieMartin Marietta
ALV over several htindred meters at aspeed of 40cm/s. :1h both:casesithe'road folk)wing isimplemented
-0n a-Sun3 workstation.” The average computation time is 3. seconds per reflectancermage whrch allows
. --a-for enough over|ap between consecutive rmages* A . S

3 Burldrng maps from range and reflectance |mages

. Wehave so.far addressed the problem of building arepresentation of the environment:from individual

range.and refitttme-images. In the case of a mobilerobot, however, we have to deal iwith:a'sream of

~.a-.images taken-along-the vehicle's path. Merging.those individual repreeentationainto a.coherent:map of

~ theworld.is important;for three reasons: Firg”of alt merging representations from.succesavc viewpoints
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i

Road edge

Figure 2: Road finding algorithm

produces a map with more information and better resolution than any of the individual maps. For example,
a tall object observed by a range sensor creates an unknown area behind it, the range shadow, where no
useful information can be extracted. The shape and position of the range shadow changes as we move to
another location; merging images from several locations will therefore reduce the size of the shadow, thus
' pmvtdmgamonmgleedamwmtothcpmhplmner Ammmwhymmapsmm

Mwmongmaﬂymmédaadnmme&oﬂmm W

is that the position of the vehicle at any given time is uncertain. Evenwhenmgexpa:swepoauomng
systems, we have to assume that the robot’s idea of its position in the world will degrade in the course
of a long mission. One way t0 solve this problem is to compute the position with respect to features
observed in the world instead of a fixed coordinate system [12,8]. That requires the identification and
fusion of common features between successive observations in order to estimate the displacement of the
vehicle. The third motivation is that having a map would enable the vehicle to navigate more efficiently
a portion of the world that has been already explored. We will focus on this aspect in section 4.

The main problem in building a map from a sequence of consecutive images is to compute the relative
positions of features observed from different vantage points in onder to mefgeiihem in a consistent map
expressed in a single coordinate system. Notypaofmﬁmmybcmedmcompmethemlmve
positions: The matching of geometric features from image to image, and the bast estimate of the current
position of the vehicle as given by the dead reckoning. The position estimate from the motion of the vehicle
cannot be used alone unless a sophisticated navigation system is used as in [3] since positional errors
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do accumulate in time, thus leading to unacceptable errors in the position estimate. The final position
: mmuammmtummm gad, reckoning is. used {0 predict
mmmdxaammuuuMmmw
between images. It general, if F} mﬂmmwofﬁtmumaﬁmmmh ndh, we
mwNCWMCa&ﬁIQSﬂ&&f":;n 4 o NFL), where
e sed by Fof 2 féatusé F. We first investigate the feature nistching end
mMMwnuwummpano{m epresen
F&raﬁrﬁ&n?‘f nmmm&aamﬂum e  gi

T A 5 ,"mh%“muﬁ
mmumofmwymm“mmwymmmm
. dmpWTwMW&emﬁm&m&Mapm;m?lndesfomed
of its homologue in image 2, ||7p? - p'||, and by the maximum angle ¢, between a vector in image 2 and
the transformed of its :gxpapelbythemmpmofT 'nnpmdiamuthgndeﬁnedas
mwdtme:”f’,éeuaﬁmmdmmgna ndni:um_ tance

ype of th Sk ww s & ‘H acle

Omewehwehmthemmoni.%mmfmmmmmw The
. search proceeds. by masching the featares F} .t the festures. 7 that ane in their peediction segion starting
at the most important feature. Wehvemmndﬂnmammmmkgmwmm
wmmammummauwmmmmmuwmmm
matches are further constralngd. mmsmwmﬁmmmmr
wnhmedwlmmmndﬁnmamwma’},@ Even though 1

bymmmu.ﬁpmc? &’ hat ek

mamhmpmndefourwmpm(twommmmdmmlm).ndmﬁdi alc

can be compuged. Ammﬁmhmbymmmwmmm
ways: if conmectivity relstions between. featuses .ase availsble, as in the case.of wrmsin pasches, then a
~ maich (F}, F}) constrains the possible maiches for the neighbors of (F}) is. that they. have  be adjacent
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mwp& \m;umammmdﬁsmmmmwwwmmwﬁlwwfm

sene: twd'lilectics, (71, ) and’ (B, F,), are g e

= Flafy i wr.wmmmm% T i 0 s
- % prs g Sy iz

betweent’hgtwowor

seg“‘ i pm?g(rf A
i ur 9 (;‘e.j '; ‘vﬂ’?’r':ishnf-ﬁx ‘ I by

m&md)Mmquma)Mon;mtypeofgp

it is the usial distance between two points; for line; uuthe:«:; ’,’sqm'oftheangl@bawmthetwo
’ ance between, the ectors of the t ,_fformgmuuthewexzh&dmmof
: &ptwodhecwnvm (All the

;hstwomaps wlulethe
p&weeu;hetwomaps

wﬂ'so tln& we can apply it to, many different
BCe )mswma).tbemponmqsme,am
ient as los knlimdedonotbecomwohrge

vqu "',fﬁfmmhnldin&mpolymthndescnbe
‘algorithms for extracting the polygonal description
.y arexeponedmmand[ﬂ Tommmge.thefeqmesusedmdnmnchmgm

.mmmmwwwmmmmwofﬁwms

.. m,polmmmmgmemotMuwmmafny)

oThemadedgesfmmdmmemﬂemmemm;fmgmaddemummMemqm The
whabﬂuy;smusnedbyhowmuchapqrofmadedgsdcwmﬁomhpmfoqndtmthe
pnmousxmage.

‘ Thcobuaclepolymshzveahngherwexgmmthe’seamhtmlfbecmthwdetecﬁmismtehable
mmecmwwmbmmmwmmmmmmmmmm
- estimate of the displacement sirice their localization i better. Owcasetofmmbﬁ*‘mdad:spheunem
: Tmmwwd.dnoml«mmpummamwmmmmmemmapmdam
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image are combined into new polygons, and the new features are added to the map while updating the

ad by about one meter. The scene
trees. Tigure 4 -how “geiginal sequence of raw range and
reflectance images, ﬁm@“ mpective-vigws of the onding individual maps, and Figure 6

is a rendition of the compfiaédmgps-using the displacemcns sd mches computed from the feature
» matching algorithm. This ¢ 43 M”M *mmexansand shaded by the

Figure 8 shows a 3 mty jisty mefirs. In this display, only the road
edges, the center line of ; Snd thi: didorese: obstasios & g To obtain this result, the vehicle
was driven by the road ) speed of 20 cm/s. The road

- following and map building jge ing module requires an average
of fifieen seconds of com stable continuous motion. The

; ;abed in this experiment is shown in
Figure 7. Mmqhnlmn;andmd, pllowin m@d«mmmedmtwomptmsors(smg
They both access the ERIM scanner through a network isiterface. The road following module sends a
new path that is a sequence of arcs to a separate helm module running on a three processor. The helm
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dnmwﬂasmmdmmofﬂnnhmlepommmﬁzmbmﬁﬁgm&ﬁe. The communications
mmwmmmmmm@mmwmm@u@mm[m}
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4 Map-based road féﬂbwi’ng -

In this Section, we investigate the last part of the system, that is the use of the map built from road
following to traverse the same portion of the world.

The map-based road following must proceed in three steps: computation of the starting position, path
planning in the map, path execution and correction. The first step is needed to avoid constraining the
starting position and heading of the vehicle at the beginning of the traversal of the map to those used
to initiate the map building stage. The position and heading of the vehicle with respect to the map are
computed by matching the features, road edges and objects, observed in an image taken at the starting
position with the features of the map that are predicted to be visible given a rough initial guess of starting
position. The matching algorithm is basically the same as the one used for the map building except that
in the current implementation, only road edges and dis.rete obstacles are used. For example, Figure 9
shows the initial guess of the starting position (marked by a cross) and the portion of the road and the
obstacle that are used for the matching. The map features are predicted by intersecting the sensor field
of view with the map.

Gnventhestamngpomm,mcwcondstcpnstocompmeapmhthatfollowsthemadusmgﬂwmap
This step is the most straightforward in that any path planner that provides for smooth paths can be used.
For example, Figure 10 shows a path (solid line) composed of a sequence of circular arcs. The path is
computed by dividing the ceater curve of the road (dotted line) into small segments over which the pure
pursuit path planning algorithm of Section 2 is applied.

Once a path is computed, thcveh:clensxeadytofollowmemadbasedonthemap Ideally, the vehicle
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«* 20 seconds ~ 3 seconds
Figure 7: The map buUdlsog/roadfoIIqug sysem. .. i
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Figure 10: lamwd‘ |
g : Path planr d using a-ftﬁaé
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should be able to correctly execute the path without any perception at all. In practice, however, the vehicle
will drift away from the ideal path due to wheel slippage, and the accumulation of small controller errors
and numerical errors. Therefore, the position and heading of the vehicle with respect to the map must
be recomputed periodically by comparing the features that are actually observed while executing the path
and the features that are predicted from the map given the current estimate of the vehicle’s position. The
question now is how often should we make a position correction, that is take an image, extract road edges
and objects, and match them with the map, in order to stay within reasonable bounds of the original
- path. This problem is the key to map-based navigation: If the corrections are performed too often we
are back to the original road following approach and we loose the benefit of having a map. If, on the
odaerhmd.mdonmpufmmmxdxmutcnmdmgtbpuﬁ,mmay&:ﬁamﬁmﬂyfuﬁmme
nominal path and eveatuaily run off-road. e, the cortections should be meaningful in the sense
tlmenoughfummshonldbepmamenmeofmeconecnmwmmatthenewlycompuwd
position is indeed closer to the truth than the currently available estimate. Several strategies are possible
to choose the locations at which corrections should be performed. An attractive strategy is to estimate the
uncertainty on the position and heading as the vehicle moves, a new correction is requested whenever the
uncertainty reaches a threshold that indicates that the vehicle is too far from its nominal path [13]. This
approach guarantess that the distance between the vehicle’s path and the nominal path always lies within
preset bounds. It does not, however, guarantee that the images taken at the time at which a correction is
needed contain enough features of interest. Another possibie approach is to make a correction whenever
the map predicts that features of interest may be observed from the current position. In our case, it is

_important to guarantee that the corrections are performed when objects are visible, since otherwise the -

correction would be computed on the basis of the road edges only and would therefore be ambiguous. A
correction is therefore computed whenever at least one object is predicted to be visible from a position
along the path. Matching the predicted objects and road edges from the map with the observed road and
objects provides an unambiguous new estimate of the vehicle’s position and heading. Figure 11 shows
the locations at which new images are taken for computing the corrections along the path of Figure 10.
Themadedmmdobpm&nmmachedm&thewuwgobmwdfmmshowuu
bold segments of the road edges and dark circles respectively. The crosses along the path indicate the
successive positions of the vehicle at fegular intervals of one second (at a speed of 20 cm/s). The position
is not displayed if an image is being processed, therefore the gaps in the stream of positions in this display
illustrate the time spent in processing images while executing the initial path (The percentage is in reality
a bit lower than what appears on display because the map, range image processing, and helm modules
numdlymmdxﬂ'mmmwbuwhsduphywapmdwedmmanmemdﬂsmmg
on one Sun).

Computing a correction gives an offset A = (Ax, Ay, Af) between the nominal position and heading
and the actual values at the time the image is taken. This offset must be used to correct the current course
of the vehicle. nisisachicvedbyshifﬁngmepahthuhasbeenemdwhikmeimagembeing

,,,,,

theveh:clemmunmovnewoftheﬁmobjects,annmagewtakenandmatchedagmnsmemap.thenew
position is shown as a cross on the left of the initial path, a new path is planned that takes the vehicle
back to its original course.




Hgore 12: Corrected path




56

These results show that it is possible to use a map to efficiently guide the navigation of an autonomous
vehicle. The main benefit is that considerably fewer images have to be processed while retraversing the
map. For exampie, The map of Figure 11 requires seven images to be processed. Following the same road
uthemespeedwxmmemppmofamapmldmulqauzsmgesforadxsplacanemof
two meters between consecutive images. Th o pihe distiepugey st even if the position of the
madmeompmedpu&alyﬁomgdl "duﬂmaze.thepnhﬂmwmﬂdnmhavemfomman
ﬁremghmﬁmdnvehde%amblepﬁdmmgumeedmmnmthcm Although
ﬂumemhmﬂdbe,“mdbymgamapmamemuedmaﬂy.nmmpomwmmme
combination of map building from sensor data and map-based navigation results in a fully autonomous
system that can leam its environment and use its new knowledge to navigate it.

S Conclusion

The road following and map building system shows that road eavironments can be efficiently navigated
mdmappedungnmvemsmhaalusmgeﬂm The map based navigation system shows
that the inforthition gishered during’s initidl traverial’ of (8895ad¢an ‘bé Wik{o improve the navigation
over a portion of the stretch of road already explored. Specifically, using the map provides an initial path
to follow, and a list of optimal locations at which visual data should be processed in order to correct the
vehicle position that drifts over time. The combination of those three components provide a basis for
anmomusnwipﬁmofmﬁshdudingS-Dandeﬁngmdhowledgegmhﬁngandumhaﬁm
through map building and map based navigation.
W&mmﬂyexmdmgtheldmusedmmosesymwmemofmmmvxgmm'
and combined on road/off road navigation in which the map contains a representation of terrain regions in
addition to the road model and the discrete obstacles. This type of inforination is. currently extracted but
uwnmmedforﬂnmnpbuedmm:ymwmmrmhpﬂpﬂmubased
on the pure pursuit control scheme. Our plan is (0 use thic-path planner described in [13] to take into
account vehicle model and uncentainty, and to be able to apply our approach to cross-country navigation.
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Chapter V
3-D Vision Techniques
for Autonomous Vehicles
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Chapter V
3-DVIdonTochnlqua

Abstract

Amhﬁcmbmmdsnmﬂnpmﬁmofbmmmd«wmh&mmimm.
Wwammmmmmmmmammmc
representation. In this paper, we introduce techniques for building terrain representations from range data
for an outdoor mobile robot. We introduce three levels of representations that correspond to levels of
planning: obstacle maps, terain patches, and high refolution élevation maps. Since tefrain representations
MWWmmmmmmmmmmmm
mgmm Cmmﬁhyummem«memm
data. My.nmdﬂMhm&Dmﬁﬁmﬁmm
sensors, such &8 color camerss. Wemhebud“ﬁrdﬁstypeofmfnnmwbmmmm
hfm&mhmbmhdﬁmn&nvdmﬁmnmmmofm
scene analysis. Many of the techniques presented in this paper have been tesied in the field on three
mobile robot systems developed at CMU.
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4

1 Introduction O N,

3

A mobile robot is avehicle that navigates autonomously through ah unknown or partially known environ-
ment. Research in the field of mobile robots has received considerable attention in the past decade due
to its wide range of potaKitl iappUdrioas;” sutveltisnce wqﬂwmm and the research
opportunities it provides, including virtually the whole spectrum of robotics research from vehicle control
to symbolic planning (see for example [18] for an analysis of the research issues in mobile robots).- In
this paper we present our investigation of some the issues in one of the components of mobile robots:
perception. The role of perception in mobile robots is to transform data from sensors into representations
that can be used by the decision-making components of the system. The simplest example is the detection
of potentially dangerous regions in the environment (i.e. obstacles) that can be used by a path planner

. whose rale is to generate safe trgjectories for the vehicle. An example of ajxiofecomplex.situation is
a mrsson that, requires the recognrtron of. specrfrc I’\nyT L, in V\HjﬁfO case the perceptron components
.must,. produce complex descrrptrons of the sensed envr ronment and, reIate than to stored. models of the
Iandmarks _

" There are rnany s;ensr ng strategles fpr pej"oeptron for mobrle robots |ncI udlng srngle camera systems*

sonars passrve stereo and |aser range Jynders In thls report we focus on perceptron algorrthms for

range sensors that provrde 3D data dlrectly by actrve sowrng Usr ing.s such senlors. has the’ advantage

““of iminating the callbratlon problems yH computatlonal COSts, |nher ent in pa$sve technlques such as

stereo. We descrlbe die range sensor that we used in this Work |n Section 2. Even though we tested our
‘agorithm on one specrflc range sensor, We belleve that the sensor characterlstlcs of Section 2 are falrly

Reésearch in perceptron for mobile robéts is nof onIy sensor dependent but itis also dependent on
the environment A considerable part of thé global research’ effort has ‘concentrated ‘on the problem .
of perception for mobile robot navigation in indoor environments, and our work in natural outdoor
environments through the Autonomous Land Vehicle and Planetary Exploration projects is an important
development. This report describes some of die techniques we have developed in this area of research.
The aim of our work isto produce models of the environment, which we call the terrain* for path planning
and object recognition. .

The algorithms for building a terrain representation from a single sensor- frame are discussed in
Section 3 in which we introduce the concept of dividing die terrain representation algorithms into three
levels depending on the sophistication of the path planner thai would use the representation, and on the
anticipated difficulty of the terraiil  Since amobile robot is by definition a dynamic sy”em, it must process
not one, but many observations along the course of itstrgjectory. The 3-D vision algorithms must therefore
be able to reason about representations that are built from sensory data taken from different locations. We
investigate this type of algorithms in Section 4 in which we propose algorithms for matching and merging
multiple terrain representations. Finally, the 3-D vision algorithms that we propose are not meant to be
used in isolation, they have to be eventually integrated in a system that include other sensors. A typical
example is the case of road following in which color cameras can track the road, while a range sensor

. can detect unexpected obstacles. Another example is a mission in which a scene must be interpreted

in order to identify specific objects, in which case al the available sensors must contribute to the final
scene analysis. We propose some algorithms for fusing 3-D representations with representations obtained
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ﬁomacolorcunminSeamS Wealaodumhethelpplicaﬁonofﬂmmﬁsimtoaumple
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2 Active range and reﬂectance sensmg

mhncphcmkofmemngmwkwmmemﬂemdamfamnpd(mm
laser, radar..etc.) produced by an object in the environment in order to compute the distance between the
sensor and that object. In addition to the distance, the sensor may report the intensity of the refiected
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signal which is related to physical surface properties of the object. In aocandance with tradition, we will
refer 10.this type of intensity.dats as "reflectance” data cven though the quantity measured is not the actual
reflectance coeficient of the syrface. :
Aenvemuemvenmbnlembm:ueucbmformmﬁnm ﬁ:st.theypwwde
- range data without the computation overhead associated with converitionial passive techniques such as
stereo vision, which is important in time critical applications such as-obstaéle: detection. Second, it is
largely insemsitive:3p outside ilkemisiation conditions, simplifying copsiderably the image analysis problem.
MuWWhmﬁmrmhmmmmcmbemuedor
mmmmmmmdmm&mmmym“m
the sun. In addition, active range mhnplogyliudevﬁopedtothemtﬂmm&unmhsncm
consider it as part of practical - 20ROt & in the shost term [4).
’I'hennzemorweundutﬁme«of-ﬂxgbthmmgeﬁnderdevekgﬁdbythe&vummemal
Research Institute of Michian (ERIM). The basic principle of the sensor;is to measure the difference of
phase between a laser.besm and its reflection ffom the scene [46]. A two-mirror scanning system allows
dnheammbedxmdnywhmwhma%’xwwdofm The data produced by the ERIM sensor
uaﬂxzssmgsw.mwiscodedonadnbmﬁomwow“fenwmchmmdsma
range resolutionof three inches. All measurements are all relative since the sensor measures differences
- of phase. That is, a range value is known modulo 64 feet. We have adjusted the sensor so that the range
value 0 corresponds to the mirrors for all the images presented in this report. In addition to range images,
the seasor also produces active reflectance images of the same format (64 x 256 X 8 bits), the reflectance
nudpwmmuwdmmmmumm Figure 5 shows a pair of range
and reflectance images of an outdoor scene. ‘IhenexttwoSecnonsdascnbethemngcandmﬂectanoe

data in more details.

2.1 Fromrmgemutpointsinsm
The position ofapuiut';n #iven coonfinete. system oan:be- mmmmwmmm
mﬂlvmﬁmuu edin !_Amshownmﬁgure4

0))

are derived from the row and colamn position it the range image, (7, ¢), by the equations:

0 = Gpg+cx A8 ¥4
¢ = do+rx AP

‘Nw&u&dmmmhuﬂ\emu‘h [m]fq@ﬁswmym
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where 9o (respectively “go) is'the starting horizontsl (iespectively: vettical) scanning angle;*dnd A@ (re-
spectively 1) is the dngulir ép Yetween two coibcuﬁveéanmns(mverymws) Figtre 6-shows
anovexhcadwewofthesceneofﬁgures the coordmatesofthepoﬁis'?atécanﬁiwémingsqa)

" Figure 5: Range and reflcance images.

2.2 Reflectance images

Acﬂemmemage&omtheERlesorummgeoftheemrgymﬂeaedbyalascrbeam Unlike
conventional intensity images, this data provides us with information which is to a large extent independent
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Figure 6: Overhead view

ofthnmmmmmm hmwmmmqmwmnmmﬁmomde
illumination. meydmmmwﬁemamﬂﬁwendmmm
thcmqor. Wemﬁgimmnmmpmlvmmﬁmmmynnhwm~
The measured ¢nergy, Pmm&mwm&mmﬂmﬂem,p.mmv mdtheingle
ofmdence1 _
Preaen = Z25°1 | " e
Due to the wide range of P,ears, the value actually reported in the reflectance image.is compressed
by using a log transform. Mmhmenuof&emmk

Pinage = Alog(pcos 7) + BlogD o - | @

mamsmmmwmmhwammummmm
dmwmwmm&dumm ‘Since A and B cannot be computed
directly, we use a calibration procedure in which a héitogeneous fiat rigion is selected in a training image;
wdﬁnmdnpuwhmﬂﬁsuﬁmwmddabywmaq (4) to the actual
reﬂecumdmaedn GMnAﬁB nmmww

Prew—inage = Pimige — mow)/A e | ®)

mmpwwmwmmwmmmmofm This is a
sufficient approximation for our pusposes since for smooth- surfaces such as smooth terrain, the cosy
- factor does not vary widely. For sfficiency purposes, the right-hand side of (5) is precomputed for all
possible combinations (Pinege, D) sad stored in a lnpkup table. FipishowunexmpkofanERm
image, and Figure 7 shows the resulting corrected image.
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As is the case with any sensor, the range sensor returns values that are measured with a limited resolution
which are corrupted by measurement. noisg.. Jo $he case of the ERIM sensor, the main source of noise
is due to the fact that the laser beam is not a line in space but rather a cone whose opening is a 0.5°
jsohdag;lp(themmmanewsﬁeldofm) T}:evaluewremmedateachplxehsacmanythcavemge of

Is the tmerseaiqnof‘ te cone with m%fmgex

£y

sﬁown" mﬁ’gureB Thzs“n"zéof’the dotprin 3
1fweassxmthatthefootpnntxssmallenoughandthat01salmostconstann Therefore, a first order
__approximation of the standard deviation of the range noise, o is given by:

O b . =

0 X —— ) 6
SRR TR TUN mﬁ"h Siels afie o 1 IR TR - 4 ©

mmmwmhﬁseqmmmummw&cmmmm ‘
omsmmumnmommdmemﬂeamepofmemdwewm:hmmedcmmmmsmefmtpmt
in this first order approximation. Wevﬂidatedthemodelofﬁqﬁﬁonﬁﬁyesﬁmaﬁhgﬁt’RMSemr
-0f the range values on a,peque e of images. mammwmmmwmm
model ’l'hefoq;pumaﬁemdkpmhmthew Y b
MmmmwdmmsMa,mﬂ; locati mthpunaae mWeﬁw
is known as the "mixed point” problem and is.illugtr yﬁsmh mwhththclas:rfootpnmcmsses
theedgebetweentwoobjectsthatmfarfmmeachother In that case, the retumed range value is some
- combination of the range of the two objects but does not have any physical megning. - This probiem makes
~ the accurate detection of occluding edges more difficult. Another effect is due to the reflectance properties
" of the observed Surface; if the surfate is highly specilar theh rio laser reflection can-be observed. In that
»'\cas;theERMsensorremmsava!ueofzss This effect &' mdst noticeable on mfan-made objects that
N lcontainalotofpohshedmetalhcsudaces. Iiﬁonwhememone&.however.matmendmchmmnmcs
"'ofmmmrmfmﬂytymcdofthebcﬁ%rofwﬁvemgemm[5] nae ,
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3 Terrain representations

The main task of 3-D vision in a mobile robot system is to provide sufficient information to the path
planner so that the vehicle can be safely steered throughitsenvironment In the case of outdoor navigation,
the task is'to convert a range image into a refresentation: of the terrain. We use the word "terrain™ in
a very loose sense in that we mean both the ground surface and the objects that may appear in natural
environments (e.g. rocks or trees). In this Section we discuss the technrquesthat we have implemented
for the Navlab and Mars Rover systems. Wefirst intf oduce the concept oftheelevatron map as a basis for
terrain representations and its relatronshrp«wrth drfferent ‘path pIannrng technrques* The last four Sections
spell out the technical details of the terrain representatron algorrthms

3.1 The elevation map asthe data structurefor ferraih repreeentatron

Even though the format of the range data isan |mage this may not be the most suitable gructuring of the
data for extracting information. For example , a sandard representation in 3-D vision for manipulation
isto view a range image as.a set'of data pornts measured on a surface of {he equation z*/(x,y) where
the*- and y-axesarc paraIIeI to the axis of thé |magefand zisthe measured depth This choice of axis
is natural since the image plane is usually paraIIeI to the plane gf the scene. In our case, however, the
"natural™ reference plane is not the i image {ttaneWrtt the ground plane. In this context, "ground plane"
refers to aplanethat is horlzontal with: r&pect to the vehlcle or to die gravity vector. The representation.

! —ffay) & then the usual concept of an devation map* To trans‘orm the data points into an elevation
map is useful only if one has a way to access them. The most common approach is to discrctizc the (x,y)
planeinto agrid. Each grid cell te#) |sthetraceof avertlcal column in space, itsfield (Figure 10). All
the data that falls within a cell's field is Soréd’in thatceli” The description shown in Figure 10 does not
necessarily reflect the actual implementation of an elevation map but.is more of a framework in which we
develop the terrain representation. algorjthms. As we shall see later, the actual implementation depends
on the level of detail that needs to be mcluded in the terrain dwcrlptlon

AIthough the elevation map is a natural concept for terrain representations, it exhibits a number of
problems dueto the conver sion of aregularly sampled imageto a different referenceplane [25]. Although
we propose solutions to these problems in Section 3.5, it is important to keep them in mind while we
investigate other terrain representations. Thefirst problem isthe sampling problem illustrated in Figure 11.
Since we perform some ldnd of image wa?ping, the digribution of data points in the elevation map is
not uniform, and as a result conventional - |mage processing algorithms cannot be applied directly to the?
map. There are two ways to get around the mplrng problem -We can ether use a base dructure.
that is not a regularly spaced grid, such as a Dclaunay trlangulatloa of the data points [33], or we can
interpolate between data points to build a dense elevation map. The former solution is not very practical
because of the complex algorithmsycquifpd to access data points:and their neighborhoods. We describe
an implementation of the latter approach in Section 3.5. A second problem with elevation maps is the
representation of the range shadows created by some objects (Figure 12). Since no information is available
within the shadowed regions of the map, we must represent them separately so that no interpolation takes
place across them and no " phantom™ features arereported to the path planner. Finally, we have to convert
the noise on the original measurements into a measure of uncertainty on the z value at each grid point
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Figure 10: Structure of an elevation map
5. mscmvaﬁmkdimamdmmmemeGwm'smnﬁmyhmnMymd
with respect t0 the direction of measurement (Figure 13) and therefore spreads across a whole region in
the elevation map.
Sensor
Regularsamplingin;hmtepm

Sparse sampling in‘map

Figure» 11: 'l'hesamplsing problem

3.2 Terrain representations and path planners

The choice of a terrain representation depends on the path planner used for actually driving the vehicle.
. For example, the family of plagpers derived from the Lozano-Perez’s A® approach (28] uses discrete
obstacles represented by 2-D polygons. By contrast, planners that compare a vehicle model with the local
termain (9,38] use some intermediate representation of the raw elevation map. Furthermore, the choice of
a terrain representation and a path planner in tum depend on the environment in which the vehicle has to
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. navigate. For exampie, representing only a small aumber of discrete upright objects may be appropriate
_if it is known in advance that the temmain is mostly, flat, (e.g. » road). with a few obstacles (e.g.. trees)

Wemmmammmmdmmﬁmwmm
: mwmwmmmmwumqmmmu

significs ,mmnmmmmume
mmmmmmnwmehmmwmmm
involved under control, the vesolution;is. typically relased to the size of the vehiclg's pars that enter in
mm%hmmamumdpbauwmmummMmme
mmwm

High resolution:
 élevation map.

Polygonal obstacles |
Figure 14: Levels of terrain representation

3.3 Low resolution: Obstacle map

The lowest resolution terrain representation is an obstacle map which contains a small number of obstacles
represented by their trace on the ground plane. Several techmiques have been proposed for obstacle
detection. The Martin-Marietta ALV [10,11,43] detects obstacles by computing the difference between
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- the obsavéd tmp‘mag&ﬁd'pxémned images of ideal ground-at ‘ssveral différent’ slope-angles.
" Point$ that ‘are’ far from mmmwmww*wﬁoﬁ thist ‘are reportédPias obstatles
| ‘toa‘paﬁrw‘ mery M&mpm&uﬁan ofmmme i ‘Plksible: sinicé it reqmi‘ﬁdly ‘mage

SHrong ¢
nmmm%mw &mﬂemofmwawm*&d asmmamyhign
,sbpendabm&kn&‘w'ﬁbﬁﬁw&wwm
P4 Ynodlr’ dpgroati proposed by Hujghes Al group 18T is 10 dEté6t the obstacles By thresholding the
| mige gf j'fAD/Dfmﬂy‘wmmmmaopeDw&D The fitst test detects
aWamm*mmmemmwmwmmw This
apprbich s the adViitagé of taking 4 vehicle model' o dccount when déiding whether‘a point is Part
of ‘an obstacle. Wéﬁ%”mﬁﬂm@wwmw& fot the‘Naviab. ‘Each cell of' the
terrain Containy the set°Of data points that fall withini'lts field’ (Figtre“10). ‘We ¢an then eStimate Sirface
vatu: ’néwddmdnpwrﬁy%ﬁngamﬁmwmﬁw% the torresponding set
of data points. Cells that have a high curvature or a surface normal far from'the vehicle's idea of the
vertical direction are reported as part of the projection.of an obstacle. Obstacle cells are then grouped
into regions corresponding to individual obstacleg,: WM product of the obstacle detection algorithm
is a set of 2-D polygonal approximations of the-betind ari “of the detected obstacles that is sent to an
A”-type path planner (Figure 15). Inaddxﬁon.wwycfasifyhmwes into holes or bumps
according to the shape of the surfaces insidé the p
Figure 16 shows the result of applying the obaacledmomalmnﬂm to a sequence of ERIM images.
TheFigureshowstheongmalmnzeW(top) ;hcmngepxmmectcdmmeelevauonmap(leﬁ)
and the resulting polygonal obstacle map (right). The large caclosing ‘polygon in the obstacle map is the
limit of the visible portion of the world. The obstacle du&mdpmhm does not make¢ assumptions on
theposmonofthcgroundphnemthatxtonlyassumu(hdmeplﬁcumghlyhonzomalwnhmspectto
the vehicle. Compunngtheslopawnhmeacheellhasa‘:mm&ngeﬂecnhamaycauserealobstacles
to be undetected. Thexefo:e,themlunmofﬂwelevmonmqmbechomsothateachceuxs
significantly larger than the typical expected obstacles. In the case of Figure 16, the resolution is twenty
centimeters. Thcazeofthedmctableobstaclealsovmsmihthcdxmcefmmthevehxcleduetothe
sampling problem (Section 3.1).
Onema_pordrawbackofourobaacbm‘mﬂgondmuthuthecompmaﬁonofthe slopes and
curvatures at each cell of the elcvanonmapnmmve operation. Furthermore, since low-resolution
obstaclemapsammoauseﬁdforfastmvigmmthmghmplemmmnmts,msmponanttohaveafast
" implementation of the obstacle detection algori qmt A natural optimization is to parallelize the algorithm
by dividing the elevation map into blocks that are Processed simultancously. We have implemented such a
parallel version of the algorithm qn a ten-prcessor Warp computer [45,21]. The parallel implementation
reducedthecycleumctoundertwosecmds,thusmakmgxtposmbletousetheobstacledetecnon
algorithm for fast navigation of the Navlab. In that particular implementation, the vehicle was moving
at a continuous speed of one meter per second, takmgrange :mages,detecnngobstacles andplannmga
path every four meters. =
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Figure 15; Building the obsuchnlp

3.4 Medium resolution: Polygonal terrain map

Me@mumﬁmhmp@mhmm&mmmgfouomga
madbaduadbymWeneedammm',“f" -’,,”’f,:lbtmumvenasmthecase
of cross-country navigation. For&nmddﬂ%mmunndwy[ﬂbyapam
plmmxmmwuwmofmemmotmwheinﬂedbymeplmwmm
wmdmhahﬁwhmmdeﬂnmbbﬂubbnmm(ﬂmﬁmmﬂmm
some applications in: which a high resolution representation is reqs .‘,“;ﬁm35) An altemative is
wmmoo&mof&zmnﬂommnde‘pﬁ' e besic units manipulated by
the planner. This set of features provides a compact represss ;dﬁmﬂ:tsallowmgformore
efficient planning [38].

The features used are of two types: smooth regions, ﬂdeduconnnumcs. The terrain
discontinuities are either discontinuities of the elevation of the terrain, as in the case of a hole, or
discontinuities of the surface normals, as in the case of the shoulder of a road [3]. We detect both types
of discontinuities by using an edge detector over the elevation map and the surface normals map. The
edges correspond to small regions on the termain surface. Once we have detected the discontinuities, we
segment the terrain into smooth regions. The segmentation uses a region growing algorithm that first
identifies the smoothest locations in the terrain based on the behavior of the surface normals, and then
grows regions around those locations. The result of the processing is a covering of the terrain by regions
corresponding either to smooth portions or to edges.

The final representation depends on the planner that uses it. In our case, the terrain representation is
embedded in the Navlab system using the path planner described in [38]. The basic geometric object used




e

76

3 By
. V- [
e :
R Tt
. RIS

MRS LR
b T ' -

‘Figure-16: Obgacle detectionson-a sequence-of images ..x:. -+ ...

. - Trava I




77

by the system is 4be: boundary of each region
by a polygon. The Aty bptwiien regions in that the
polygonal be etiosl. This guarantees that no
“gaps of the path planner
since such gaps jon is approximated
by a pianar sur g regions. Since the
regions are not is associated with

Figure 18 g " ) $ s o ige of Figure 17. In
this ox RO e ST SAD: Ra:ommnty Coly s we need a dense
map in order © 9o Tiptlonil: RISt Ay the elevation map.
Figure 17 shows’ ' " 1 m resolution terrain
Mmswhhmwmmmnﬁhmﬂmsymfmw
future mobile robot systems.

3.5 High resolution: Elevation maps for rough terrain

The elevation map derived directly from the sensor is sparse and noisy, especially at greater distances
from the sensor. Many applications, however, need a dense and accurate high resolution map. One way




o "~~ T.‘ kS

78

gy o e S

songie dyee sy

G, iw;::,&, 1O
- k) 3

to derive such a m i : » 0 athematical approximation
of the surface bolngs. de | ’ 1 adratic, or bicubic

shape of the terraim:Sish e Vil OaSE O 48 svain);:and they do not take
into account the : deyarioand efat s i ey - dent of the origin of
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locus algorithm iltod ‘ ‘ ‘(Figure 19). A vertical
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where < 0, and D are defined as in Section 2. Equation (9) was derived by inverting Equation (2), and
assuming x and y congant,. Similarly, the range image can be viewed as a surface D » /(<M).in <A
D space. The problem isthen to find die interaction, if it exists, between a curve parametrized by <f>
and.a discrete surface- Since the surface is known only from a sample of data, the intersection cannot
be computed: analytically. Instead, we have to search- along the curve for die intersection point The
search proceeds in two stages. We 8m locate die two scanlincs of therange image, famdfa, “between
which die-intersection. must be located*. that is the two consecutive s¢atftef such:that, Dtff(4>\) «

Bave opposite signs, where §(¢) is the image
column that is the cIosest%J|#) We tea .apply a binary search between Ai and fa.” The search stops
when the differencfbetwecQ thetwoungjtas and "*+it whcie Diff{$$ and Diff(<i>a+\) have opposite
signs, is lowerikan*aflwabold.c. Sinceth«egare no pixels betweer” and fajgwethave to perform a
local quadratic interpolation of d»‘ftnage in o|der to compute; KA nd pt(4>) forfa < <f> < fa. The
control pointsfor the intapolatioQ arethefour p|'>‘<elsthat girround.the imtt8ection point (Figure 20). The:
final result isavalue” thai tsconvert»dtoan deyasiq TVahlebyapptyng Equation (2)to<f>,9i(<t>)yDy(<j>).
Theresolution of the elevation is comfoUed'By At-ch® e‘*Ethe parameter e

The locus algorithm -enables usfo evaluate the elevanon at attaint rijce we do not assume the
existence of a*ffkL "Rgwe21 showa’the]wult of"JpIymgtheIocusa[g“rlthm m range images of uneven
terrain, in this¢&%eacongtruction site. Tt"H Jux” stowsthetmglrﬁ rangeimages and the map displayed.
as an isoplot surface The centersiof the gri cells am tenacemmefan apart in the (x,y) plane.

3SJ. © Generalizing the locus algorithm

We can generalize the locus algorithm from the case of a vertical line to the.case of a general line in
space. Th? generyfltion allows us to frffi‘\/f WMG using any icfeiraoe p’>ff" |y|ffff4 fff bfipg TTdiiidf<1
tothe (x,y) pUne. This is impoitant vihen, for example the sensor*ﬁ%()/ blwe isnot orthogonal to the
gravity vector. A linein space is defined by apoint u* [**$+& **y> *kex SUNICSIONY & Gy vy,
Such aline is parametrized.ia’A by the idattoajr«m+Av ifpis a pomt on tteline. A generd lineis
4till a curvein.image space dot can be parametrized in <£ |f we assume that the line is not paralld to the
(x»y) plme. The equatUm of the curve <becomes: :

Di9) = 0@+ P+ @+ ..,)ﬁ e

o) = ml’.‘*.%.“z. - (10)
wmé-n
Alg) = ?W L .

Weam tten compute the inter section between the air ve and the image surface by using the same algorithm

as before except that we have to use Equation (10) instead of Equation (9).

_ Therepresentation of the fine by die pair (u, v) is not optimal since it uses six parameters while only
four parameters are needed torepresent aline in space. For example, this can be troublesome if we want

to compute die Jacobian of the intersection point with respect to the parameters of the line. A better
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(See [35] for a complete survey of m

X=az+p R S (11)
y=bz+q 4

We can still use Equation (10) to compute the locus because we can switch between the (a, b,p, q) and
(i, v) representations by using the Equations:

\/
a= 2,P' "'-"vl ‘

v
b= '_‘Z, = -y,
" q s

In the subsequent Sections, we will denote by A(a, b, p, g) the function from R* to R3 that maps a line in
space to the intersection point with the range image.
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Figure 21: Thié locus ‘algoéithm:on rasye vimages (Continued)
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35.3 Evaluating the locus algorithm

We evaluate the locus algorithm by comparing its performance with the other "naive” interpolation algo-
rithms on a set of synthesized range images of simple scenes. The simplest scenes are planes at various
orientations. Furthermore, we add some range noise using the model of Section 2.3 in order to evaluate
the robustness of the approach in the presence of noise. The performances of the algorithms are evaluated
by using the mean square error:

¥ (b — h)?
N

whewh.-isthetmeeleyaﬁon'_”
algorithm and the naive interpalag
Thnsmﬂtshowsthathelodqp
level than the other alggsitiém. ‘mmdag:
madofmncmvaqgwmmm

E=

13)

Figure 22 pilots E for the locus
observed plane and the noise level

10 20 30 40  tltangle
Figure 22: Eyalpation of ;helqs:ua W@m s\ynthesxzed images

R ) ,"f,'?i\' ! »

WehavepxuumdlnSecuonz.aamdqqulhqmmxscthmuaGmdmmhmonalongme
direction of measurement. We need to transform this model into a model of the noise, or uncertainty,
on the elevation values retumed by the locus algorithm. The difficulty here is that the uncertainty in a
given range value spreads to many points in the elevation map, no matter how the map is oriented with
respect to the image plane (Figure 13). We cannot therefore assume that the standard deviation of an
clevation is the same as the one of the corresponding pixel in the range image. Instead, we propose to
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use the nature of the locus algorithm itself to derive a meaningful value for the elevation uncertainty. To
facilitate the explanation, we consider only the case of the basic locus algorithm of Section 3.5.1 in which
mmmmzﬁwhw&hmofamwhwﬁm:mweﬁma
mpmmﬁmﬁ’ﬂqwhpmdpbdﬂzmtympﬁmbymﬁdumgahmm
Mwmondswahwudemhpmme&mmempmmmewwofme
Mp&neﬂMwmmehumWyMMmbeww
a Gaussian distribution as computed in Séctheg 2.3, The problem is to define a distribution of uncertainty
alcngthcline. mm&wmwwuhmmmummm

Mmmﬁmhmumm This elevation corresponds to a measurement
direction ¢(h) and a measured range &'(A). u&hmﬂmbammaonmmmawmm
we assign to k the confidence [39]:

- -y " |
i(h) n(d(h»e C . (14)

where o(d'(h) is the variance of the measurement at the range d’(h). Equation 14 does not tell anything
about the shape of the uncertainty distribution i#4) along-the # axis-except that-it is maximum at the
elevation h, at which d(k) = d'(h), that is the elevation retumed by the locus algorithm. In order to
determine the shape of Kk), we approximate i(h) around A, by replacing the surface by its tangent plane
" at ho. If a is the:slope:of the plane, and H is duselevation of the imersection of the plane with the z axis,
" we have:

H‘(a’+h2) '
o = K atma + 77 (15)
@w - WP
2o(d (k)

(16)

where g is the distance between the line and the origin in the ¥~ y plane-and X is defined in Section 2.3

by o(d) ~ K. lymtnhkcbumbﬂwn#ﬂ.+eme<h and by using.the fact
that H = &, + @tana, we have the approximatigns:

. e @) = K@+ o . an
(k) - «m-»’ .
"""'w' w»

(18)

In the neighbothood of ko, Equation 18 shows that (d(h) — d'(h))?/20(d (h))* is quadratic in h — ko,
,MMa(l(h))sleqnm mkh)mbemmmdbyammmmofvmm

ot = K*HYd + 13) = K*H* &} | (19
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Equation 19 provides us with a first order model of the.uncertainty of 4 derived by the locus algorithm.
In practice, the distance D(h) = (d(h) — d'(h))*/20(d'(h))? is egmpm%for several values of & close to
ko, the variance o is computed by fitting the function (h —he) )/20%-10 the values of D(h). This is a
ﬁmomermddofmemmmymmcmmaumkumowéoﬁntmemmymmemm
measurements, bmndounotmcmdemememm*ai‘é;mmm‘ i E:

vlenors introduced by the interpolation.

:_.345 -Detecting.the rangs shadaws . . .. i ot

- £ d Out in' Sectidd'3.1, ummmwwmmmm lt:s
mwwxmmmmmmwmmmmmmmmwa
~-of the shadows, whereas the surface would be smoothly interpolaed if we applied the locus algorithm
directly in those areas. Thnsmaymultmdangemssmanonsfonhe'l‘oﬁotlfaﬁmmoncofthe
range shadows. A simple idea would be to detect empty regions in thé' raw elcvatios tivap, which are the

projection of images in the map without any interpolation. ﬁswﬁdmmw&mmm
of the shadow regions may be on the order of the average distance between data points. This is especially
truc for shadows that are at some distance from the sensor in which case the distribution of data points
s very sparse. Iglspossibletomod‘lfythé standard tocthgigomhmsothatﬂuk’uimomoumme
" shadow areas. ‘The basic idea is that a range shadow’ ot ‘to a strong occltidifig edge ih thé image
(Figure 12). An (x,y) location in the map is in a shadow area if its locus intersects the image at a pixel

~

-
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We implemest; it ‘
ﬁ’-f i '[6). ¥ : i
ammmmmwwmnmmmmngdmmuam
effect. When we apply the locus algorithm we can then record the fact that the locus of a given location
intersects the image at an edge pixel. Such map locations are grouped into regions that are the reported
range shadows. Figure 25 shows an overhead view of an elevation map computed by the locus algorithm,
mmmmummmmwaummuwmmm
as computed in the previous Section.

3.5.6 Anappﬁaﬁon footfanmcﬂonforaleggedwhide

mmdmmbmdmmfammunmhﬂwlmmdwmm
&nm&duqﬁMnMMsMwmmmmm
the problem of perception for a legged vehicle [24). One.of the main responsibilities of perception for
a legged vehicle is to provide a terrain description that enables the system to determine whether a given
foot placement, or footfall, is safe. hddﬁm.wemmemofmmmmmmgpdm
such as the surface of Mars.

A foot is modeled by a fiat disk of diameter 30 cms. The basic criterion for footfall selection is to
select a footfall area with the maximum support area which is defined as the contact area between the foot
and the terrain as shown in Figure 26. Another constraint for footfall selection is that the amount of energy
necessary to penetrate the ground in order to achieve sufficient support area must be minimized. The
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to the elevation

vemcal dxmcuon

Figure 27: Summmvmehvm

- 3.5.7 Esxtracting local features from an elevation map

mmmmmmmmwwm,mhumofmmmm
qoppmdmﬁclummmpmof&m34 The local festures that we extract are based on
umdumwmd&ewm The curvatures are computed as
in [34] by first smoothing the map, and then computing the devivatives of the surfice for solving the first
fundamental form. Figure 28 shows the curvature images computed from an elevation map using the
locus algorithm. The resolution of the map is wen centimeters. Pohuofhghmemdto
edges of the terrain, such as the edges of a valley, or to shaip terrain festures such as hills, or holes. In
anym&ehghmampommvnwpomhdepm&mmambemdtormm& ‘We
WMMWMMMWMM&W Weponptheemamdpoxms
mmmmmmammhm.mnpmmm;wmﬁudmgﬁm.
and curvature distribution. Figmzsshowsthehxghwwmmmwdﬁomanelevanmmap
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Figure 28: The high curvature points of anelevation mep

4 Cambﬁng»mulﬂple termnmaps

Wehavesofnaddmseddnproblanofhnldhgampmmofmcenmnmmtfmmsmsordm
collected at one fixed location. In the case of mobile robots, however, we have to deal with a stream of
images taken along the vehicle’s path. We could ignore this fact and process data from each viewpoint as
if it were an entirely new view of the world, thus forgetting whatever information we may have extracted
at past locations. hhasbeenohntvedthatthulppmachwnmappmpmteformobdembotnmgauom
and that there is a need for conitining fié represéntiitions computéd-frém different vantage points into a
coherent map. Although this has been observed first in the context of indoor mobile robots [13,15], the
reasoning behind it holds true in our case. First of all, merging representations from successive viewpoints
will produce a map with more information and ‘better resolution: then any*of the individuali maps. For
ple,ataﬂob;qctobservedlgyamzemormanunknownaxeabehmdu,therangeshadow,
,_ﬁ'whexenouseﬁ:lmfonnauoncan“be, ! (Section 3.1). Theshapeandposiﬁonofdmmnge‘shadow
changes as we move to another location; ng.|
:hemofmeshadpw,:msp,f?'gf' amon‘ébmpletedaaipdontothepad!phnner(‘ﬁg\m 30).
. _WWWymmmeMWmdmemMg@mmﬁmmemme
factdluthemolnmofmelevmmmapisnmnﬂcanﬂybeuqraclowmze By ‘merging maps, we
§~canmcnasethemdunmofthepmsof;hedevaﬁonmapmnwmoﬂkmaﬂymemdatadistance
_from the vehicle.
mmdmonvmformergingwuthathcpomnmofthcvehideumygwennmexs
. uncertain, Evmwhmuangmvepoanmgsymwehxvetoamethuthembot'stdeaof
«fnsposmonmthcworldwnlldegndemmecmu!eofabngmision. One way to solve this problem
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Hgare 29: Local featuresfiroma highipsohttion:tlevation map




g4

is to compute the position with respect to features observed in the world instead of a fixed coordinate
system [37,30]. That requires the identification and fusion of common features between successive
observations in order to estimate the displacement of the vehicle (Figure 31). Finally, combining maps is
a mission requirement in the case of an exploration mission in which the robot is sent into an unknown
territory to compile a map of the observed terrain.

Reduced range shadow
from the combination of 1 and 2

Range shadow from £
position 1 Na -

Many new problems arise when confisiigh ~ ati
combined maps, predictions from one' slifirve £ tiext etc. We shall focus on the terrain matching
problem, that is the problem of finding common features or common parts between terrain maps so that
we can compute the displacement of the vehicle between the two corresponding locations and then merge
the corresponding portions of the terrain maps. We always make the reasonable assumption that a rough
esnmateofthedlsplnwmemwavaﬂabbmmsnmatecanalwaysbecompmedenherﬁomdead
reckoning or from past terrain matchings.: i :

4.1 The terrain matching problem: iconic vs. feature-based

Inthemﬂainmmhingpmbbm.asinmypmblaninwhichcomspondmcesbetweentwosetsofdm
must be found, we can choose one of two approaches: feature-based or iconic matching. In feature-based
matching, we first have to extract two sets of features (F}) and (F7) from the two views to be matched, and
to find correspondences between features, (FJ,, F2) that are globally consistent. We can then compute the
dnsplaeemembetweenthetwovxewsﬁomthcpuametersofthefeamm and finally merge them into one
common map. Although this is the standard approach to object recognition problems [5], it has also been
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Position 1 ‘Regions-of Position 2
| “position uncertainty

Figare 31: Maschiag maps for position estimation

wﬁdymdhmmﬂgﬁormbﬂembﬂs[l&ﬁ&o.ﬂﬁl] hmmmwﬁ
directly on the two sets of data points, P! and P? by minimizing & cost function of the form F(T{P?), P!)
where T(P2) is the set of points from view 2 tranisformed by a displacement T. The cost is desigmed so
“that its minifun corresponds to a "best” estimate of T in some sense. The minimization of F leads to an
iterative gradient-like algorithm. Although less popular, mcuechmthmbeenmccenfullyapphed
mwmmmmmmmmm

mmamwmmwmwwwam
in the space- of possible matches which may lead to a combinatorial explosion of the matching program.
mmmmmwmuﬁ:dymwaabhmmofmmmmm
but are usually quite expensive since the size of the points sets P* is typicaily-on the order of several
thousands. As for the accuracy of the resulting displacement T, the accuracy of iconic techniques can be
better than the resolution of the sensors if we iterate the minimization of F long eaough, while any feature
extraction- algorithm loses some of the original seasor accuracy. Furthermore, feature matching conild in
theory be used even if no a-priori knowledge of T, Ty, is available while iconic approaches require Ty to

be close to the actual displacement because of the iterative nature of the minimization of F.

- Keeping these tenets in mind, we propose to combine both approaches into one terrain matching
* algorithm. The basic idea is to use the feature matching to compute a first estimate 7 given a rough initial
value To, and then 10 use an iconic technique to compute an accurate estimate F. This has the advantage
of retaining the level of accuracy of iconic techniques while keeping the computation time of the iconic
stage under control because the feature matching provides an estimate close enough to the true value. We
describe in detail the feature-based and iconic stages in the next three sections.
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4.2 Feature-based matching o

1

wF‘mszb&qmsgsof&mmmdﬁomm' « mtdoorscene.llandlz We
wmttoﬁndamm&mf’mﬂamofpmsas(i},;iﬁ)mﬂz?‘( 1), where T(F)
denotesthetrmsformedbyTofafepdreF mfeammanbemyofthosedxscmsedmtheprevxous
Sections: msmMMthmmor.qummwdbyammdpolym or
terrain patches represented by sheir-surface equation and their polygona} boundasics. We first investigate
thefeannemaehmg gEithm mdependendyef anypamcular femwsothawecan then apply it
Foreachfwmﬂ.mmﬁmmwtethesetoffnﬂxmﬂthatqmﬂdconespondtoF‘ given
mmmalmaueTooft&dlsplment.sz'sshonldhemapndxcmnmponmmdatTo(F‘)
Themofthepwdxcumregxondcpendsonﬂwconﬁdmcewehavemnandmthefeatureextractors
For example, the centers: of 4bs polygonal obstacles of Séction 3.4 are pot known accurately, while the
curvature points from Section 3.5.7. can be accurately located. The confidence on the displacement T is
represented by the maximum distance § between a point in image 1 and the transformed of its homologue
in image 2, ||T7* - p!|I, and by the maximum angle ¢, between a vector in image 2 and the transformed
of its homologue in image 1 by the rotition part of T': The prediction is’'thén defined as the set of features
that are at a Cartesian distance lower than 6, and at an angular distance lower than ¢ from To(F?). The
-, parameters used to determine if a feature belongs to a prediction region depend on the type of that feature.
Fmemphwmhdmmofahmfgrhmmdwmhtdmwmumpro{m
~ obstacle is used for the test on the Cartesian distance., Some features may be tested only for oricntation,
suchashm,oronlyforpounon.suchupomfamm. The features in each prediction. region are
mdmqﬁngmmkmmdMad(F},Toﬁ))mamﬂmhwwenmefmmmmmd
The feature distance depends also on:the type of the feature: for points we use the.usual distance, for
--lines we.use the angles between the directions, and for, polygonal patches (obstacles.or terrain patches)
. we use -a linear combination of the distance between the centers, the difference between the areas, the
. angle between the surface orientations, and the number of neighboring patches. The features in image 1
i axe. also sorted according to an "importance” measure that reflects how important the features are for.the
- - matching. Mmpmmmmmwofmmmemgmofmcmmm
_ {i.e. the curvature value) , and the size of the patches. The importance measure also includes the type of
bfembecmemfemmchasobsmwsmmmmblydmwdmmm such as point
/iwums
Ommhwehﬂtmcpmdmmnpmmmmhfqmmmemw The
mmhpmceedsbymamhmthcfummﬂmthcfmnuﬂxbnmm&mm&mwymmng
‘. -at the mest important feature. Wehcvetocop@“bseﬂmovdamavmdnmmmlemlogon
bytahngadvmmgeofthcfaamateadxmanewmmhuaddedboththedlsplaccmentandthcﬁ;we
.., matches. are further constrained. IhcdlsphcmmemmnedbycombnmngthecmmmT
wmmednsphcementcompmadﬁomancwmmch(i'},iz) Even though the displacement is described
bymmpmm,menumberofmmpommofﬁedxsplwmcmmmbemmedﬁmmmgle
match depends on the type of features involved: point matches provide only three componeats, line
matches provide four components (two rotations and two translations), and region matches provide three
components. We therefore combine the components of T with those components of the new match that
can be computed. A given match prunes the search by constraining the future potential matches in two

: i
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Theresult of: 3 PRI S -ad vy Fof paiis S»(F}nFu)*

)

fooents in the course

of die search, we _ . T is edimated by .
minimizing ark ex o L s

The disance d(.) wed in Equation (20) depends on thetype of die fésuresinvolved: For paiitt features
“itisthe:usual distames. hetmess twe: points; for-taes.it ¢ the wotfUDd SOM of .the «gf e befvwenjbe two
. Hines‘snd the distantn:betwoan:the distance vocsons of the twe Namasfow regions.it-ie the weighted: sm of

the distange’ betwess the unif dissciion mdh“”hmmvm AUthe
components of T cam-be cnigased in-geawal by ssisimizing. &; : Wechaya 00 carslelly idansify.-however,
- the: cases.in which ingufilicient Sastuses 20¢: prestnt = o ademe in Safie anmstenie she tennafim o The
maxching S that realizes the miniswem £ isreported as the final match between the two;ciaps AA|ethe
correaponding displacument thmnhu“ndwmm“m

The smioe E(T) can:thes bs usodt> seprosest the wagertaingy 7.

- This:approach-10- featare basad mnatching is-quise gswenal o thit we cm apply it-to numy- dn‘ferent
types of featums, peovided thet wo'oan define tha disence &.) ia Equation: (20), the imporiance measure,
- and diefeatur c mease. The sggweseh it alsofiextyieAcku M) oofi«] aad € do aot became too.Urge,
in which: case the soasch:: spage beopmes itsell: lange. - Wem two- m of the faature
matching al gosishm i hmmm

421 ExampIe Matcfalog polyfonaJ nplmetaHons

Wehave m& w.ﬂ‘ algorfthm on the polygonal decriptions of Sectlon 34
and 33. Thefeaturesarein das case: L

"« The polygems describing die terrain paramarlzed by their areas the equatlon of d|e underlying
wrface, and die center of die region

» The polygons describing.die trace of the major obstacles detected.(if any).

~» The roAd edges.found in die re‘lectance Velpt + if die.road detectlon is rellable PKngm The
reliability-is measured by how much. a palr of road edges devices from the pair found in the
previous image.
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Figum32. Asequenceofmgeandreﬂectancelmages

- e % . ;?

~ mmwymmimmmumwmﬁ&Mnmwnhabh
“.mummmﬂuwmmmmmmnmm
* are‘computed, the obstacles and wirain patches ths ave common between the current map ‘andia new image
' mWMwmﬂwmmMammmmmemww

mm&mmmmmwmmmdmwmm In
the actual system, the estimates of the: displacement To are- takea fram the central  database that keeps
. track of the vehicle’s position. Thé size of prediction: region is fixed with § = one meter, and& = 20°.
" This implementation-of-the feature matching has performed successfully over the courseof nms of several
hundred meters. ‘The'final product of the matching is a'map that'combines ail the observations made
during the run, and alist of updated obstacle descriptions that are sent to a:map module at regular intervals.
Since errors in determining position tend to accumulate during such long runs, we always keep the map
centered around the current vehicle position. As a result, the map representation is always accurate
close to the current vehicle position. As an example, Figure 34 shows the result of the matching on five
consecutive images separated by about one meter. Theseenemthxsasensamadbotdemdbyafewtrees
ﬁgum&shommeodgnﬂuqmofmrﬁgemmmﬂgu.ﬁgm%shompmmve
views of the corresponding individual maps, and Figure 34 is a rendition of the combined maps using the
~ displacement and matches computed from the featre maiching algorithm. This last display is a view of
the map rotated by 45° abommexammdshadedbythevalmfmmmemﬁectancexmagc

422 Example: Matching local features from high resolution maps

w&mmmmghmmmmmdumempwmmmenmc
‘mncmﬁgofmmmﬁmmps Thepﬁmiﬁvei&sedformemmgmmemwcmpomm
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map

lines described in Section 3.5.7. ‘Tl inithsl cpschivncare-ties arity of the length of the lines
as described in Section 4.2. al in this case, we can evaluate
a candidate displacement ov d differences between points in

one map and points in the t the feature matching on a pair
of maps. The top image shog pfeatures of the two maps using
the estimated displacement while the bottom image shows

the correspondences betweert e poi ‘, : Bp8 The lower map is transformed

by T with respect to the lov he feature matching in a case in
which the maps are separal LG L eft display shows the area that
is common between the two ptsos after: ta dipinceny e resulting displacement is not
accurate enough to reliably sgigialis mage: it i eleins wibugh 1t} qum to be used as the starting

The genlml idea of the wﬂz misching slgociitin i dn y ement T between two elevation
¥ i St d the transformed of the second

ion computed from the second
s algorithm, the elevation at any

elevation at a location in the fiest'm ;
map using T. To be consisteist wigh s :
point of the first map is actually the in o I?p containing this point with the range image. We
need some additional notations to fofmally mi ﬁd‘r‘&mote the rotation and translation parts of
T respectively, f;(4, v) is the function that maps a line in space described by a point and a unit vector to
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s

Figure 36: Mnchmg maps using local features (large rotation‘component)
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apoint in by die generadlized locus agorithm of Section 3.52 applied to image L We have then:

E=Y" lfiw,v) - gu,v, DI . @

where g(u, v, 7) is the intersection of the trans‘oqncd of the line (u,-v) by T with image 2 expressed in the
coordinate system of image 1 (Figure 37). The sunti nathn in Equation (21) is taken over &l the locations
(it, v) in the first map where both/i(u, v) and giu, \i,7) ale deflned The lines (u,v) in the fim map are
parelld to die z-axis. In other words: Be

o(u, v, 7) « M (feii, i) * Rﬁflrfly{)*& G 22

where r~* » (/*,0* (R-R- "t) is die inverse Lransfonnanon of 7. and (i/y) = (/u+ r/fv) is the
transfonned of die line (u; v). ‘This Equkm demonstrates me of the reasons why the locus dgorithm
is powerful: in order to compute/'l (/te (V) ‘We can “‘apply di |‘tctfy the:ocus agorithm, whereas we
would have to do some mterpolatlon or, tcsamppg if we wereg”\m"comenttf in grl d-ba” techniques.
We can aso at this point fuIijusufy d»eEmuIatlon of the; geaml& IV k)Qt?“éI gori” in Section 3.5.2:
The transformed line (u!,y/) enbé’ lttyw"re in space in the’ ooot#'i<t§e§y|’\ of image 2, even though
the origmal line (u, v) is pardld fotheT- ams,"f"d‘:fa\/lnfaung the bénerattzdl‘ locus agorithm to compute

5, V). |

Terrain

] Transfonned line

T(u,v)

sectionipoint N\ X2
finomlocusalgo"thm _

Rgnre 37 PtuM"pk ofthe |con|c matchlng algorlthm
L3 1;"3‘ -'_.: ] -
We now have to find the dlsplacement T'for which £ is m|n|muﬁ§ tt A m [a,f3| yty,t]" is the
6vedtOT of parameters of 7, where-die first three components are die nta‘t mg»gl es and the last three
aredie components of the trand atlon vector then E reedles a mini mum When

OE - ,
— : 23
ov 0 (23)
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Am;mmmrmaﬂammmbefomdbymnmemmof
the form: .

Y - +kb-;(u") o 3 @4)
where +/ is the estimate of v at iteration i. From Equation (21), the derivative of E ¢an' be computed by:
N _25--'«122({:(&#)—:(&",1))&(&,\'. E T A @5)
From Eipeation (22), we get e desivative of £ |
-’-%.v.h-ﬂ;;(d N+ T 5 @6

Thcbnvmmmmtbhmmmﬁm&m(ﬁ)m&e&ﬁnﬁvuoﬁhe

transformation with respect 10 its parameters which can be computed analytically. The last step to
.. compuse: the derivative of g(x, v, T) is thesefore t0: compute the derivative of (i, V) with respect to v.
%Mm&emvﬂmnwhmmmofvbyqplmﬁemm&ecﬂy

a5 B |
%""' = e oy on @n

qum@ﬂledshmammﬂhmm&cyﬂmdgmﬂmbmmswpmmdmm
Section 3.5.2, the (i, v) representation is an ambiguous representation of lines in space. We need to use a
non ambiguous representation in order to correctly compute the derivative. Accordmztoeqlmnon(w).
can use interchangeably the (4, v) representation and the unambiguous (@, b, p, §) representation. Therefore
by considering /% as a function of the transform by T, 7 = (&, ¥, p/, ¢), of a line [ = (a, b, p,q) in image
1, we cah transform Equation (27) to:

%—(t) % g’: 28)

Since the derivative 8f3/0/ depends only on the data in image 2, we cannot compute it analytically
and have to estimate it from the image data. Wewoﬁmumedmvﬁmofﬁmmtoa,b,p,
and g by differences of the type:

& _fla+Aa,bp.q) -f@bp.q) | 29)
| 8a Aa

. Approximations such as Equation (29) work well because the combination of the locus algorithm and the
- GNC image-smoothing produces smooth variations of the intersection points.

The last derivatives that we have t0 compute to complete the evaluation of 9E/9v are the derivatives
of 7 with respect to each motion parameter v;. We start by obeerving that if X = [x,y, 2}’ is a point on
the line of parameter /, and X' = [¥,y, 7'} is the transformed of X by T that lies on a line of parameter
"I, then we have the following relations from Equation (13):

xmaz+p,X =d7 +p ' (30)
y=breqy b7 +¢ |




" as a function of / and T, making it casy to compute the desfv
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;’Qm, X fmd X betagn Equation (0) and the rejgion X' = RX + e have,the relgion berween
d =22 v’ P=RU+t-dR.U+1t) I P @1)
R )

Y=g (=RUsh-URU+y)

_where Ry, Ry, R, arc the row vectors of the moqmmai,¢=[a,b 1}, Bq[pf,q.O]‘ We now have 7
i thhiupeétnv.fmmlqumon(Sl)

In the actual implementation of the matching algqrighm, the: pointg: at which the- . gemputed
mtheﬁmmapmd:mhnedonuquammdoftenm:uoluuon. Thchm(u,v are therefore
~ vertical and pass through the centers of the grid ells. Enmmbg%nmbg*d'pmmssmce
the since of the overlap region between the two' maps is not known in advance. We first' compute the
' f1(u, v)for-the entire grid fovimage 1, and then apply. direstly the gradient descent algosithmi described
_-above., The iterstions stop either when the. variation-of essos: AE isismalizenough, or' when E. itself is
..small enowgh. Since the matching is computatiopaliy expesive, we compuse:E over an cight by cight
mpter window in the first image. The last test ensurcs. that:we do 80t keep iterating. if the érror is smaller
than what can be reasonably achieved given the characteristics of the sensor. Figme385hgwsthemsult
~- of combining three high resolution elevation maps. 'Ihcduplmabetwenmapsmmpmed using
thclcomcmau:hmg algorithm. 'lhemapsmacmally comblnedbyreplacingtheelevanon f’(u,v) by the

61fl+02ﬁ
on+oy

where ) mda:mdwgnmmyvﬂmmwwasmm3j4. Equauon(3%)aderwedby
comdenngthetwoelevmonvaluaasGaummdmnb\mM‘lk pg mean error in.eleyation is
lower than ten centimeters. WecompmedthemmalTobyuangtheloalfeannemachmgofSecuon42.2
- This estimate is sufficient to ensure the convergence to the true value. ‘l,'iﬁ;ulmpormtbecausethe
gradient descent algorithm converges towards a local minimum, and it is therefore impoitant to show
that T is close to the minimum, Figure 39 plots the value of the, v;'s with respect to the number of
" iterations, These curves show that E converges in a smooth fashion,. The coefficient k that controls the
meofmrymemvaymvemhsmmom«mwmdmﬂmwmmmmnm

Several variations of the core iconic matching algorithm are possible. First of all, we assumed
implicitly that £ is a smooth function of v; this not true in geeral because the summation in Equation (21)
is taken only over the regions in which both f; and g are defined, that is the intersection of the regions of
.. map 1 and.2 that is neither range shadows nor outside of the field of view. Such a sumimation imgflicitly
involves the use of a non-differentiable funiction that is 1 inside the acceptable region and-0 outside. This
v‘dounuamathealgomhmdgmﬁmﬂymthehmh:vﬁmonemra:oniot‘henextare

Goongra e fr Ny e

(32)

mllm Al!lﬂuenﬁtblefommhnmfotEwouldbeofmefum

E= Y i, i - gy, DIE R )

, whe:eu.(u,v)uaﬁmcuonthansatmostlwhend:eponm:smde;regxonwhetef(u,r)mdeﬁned
" and vanishes as the point approaches a forbidden region, thatnsamngeshadoworaregmnomsxdeof
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" Figure 38: Combining four maps by the iconic matching algorithm
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Figure 39: Convergence rate of the matching algorithm
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’tbﬁeldnfm mwnﬁq.”nsuhnmthemm lnotd;noavmdam:atwnm
which the minimum is attained when the two mags do not overiap (£ = 0), we must alsp nommalize E by
mmammmmmmzwummwmmmﬂmby

Zm(u, Vuz(u,v) o , (4)

h%nEMMWMMMMMMMMYWM
six parsmeters:of 7. This assymption may not be e in all cases, AWngpnMwe
Mmhapﬁammmmmm“hm&mhmm&
The gradient algorithm does not converge in those degenerate cases becsuse the minimum 7(v) may have
arbitrarily large values within a surface in parameter space. A modification of :the. matching algorithm
dm‘mﬂdmethuthedmhdoummmmmmmmmm)w

E=3 fiwn - :(u,v,mhzw : 35)

meﬂeaoftbwm&ummdudedcmmmmemsdommmmmhnymme
mnimizmdgonm ,

S Combining range and intensity data

hhm%mwmmmhmﬁybmnmmldymmemmm
capabilities of mobile robots. Geomeuicmucym&bdecidingfaaﬂtnlhcchoweofmmom
mddptiﬁmwhﬂewmevayﬁmmmmemmofmﬁcmmm A mobile
robot needs more than just navigation capabilities, however, since it.alio must be able to extract semantic
descriptions from its sensoss. For example, we will describé a ldndmark recognition algorithm in Section
S. In that case, the system is sbie not only 10 build a; geometric representation of an object but also to
relate it to a stored model.

Extracting semantic information for landmark recognition or scene analysis may require much more
than just geometric data from a range sensor. For example, interpreting surface markings is the only way
to unambiguously recognize traffic signs. Conversely, the recogaition of -2 ‘complex man-made-object of
mmwﬂmmmgmhmm In this Section we address the problem of
,mhmz&anawuhduﬁomoMm mmmmummof
&Dmm&mmmmmummmmﬁrmm Since the
mm&&mmﬁeusokawndpaﬁmweﬁtumnmﬁr
- images into a common frame. Asumhofmemeofemw:mm.ndmbea
mﬂemﬂyﬁmhmﬁ

5.1 The geometry of video cameras

The video camena is a standard color vidicon camera equipped with wide-angie lenses. The color images
arec 480 rows by 512 columns, and each band is coded on cight bits. The wide-angie lens induces a
significant geometric distortion in that the relation between a point in space and its projection on the
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maaephnedoesnotobeythelawsofthestandudpempecuvemaformanon We alleviate this problem
by fimst trahsforming’the’ actual ifnage into u "Iaéal™ image: .s(k em u posmoi W%ﬁd"mage,
Mﬁepm(r,ahmemfinagekﬁmbr s | “ nem sl

R ~'! [

refiR,O)c =fiR,C) S 0e

whetef,andﬁ,-mthudoxdupolynomals. ‘lhnscomcnonxschapsmcethengln-handsxdeof(36)
wbeimm'bﬁpw&. Phe Scttial con ' ""M&Wﬁ&éﬂb&&iﬁﬁﬁ‘mmmy
“Ofthe idedl findige OBeys the 1aws of the perspetiivé v lfPa{x,y,z']‘k poin&mspace
m(r,e)kwmmuww;ﬁn& ;

Al v w1+ SR Tl ¥

r:fx/z,cafy/z TN PR B O o TR SRR . | 37

whcxeflsthefocallength. lnthcmofthepaper mwmdcolumnposmonswxllalwaysrefcnothe
positions in the ideal image, so that perspective geometry i always assumed. Lo

i o i
e o

o Hmweemwofﬂ:evmmm A

CHEET TR o Lot : SR R

“:»,»«5-2 Theﬂglmhon«problem e e

. mmmwmmemmmprm,oﬂwm andpo;itions."lnuorderto
1 ',""W’Mbmm:emdvﬁeowmpaMmmeueﬂm
image of a single pbint in space as viewed frof' the two'sensors. The probiém is then'to find the
best calibration parameters given these pairs of points and'is further divided into two steps: ‘weé'first use
anmplehnearlela-squamapmoachtoﬁndamughmnﬁalmmmofthcpanmmmandthenapplya
m-Mmmmmﬂpmmmmammmofmm
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3 wmj{@ B

~ Range sensor:

(*©)
Flgure 41 Geomary of the callbratlon problem

5. 2 1 The calftratlon problem asa m|n|m|zat|on problem

Let Pi beapoint.in pacet with coordinates P\ with reapect to-die ritase wemsor, maa coor dinatesP\ with
respect to dievideo camera. Therdationship between the two cooiomsaes js:

whereft is-a:rotatioe m*trlx a&d T m.a tnoshttlou vector. |t g amm Biwai flMthon of - 4*e orlentatlon
angtes of the camera: pan (a), tilt (/3), androtation (7). ff can be computed bath m pixel location in the
-.- rangeimage. Pf isnot comirfetdy known, it isreated to the pixd postion:in-the video image by the

dn=pf | N

fci = fyf o . _ _ - (40) |
wher e/ isthe focal length. Subgtituting (38) into (39) and_(_4_0_) we get:_

RPIrii- T fRI* + T, « O | (41)

RPlci- T ~fRP1+T,=0 - o - (42

w{ﬁ‘éufs*ﬂg. R, and /?; are the vow vectors of the rotation. matrix R, and 7* «/Ty, Ty *[Ty.
We are now ready to reduce the calibration problem to a least-squares mfthmuatlon problem. Given
H points P;; we want to find the trtosfimnation (R, T) that minimizes the lefi-hand sides of equations (41)
and (42). Wefirg eetlmate 7 by alinear Ieast squares |ftg| mitim,. and then oomputethe optlmal etimate
of aUtbeparameten.

52 Initial egimation of camera potitkn

.. Asgsming that ¥ have an etimate of die orimtatinn:R, we.want to-esimate the corresponding T. The
hn'tial value of it can be obtained by physical measurements using indinometers. Under these conditions.
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the criterion to be mmumzed is: -
C= Z[(Al “Ttal "‘fct + r;)z + i - Tﬂ ~fF;+ 7«)2] T L 43) .
WhﬂeAc=R:F"uBc”uCc’RxF-Da‘R:P‘Cch’Cum&'k,l’"lmh!)wnde,,T;,T'.
[ are the unknowns. o . ;
Equation (43) can be put in matrix fo}m: C e o .
C=|U-AVIE ~ |W~BYI? ~ -7 : o (44)
: e B Bi 0 -1 C;
where V = '[T,',,T;,T.,f]‘.,U = {Afj..,As), W = [Dl,..,D.]', A= .. ,and B =
Bn 0 —1 Cn

-

TR

Thcmmxmumforthecmenonofﬁquauon(u)lsanmnedauhepmemrvmr

L% Hetl R 3 iy 2 PO { é" 1

L Ky

[E.- -1 0 F; |+

E. -1 0 Fa T
y-m‘ua‘sr‘uﬁgu‘m e B Ta o woew s e cpe i) (45)

5.2.3 Optlmalestlmationoﬂhemllbrationpanmeters

Onoewehavecompmedthemmalmmofv wehavetocompmeamomaecurateuumateof(k n.
Shwe R‘lﬂ fuabu of(‘a,*ﬂn). wecmmm Mmﬁoa MW&Q m«&m

o=Th-nof S e

e

whuel.u(hez-vecwrteptuumngthcpmdpommmthcvndeomge L= [r.,c.] andS:stheﬁln
vector of parameters, S = [T}, T}, T.f, @, 8, 7. Wecmdnncdycompmcmsmcetheﬁmcuonsﬂ.
mmn-hmrmeadwethbyumgﬂ:eﬁmordenppmnmmmofH,[m

c =):lll. HiSo) =14 S B 07

f whctel.uthelaeoblmofﬂ.wnhmspeaws,sowmecuxmemmofth&pamveaor and
AS =S - Sg. mngm-hmdsxdeof(ﬂ)wmmmzedwhmntsdenvmvemthmspeawASvamshes

thatis: yom gt o i ze O
2’.1‘43*-1'40.480 A; L S L. @®

whemAC.iI. H.(so) The:efme,thebeupmmrveaorformclmanzedmwnonu. o
Ass-Z(f,J.)-‘fAc. e e @9)

¥m@m%mmmaumnﬁhmmm&em&w
bY"So*-So-t»AS S w kDR Gy oauis . i
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Tbmplmwofﬂnt Jibeation "_hfol!owsthemmmwumfcomdmg
mmuhmdmamofvﬁeondmpm We typically use twenty pairs of points
carefully sslected &t i g Wt m&ewmf’m) “An-initiab estimate of the camera
mﬁmk(ﬂ.ﬁ,ﬂxmﬂ&f’ sily megsused’ weing an inclinometer. The final estimate of S is
Mymwwh“mmwmhwkmﬁdwym'
long as the sensors are néx displaced. L
mcewmm&demmmmmmea
colored-range image. Inmead of having 1 implémented this as a library of
mmm@uumhmm

‘1. Range — video: This set of fumctions nkzsapnxclorasetofplxels(r‘ ¢®) in the range image
ndmmem(v‘f)hthevm% Muhmlcnunedbydmcﬂyapplymg
Equations (41) and (42).

2. Video — range: Tmadmm;mwamamw ¢®) in the video image
ﬂm&m(ﬂ,é)m&emw The computed location can be used in
turn to compuse the location of a intensity pixel in 3:B-spate by.directly. applying Equation (3).
The algorithm for this second set of functions is more involved because a pixel in the video image
Wbahmmm(ﬁmﬂ)wdmﬁqnm(ﬂ)nd(42)cmmbcappheddncaly

mumwumwmmmm Figwe“showapmpecave
view of the colored-range image. In this exampie [16], we first compute the location of each range pixel
(r*,¢*) in the video image, and then assign the color value 0 the 64 X 256 colored-range image. The final
display is obtained by rotating the range pixels, the coordinates of which are computed using Equation (3).

 scenc analysis (2026) n

mmmawemﬂmaeolaed-mgemmbemmedmmotypesoﬁnfmm:me
shapes and the physical properties of the observed surfaces.
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Backprojectionsofc . ST W
Projection of the line _ a range 1xelfrom(C)

i rangeimage ~ s Lk ol
R % v 4 i P

oy
Tk

/ Inputpixelin - .:
- coler image (rc,cc)

7
A
hEa
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The geometric features are used to describe the shape of the objects in the scene. We propose {0 use
two types of features; megions that correspond 1o smooth pagches of surface, and edges that cogrespond
-gither t0 tragsitions between. regions, Or 10 transitions betwsen objects. (occluding edges),. Furthermore,
we must be. sble to- describe.the features in a compact way. One common. approach.is to describe the
muqmﬁcmdhdusmdmmumwmmd
descriptions are possible (5], such as bicubic patches or curvature descriptors. We use simpler descriptors
since the range data is relatively low- restlution, and we do not have the type of accurate geometric model

muwwmmmmm ‘medemxpwumchedtoeachgeomcmc
feature are:

° mpmdeocdbmlthelhqeofthcmfwepnches. Thatuthepmetexsofthequadnc
mmmmmm

o The shape parameters of the surface patches such as ceater, area, and elongations.
o The 3-D polygonal description of the edges.
° fl‘hcs-bedgetypec coavex, concave, or occluding.

» mmmmmwmamofqmrgxw‘xwwmmm
mmxummmmmpmm.mmmmw The
mm«»

EA,B,0)= Y. [XAX; + B'X; + CP ' . (50)
.
is used to control the growing of regions over the observed surfaces. The parameters A, B, C are computed
by minimizing E(A, B, C) as in [14].
: The features related to physical properties are regions of homogeneous color in the video image, that
is regions within which the color values vary smooshly. The: ghoice of these festures is motivated by the
fact that an homogeneous region is presumably part of a single scene component, although the converse
is not true as in the case of the shadows cast by an object on an homogeneous pstch on the ground. The
color homogeneity criterion we use is the distance (X — m)S~}(X — m) where m is the average mean
value on the region, X' is the covariance matrix of the color distribution over the region, and X is the
color value of the current pixel in (red, green, biue) space. This is a standard approach to color image
segmentation and pattem recognition. The descriptive parameters that are retained for each region are:

o The color statistics (m, Z).
e The polygonal representation of the region border.
o Shape parameters such as center or moments.

The range and color features may overlap or disagree. For example, the shadow cast by an object on
a flat patch of ground would divide one surface patch into two color regions. It is therefore necessary
to have a cross-referencing mechanism between the two groups of features. This mechanism provides
a two-way direct access to the geometric features that intersect color features. Extracting the relations
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| baween geometrlc and physaal features is stralghtforward snce al the features are regigered in the

EER R I i B . Ly me o W Tt Tl ee 2V

AN aAiktional pleceof knowledgethat |S|mportant for scene |ntetprdat|bft |stheSpat|aI relationships
between featuré Fbr examples'thefaci that & vertical object is conriected to-atlir gefflat:plahe-thitougi a
concave‘edge’may add‘evldence to the hypothess Aat thls object |s a‘tree As |n thls exI i ps ‘Weiisc
thm fypes df relatlonal datar " * ¥ - g |

; -_:;_* : -, . AT | ,:".':.__ T R
e H»fnst of featurescamected to each geometrlc or. cotor feature

S
B - e

"+ Thetype of connection betwieen two féatures (éorivex/concavielood udlng) extraded from the’ range
data.

e H|elength and strength oftheconnectlon Thlslast item lsaJK]edto avdd stuatlons u wh|d1 two
very close regions become accidentally connected along a small edge

53.2 Scene interpretation from the colored rangelmage o . R

Inter preting a scenerequirestherecognition of die. maln components ¢ of the scene such"s trees or roads
Since we arc dealing with natural scenes, we carinat Use the type of geometric matchlng‘that isused in
-« the-context. of industrial pfirfe’recognition [5]. For cxampte,-we.canad -assui»e-that, * .given object.has
» " gpecific:quadric paraméters Indead, we have torey -on “fuzze": evidence:such as_ thewverticality of
some objects or the flatness of othes‘ We therefore implemented the object models as sets of properties
that trandate into condraints on the surfaces, edges, and reglons found in the image For e<amp|e the
description encodes four such properties _

... Pl: The color of the trunk lies W|th|n aspedflc rangeas> oonstralnt on the statlstlcs (m 27) of a

* color region. L s .
‘o P2: Thcsha|'>ecrfthalek|swgh """W-&Mwiﬂu moﬂb mpal
5 valueﬁof(be‘matnx it of the <|6ad|tc'a1<y|d7v>|rrtfloa e

... P3 The trunk.is nvvp/\fftlrf to aflat regioo: by acoocave edge X constratnt on th,e neghbors of
- the surface, and:the*type of the Connecting edge. - R s -

: e P4 Thetreehastwo parallel vertlcal oodudlng edg$*=> constralnt on the3—D edgesdesr__:nptlon

Other objects such as roadsttr-grass areas have'dmilar descriptions: The'properties Pij of the known
objea models Mj are evaluated on all the feetures F extracted finom the colored-range |mage Theresault
of the evaluation is a score Sjjt for each pair (P*F*). We cannot rely on individtial scorés since some
may not be satisfied because of other objects,-or because of segmentation .problems: .In the tree trunk
example, one of the lateral occluding edges may itself be occluded by some other object, in which case
the score for PA would be low while the score for the other properties would still*b& high: In order to
. drcumvent this problem, wefirst sort the possibleinterpretations Mj for a given feature Fy agcording to
alI the scores (5i/)i. In doing this, we-ensure that all the properties.contribute to titlefinal. inter pretation
- and-thai na. mterpretatlons arediscarded at this stage while |dent|fy|ngthe mogst. plausble inter pretations

o
. -k
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_ We have so far extracted plausible interpretations only for individual scene features F;. The final

stage in the scene interpretation is to find the interpretations (Mj,, Fi) that are globally consistent. For
exampie, property P3 for the tree implies a constraint on a neighboring region, namely that this has to be
a flaz ground region. Formally, a set of consistency constraints Cp., is associated with each pair of objects
(M, M,). The Cpq constraints are propagated through the individual interpretations (Mj,, F;) by using
the connectivity information stored in the colored-range feature description. The propagation is simple
considering the small number of festures remaining at this stage.

The final result is a consistent set of interpretations of the scene features, and a grouping of the
feamummhamudwmmm mlmmhuaby-pmwofmcmmcy

programs [32].

We have described technigques for building and masipulating 3D terrain representations from range images.
We have demonstrated these techniques on real images of outdoor scenes. Some of them (Sections 3.3, 3.4,
and 4.2) were integrated in a large mobile robot system that was successfully tested in the field. We expect
that the module that manipulates and creates these terrain representations will become part of the standard
core system of our outdoor mobile robots, just as a local path planner or a low-level vehicle controller
are standard modules of a mobile robot system independent of its application. This work will begin by
combining the polygonal terrain representation of Section 3.4 with the path planner of [38] in order to
generate the basic capabilities for an off-road vehicle.

Many issues still remain to be investigated. First of all, we must define a uniform way of representing
and combining the uncertainties in the temrain maps. Currently, the uncertainty models depend heavily on
the type of sensor used and on the level at which the terrain is represented. Furthermore, the displacements
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Figum‘47: Edge features from the colored-range image
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betweenmunmapsueknownmlyuvloacemmlevelofunmmy 'l‘hxslevelofiiiwmaﬁtyxhust

hm&mdh&bwmmemmmM@&ﬁm
an algorithm for sensor registration that is general enough for application to a variety of situations. The
- algevithme presented: i Ssttion’S are sill very depentiens on the sensors-that 'we uséd; and:owm the insended
appmwmmu{mmmmwm:mmwmm

ach a regigtration algorithm is that we could explicitly represeat errors
__;%",Mw&ﬁdtdchsmg Anothiet itse. coticerns

mm@awm Wo. should: define.a commen, peepmal axchitecryre o
integrate these algorithms in a common representation that can be part of the. cose system -of:a mobile
robot. Finally, we have tackied the terrain representstion problems mainly from a geometrical point of
visw. Excopt in'Section 3, 'we did not Eneipt 1skthor ssmantic imepientions five she represiintations.
Ammowaukumm&&DWWmeyhOwdﬁmmme

mhamm&mfummm
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