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Abstract
This report describes progress in vision and navigation for outdoor mobile robots at the Carnegie Mellon
Robotics Institute during 1988. This research was primarily sponsored by DARPA as part of the Strategic
Computing Initiative. Portions of this research were also partially supported by the National Science
Foundation and Digital Equipment Corporation.

In the four years of the project, we have built perception modules for following roads, detecting obstacles,

mapping terrain, and recognizing objects. Together with our sister -Integration" contract, we have built

systems that drive mobile robots along roads and cross country, and have gained valuable insights into

viable approaches for outdoor mobile robot research. This work is briefly summarized in Chapter 1 of this

report.

Specifically in 1988, we have completed one color vision system for finding roads, begun two others that

handle difficult lighting and structured public roads and highways, and built a road-following system that

uses active scanning with a laser rangefinder. We have used 3-D information to build elevation maps for

cross-country path planning, and have used maps to retraverse a route. Progress in 1988 on these

projects is described briefly in Chapter 1, and in more detail in the following chapters.



 



Section I

Introduction
This report reviews progress at Carnegie Mellon from January 15, 1988 to January 14,1989 on research
sponsored by the Strategic Computing Initiative of DARPA, DOD, through ARPA Order 5351, and monitored
by the US Army Engineer Topographic Laboratories under contract DACA76-85-C-0003, titled "Road
Following." Portions of this research were also partially sponsored by the National Science Foundation
contract DCR-8604199, by the Digital Equipment Corporation External Research Program, and by NASA
under contract NAGW-1175.

This first chapter of the report consists of an overview of accomplishments during the four years of the
contract; a compendium of our insights and practical advice for building mobile robots; discussion of
progress during 1988; a chronology; a list of personnel; and publications of the research group. The
following chapters provide more technical detail on particular areas or projects.

Overview of Accomplishments

Outdoor mobile robot research at CMU has been funded by DARPA since January 1985. Although the
contract is titled "Road Following", the research is much broader. The scope of the work has included
cross-country runs and obstacle detection as well as road following; direct 3-D sensors along with video
cameras; object recognition and terrain mapping; and close cooperation with the Warp group and with the
Navlab Integration work, to build complete mobile robot systems. Several specific results from the Road
Following contract have achieved wide recognition, and have been integrated and demonstrated at CMU
and elsewhere:

• Color-based Road Following. The culmination of our road-following work is a reliable
system that drives the Navlab along a narrow, twisting, tree-lined bicycle path. The heart of
the system uses adaptive color classification, which automatically adjusts for changes in road
appearance or lighting conditions. Variants of the system use two cameras, to extend the
dynamic range to handle deep shadows; find intersections of known shape; incorporate
additional features such as texture; and use the Warp processor for high speed. The latest
version uses the Warp to achieve a 2 second processing loop, allowing vehicle speeds of 1
meter/ second even on our narrow test course.

• Terrain Representation and Obstacle Detection We have developed three levels of terrain
representation corresponding to different resolutions at which the terrain is described. At the
tow resolution level we describe only discrete obstacles without explicitly describing the local
shape of the terrain. We used this level for fast obstacle detection and avoidance. At the
medium level, we include a description of the terrain through surface patches that
correspond to significant terrain features. At that level, the resolution is the resolution of the
operator used to detect these features. This level of representation is especially useful for
cross-country navigation in which we have to deal not only with large discrete obstacles but
also with the changing shape of the terrain. This representation has been successfully
demonstrated in conjunction with a path planner developed under the Integration contract.
Finally, the description with the highest resolution is a dense elevation map whose resolution
is limited only by the sensor. The techniques we developed for this representation provide a
complete description of the terrain including occluded regions and uncertainty After the low-
resolution obstacle detection was demonstrated as part of the Navlab, it was ported to Martin



Marietta. Work in conjunction with Martin reduced run time to less than one half second, the
frame rate of the ERIM scanner. This was the only project during the Martin ALV contract
that was developed outside of Martin, integrated into the ALV, and used in one of the ALV
main demos.

• Map Building and Matching In addition to extracting snapshot maps of the terrain from
range images, we have developed algorithms for matching and merging individual maps into
a single consistent representation. Again, the matching algorithms are applied to the three
levels of representation: At the lowest level discrete obstacles are matched in order to
compute the displacement between consecutive maps. At the medium level terrain features
are matched to compute the best consistent match between maps. At the highest resolution
maps are directly correlated to compute the displacement by a minimization technique. The
accuracy of the resulting displacement can be as good as the resolution of the map (as low
as 10 cms in our experiments).

• Road Following by Active Sensing. Our ERIM scanner measures not only distance to
each point but also reflectance. If the road surface (e.g. asphalt) has much different
reflectance than the surroundings (e.g. grass), it is straightforward to detect and track the
road. For situations in which reflectances do not significantly differ, such as dirt shoulders,
we have to pay attention to details of signal attenuation, grazing angle, and surface fitting in
order to find the road border. Since the ERIM uses its own laser as its light source, it is
insensitive to shadows or lighting changes. This system has even driven the Navlab at night.
This method has also been ported to Martin Marietta, and has driven the ALV.

• Terrain and Object Mapping.

• Systems. The Road Following Contract has provided perception modules for the systems
built by our Integration work. Highlights of these systems include:

• Navigating the Schenley Park bicycle path, starting with a crude map and producing an
updated map. This system included color vision for road-following; range data analysis
for mapping both discrete obstacles (trees) and terrain; intersection recognition and
navigation; a planner that followed the road and avoided obstacles; and sequencing to
predict road appearance and to tell perception when to take an image. The system
was based on CODGER, our adaptation of blackboard ideas for mobile robot
navigation.

• Navigating the CMU sidewalk network, using a preloaded map to predict object
appearance and to choose between a forward-looking ami an angle-mounted camera
to see the next sidewalk or intersection. The map was also used to invoke a program
to locate stairs, which used a "colored-range image11 built by fusing camera data with
xyz data from the rangefinder.

Other components have been developed and tested, but have not been integrated into complete systems.

These include:
• Sonar. Some of our earliest successful outdoor runs used Moravec and Elfes's sonar

system, originally developed for indoor use, to drive our Terregator robot in Schenley Park.
The sonar system was very good at mapping ami avoiding natural obstacles such as trees.

• Stereo* The FIDO stereo system was ported from Indoor laboratory robots to the Terregator,
and reimplemented on a prototype Warp. It successfully steered the Terregator around man-
made outdoor obstacles* but was less successful with trees ami bushes. Future systems
could use the complementary strengths of sonar and stereo to build complete and reliable
mapping.

• Other Road Detection Methods. Our early systems tracked edges, oriented edges, road
cross-section profiles, correlation window outputs, and other features. Each of these
methods works well, but only in particular circumstances. Current research is using several
of these operators together to track the lines, shoulders, and other features of public



highways. A model-based control program will take advantage of the structure of highways
to decide which features to track and how to track them. This approach should be robust as
well as efficient Other current work is exploring new methods, such as an unsupervised
color classification scheme that uses shape information but does not need color data from
previous images. This scheme is not susceptible to quickly changing illumination, and can
find the road at the beginning of a run to initialize the color tracker.

• Calibration. Our multi-sensor perception experiments need to know the geometrical
relationship between sensors. Even for a single sensor, it is important to know the transform
from sensor to vehicle coordinates. Our best calibration system uses images of two grids of
points to build transform lookup tables, or to derive traditional camera parameters such as
location, piercing point, row and column vectors, etc.

• Object recognition. In order for a mobile robot to perform a meaningful mission, it must be
able to see and recognize known objects. Examples of our object recognition work are two
programs for recognizing cars, one using color data and the other using range images. Color
car recognition used hierarchical grouping, in which edges are grouped into lines; lines into
parallels; parallels into trapezoids; and trapezoids into connected sets that could be car
roofs, windows, trunks, or hoods. Starting with range data, the 3-D system first detected flat
surfaces, then applied single-surface constraints such as range of orientations allowed for a
roof or door, then used surface-pair constraints such as the angle between a roof and door.
Both methods work on several views of different cars.

Insights and Advice

Through the course of our work, we have developed some basic maxims of developing outdoor mobile
robots. While some of these are scientific insights, most of them have the flavor of pragmatic advice.
The most important include:

• Computing is a bottleneck. Our best results use the Warp, rather than a Sun, to gain
processing speed. The extra computer power is mostly used not to drive the robot faster but
to process images more frequently. Processing images more frequently in space means
easier predictions, more objects shared between successive images, and smaller changes in
apparent size and shape. Processing more quickly in time means less sensitivity to lighting
changes. The 100 MFlops of the Warp help give us a 2-second loop for our current color
vision algorithm. But processing remains a bottleneck. Even for the same algorithm, we
could use an additional factor of 60 to get to frame rate, times an additional factor of 64 to
process higher-resolution images.

• Development environments are a bottleneck. While the Warp gives us vast improvements in
processing, until recently ft was difficult to harness that power. Hardware developers and
computer engineers tend to expect their users to have a few well-specified algorithms that
can be compiled once and run many times. But it s the nature of research that programs
and parameters need to be changed frequently. To be useful, a supercomputer needs to
have debuggers, hardware diagnostics, easy access to display devices, and compilers that
run in reasonable amounts of time. Fortunately, those are now becoming available on the
Warp.

• Simplicity helps. Object models, algorithms, and systems should be no more complex than
needed. A road model, for instance, that attempts to derive too many geometric parameters
from a single interpreted image, may be subject to large instabilities due to small errors. We
have had much greater success 'm modeling our road as locally planar and straight. By
solving only for the x ami theta of the road, we have a stable solution insensitive to minor
noise. And by processing quickly, we can track the road as it dees eventually turn or pitch,
and compensate as we arrive at those points.

• The world changes. Our earfy outdoor stereo work was foiled by wind-blown trees. Early
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color vision made assumptions about constant appearance, and ran afoul of variations in
grass color from place to place. Fairly sophisticated vision systems can be fooled by a cloud
suddenly covering the sun, which changes not only the intensity but also the color of
illumination. The appearance of the road changes from one run to the next, due to our own
tire tracks, oil drops, and other effects.

• Sensors are a bottleneck. Too much effort goes into overcoming insufficient dynamic range,
fighting noise, and modeling errors. Our solutions include using 2 cameras mounted very
close to each other, with different iris settings, to extend the dynamic range. This is an
engineering solution to a technology problem, and diverts effort from science. Yet this sort of
"hack" is needed to use many current sensors.

• Direct sensing helps. Reasoning in 3-D is much easier when the data starts out in 3-D, such
as from a scanning laser rangefinder. Our ERIM data is not perfect, but gives us an
excellent starting point for obstacle detection, terrain mapping, and 3-D object recognition.

• Image Understanding (III) is still needed. There is no direct sensor for "road" or "tree".
Furthermore, there are objects and tasks that we do not yet understand how to handle with
simple algorithms and models. So even with good 3-D and color sensing, it is still necessary
to do all the IU tasks of modeling and interpretation. Direct sensing may eliminate some of
the messy low-level interpretation, but does not eliminate the need for fundamental work in
IU.

• Integration is difficult but crucial. Capable mobile robots need multiple sensors, probably with
multiple sensor interpretation methods, and have multiple goals and multiple control
schemes. If the individual components are designed separately, they are not likely to work
together. Much of our design and testing effort has been devoted to working with our sister
Integration effort to build systems that can follow roads and avoid obstacles; that can look for
landmarks while looking for roads; and that can handle other conflicting demands.

• Easy tasks are easier than expected, hard tasks are harder than expected. Following a
well-lit sidewalk, bordered by green grass, is nearly trivial. Folbwing a winding path with dirty
asphalt, bordered by trees, grass, dirt, and fallen leaves, with changing lighting, is much
more difficult.

• Do not trust laboratory simulations, or runs on a few canned images. Simplified or reduced
test data is useful for first debugging, but success in the lab does not guarantee success
outdoors. There is no substitute for lots of experimental runs.

• Mobile robot research is increasingly important. Results from our work have already been
directly applied to interpreting sonar data (for design studies of an underwater autonomous
vehicle) ami to mapping terrain for planning footfalls for a walking planetary rover. The ideas
and experience coming from our project have influenced many other mobile robots, ranging
from underground mining vehicles to other road following efforts. And in general, the Road
Following work is part of a paradigm shift in image understanding research, moving from
generic interpretation of single frames A laboratory data to goal-driven analysis of streams of
images from a real, continually moving, outdoor robot.

1988 Progress

tn 1988 we neared completion of one of our 'road' fotovtfng programs, and began work on three new road

foitowers. Our range data processing built maps and, in conjunction will NASA sponsorship* began very

high resolution terrain analysis. The Wghlgfts of these projects, and of the systems that yse them, are

briefly dtsotoed beta*. Further detai on the major ©forts is in the iolbwtrig chapters.

SCARF: in 1988 we completed SCARF, our system for Supervised Classification Applied to Ftoaci



Following. SCARF is the logical continuation of a long chain of road following programs that use color

classification. The first implementation of SCARF in 1986 ran on Sun workstations, with 32 by 30 pixel

images, in about 12 seconds per image. Later implementations of that version ran on the prototype Warp

and on production Warps, with speeds as fast as one image per 4 seconds.

Over the past year and a half, we have upgraded SCARF to use, first, higher resolution images (60 by

64), and, second, two images to increase dynamic range. This slowed our runs to tens of seconds per

image, even on a Warp.

Now, taking advantage of compiler upgrades for the Warp's W2 language, and doing some code

restructuring, we have reimplemented SCARF on the Warp. Our processing time is now down to 2

seconds per image. We moved almost all of the code onto the Warp cells themselves. Further, we

reduced the number of calls to the Warp per image from 14 (last year) to 3 (earlier this year) to 1 (TOW).

After initialization, we pass the Warp cells each new image, and get back only the new road location. Ail

of the system state is saved on the cells from call to call. We also have debugging versions that can

extract classification information for display, but those extra Warp calls and data movement slow down

the system. Current running time is 1 second of Warp time per image.

The full formulatbn of the probability equatton used in classification includes the log of the determinant of

each class. Early implementations of SCARF on the Warp have always avoided logarithms, since there is

no log function in W2. On benign data, this did not cause any problems. But running with the Navlab

outside on a snowy day, the system did not work correctly. In our standard test sequences, each class

had approximately the same size determinant (i.e., the classes had approximately equal variance), so we

could safely ignore that term. But on a snowy day, the "snow" and "road" classes each had very small

variance, while the "trees + parked cars + trash barrel" class had a much larger variance. This imbalance

caused improper classifications. We worked with the Warp group to include a log macro and to compile ft

into our W2 code. The resulting system performs no better on most of our images, but dramatically

improves performance on snowy days and under similar circumstances.

The resulting system has driven the Navlab many times, along our narrow bicycle path in Schenley Park.

The top speed at which we have run is one meter per second, the length of our test course (compared

with 20 cm/sec last year). With the fast processing loop and the complete formulation of probabilities, the

vision results are solid. While vehicle speed has always been a secondary concern of our work, we can

now drive at moderate speeds on our difficult test course, and should be able to use the same system to

drive at higher speeds on wider, sfrasghter roads.

SCARF is described in Chapter 2 of this report, "Color Vision for Road Following".

UNSCARF: One of our new road detection algorithms for this past year is UNSCARF, for UNSupervfsed

Classification Appled to Road Following. A targe problem with our early mad perception work was

dealing with rapidly changing illumination. If the sun is covered by a cloud, the lighting is diffuse and we
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can follow roads with a single camera. If the sun is out, there are problems with camera dynamic range,

but our methods that use two cameras work. But if the sun is quickly covered or uncovered by clouds,

then colors change and shadows change and the brightness changes. If object appearance differs

greatly between successive processed frames, current methods have a hard time tracking the road.

UNSCARF places less emphasis on colors and more on shapes. Instead of classifying each pixel

according to statistics from previous images, it groups neighboring pixels using unsupervised clustering

methods. We have found that clustering with 5 parameters (R,G,B and row,col) gives us classes that are

both homogeneous in color and connected in the image. We then piece a road shape together out of

those clusters, instead of from individual pixels. Evaluating candidate roads uses shape cues such as

parallel edges, smooth edges, edges the right distance apart, and so forth. The combination of

unsupervised classification and evaluation with shape cues makes UNSCARF tolerant of the large

illumination changes that have given problems to previous systems.

UNSCARF is also described Chapter 2, "Color Vision for Road Following".

FERMI: FERMI deals with public highways and roads, that have more structure and variation than our

Schenley Park test site. The key to handling diverse roads is explicit modeling of the colors, shapes, and

features of each road type. FERMI has a representation that lists width, maximum curvature, color,

surface type, location of lines, type of shoulders, presence of guard rails, type of adjacent vegetation or

soil, illumination conditions (sunny or cloudy), illumination direction, and so forth. Then by having many

simple experts, one for tracking each type of feature, we are able to follow many kinds of roads within the

same control framework. None of the individual trackers (edges, lines, color discontinuities, etc.) that we

explored in our early work were adequate in themselves for road following. But by incorporating many of

them into a single system, and intelligently selecting which tracker to use to follow which feature, we

expect FERMI to be reliable ami flexible. In 1988, FERMI has been designed and partially constructed,

and has driven the Navlab.

Details of the FERMI design are in Chapter 3, "Explicit Models for Road Following".

ERIM Reflectance: A new project for 1988 is road tracking using the ERIM reflectance oata. Our ERIM

laser rangefinder produces not only range at each point but also magnitude of reflectance. Since the

scanner produces its own illumination, the reflectance images are not distorted by shadows or sunlight or

changing cloud ewer. Reflectance is affected by distance (less of the illumination is reflected back to the

scanner from more distant objects), but this can be compensated for by using the range data. So many

of the sources of error in standard video images are not present in active reflectance data.

There st» are, however, some problems with using reflectance data. The magnitude of the reflectance

changes with grazing angle: the road at larger distances appears at a shallower angle, and reflects less.

Reflectance also changes from place to place along the road, as the road surface goes from dirty to clean

or from wet to dry. And finally, since reflectance is only a single channel (rather than the three channels
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of an RGB camera), not all objects have distinct appearances.

The solution to the grazing angle is to process each image as a series of horizontal bands, so within each
band the grazing angle is approximately constant. We keep separate appearance statistics for each of
the bands. We handle changes from place to place by updating our appearance models each image.
The problem of multiple objects with the same appearance is more difficult. Part of the solution is to limit
processing to a band around the predicted road location. Another answer is to use geometric constraints,
such as expecting road edges to be locally parallel. But the effectiveness of these solutions depends on
the materials that form the road and its borders. Asphalt and grass have much different reflectances, so
the portion of our test path that is grass-lined is easy to segment. Dirt, however, can appear much more
like asphalt, so in dirt-lined segments we have to use more detailed processing, such as tracking a single
road edge when the other edge is indistinct.

Our program to follow roads using ERIM reflectance has run the Navlab many times, including runs at
night. This is the first time we have had a usable day/night road following system. The program was also
transferred to Martin Marietta, and successfully drove the ALV.

In addition, this work provides the first step in a new project in building and re-using maps. As we drive,
we record the position of the road (from reflectance analysis) and of obstacles (from range analysis).
When we later retraverse the same path, we use the detected positions of the road and obstacles to
locate the Navlab on the map. The map can then be used to predict upcoming obstacles or turns in the
road, and to plan paths past the current field of view.

Our work with reflectance processing and road mapping is described in Chapter 4, "Building and
navigating maps of road scenes using an active sensor."

Terrain Mapping: The algorithms that build a terrain description made of polygonal regions have been
implemented and demonstrated on the Navlab. The resulting description is a mesh of polygons built from
an Erim image, each of which is a feature of the terrain. This terrain modeling program provkies the type
of information required by the new path planner. The combination of terrain modeling and path planning
has been demonstrated on the Navlab and is a major step toward cross-country navigation and the
implementation of the Core system.

Terrain mapping work is included as part of an overview of all our range data analysis research in the
past four years in Chapter 5, "3-D Vision Techniques for Autonomous Vehicles".
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Chronology

Feb Final version of Expert System Road Finding

March Car recognition using range data complete

April LASSIE (car recognition with color data) complete

May Road simulator version 1

June ERIM reflectance used to follow roads

July SCARF implemented in C, drives Navlab

Aug Simple steering / planning programs "quick- and "dirty"

Aug ERIM reflectance and mapping runs Martin Marietta ALV

Sep Night runs of Navlab with ERIM

Oct First offroad runs using Stentz planner with vehicle model

Oct Retraverse route using map built on first run

Oct Car recognition with multiple contexts ???

Nov UNSCARF runs Navlab

Nov FERMI runs Navlab

Dec SCARF on Warp runs Navlab, under 1 second Warp time

Personnel

Directly supported by the project, or doing related and contributing research:

Faculty: Martial Hebert, Katsushi Ikeuchi, Takeo Kanade, Eric Krotkov, Steve Shafer, Chuck Thorpe, Jon
Webb, William Whittaker.

Staff: Paul Alien, Mike Blackweli, Tom Chen, Jill Crisman, Thad Druffel, Eric Hoffman, Ralph Hyre, Bala

Kumar, Jim Moody, Tom Palmeri, Jearv-Chrfstophe Robert, David Simon, Hans Thomas, Eddie Wyatt

Visiting scientists: Yoshi Goto, Taka Fujimori, Keith Gremban, Hide Kuga, Masatoshi Okutomi

Graduate students: Omead Amidi, Jennie Kay, Karl Kluge, InSo Kweon, Dean Pomerleau, Doug Reece,

Tony Stentz

Publications

Selected publications by members of our research group, supported by or of direct Merest to this

contract.

J. Crismart and CX Thocpe

Color Vision for Road
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In SPIE Conference on Mobile Robots, November, 1988
A different version appeared in the proceedings of SIMAP 88, University of Osaka, Japan, May 88.

J. M. Cuschieri and M. Hebert.
Sonar Applications for Underwater Vision.
In ASME Symposium on Current Practices and new Technologies in Ocean Engineering, pages 5-11.
ASME, January, 1988.

Y. Goto, S. A. Shafer, A. Stentz.
The Driving Pipeline: A Driving Control Scheme for Mobile Robots.
International Journal of Robotics and Automation, Volume 4, Number 1.
Also appeared as Technical Report CMU-RI-TR-88-8, Carnegie Mellon University, The Robotics Institute,
June, 1988.

K.D. Gremban, C.E. Thorpe, and T. Kanade.
Geometric Camera Calibration using Systems of Linear Equations.
In Proc. 1988 IEEE International Conference on Robotics ami Automation, pages 562-567. Computer
Society Press, Philadelphia, Pennsylvania, April, 1988.
Also in 1988 Proc. of Image Understanding Workshop, pages, 820-825.
Morgan Kaufmann Publishers, Inc., Massachusetts, April, 1988.

M. Hebert and T. Kanade.
3-D Vision for Outdoor Navigation by an Autonomous Vehicle.
In 1988 Proc. of Image Understanding Workshop, pages 593-601. Morgan Kayfrnann Publishers, Inc.,
Cambridge, Massachusetts, April, 1988.

M. Hebert, T. Kanade, and I. Kweon.
3-D Vision Techniques for Autonomous Mobile Robots.
Technical Report CMU-RI-TR-88-12, Camegie Melton University, The Robotics Institute, August, 1988.

K. Kluge and C. Thorpe.
Explicit Models For Road Following
submitted to IEEE Conference on Robotics and Automation, 1989.

I. Kweon, M. Hebert, and T. Kanade.
Perception for Rugged Terrain.
In Proc. of SPIE Conference on Mobile Robots. SPIE, November, 1988.

I. Kweon M. Hebert, and T. Kanade.
Sensor Fusion of Range ami Reflectance Data for Outdoor Scene Analysis.
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In Proc. of SOAR'88 Space Operations Automation and Robotics. NASA, Wright-State University,

Dayton, Ohio, July, 1988.

D. Pomerleau

ALVINN; An Autonomous Land Vehicle In a Neural Network.

To appear in Advances In Neural Information Processing Systems, Vol. 1, 1989, D.S. Touretzky (ed.),

Morgan Kaufmann.

C. Thorpe and T. Kanade.

1987 Year End Report for Road Following at Camegie Mellon.

Technical Report CMU-RI-TR-88-4, Camegie Mellon University, The Robotics Institute, April, 1988.

C. Thorpe, M. Hebert, T. Kanade, and S. Shafer.

Visbn ami Navigation for the Carnegie-Meion Navlab.

PAM110(3), 1988.
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Chapter II
Color vision for Road Following

Jill D. Crisman and Charles E. Thorpe
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Color Vision for Road Following *

Jill D. Crisman and Charles E. Thorpe
Robotics Institute, Carnegie Mellon University

Pittsburgh, PA 15213

October 12, 1988

Abstract

At Carnegie Mellon University, we have two new vision systems for outdoor road follow-
ing. The first system, called SCARF (Supervised Classification Applied to Road Following), is
designed to be fast and robust when the vehicle is ninning in both sunshine and shadows under
constant illumination. The second system, UNSCARF (UNSupervised Classification Applied to
Road Following), is slower, but provides good results even if the sun is altemaieiy covered by
clouds or uncovered. SCARF mcorponttes oar results from our previous experience with road
tracking by supervised classification. It is an adaptive supervised classification scheme using
color data from two cameras to ftim a new six difl^nsional o>k)r space. The road is l o c ^ i ^
by a Hough space technique. SCARF is specificaUy designed to fast in^lementation on th^
WARP supercomputer, an experimental parallel architecture developed at Carnegie Mellon.

UNSCUlFusesanunsupervisedclassifi^
regions. The road is detected by finding the set of regk»| whkA, gno*iped togcthw, best match
the road shape. UNSCARF can be expanded easily to perform unsupervised classification on any
number of features, and to use any combfcation of cxmstraints to setea the best combination of
regions. The basic unsupervised classificatton segmentation will also have applications outside
the realm of road following.

1 Introduction

AtGuaegieMeikmUiiiv^
[6,7,9,10]. The main emphasis of oaat road following research i t to tad onstructured roads in images A i t are complicated
by shadows, leaves or dirt lying on tbe road, lighting changes* mA the like. We initially used edge based techniques, that
searched for edges in the inuge to conespood with toad edges in fee scene. TWs proved inadequate for our Schenley
Paik test site, since often image edges caused by shadows were more distinctive than edges formed from road boundries.
Currently we have been using a color classification system, SCARF (Supervised Classification Applied to Road Fallowing),
where each pixel in the image is labeled as road or non-road based on the match of its c o t e to previously learned colors.
The road is found by looking for the road shape that contains the most *roadt labeled pixels. We also use an unsupervised
classification algorithm, UNSCARF (UNSupervised Classification Applied to Road Following), that groups pixels that have
similar color and location, and then searches for the combination of groups that best matches the road shape. This paper
discusses these two systems.

Other groups have also been working on road-following. In Germany, Dickmanns and Grafe [3,4] view road following
as a control problem. They have developed an elegant control formulation that incorporates a simple road edge detector
with die vehicle model to drive their vehicle at speeds up to 100 kph. They also use constraints of the autobahn shape

"This research is sponsored by the Strategic Computing Initiative of DARPA, DoD, through ARPA Order 5351, and monitored by the
VS Army Engineer Topographic Laboratories under contract DACA76-85-C-0003, titled "Road Following/ Portions of this research were
also partially sponsored by the National Science Foundation contract DCR-8604199 and by the Digital Equipment Corporation External
Research Program.
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and markings. The autobahns are of constant width and arc either straight, constant curvature, or clothoid in shape. The
rapid processing and structured road model help to limit a search window in the image, and discard the extraneous edges
nonnally found by edge detectors. However, it seems that their trackers could be distracted by the shadows, puddles and
rood imperfections that plague our tkt site. * ' ; '

The University of Maryland [2] has also been working on toad following. Their system drove an autonomous vehicle
based on edge detection. Image ed$es where tracked tram the bottom of the image to the top using an edge detector in a
window of the image. Once anejjjge is located, it is used to constrain the position a ^ Then
the edges were grouped using a Hough transform to tietefihinc which image edges form the best road edge. This system
worked well when the dominant edges in the image are road edges, but similar systems at CMU have failed when tracking
edges in strong shadows or when leaves or dirt lie on the roads.

At Martin Marietta, the VTTS system [8] has achieved impressive speeds on fairly unstructured roads. It projects die
three-dimensional color space (red, green, blue) into one dimension, or in later systems two dimensions. It then differentiates
the road from non-road by a linear discriminant function. The road/non-road threshold is selected by sampling a part of
the image that is guaranteed to be road. This system is similar to CMU road following, but emphasizes speed rather than
general capability. Their system works fast, up to 20 tph, on their test site, but it is doubtful that it will work on other test
sites, since the color projection is tuned for the features that are best to discriminate their road from their non-road.

Our goal is to build general color vision algorithms that wotk in a wide variety of situations. In particular, we are
working on recognizing unstructured roads in various types of illumination and weather conditions. To give our system
general capabilities, we must address the following problems:

• The objects in the scene undergo spatial changes in appearance. For example, under sunlight, roads appear
j- to be a different color than fliey appear in the shade.

• Objects in the scene undergo temporal changes in appearance. This may occur when clouds pass over the
sun f a instance. The change in illumination wttl cause identical road segments to have different colors from
frame to frame* ,

• The dynamic range of our cameras is limited. We cannot digitize meaningful data in dark shadows of a
brightly sunlit image, nor can we capture datt in the brightly sunlh regions of a dark image.

• The roads in Schenley Park are very unstructured. There are no center or bordering lines painted on our roads,
as on highways. Many of the road edges are obscured or uneven. The pavement of our roads is deteriorating
in places, and the pavement may be covered with the same leaves, dirt, or snow, that appear off road.

Our two new systems, SCARF and UNSCARF, were built to address these problems. Both systems deal with the
limited dynamic range of the cameras by using two cameras with different iris settings to capture b«h d*k and bright areas
of the scene. SCARF is designed to be a Cast, adaptive system. Even though algorithm speed is not a goal of our research,
£a*ter algoritliau have die advpitage of more overlap between frames, if die vehicle speed is constant When the images
are processed closer in time and tfisiance, the Ugbting copdit i^
in the image will not move far between ftamei. UNSCARF tackks the temporal and spatial changes by processing each
linage independently of the others. No color models are tracked from frame to frame, making this algorithm insensitive to
spatial or temporal changes in color.

In the next section of this paper, we describe the SC^RF algorithms fl^ discuss i^ults. UNSCARF is detailed and
discussed in the following section, and finally, gqaeril copclusions are drawn in the final section of this paper.

2 SCARF
SCARF has evolved by adding more and rao* capabilities to * simple rood following system. A block diagram of this
system is shown in figure 1. SCARF uses two c a w ^
m averaging filter and sent to theclassifierft*each pixe^ in * e reduced images, the classifier calculates a likelihood value
that describes how well the pixel matches remembered rcwd and non-road odors. The interpreter uses the likelihood values
to find tbe road shape that contains the meet Jtifcdy joadpixeb. The road loauion is then used to update the remembered
colors for the next frame. The road location is alto used to steer toe vehicle. This system has been implemented on the
WARP supercomputer. ^ . . ; ; . . • • •
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Figure 1: Block diagram of SCARF
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Figure 2: Extending the dynamic range using 2 cameras

2.1 Two Camera System
To extend the dynamic nmge of a single camera, we are using two images of the same seme digitized from the two cameras
mourned on our test vehicle, the Navtab. The cameras wane positioned as closely together as possible, and bore-sighted,
mmimfcmg tbedtffcmce between the camera images. To avoid calibfatii^ the two cameras, we treat the images as if they
were taken from the same camera. This approximation is adequate for our purposes since die baseline of oar cameias is
much smaller than the distance to the road.

The improvement in dynamic range results from the different iris settings of the two camera as shown in figure 2.
One of the cameras is set to capture the shadowed area of the scene by opening its iris. The second camera captures the
sunny areas by using a closed iris.

When the two color images are digitized, they are first reduced by using an averaging filter. This not only reduces the
data size, but will also reduce die noise content of the image. The reduced input images are used throughout the program,
to increase the speed of the processing.

Two different methods for using the two input images were tested. The first approach is to combine the two reduced
images into one. We used a simple thresholding technique to extend the dynamic range as shown in figure 2. If the closed
iris image pixel was too dark, then the pixel was selected from the open iris image, otherwise it was copied from the closed
iris image. The second approach was to use both reduced input images to form a six-dimensional color space. Then all six
features, the red, green, and blue bands from the two images, are used in SCARF.
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2.2 Classifier

In standard pattern recognition theory, a classifier takes a dhdimafltional measurement vector, x, and chooses the best class
label,w;, from a set of K classes, using a prcVioSilyfcd^^
best class is the class that maximizes the a posteriori probability, P{uj\x). The expression for the a posteriori probability is
normally derived from Bayes rule: i

In our case, each pixel provides a 6 dimensional measurancnt vector (d * 6), x * [RiG\BxR1GiB1}
T

y formed by
oncatenating tte red, green, and blue bands of (he two reduced input images. We use several classes to model road andp g

non-road colors, typically 12 road models and 12 non-road models, giving 24 total color models (K » 24). We assume
that the doss conditional probability models for &ch class are Oiussiali distributions, therefore, P(x|wy) can be completely
characterized by the mean vector and the covariance matrix of the sampled points for class wy. We also assume that the
P(u;;) is the ratio of the number of s a n i ^ Therefore,

L ^ 2i
J " *fc) ' AT

Rather than calculating P(wj\x) at each pixel, we simplify the calculations by chosing tte class, wy, that has tte maximum
ln/>(u;y|x). This can be further simplified by noticing that /?<*) is identical for all of the classes, so that it can be eliminated
from all of tte terms. Therefore our classifier selects tte class that maximizes tte following likelihood measure:

•N, ^IW^^fCyJD-^x-mjfCy-^x-mp.

23 Interpretation

Tte interpretation receives a likelihood image* containing Ay, and a classification image, containing wy, from tte classifier.
By looking at the classification image, we can label each pixel in die image as either 'road* or 'non-road\ Tte interpreter
searches for tte road having the highest co^bttiaytHlWSkxl using a voting scheme similar to tte Hough technique. Tte
standard Hough algorithm searches far a line by vQ|ji^ for all of the line* passing through an edge point However, we
find a road by voting for all tte possible roads containing 'road' pixels and by voting against all possible roads containing
'non-road* pixels. Tte main deference is that all of our pixels vote, not just pixels lying on tte edge of tte road. We also
use the likelihood measure to detenttii^

We assume tte road is locally neariy straight, and can be parameterized using v, tte column where the road center
line crosses tte horizon row, (or tte vanishing point) and 0, tte angle between the road center line and a vertical image line.
These two parameters are tte dimensions of an accumulator used for collecting votes. Each pixel in die likelihood image
votes for all tte roads that contain that pixel by adding its likelihood to the proper potitioot in ite accumulator

For each angle 0h a given pixel location (rtc) will vote for a sec of vanishing potift* lying between-v* wad v, as shown
in figure 3. Tte starting qplumn position, vf, cangpcflfhlte jntpqxQttttion thai pixel (f, c) Uw on on tht right hand edge of
tte road in tte image, and tte ending column position, v, correspoodi to tte (rtc) pixel lying on the left hand edge of the
road. Tte v positions are calculated by:

vs m c + {r - horiz)\sn9 - (w/O(r - hprk)

where horiz is the horizon row iq the image, w is the road width at the bottom of the image, and / is tte length from tte
horizon row to the bottom of tte image. The maximum value of die accumula§or is chosen to be tte road

2.4 Model Formation
The new model can be calculated using standard statistical equations for mean and covariauce:
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Figure 3: Hough voting scheme

(2)

First we have to decide which pixels belong to each class. Once we have a 'ioad7*non-ioad' labeling, we calculate statistics
for the road and non-road classes. Then we reclassify each 'road* or 'non-road' pixel using only the road classes for "road*
pixels and only die non-road classes for 'noo-road' pixels. We iterate the calculate statistics and reclassify steps until the
classes converse.

The toad location is given from the user in initialization or from the interpretation on subsequent steps. Using this
location, each pixel can be identified at totd or non-road The road region and the noiMoad region of the image arc shrunk,
forming a safety margin at the odge of tie road. This is important so that the new color model is not corrupted due to the
discretization of road locations or inaccurate fitting of a straight read model to a gently curving road. The reduced road and
non-road areas ate used to sample the colors of road and non-road*

An iterative clustering technique is applied to the road region and an identical procedure is followed for the non-road
regta* First, the load pixels are artiiraiUy given one of the road dass labeb. We assign the classes by indexing through
the mad pixels and assigning the aoct *dad class. The color model, consisting at {fy, • / , Cy} is cataitntftri for each of the
classes us i^eqmioas (I) and (2). ThM all of the toad pixels am relabeled by the class whose mean color is closest to the
pixel value, and a new color model is calculated using the new labeling. This 'ttbeftample* loop is repeated until most of
the pixels remain in the saai

2.5 WARP Implementation

of oar supervised classification systems on the wire-wrapped, prototype WARP sup4 apiWe have
[1]. The increase in processing speed, although significant, was limited by the small memory on each cell. Much time was
spent down-loading code and data, at each function call, typically 14 calls per step. Oar new PC WARP has more memory
on each processing unit, allowing largo* programs and larger global data structures. Therefore, we have (Hie large WARP
function rather than multiple WARP functions, taking advantage of the largo* program memory. This results in greater speeds
since data is only downloaded once and the WARP start-up sequence is executed once per image frame.

The inputs to the WARP program are the six reduced images and the statistical model for each class. The WARP
function segments, interprets, and produces the new color model It outputs the road location and the new color model.

2*6 Discussion

This program has been tested oil several sequences of images. The SCARF system has driven over all of the roads of our
test site successfully. We have driven the system a variety of weather conditions, on different road surfaces, and under
different lighting conditions. It adapts very well to different road surface types and differing off-road objects. Figure 4
shows SCARF running through severe shadow conditions from our test site.



Figure 4: SCARF examples in dark shadows: The lines show the resulting mad location.
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Figure 5: Effects of rapid illumination change

Using two input images does increase tte dynamic range beyond that of a single camera. We found that combining
tte data otto a single image provided a &st means of extending tte dynamic range, however, using both input images was
mcroreUifcte, Notonlydoettteus
to classify each pixel thereby increasing cliwlflcatipn confidence and accuracy. Moreover, using all tte data from both
cameras avoids tte potential problems of picking a threshold for selecting data to form a single image.

The classification works well as long as tte lighting conditions or tte road type does not change drastically between
frames. As tte time and distance between frames decrease, the results from th$ classification improve.

Tte Hough interpretation provides tte robustness of tte SCARF system. Since it is an area based technique, there is
root* data used in the interpretation than an edge based technique. This makes tte system less sensitive to noise. Using this
interpretation, we have been able to drive our Navlab vehicle in a variety of weather conditions. Tte results are good even
when tte road may be partially coveted with tte same leaves, dirt, or snow that is on the non-road parts of the image.

3 tNSCARF
UNSCARF was designed to attack tte problem w^h temporal and spatial color appearance changes. In SCARF, models
of road and non-road colors, taken from die previous image, were used to label pixels in tte current image. However, if
tte odor appearance of these objects changed dramatically, for any reason, then tte color models no longer represented the
colors of tte objects in tte new image. SCARF performed well as long as tteffluminationdkiiwcha^ An
example of a failure situation due to rapid illumination changes is shown in figure 5. A cla^ificr is calculated for sunny
and fhartfrt road and non-road classes in a sunlit scene as shown on the left In tte next image, that classifier will fail, since
tte sun is hidden by clouds and tte cokm of ^ ro^ aai iuxi-road classes have shifted.

UNSCARF does not use pre-computed color models, instead it groups pixels that are similar in color and location
in tte image using an unsupervised classification algorithm as shown in figure 6. Then tte pixels with tte same labels, or



Hgure 6: UNSCARF Wock diagram

classes are collected into regions using a connected components algorithm, and polygon approximations are fit to the pixel

3.1 Unsupervised Classiacmtion SecmeotaUon

The unsupenrised classification algorithm groups pixeh having similar colors by an iterative clustering technique
similar to the model update of the SCARF system. The main difference is that none erf the pixels have a'road* or'non-road*
label. The ptels are given an initial classification Then a statistical model is calculated for each class, and the pixels are
rcclassified^

^KdPjpî l of ttie i^|MciiaH^ hais fitre features (d » 5> dttH ice'iwbd te &e clusiexing:

x * [RED, GREEN, BLUE, raw, column]7.

This can easily Ire expanded to a eight dimensional space by using the RGB bands of a second image. The system has a
fix^norabcrofcias^taeacfeimite>inourtypicafly24. Fim rt labeh <*A pixd of the image ŵ
the clattes mm ercaly s o n * * * m m & m the image. Next, a statical color model, {Ny,«i;,Cy}, is formulated for each
class, uy, lor Hit class mi&mem usiQg equations (1) and (2). Then the pixels are labeled usiag a classification scheme
similar to that of SCARF and a mm statistical model is calculated The 'ciisatfy^te&ple' loop is repeated until most of the
pixels in the image remain in the same class. This usually converges quite quickly, taking between 8 and IS iteratkms until
95% of the pixels remain in the same class.

The classification scheme can have several different flavors. The first scheme used was a nearest mean classifier. In
other words, the ptxeb were Ubeied with the class whose mean was closest 4o the pixel value. This has a tendency to form
spherical cteiars in the featuie space. Since we were using the spitial parameters of (row, column) all erf the regions formed
from the final class labeling have a approximately circular shapes in the image. To allow elliptical shapes to represent
eiongatea or unear ocyeco we QSM tnc neatest CUB as given oy me Manaianouis distance:

This distance metric needed to be normalized since once one of the clas$c$ had a larger covariance than any of the other
classes, then in the ̂ classification, even more pixels would be classified as the large class. This would balloon until all of
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Figure 7: Road costs

the pixels were described by orte class. To avoid this, we normalize the distance metric, by dividing each element of the
covariancc matrices of each class by the rf* root of the determinant of that matrix :

Then the Mahalanobis distance metric is calculated using C:

This allows each class
one class from dominating the othen.

Selecting the initial classes

meters ire valuable. 6y

to maintaining die same size for each class and thus preventing

imagp. causes the (row} colunvft pammefe

assume that an object wiU have a similar color
adding the (raw, column) parameters, we are exploiting the constraint that objects are localized in the
constraint made segmentations cleaner than strictly color

to be almost
', column)

By
The positional

3.2 Interpretation . >» •
The taterpreterubas^ on evaluating an possibkio^
the difference between the road shape and|te region edg<£ in'm image. T »̂ pterprejer uses the sanxMwp road pararneters
as in SCARF: v, the column at which the road crosses the horizon, and 0, the angle between the center line and a vertical
line in the image. However, instead, of buijding an nmwHilaBTc. w* step through an of the interpretations and evaluate how
weU that interpretation fits the regions of the image.

To evaluate a candidate road, we first decide whjc* regions would be pajt of Uieat candidate road. This is done by
testing if the center of mass of the region lies on tow^ Mt*tem^¥m*toicwmmv+'tovm^tog!efher
aiviaijproximated with a coiit^oirienie polygon. The area between the road nwdelaad the edge o | the conglomerate polygon
i$osedasa<»ttinettkofu»inie«retat»rt TI«ca«Wa»
as the result Rgare7 shows the cost metric of a food fit and f» bad fit for the road,

33 Discussion and Future Work
In this system, the low-level segmentation uses mainly oojor consfcaints to segment the image, while the high-level interpre-
tation uses only geometric apmutou to locali» tte toad. Therefore, the different level* of the system are usjnft completely
different constraims. Figure 8 shows an eauuBtOe c^ ̂  HMUpajryised classification segmentation running on a road scene.
The images to the right is the class image, where each clas&.̂ bcl is represented by a different intensity value. The left
image shows the pixels colored by the mean values of their class labeling. The top pair of images is the initial scattered
classification used to build the initial modeU. The niddfeptir of images shows the classification and mean class colors after
two 'classify/sample' loops, and the bottom pair shows the results after five 'classify/sample' steps.

The advantage of the cost evaluation scheme of otfr mterpretation is mat new constraints can easily be added to the
total cost For example, we could add costs so that att Sf the road regions soold have a similar color, different that those



Figure 8: Example Clustering: Tbp left image is die original image. Each pair of class images corresponds to
m iteration of the clustering algorithm. The right images haw each cktot is anjgncd a different intensity, and
the left images have each pixel is colored by the mean RGB class value. Ttebottdm right pair is the final class
images.

of die non-road regions. We could also add a cost insuring that the road region is similar in color to the road seen in the
previous image. A cost can be added so that conglomerate polygons with straight ectyps are preferred over those with jagged
edges. Although these additional con have not been necessary on the images tested, they may become more important as
we become more experienced with this- interpretation system.

The system takes about 3-20 minutes to process one fame of the sequence. To speed up the processing, we have
implemented the unsupervised clustering algorithm distributed on a muitii& Using this method,
we have achieved a speed up pioportionil to the ntoi^er of Sum used.

We will expand die unsupervised classification algorithm in several ways.
• First, if the system could deckle the number of classes needed to characterize the data, rather than having a

fixed number of classes specified, then the regions would be more representative of the data. As an initial
attempt, we will split and merge regions after each rectification step. Large regions will be split, and regions
with very close mean values will be merged. This way, the system will decide how many regions it needs to
adequately represent the data.

• We win expand the road interpretation to detect intersections. We will apply the road searching that we have
currently implemented* Then we will enumerate all of the possible branches from the road, and search for
intersection branches with the sane cost evaluation method used for the main road. We may need to add a
color constraint to the algorithm, since in our test site sometimes the shadows of the trees can form intersection
shapes.

• We bdieve thai the basic unsupervised segmentation algorithm described here can be used for many different
vision applications. To show this we will use this system to do terrain typing for our cross-country navigation
experiments*

4 Results and Conclusions

SCARF and UNSCARF have been prototyped and tested individually. Our current efforts include speed and algorithmic
improvements to each system. We are also considering cooperation between SCARF and UNSCARF. One idea is to use
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UNSCARF as a bootstrapping program and use SCARF as the general road-follower. If SCARF should realize that its
results are

to improve the other. We intend, for instance, to track
the changes in cotes over time may provide cues which

of different methods for scene segmentation will
, and for terrain typing for cross-country navigation.

The
the colors of
can improve
continue to

References
[1] E. AmouW, H. T.

InternattemJi

[2] D. DcMcntilOD.
Maryland, 1986.

[31 E, Dickraannsand,
Munich, J987. j ; r

[4] E.
Proc.

Autonomous

Jter. In Proceedings cf 1985 IEEE
235, March 1985.

CAR-TR-210, University of

vehfcto gnkhwce by computer vision. In Proc. 10th IFAC,

for inqrovtag nud vehicle guidance by computer vision. In

[5] R. Duda and P. Hart Pattern Classification ami Scene Analysis. John Wiley ^nd Sons, Inc., 1973. ,

£6] T. Kanade, C Thorpe, mA W, Whittakec Autonomous tend vehicle atCMU. In Proc. ACM Computer Conference,

[7] C. Thorpe, M. Hebcrt, T. Kanade, and S. Shafer. Vision and navigation for the Carnegie-Mellon Navlab. PAMI, 10(3),
1988.

[g] M.Turic,D. VITS-a vi^on system for autonomous land vehicle navigation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, May 1988.

[9] R. Wallace, K. Matsuzaki, Y. Goto, J. Webb, J. Crtanan, •ndT. Kanadb. Progress on robot toad following. In IEEE
Conf. on Robotics ami Automation, Sao Fanctoui, 1986, -

[10] R. Wallace, A. Stentz, C. Thorpe, H. Morayec, W. Whittaker, and T, Kanade. First results in robot road following. In
Proceedings of IJCAI85, August 1985. '

lit -:



25

Chapter III
Explicit Models

for Robot Road Following

Karl Kluge and Chuck Thorpe



26



27

Explicit Models
for Robot Road Following

Kail Kluge and Chuck Thorp*

Abstract

Robots need strong explicit models of their environment in order to reBabty perceive and navigate. An
tjpiefffnocter^
for, hour to look for it, and how to interpret what ft has seen. We discuss the need for explicit models in
the context of road following, showing how road foltowers built by our own and other groups have suffered
by not having explicit models. Our new road tracking system, FERMI, is being built to study explicit
models and their use. FERMI includes explicit geometric models and multiple trackers, and will use
explicit models to select features to track and methods to track them.

Implicit Road Models Considered Harmful

We claim that vision systems need to have strong explicit models in order to do reliable recognition.
This is especially true in difficult situations, such as perception for an outdoor robot operating in an
environment wtth no control over objects or Bkimtaatton. Our particular domain is color vision for road
following.

During the last four years there has been intense research on robot vision tor following roads. Several
efferent systems have been developed, many of them under sponsorship of DARPA as part of the
Autonomous Land Vehicle program. Although there have been many solid contributions to road
following, there is still no reliable general purpose road tracking vision system. Most existing road
trackers work well for only a particular road, or only under benign illumination. They have impoverished
models that do not allow them to reason about failures in their low level feature trackers. Weak models
and weak or nonexistent high levels make them brittle in the presence of disturbances such as
disappearing features or illumination changes.

Each system has a model of the road, including expectations about road shape and appearance, and
the changes in shape, location, and appearance from one location to the next. The models are used to
guide recognition, predicting how and where a road should appear and what methods should be used to
Mid it. The models are also used for vehicle guidance, providing continuity while digitizing and processing
each image.

A complete model of the road encompasses assumptions made by the programmer, and procedural
knowledge for mad recognition, as wed as the data structure used by the program tor road description.
The assumption? made in road modeling fall Into three loose categories: subconscious models which are
implicit to thf programmer; implicit models, representing decisions made by the programmer but not
available to the program; and explicit models which the program itself can access and modify.

Each kind of assumption is appropriate in some circumstances. However, the more information is
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made explicitly available to the program, the wWer the mnge of circumstances the program can handle
autonomously. This is especial* true for nrcxWl* ot Wgtjlystwctured roads, such as well-marked streets
and highways.

Typical subconscious assumptans, for instance, a*e that the mad doesn't move, doesnt change color
at any one location, is continuously connected, doesni bend so sharply that it goes entirely out of the
camera field of view, doesni told violently in > D . Many of these assumptions derive from the
functionality of a road: if a narrow road makes a sudden right-angle bend, it is impossible tor a vehicle to
follow, and therefore is TK> bager a "road". Assumptions at that level are safe, and are appiicabie to a
wide variety of roads. Other sul?qonscious assumptions are much more insidious. One road following
program begins with the (correct) implicit assumption that road edges are locally parallel, then
(incorrectly) makes the subconscious assurrptk^that feature-extraction routines wiH find the correct
edges. This leads to drastic errors in inferred geometry when the subconscious assumptions are violated.
Such an assumption may be not only wrong, but ̂ p hard to pinpoint and eliminate, since it was never
consciously made or documented.

Implicit models show up in papers and in documentation, but not in code or data structures in any form
that the program itself can access or modtfy. T^pk^l^nplfck models are ttttrt the road is locally nearly
straight, that the road is always brighter than its surroundings, or that the dominant edges in the scene
are the rfcad bottlers. Such ImpHcit assumptions are often used by the prograrmner to select a single
algorithm torfecogf^^ or for <^rf(̂ latIng mad geometry under that assumption.
WWl-constiructed programs that rely on those road models are understood by their authors to only work in
those cases where the underlying assumptions hold. In particular, for unstructured roads that do not
have lane or edge markings and that do not follow rules of curvature or shape, the road model is very
limited. With such a flmited road model, it may not be possible or practical for the program itself to use an
explicit model. If there is only one feature that can be tracked reliably, and only one algorithm for feature
tracking, then there is no heed for explicit program reasoning.

ExpBcft models are most useful in the opposite case, in which the road follows strong rules of shape
and appearance, and there are many possfele features and a variety of recognition algorithms. Then the
program itself can select the correct features and algorithms, and can watch tor changes in the road and
change its strategy accordingly. Moreover, an explicit model that includes road semantics can help tie
together separate phenomena By "semantics11 we mean labels such as Intersection- or "right turn lane",
and the associated rules and descriptions that prescribe road appearance and shape in those situations.
For instance, a program with only implicit models may notice that a feature it had been tracking has now
disappeared. Only with an expflcft model will it be possible for the program to understand that the feature
was a double yellow line, that its disappearance might mean an approaching intersection, and that it is
now past time to start looking for crossing traffic.

Road following programs to date use only subcpnsctous and impRcit models, This is due partly to the
kinds of roads being tracked, which often do not have enough structure to make strong models necessary
or posstole. in other cases, however, the road has strong structure, but the designer has it«de all the
decisions InpOcWy. Many road following systems have 6nfy a single road-tradclng afgorfthilfi, arid have a
fixed road model. The designer uses an impffcit frodelto pick the "best" method tor loltowing the road.
The resulting system appears relatively simple and efficient, since it has only on^ algorithm to code and
needs no higher-level reasoning.
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Simple appearances are deceptive. Such iniplicrt.rQad^rncjdels detract from system performance, and
contribute to brtttleness. and to difficulty In debugging and making enhancements. Furthermore, systems
based on such a preprogrammed model of the world tend not to be a* simple as they would at first
appear. Since the world is .rarely as static as an implicit, preprogrammed, model, those programs need
many special cases, exceptions, recovery mecnanisms, and other compilations.

We contend that * if possble and advantageous to make the road model explicit, and to not only
model appearance and shape information but also to include semantics in the model. Moreover, using
such a model w» make it easier to program and debug a road follower, and wtt lead to efficient programs.
The bulk of the processing can be done by simple operators that iwsdnitw concerned w«h special
cases, wMe the costlier recovery procedufes antf swftching between operators wU occurInfrequently.

The first half of this paper reviews other road followers, and outlines the road models and hidden
assumptions used by each program. In the second half, we introduce FERMI, the FoUow^expHdt Road
Models Intelligently, and describe its construction and performance.

" . . . • ' ' % '

Systems, Models, and Assumptions

in this section, we describe several systems, describe their road models, and critique the implicit
models in each*

SCARF: Goto? Classification
Implicit model: road colors mostly constant from one image to the next, known road shape (either

known width, locally straight and parallel for Hough interpretation, or arbitrary but known for ground
sbarch)

Subconscious model: constant lighting and cameras so that constant road colors map to constant
road images

SCARF, for Supervised Classification Applied to Road Following, has been developed over the last
three years at Carnegie Mellon [5]. SCARF keeps color models for typical road and nonroad features,
typically 8 road and 8 nonmad features. Each color model represents the means, and covaiiances of the
odor values for that feature, and the number of pixeis in that class. An Image is classified by comparing
each pixel to each cites, and determining the most IBcely classification tor that pixel as well as the
probability of that classification. The most likely road is found by convolving a known road shape with the
classification output, looking for the road position that has the greatest sum of road probabilities inside the
road shape and nonroad probabilities outside the road shape. In practice, this can be done efficiently
using an adaptation of the Hough transform that votes for areas instead of lines.

Once the most likely road has been found, SCARF builds new color models by supervised
classification. The area inside the road is used to build new road models, and the area outside the road
for the new nonroad classes.

SCARF was designed for use on a narrow, twisting, tree-lined bicycle path near the CMU campus.
With constant illumination, it works well. Various color classes typically represent shady road, sunny
road, leaves, wet patches, dirt, and so forth. As the vehicle moves onto a new type of road, classes
adjust to represent the new appearances, as long as there is enough overlap between scenes that the
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majorttyoT the road has been s««n and rrxxjeled in the previous image.

The biggest weakness of SCARF is in changing illumination. If the sun goes behind a cloud between
*nage*, «* appearance of read and nonroad featunw can change, rendering color modetf incorrect. A
second weakness is the ret l fee on known road shape. If the road curves stiwply. or ff it changes Width,
the assumed shape model (locally nearly straight, known width) is invalid. Finally, SCARF suffers Jrom
the lack of features in its environment. It is difficult to buBd explicit models, since its environment has few
features: the bicycle path has no Ones, strides, guard raits, or shoulders.

U N S C A H F : U n s u p « f v » t # d C l a 8 8 i f i c a t t o f l
ImpUctt model: road » a collection of homogeneous regions that together form a "road shape"

(currently known width, straight edges)

: Subconscious model: road edges are dean r .,,.„

UNSCARF, for UNSupervised Classification Applied to Road Following, was designed by Crisman at
CMU to overcome the problems of SCARF with rapid illumination change [1]. UNSCARF does not keep
color models from image to ffnage, and dole not classify pixels at rood or nonroad. Instead, tor each
image, it starts from scratch and finds the classes that best describe the image. It uses the classes to
divide the image into regions of similar appearance, then searches; for the combination of regions that
forms the best road. "Best", in this case, currently means closest match to known road shape: Other
heuristics being considered include shape constraints, such as edge smoothness and straigtitness, and
color constraints. . . . m

UNSCARF uses a weaker model than SCARF. By eliminating the subconscious assumption that
lighting is constant, UNSCARF successfully finds roads in cases where that assumption is violated. But
UNSCARF also gives up a great deal of useful information for the many occasions when illumination does
not change between successive images. A better solution would start by detecting illumination changes
explicitly, and using colors from previous images if illumination is constant. This is one of the themes of
our current woik. The best solution would be to improve the illumination model from a blhary decision
(changed / constant) to a quantitative analysis of how colors change wfth changing illumination. A
complete analysis requires understanding the interactions of direct lighting; diffuse Nomination from sky,
clouds, and leaves; object colors and highlights; camera sensitivity; and digitizer effects. While work has
begun in those directions [4], it is far from being applicable to unconstrained outdoor scenes.

Maryland c

Imptlcff model: small-scale road edge..* dominate the scene, edges am parallel vehicle motion is
accurate

Subconscious model: edge-finding is accurate, edges are clean and linked, United curvature

Davis. LeMoigne, Kushner, and Waxman, at the University of Maryland, have a long history of research
in perception for road following. Their strongest system, and the only one to actually drive an
autonomous vehicle, is based on finding edges and grouping them into lines with Hough transforms [8].
During road tracking, an initial window is placed at the bottom of the image on the predicted road location.
The search for the road edge in this window has two degrees of freedom, for location and orientation.
Once this edge is located, other windows are placed above the initial window. In each succeeding
window the road edge position is constrained by the lower window, so the Hough search need only look
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for orientation. This technique cart work adequately tor, s^pes in which the dominant edges am road
borders. SfenBtr techniques at CMU were defeated by strong, straight, shadow edges irony trees and
buildings, and by scenes in wNch road edges were obscured by leaves or dirt.

Besides road tracking, the Maryland research also considered 3-D shape reconstruction. The higher-
level attempts at 3-0 interpretation of road scenes were extremely sensitive to noise. DeMenthon [2]
shows how Waxman's model can lead to perceived roads folding back over themselves, and proposes a
new gooirietry that amsHofttw some of those problems.

vrrs
bnpttctt modal: consistent colors within one image (road has at most 2 classes, for sunny and

shaded), known vehicle motion and road model to seed process

Subconscious model: The color combination chosen is assumed to be always adequate despite
changing illumination & dirt on road; this implies road appearance is constant from day to day

The Martin Marietta VITS system [6] has achieved some impressive goals. It has followed roads at
speeds up to 20 kph, and detected and avoided obstacles on the road. Their system projects the 3-D
color of each pixel onto a single dimension or, hi later systems, onto a 2-D plane. Pbcete are classified
into road or nonroad taped on a linear discriminant function. Once each pixeJ is classified, blob coloring
gives the location of the road, t h t most interesting part of the Martin Marietta research is in selecting the
road / non-road threshold. In each new scene, vehicle motion is combined with the previous road modal
to calculate the portion of the image guaranteed to contain road. This road area, called a power window,
is sampled to determine the typical road color for this image. The Martin system is a tightly-engineered
combination of perception, control, modeling, and highly tuned hardware. In many ways, their system is
similar to some of the CMU road-following, but driven by speed constraints rather than generality of
experiments. Where CMU's SCARF uses full color (or even 6 channels of color from two cameras) to
track a variety of road appearances, they have selected the best combination of colors tor their particular
road. SCARF keeps many different possible appearances for both road and offroad, while VITS has at
most two, again sacrificing general capability for speed.

Dlckmanns and Graf*
Implicit models: gray-level edges erf roads dominate the scene, road follows ctothoid shape, physical

constraints and fast processing limit feature motion, known relationship between road features to be
tracked.

Subconscious models: all interesting features are oriented edges, no simultaneous distractions

Dickmanns and Grafe have demonstrated road following with a Mercedes van equipped with special-
purpose computing [3]. They have achieved impressive performance, tracking a new section of the
autobahn at speeds up to 100 kph. The heart of their system is an elegant control formulation, in which
road geometry, vehicle turning radius and speed, and the location of visually tracked features are all fed
into a single filtered state model. When running at high speeds, their system takes advantage of the
geometry of the German autobahn. The road consists of straight lines, constant radius curves, and
clothoids smoothly connecting curves and straights. German roads have known lane widths and well-
defined markings.

The major weakness of this system is its extremely simple perception model. They use a monochrome
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camera and do simple edge deti&lon. Their rapid processing and structured toad model help them to
detect and tffccart anomalouii edges, but it nevertheless appears that their trackers could gel distracted
by shadows, puddles, road Imperfections, or changing IBuminaHon.

FERMI

AH of the above road followers have implicit and sui>conscious models of the road. But none of them
has more than one means of tracking the road, or does any higher-level reasoning about the road, or has
any explicit road model available to the program. Yet it is important to build and to use explicit road
models. Highways, freeways, rural roads, even Suburban streets have strong constraints. Modeling
these explicitly makes reasoning easier and more reliable. When a tthe tracker fails, fof instance, an
explicit model of road and shoulder colors adjacent to the line wiil help in deciding whether the line
disappeared, became occluded, turned at an intersection/or entered a shadow. This kind of geometric
and photometric reasoning is vital for building reliable and general road trackers. We are now building the
FERMI road tracking system to study explicit modeling, and to study the use of those models in bidding
reliable vision.

Explicit Models
Our goal in constructing FEftMl is to follow structured roads as reliably as possible. Our central

principle Is to make expUdl as much as possble: road features, geometry, and iother effect*. We are first
erf all building incDvkJualkrvw^

• road edge markings (white stripes)

• road center lines (yellow stripes)

• shoulders
• type and color of road surface

We also have an explicit geometric model of the road. This model consists of a series of generalized
stripes. A generalized stripe is the 2-D analog of a gefferaized cylinder, ft consists of a spine curve
(currently restricted to arcs of constant curvature), and the description of a cross-sectkm which is
translated along the spine. The modei of the road in Figure 1, for instance, looks something Hke

• Spine: Curvature - 0.0.
• Feature 1: starts —304 cm ± 15 cm, height 0 cm, type shoulder, description asphalt.
• Feature 2: starts —273 cm ± 0 cm, height cm, type line, description white.
• Feature 3: starts —262 cm ± 0 cm, height 0 cm, type road, description asphalt.
• Feature 4: starts —24 cm ± 0 cm, height 0 cm, type line, description yellow.
• Feature 5: starts —7 cm ± 0 cm, height 0 cm, type road, description asphalt.
• Feature 6: starts 7 cm ± 0 cm, height 0 cm, type line, description yeltow.
• Feature 7: starts 24 cm ± 0 cm, height 0 cmf type road, description asphalt.
• Feature 8: starts 262 cm ± 0 cm, height 0cm, type line, description white.
• Feature 9: starts 273 cm ± 0 cm, height 0 cm, type shoulder, description asphalt.
• Feature 10: starts 304 cm ± 15 cm, height 0 cm, typeoffroad, description grass.

The program will explicitly note transient road phenomena such as
• shadows
• local changes in road surface, e.g. patches
• global illumination changes, such as the sun going behind a cloud

« •camerachanges(auto-kis,auto-gain) v



• 3-D effects such as going up anddown WUs

Explicitly modeling all these dMferent features wiH be the basis for effJciem* and r e l l ^ ^
wMl be efficient because the geometric constraints can specify subwtodows of the image for each feature
tracker, and tracker history from frame to frame c m predict appearance and shape. Another mason for
efficiency is that many simple hackers can be easily implemented on pvaRe^hardwarfe. ReliabflNy wM
come first beoauee of the strong geometric constraints among trabkers, and ttia abilty to detect and
ignore anomalous outputs. The ability to use a strong geometric model of the road to focus on a small
area of the image to took for a feature reduces the chances of being misled by extraneous image
features. Mom importantly, the system wW be reliable because one tracker, on discovering a shadow
edge or mad curvature change, can pass that information to other trackers and keep them from being
caught by the same phenomenon.

Tractors
Many of the individual feature trackers have already been developed. We have done some preliminary

experiments using, for example, the oriented edge operator used to drive the Terregator in 1986 and a
simplified version of the ooter classifier developed in 1987. Customizing these feature trackers to follow
lines, stripes, and edges wW make them faster and more robust than the general-purpose trackers
needed for our park;

We currently have four trackers implemented:
• Oriented edge profile: Intensity profiles are extracted from a training window oriented

perpendicular to the direction of the feature. These oriented templates are matched by
correlation with intensity profiles from later images. The implicit model is that the color
intensity prof lea of an edge are roughly uniform along the length of the edge.

• Extended linear feature tracker. Intended for use tracking such features as white and yellow
road stripes. An unsupervised clustering algorithm is used on the RGB pixel values in a
training window to split the Image window kilo two dusters: the line and the background. The
mean ROB values for the two dusters are used in later images to classify the pixels in a
search window. A line Is fit to the pixels which are classified aa being part of the linear
feature* giving an estimate of the location and oriafMaHoi) of the Rnear feature in the image.
Implicit model: that the dominant color phenomenon in the training and search windows
arises from the contrast between the line and the background, and remains approximately
constant from Image to image.

• Color boundary tracker: Used on ragged edges such as a grass/road boundary. Performs
the same sort of clustering as the previous tracker, splitting the pixels In the training window
into two classes. The pixels which have neighbors that have a afferent label are marked, and
a line m to these boundary points to estimate the edge position and orientation. Imptea
model: assumes that the dominant color phenomenon in the training and search windows is
the contrast between the colors of the two features whose boundary is being tracked.

• Matched filter tracker A small training window is selected. In later search windows the
training window is correlated with the search window, the maximum correlation value in
each row of ttia search window is selected as an edge point, and a Rna is fit to the edge
points. Implicit model: the appearance of the feature is constant enough for correlation to be
wad.

Our current method of selecting a tracker looks at the size in the image of each feature. If the feature is
narrow (i.e. a line or stripe), it selects a linear feature tracker. If the feature is wide (e.g. a lane of the
road), it chooses to track the edge of that feature, and selects an edge operator such as the oriented
edge tracker. Figure 1 shows the road described earlier, with boundary and oriented edge trackers
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tracking the whte lines on the toft a ^

Trac^ce* f u s i o n .« .• ... - - - - - • , . • . . ••„ ,:. .• ••••« .
It is necessary to merge' the estimates of featum locations and orientations returned by the trackers

ptaced on various features at various points in the image into * single estimate of where the vehfcte is
relative to the spine of the, generated stripe that is currently being trartsversed. The method of fusion
netda to take into account the possfcWty of trackers failing or returning erroneous estimates.

The curnrt method of tracker fusion is a Hough technique. Let us suppose that the spine of the current
stripe is a straight Hne (the technique extends in a straightforward way to arcs of known constant
curvature). Since the road is Jkely to be almost straight ahead of the vehicle, let's represent it as a line of
the form y « m * x + b, where the x-axis points straight ahead of the vehicle and the y-axis points to the
left. Let's suppose we have a feature tracker tracking a white stripe whose center is offset from the road
spine by offset^^, and that the tracker has returned (X|, yt) as it's estimate of the location of the center of
the stripe. For a given m value, the y-intercept of the white stripe center line is given by b$tr1fX>» 'y[ - m *
xh and the y-intercept of the spine by b ip jn# - bstrip# + offsetslrip# / cos(atan(m)). Figure 2 shows the
relationship between the feature position and the spine of the associated generalized stripe.

Each tracker votes for all possible spines that are consistent with its position estimate for Its feature.
The largest peak in the accumulator array is taken as the position of the road spine. Trackers whose
position estimates are not consistent with that spine estimate are anomalies which need to be explained.

Interpretations
At a higher level, we can use the semantics of the model to interpret tracker failure. Tracker failure

may be noticed by the tracker iiself, or the tracker may give a response that is inconsistent with the output
of other trackers. In either case, the monitoring system will notice the failure and will try to explain the
underlying cause, and use that explanation to update its model. Example of such reasoning include:

• double yellow-> single dashed yellow: no change
• double yellow «> none: intersection appearing, predict all other lines disappear, start

irtersecttorrtraversal behavior i
• white line disappears •> <many possft>iUties>

• road / shoulder: nothing
• all road with no border -> possible side road turning off
•dark scene: check for shadow , \ '
• uninterpretable: check for occlusion : '

Current Status
The program which currently exists contains

• Code for dealing with an explicit road model described as generalized stripes with spines
which are arcs with constant curvature.

• The four trackers described above.
• A simple tracker selection mechanism to decide which tracker should track which feature.
• Prediction code that positions each tracker correctly based on the perceived position of the

road in the previous image and the vehicle's motion.

• Tracker fusion using a Hough technique to determine the vehicle position relative to the
spine of the current road stripe.

• A simple facility for producing synthetic road images in order to test the effects of errors in
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Figure 1 : Road with oriented edge and boundary trackers
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CMU Navteb on a
about

A circular arc has only two degrees of freedom. We typically use eight or more trackers, some of which
return x,y position and some of which also include perceived feature orientation. This gives us a greatly
overconstrained system, and will make it possible to detect malfunctioning trackers. Trackers can also in
some instances give internal evidence of difficulties, for instance correlation values or residuals of line fits.
Once the program determines that a tracker Is fa«rg, the next step is determining why it failed, and using
that diagnosis to prevent other trackers from falling into the same trap.

We also need to model the semantics of road markings. Cues such as a double yellow line turning into
a dashed yellow line can predict the road becoming straight and flat.

We also will build and test additional simple feature trackers as we gain experience with failure modes.
No one tracker is likely to be reliable in att circumstances, so the greater variety of trackers available the
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greater the chance of having one that worksfor $ p&ftfatulty condition. Perhaps more important than the
proliferation of operators is implementing them efficiently on the Warp, our high-speed experimental
parallel processor [7]. Most of our processing time is consumed in local image processing operations
which are relatively easy to implement on parallel hardware.
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Building and navigating maps of road scenes using an active
sensor *

Msruu Hebert
The Robpdcs Institute

Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

This paper presents algorithms for building maps of road scenes using an active range and
reflectance sensor and for using the maps to traverse a portion of the world already explored.
Using an active sensor has some attractive advantages: It is independent of the illumination
conditions, it does not require complex calibration in order to transform observed futures to
the vehicle's reference frame, and it provides 3-D terrain models as well as road models. Using
ike map built from sensor data facilitates navigation in two respeca: The vehicle may navigate
faster sime less perception processing is necessary, mid the vehicle may follow a more accurate
path since die navigation system does not rely entirely upon inaccurate visual data. We present
a complete system that includes road following, map building, and map-based navigation using
the ERIM lour range finder. We report on experimentations of the system both on the CMU
NAVLABand the Martin Marietta ALV.

lThis research was sponsored by the Defense Advanced Research Projects Agency, DoD, through ARPA Order
5351, monitored by the US Army Engineer Topographic Laboratories under contract DACA76-85-C-003
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1 I n t r o d u c t i o n '" ;;
:" l "iM;'; ** "! 4 :* *' ~ u

Autonomous toad following using visual infonnation is an impoitani application of mobile robots. In
addition to navigating on mads, the visual infonnation can be used to build maps of the observed en-
vironment An area of research thai t^p op; bqpa explored is to dose the loop by using die map built
from previous observations to guide the nawgatioji qn a portion of the world already explored* Such a
capability of map based navigation Woul4 eniibk us to unprove the performances of the vehicle in three
directions! lnf ^ * l s : '*' Vt ;'l'r't

• Faster navigation: Perception is typically the bottleneck in autonomous mobile systems because
images have to be processed as often as possible to compensate for the lack of knowledge about the
workL If apriori knowledge of the environment is available from previous observations, perception
is needed only to periodically check *at the vehicle stays on the path prescribed by the map. The
perception bottleneck is therefore reduced, thus leading to faster navigation.

. • More reliable navigation: Autonomous navigation is unreliable because qf the uncertainty associated
with any sensor data and processing. Relymf flaoi^xm a nu^ meansjrdywg less on sensor dau
acquired (fauing the CTecudcm of a navigatkmplaflL Map based navigation should therefore provide
more accurate navigation.

r- • Simpler perception: A map can provide tbe expected appearuce of the envinnmem at » ^
That includes tfaft expected location of objects, and the expected position and fppe*npce of the
road This additional knowledge allows for simpler perception processing.,

Athough map based navigation algorithms could be used with a mail made map (e.%. ftomsurveying),
" using a map built from sensor information does not tnake any assunqnions on the amoum of knowledge

available to the system, thus leading to a fully autonomous system. This is also iatpoftint since it is
difficult to obtain the resolution of a map built from sensor data by using surveying alone.

Most of the existing road following systems are based on intensity or color image processing [14t18f 15].
In this paper, we investigate the use of active sensing, namely laser range finding, for both road following
and map building. Using such a sensing modality has some attractive features such as its stability with
respect to illumination conditions and the direct conversion to worid coordinates without calibration. Our
goal is therefore to build a complete system from road following to map building using active sensing,
whereas previous research on active sensing for autonomous vehicles focused on 3-D map building or
obstacle detection [23,6,4],

The images used in the experiments reported in this paper are range and reflectance images from a
laser range finder, the ERIM scanner [17]. The images are 64 rows by 256 columns 8-btt images. The

range is 64 feet corresponding to a pixel value of 255. The vertical (resp. horizontal) field ofg p g p p
view is 30° (resp. 80°). Figure 1 shows a range image (top image) and the corresponding reflectance
image of a simple scene consisting of a road and two trees.

Even though the road following programs were demonstrated on the Martin Marietta vehicle (the
ALV),aU results presented in this paper were obtain^
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Rgwe If Rwgfc and rcflectMte fcaafet n

2 Following roads using active reflectance images
Early work on road following fiom active sensing focused on the use of range data to find the edges of
the road [114]. t t e drawback of this approach is that it assunes thauhe icid is Hmited by edges that
correspond to riitt«nimi&fei of * e tenain suiftce. This assumption Bmite sevendf applicabOity of the
algorithms. An atemattve afjpraach is to use the active reflectance images for road following. Active
reflectance images hiVe two chiracterisrics that make them attractive i r road-following applications:
First, they arc insensitive to outside illumination, that is no shadows are cm by objects in reflectance
images and tte influence of the level of ambiant light on die image is minimal (&* fact, any program
using reflectance images would work as well under night conditions). Second, each pixel in the reflectance

i in stiace can be derived §mm the aeeBKttyofthescamner. This
allows us to compute tte pondon of tte tdgw of tte n*d found in a itiBectaace iiaage in the vehicle's
3-D worid withOBt any of the calfccmtion procedures that He typical of the video-based toad following
algorithms [5].

A significant drawback of using reflectance images is that the value of the reflectance at each pixel
depends on the value of the range at that pixel {7,17,19]. In other words, the reflectance values decrease
as the square of the raogs to the meamred sur&ce. This effect can be coraoctad to some extend by
calibrating the sensor witii aspect to a suiftce of constam reflectance, tint ir to fit a ftmctkm refl<xn*cud =
f(rcflciM^mi,range^mrmt) over a ponton of a training image of constant i r f ton lT [7]. The function/
is then used to build a correction lookup table. Such a calibration mtaam the effects of the reflectance
but does not completely remove than because of approximations in the sensor model and because the
surface portion used for the training does not exactly have constant reflectance.

Edge detection would be tte natural way of finding road edges in gpey fcvd images. The nature of
the reflectance data, however, suggests the use of a region-based technique for two reasons: First, the
dynamic range of the image is low, many spurious edges that are of similar strength as the road edges will
be found. Seconds the intensity of die road in reflectance images is very stable becsuie it is insensitive to
shadows and changes in illumination. This is to be compared with video images in which tte appearance
of tte road region varies significantly, thus requiring the use of multiple classes of road and non-road
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The center line of the road Ulbc middle line of (7,4) and (7,^) , the width of the mad is w « \ d k - <U\.
Figure 3 show» the result of the K^ following progr^ The
left part of Figure 3 shows the sequence of reflectance images, the tight pan shows the road edges and
the center line of the road projected on the ground plane.

In order to drive the vehicle, two points on the center line are sent to a local path planner. The path
planner generates a sequence of circular arcs using a Hpuie pmjoi^algorithm derived from [161, The
road following program drove successfully two vehicles, the GMU NAVLAB [9} and die Martin Marietta
ALV, over several hundred meters at a speed of 40cm/s. In both cases, the road folk)wing is implemented
on a Sun3 workstation. The average computation time is 3 seconds per reflectance image which allows
for enough overlap between consecutive images* ' '

3 Building maps from range and reflectance images
We have so far addressed the problem of building a representation of the environment from individual
range and refitttme images. In the case of a mobile robot, however, we have to deal with a stream of
images taken along the vehicle's path. Merging those individual representations into a coherent map of
the world is important for three reasons: First^of aUt merging representations from succesavc viewpoints
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Conversion to 3-D world

Center line

Figure 2: Road finding algorithm

produces a map with more infonnation and better resolution thag any of the individual maps. For example,
a tall object observed fay a range sensor creates an unknown area behind it, the range shadow, where no
useful infonnation can be extracted. The shape and position of the range shadow changes as we move to
another location; merging images from several locations will therefore reduce the size of the shadow, thus
providing a more complete description to the path planner. Another reason why merging maps increases
the resolution of the resulting representation is d w d&' "icipilpia^^^tt ,dh|p̂ ipiQa map is significantly
better at dose range. By mergmg maps, we can increase tte
that were originally measured at a distance from the vehicle. Tbe secottd aottetion for merging maps
is that the position of the vehicle at any given time is uncertain. Even when using expensive positioning
systems, we have to assume that the robot's idea of its position in the worid will degrade in the course
of a long mission. One way to solve this problem is to compute the position with respect to features
observed in die world inAead of a fixed coordinate system [12,8]. That requires the identification and
fusion of common features between successive observations in order to estimate the displacement of the
vehicle. The third motivation is that having a map would enable the vehicle to navigate more efficiently
a portion of the world that hat been already explored. We will focus on this aspect in section 4.

The main problem in building a map from a sequence of consecutive images is to compute the relative
positions of features observed from different vantage points in order to merge Siem in a consistent map
expressed in a single coordinate system. Two types of information may be used to compute the relative
positions: The matching of geometric features from image to image, and the be*t estimate of die cunent
position of the vehicle as given by the dead reckoning. The position estimate from the motion of the vehicle
cannot be used alone unless a sophisticated navigation system is used as in [3] since positional errors



46

X

^':'

Figure 3: Road following on a sequence of reflectance images
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do accumulate in time, thus leading to unacceptable errors in the position
estimates should be a

The final position
ill which the estimate from the 4ead rcdorong is used to prcdia

and i set of consistent matches is used to estimate the reaMting displacement
between images. In general, iff* and F* are two sets of features extracted from two inures, A and72, we
want to tod a lilpttft^atjow * ipiil a set of piiis Ci * (F^,i*^) sucfr I N £ Ff a* *V^)> when? ITCr) denotes
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any pp^cular feaoue type so that we can

The size of the pmiiction region depends on the confidence we have in To md in the femm extractors.
For example, the centers of the polygonal obstacles are not known accurately The confidence on the
displacement 7 is represented by the maximum distance 6 between a point in image 1 and the transformed

: 2f \\Tjp- -p 1 ! ) , and by the maximum angle cf between a vector in image 2 and
m is then

lower than

of its homoiogue in
the transfonncd of its homotogue in image 1 by the rotation part of T. The prediction is then defined as
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Once we have built the prediction regions, we can search for matches between the two images. The
search proceeds by matching thei fcpp»Fi jy|»fahiM%iK} that are m their pmliction region starting
at the most important feature. We have to control die search in outer to avokt a cqmNnirtorial explosion
by taking advutage erf the fact that each time a new match is added both die displaccmcgit and the future

with the displacement computed fiom a new match (?}>?$• Even thpugh the dnplacement is described
by six components, the nnmber of compwienu of the displacement that c^a be computed from one single
match depends on the type of features involved: point matches provide only three eomponcnts, line

h id f ( imatches provide four components (two rotations and two translations), and region matcnes provide three
ponents. We therefore combine the components of T wia> those wmpowwu of the new match that
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ways: if conaectivky nsUtwos between feattnes we avaUabk, ss ia the caK of Mnam patches, then a
match (f-,F$) constrains the possible matches for the neighbors of (jfo in du» they have to be adjacent



toF*. In the case of points or patches, an additional constraint is induced t»y the relative placement of the
ttmttacs in the scene: vmJrt^tdk^(F},Fj-) and ( / H , , ^ ) , are aMpakbie only if the angle between the
ytkon w* mjFpfim&^^fLffi is low^r tfian x, pnwided the nxation par^of Tj? no greater than r

th6 case in realistic a n ^ o n * This ooostra^ means that the reWy^ plac^aent ofthe f e twhich*

The result of die search is a set of posiible myhjngs, each of which is a sQof pairs 5j
between die t*w> sets of features. Since we evaluated f simply by aimb^mg c^pOMius in the course
of the scafch, we hatv£ to eVahiate T tot each o in opder to get an accurate' estimate. T i s estimated by

(2)

Hie distance d[.) used in Equation (2) depends on fhe type of the features involved: For point features,
it is die usual distance between two points; for lines it is die weighted sipi of the angle between die two
lines and die distance between die distanoef vectors fq^ the two ltac$ for regions U is die weighted sum of
the distance between d * unit direction v e < ^ and tlje distance between the two direction vectors. All die
components 01 T can be ^ftimated in general by jpttiniro faring E. We have jo carefully identify, .however,
the cases in which insufficient features are prcsej^ in the scene to fully aa&jtrain thp transfprpiation. The
matrihing 5 diat realizes the minimum £ is r^cwed as d* final m$Kch between the two maps while the
corresponding displacemem t is reported as die bĉ st estimate of the displacement between the two maps.
The cmor £( t ) can then be used to represent the imctrtain^y in T.

This approach to future based matching is quite gfperal so that we can apply it to many different
types of features, provided that we c ^ define the distance d(.) inEquarioo (2)» the importance measure,
and the feature measure. The approach is jdso fairly efficient as long as S and e do not become too large,
in which case die search 9ace itself becomes large '

the featuresXtox\vm consider for map building are polygons that describeIn addition to the mad i
die surface of the ten-ain and the discrete obstadies.̂  ̂^ for extracting the polygonal description
are reported in [7] and [6]. To simimanjp, the features used in the matching are:

• The polygons describing die terrain parametrized by their areas, die equation of die underlying
surface, and die center of the region. *

• The polygons dcsciibmg tirc

• The road edges found in the reflectance images if the toad detection is reliable enough. The
reliability is measured by how much a pafr of road edges deviates from the pair found jn die
previous image.

The obstacle polygons have a higher weight in the search itself because their detection is more reliable
titan die temrin segmentation, while die terrain regions and die road edges contribute more to the final
estimate of die displacement sinfcc their localization is better. Once a set of matcher and a displacement
T are computed, the obstacles and terrain patches that art common between die cdrrcnt map and a new
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of the displacement To arc taken from the central
mg < ^ fBCfeovring. The size of prediction region

feature matching has performed
the final product of the matching is a

die ran, an* a fl* of updated obstacle descriptions
lend to i

image arc combined into new polygons, and the new features arc added to the map while updating the
connectivity between features.

In the current impkmcgatiM, the ini*

is 8xed with d m one met*; attft * *
successfully over the
map thai combines all
that arc sent to a map
during such long runs, we
the map rcprcscittation is
shows the result of the
in this case is a road
rpflCCTtfltflKlrC tfltaflBBSi

is a rendition of die
rpflftrftjflg algorithm. This
values font the

vehicle position. As a result,
position. As an example, Figure 6

by about one meter. The scene
Figure 4 shows tte Oiiginal sequence of raw range and

; individual maps, and Figure 6
the displacement art itftches computed from the feature

about the x axis and shaded by the

Figure 8 shows a
edges, the center line of
was driven by the road
following and map
of fifteen seconds of
overall structure of the
Figure 7. The map building and
They both access the ERIM
new path that is a sequence of

In this display, only the road
To obtain this result, the vehicle

I of Seqtk* 2 at a ctMtoous speed of 20 cm/s. The road
g module requires an average

stable continuous motion. The
in this experiment is shown in

road fbllQwiag modules are executed on two separate processors (Sun3's).
through a network interface. The toad following module sends a

arcs to a sqiarate hdm module running on a three processor. The helm
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Ftps& 6: Perspective view of die combined4 tnap

also provides initial estimates of the vehicle position to the map buiktiag module. The communications
between the helm and the two other modules arc handled through the <3E>DGER system [10].

4 Map-based road following
In this Section, we investigate the last part of the system, that is the use of the map built from road
following to traverse the same portion of the world.

The map-based road following must proceed in three steps: computation of the starting position, path
planning in the map, path execution aid correction. The first step is needed to avoid constraining the
starting position and heading of die vehicle at the beginning of the traversal of the map to those used
to initiate the map building stage. The position and heading of the vehicle with respect to the map are
computed by matching the features, road edges and objects, observed in an image taken at the starting
position with the features of the map that arc predicted to be visible given a rough initial guess of starting
position. The matching algorithm is basically the same as the one used for the map building except that
in the current implementation, only road edges and discrete obstacles are used. For example, Figure 9
shows the initial guess of the starting position (marked by a cross) and the portico of the road and the
obstacle that are used for the matching. The map features are predicted by intersecting the sensor field
of view with the map.

Given the starting position, the second step is to compute a path that follows the road using the map.
This step is the most straightforward in that any path planner that provides for smooth paths can be used.
For example, Figure 10 shows a path (solid line) composed of a sequence of circular arcs. The path is
computed by dividing the center curve of the road (dotted line) into snail segments over which the pure
pursuit path pluming algorithm of Section 2 is applied.

Once a path is computed, the vehicle is ready to follow the road based on the map. Ideally, the vehicle
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«* 20 seconds ~ 3 seconds
Figure 7: The map buUdiog/road following system

Figure 8: Complete map of a road seme
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Figure 9: Estimation of the starting position and heading

Figure 10: Path planned using a map
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should be able to correctly execute the path without any perception at all. In practice, however, the vehicle
will drift away from the ideal path due to wheel slippage, and the accumulation of small controller errors
and numerical errors. Therefore, the position and heading of the vehicle with respect to the map must
be recomputed periodically by comparing the features that arc actually observed while executing the path
and the features that are predicted from the map given the current estimate of the vehicle's position. The
question now is tow often should we make a positkm correction, thm is take an image, extraa road edges
and objects, and match them with the map, in order to stay within reasonable bounds of the original
path. This piobfem is the key to map-based navigation: If the corrections are performed too often we
are bade to the original mad Mowing approach and we loose the benefit of having a map. If, on die
other hand, we do not perform enough confections along the path, we may drift significantly far from die
nominal path and eventually run off-roal Furthermore, the corrections should be meaningful in the sense
that enough features should be present at the time of the correction to ensure that the newly computed
position is indeed closer to the truth than the currently available estimate. Several strategies are possible
to choose the locations at which corrections should be performed. An attractive strategy is to estimate the
uncertainty on the position and heading as the vehicle moves, a new correction is requested whenever the
uncertainty reaches a threshold that indicates that the vehicle is too far from its nominal path [13]. This
approach guarantees that the distance between the vehicle's pa& and the nominal path always lies within
preset bounds. It does not, however, guarantee that the images taken at the time at which a correction is
needed contain enough features of interest Another possible approach is to make a correction whenever
the map predicts that features of interest may be observed from the current position. In our case, it is
important to guarantee that die corrections are performed when objects are visible, since otherwise the
correction would be computed on the basis of the road edges only and would therefore be ambiguous. A
correction is therefore computed whenever at least one object is predicted to be visible from a positicm
along die path. Matching die predicted objects and road edges from the map with the observed road and
objects provides an unambiguous new estimate of the vehicle's position and heading. Figure 11 shows
the locations at which new images are taken for computing the corrections along the path of Figure 10.
The road edges and objects that are matched with the corresponding observed features are shown as
bold segments of die road edges and dark circles respectively. The crosses along the path indicate the
successive positions of the vehicle at regular intervals of one second (at a speed of 20 cm/s). The position
is not displayed if an image is being processed, therefore the gaps in the stream of positions in this display
illustrate the time spent in processing images while executing the initial path (The percentage is in reality
a bit lower than what appears on display because the map, range image processing, ami helm modules
QOfmally run on different processors whereas this display was produced with all the modules executing
on one Sun).

Computing a correction gives an offset A* (Ax, Ay, A0) between the nominal position and heading
and the actual values at the time die image is taken. This offset must be used to correct the current course
of the vehicle. This is achieved by shifting the path thai has been executed while the image was bong
processed by A by replannig from the current position as given by the shifted, and by replacing the
pending set of motion commands by this new path. Figure 12 Illustrates such a sequence of events: As
the vehide comes into view of the first objects, an image is taken and matched against the map, the new
positicm is shown as a cross on the left of the initial path, a new path is planned that takes the vehicle
bade lo its original course.
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Hgute i l: Locations at which imajea are taken aloog the path

Hgore 12: Corrected path
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These results show that it is possible to use a map to efficiently guide the navigation of an autonomous
vehicle. The main benefit is that considerably fewer images have to be processed while retravcrsing the
map. For example, The map of Figure 11 requires seven images to be processed. Folio wing the same road
at the same speed without the support of a map would requii^ at least 25 images for a displacement of
two meters between consecutive images. Tli&jpMN^iv if the position of the
mad were computed perfectly from "each indhwhiali image, the path planner would not have information
far enough in fiont the vehicle Jtfplan a stable path that is guaranteed to remain on the road Although
the same results could be obtained by using a map that is entered manually, it is important to note that the
combination of map buildfcig from sensor data and map-based navigation results in a fully autonomous
system that can learn its environment ami use its new knowledge to navigate it.

5 Conclusion
The mad following and map building system shows that road environments can be efficiently navigated
and mapped wing an active sensor such as a laser range finder. The map based navigation system shows
that the inibit iai^ u*#to improve the navigation
over a portion of the stretch of mad already explored Specifically, using the map provides an initial path
to follow, and a list of optimal locations at which visual data shoidd be processed in oidcr to correct the
vehicle position that drifts over time. The combination of those three components provide a basis for
autonomous navigation of mads including 3-D terrain modeling and knowledge gathering and utilization
through fymp building flfld "lap baaed navigation.

We are currently extending the ideas used in those systems to the case of cross-country navigation
and combined on road/off road navigation in which the map contains a representation of terrain regions in
addition to the road model and the discrete obstacles. This type of information is currently extracted but
it is not used for the map based navigation. The system presented here used a; simple pith pHmner based
on the pure pursuit control scheme. Our plan is to tise die path planner described in [13] to take into
account vehicle model and uncertainty, and to be able to apply our approach to cross-country navigation.
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ChapturV
3-D Vision TschnlquM

tor Autonomous VWitetat

Abstract

A mobile robot needs in internal tepresenudon of in environment in order to accomplish its mission.
Building such »ii|twniiniii1iMi involves tznsfoanmg taw data fiom season into a meaningful geometric
lepmeiitation. In this paper, we introduce tecbniojttes for building mwiw repmmminons fiom fsttge data
for aa outdoor mobile robot. We introduce three levels of representations mat correspond to levels of

Since terrain representati
ftom ttxfividnal tocatlont a n not wifflcfaunt tot many navigatioii hwti, we also introduce techniques for
combining multiple maps. Combming map* may be achieved either by using features or the mw elevation
UHSV tinttiyv we imnicmcc ityonuuiis ror contranuig J*M oescnpcions wim oescnpuoos nom oiner

infoaniiion Ins to be extracted from an observed scene ad provide i n example f^Uooton of outdoor
scene analysis. Many af the tiyfaikpfft presented in this paper have been tested in the fidd on three
mobile robot systems developed at CMU.
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1 Introduction «.. ?
A mobile robot is a vehicle that navigates autonomously through ah unknown or partially known environ-
ment. Research in the field of mobile robots has received considerable attention in the past decade due
to its wide range of potaKitl appUdrioas, fi^ and the research
opportunities it provides, including virtually the whole spectrum of robotics research from vehicle control
to symbolic planning (see for example [18] for an analysis of the research issues in mobile robots). In
this paper we present our investigation of some the issues in one of the components of mobile robots:
perception. The role of perception in mobile robots is to transform data from sensors into representations
that can be used by the decision-making components of the system. The simplest example is the detection
of potentially dangerous regions in the environment (i.e. obstacles) that can be used by a path planner
whose role is to generate safe trajectories for the vehicle. An example of a fjxiofecomplex situation is
a mission that requires the recognition of specific l̂ yKfTn^^ ,̂ in wHjfifo case the perception components
must, produce complex descriptions of the sensed environment and relate than to stored models of the
landmarks.

There are many sensing strategies fpr pej^ception for mobile robots, including single camera systems*
sonars, passive stereo, and laser range finders. In this report, we focus on perception algorithms for
range sensors that provide 3-D data directly by active sowing. Using such seniors has the advantage
of eliminating the calibration problems yH computational costs inherent in pa$sive techniques such as
stereo. We describe die range sensor that we used in this work in Section 2. Even though we tested our
algorithm on one specific range sensor, we believe that the sensor characteristics of Section 2 are fairly
typical of a wide range of sensors [4]. '

Research in perception for mobile robots is not only sensor-dependent but it is also dependent on
the environment A considerable part of the global research effort has concentrated on the problem
of perception for mobile robot navigation in indoor environments, and our work in natural outdoor
environments through the Autonomous Land Vehicle and Planetary Exploration projects is an important
development. This report describes some of die techniques we have developed in this area of research.
The aim of our work is to produce models of the environment, which we call the terrain* for path planning
and object recognition.

The algorithms for building a terrain representation from a single sensor frame are discussed in
Section 3 in which we introduce the concept of dividing die terrain representation algorithms into three
levels depending on the sophistication of the path planner thai would use the representation, and on the
anticipated difficulty of the terraiiL Since a mobile robot is by definition a dynamic sy^em, it must process
not one, but many observations along the course of its trajectory. The 3-D v' sion algorithms must therefore
be able to reason about representations that are built from sensory data taken from different locations. We
investigate this type of algorithms in Section 4 in which we propose algorithms for matching and merging
multiple terrain representations. Finally, the 3-D vision algorithms that we propose are not meant to be
used in isolation, they have to be eventually integrated in a system that include other sensors. A typical
example is the case of road following in which color cameras can track the road, while a range sensor
can detect unexpected obstacles. Another example is a mission in which a scene must be interpreted
in order to identify specific objects, in which case all the available sensors must contribute to the final
scene analysis. We propose some algorithms for fusing 3-D representations with representations obtained
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2 Active range and reflectance sensing
The basic principle of active sensing techniques is to observe the reflection of • reference signal (sonar,
laser. radar..etc.) produced by an object in the emiionineM m order to compute the distarice between the

and that object In addition to die distance, the sensor may report the intensity of the reflected
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signal which is related to physical surface properties of the object In accordance with tradition, we
refer u> this type of intens^4ffta as "reflectance" data even though the quantity measured is not the actual
reflectance coefficient <rf the surface.

Active scnsois are attractive 10 mobile robots researchers for two main reasons: first, they provide
range dau without the computation overhead associated with conventional passive techniques such as
stereo vision, which is important in time critical applications such artAstade detection. Second, it is
largely inieastth^lo ovtskte iltanoatira conditions, simplifying considerably the image analysis problem.
This is eq)eci^lB9Qi1iB^ £nr ima^s of outdoor scenes in which iUuminaA» cannot be controlled or
predicted. For example, the active reflectance images of outside scenes do not contain any shadows from
the sun. In addition, active range fipdrng technology has developed to the extent that makes it realistic to
consider it as part of practical mobUr robot mpkrocrtations in the short term [4].

The range sensor we used is *time-of-fligjit laser range finder developed by the Environmental
Reseaidi Instimte of Michigan (ERIM). The bask principle of the sensor i s to measure the difference of
phase between a laser beam and its reflection from die scene [46]. A two-minor scanning system allows
the beam to be directed anywhere within a 30* x 80* field of view. The dau produced by the ERIM sensor
is a 64 x 256 m g e image, the fangc is coded 011 eight bits from zero to 64 feet, which corresponds to a
range resolution of three iaches. AH measurements are all relative since the sensor measures differences
of phase. That is, a range value is known modulo 64 feet. We have adjusted the sensor so that the range
value 0 corresponds to the minors for all the images presented in this report In addition to range images,
the sensor also produces active reflectance images of the same format (64 x 256 x 8 bits), the reflectance
at each pixel encodes the energyof the reflected laser beam at each poiat Figure 5 shows a pair of range
and reflectance images of an outdoor scene. The next two Sections describe the range and reflectance
data in more details.

2.1 From range pixels to points in space
The position of a point in * fh*n cooftfnai* system c|n te derived from the measured range and the
direction of the beam at that p o ^ We wiiaHy use te Cartesian a in Figure 4,
in which case the caoiiKMiii nf a ndfa&HttriiBd bv die m o e aeiMDratB 2twa tnr the eauations*:

x = Dsin* (1)

y s

z s

where 4> and•• are the vertical and horizontal scanning angles of the beam direction. The two angles
are derived from the tow and column position in the range image, facy% by the equations:

(2)

!Note diat die reference coordinate system is not the same as in [20] for consistency reasons
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where 0o (respectively <fo) is the starting horitomtt 0Wp«tivefy Vertical) scanning angle, *nd £#; (re-
spectWely a<£) is the a i ^ Ffgurc6shows
an overhead view of the scene of Figure 5, the coordinates of the points "art com|>uted tiring Eq. &).

Measured range stored
m range image

Figure 4r Geometry of the range sensor

Figure 5: Range and reflectance images

2J1 Reflectance images
A reflectance image from the ERIM sensor is an image of the energy reflected by a laser beam. Unlike
conventional intensity images, this data piovides us with infcmnation which is to a large extent independent
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Figure 6: Overhead view

particular, the reflraanr^ images contain no shadows from outside
The measuied energy does depend, however, oil to shape of the surface and its distance to

tbe a m p : We con$ct tbt image so that the pixel values are functions only of the material reflectance.
The measured energy, *W«, dq«nds on the specific material ieflectmce, p, die range, D, and the ingle

Due to the wide range of Pmm* the value actually reported in the reflectance naage- is compressed
by using • log tfantftmn. that is, the digtaed valut, Pimm,is of the form [44J:

J*iwf»»Afog(pcos7)+£k>gZ> ~ (4)

where A and B art constants Oat depend only on thecharscteiistia of the laser, the eircuitry used for the
digitization, and the physical properties of the aniMaiw atmosphere. 'Since A and &-cannot be computed
direcUy.weuseacaUbrationptoced^uremwMcfaahiNa^p
we then use the pixels in this refton to estimate A and A by laait aqunitj finmg Eg. (4) to die actual
reflectance/range dan. Qiven A and B, we correct subsequent images by:

(5)

The value Pmgw~mM** dftp**1 *̂ only on fhr matff̂ il •rftet?tafKT BIMI the #»g|̂  of imcî flficct This is a
sufficicitt approximation for our purposes since for smooth surfaces such a& smooth terrain, the cosy
factor does not vary widely, ^efficiency ptnpoies, the ri^bt-haad side of (5) is precooaputed for all
possible combinations (Pmmt€,D) aod stored in a lookup table. Figure S shows an example of an ERIM
image, and Figure 7 shows the resulting corrected image.
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Figure?:
? jut
fcflcctjtacc image

23 Resolution and noise;
As is the case with any sensor, the range sensor returns values that are measured with a limited resolution
which are corrupted by measurement poise*. Jn $hejcase of the ERIM sensor, the main source of noise
is due to the fact that the laser beam is not a line in space but rather a cone whose opening is a 0.5°
solid angle (the instantaneous field of view). The value returned at each pixel is actually the average of
the range of values over a > p area, the^^rtHf, wta'cfi is l e intersection of the cone with th* target
surface (Figure 8). Simple geometry shows that me area of the footprint is1 proportional to the square of
the range at its center. The size of the footprint also depends on the angle ^tctween the surface normal

8. The size of the footprint is roughly inversely proportional to cos (9and the "beam as &
if we assume that the footprint is small enough and that 0.is almost constant Therefore, a first order
approximation of the standard deviation of the range noise, a is given by:

a oc (6)

The proportionaUty factor in this equatieo depends o^Ae charadcristics of the laser transmitter, the
outside illumination, and the reflectance p of die surface which is assumed constant across the footprint
in this first order approximation. We validated the model of Equation 6 by estimating the RMS error
of the range values on a sequence of usages. Figure 9 shows the stapdard deviauoa with respca to the
measured range. Tho Figure shows tfiat a ^^o^fp|fugiiiy^te X*2 behavior predicted by the first order
model. The fcKXprim affects ali^ixc^ y ,

are other <^ectsj^pio<tac^ The main effca
tf h h l f r i

j^p
is known as the "mixed point" pioWem and is illustrated i^ JJgifie tf in which the laser foo^rint crosses
the edge between two objects that are far firom each other. In that case, the returned range value is some
combination of the range of die two objects but does not have any physical mcapmg. This problem mates
the accurate detection of occluding edges more difficult. Another effect is due to the reflectance properties
of the observed surface; if the surface is highly specular theb no laser reflection can be observed. In that
case the ERIM sensor mums a value of 255. This effect fe most noticeable on man-made objects that
contain a lot of polished metallic surfaces. It should be mentioned, however, that the noisfc charaaeristics
of the EklM sensor are fairly typical of the behavior of active range sensors [5].
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Rgure 8: Sources of noise in range data

Figure 9: Noise in range data
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3 Terrain representations
The main task of 3-D vision in a mobile robot system is to provide sufficient information to the path
planner so that the vehicle can be safely steered through its environment In the case of outdoor navigation,
the task is to convert a range image into a representation of the terrain. We use the word "terrain1* in
a very loose sense in that we mean both the ground surface and the objects that may appear in natural
environments (e.g. rocks or trees). In this Section we discuss the techniques that we have implemented
for the Navlab and Mars Rover systems. We first introduce the concept of the elevation map as a basis for
terrain representations and its relationship with different path planning techniques* The last four Sections
spell out the technical details of the terrain representation algorithms.

3.1 The elevation map as the data structure for terrain representation
Even though the format of the range data is an image, this may not be the most suitable structuring of the
data for extracting information. For example , a standard representation in 3-D vision for manipulation
is to view a range image as a set of data points measured on a surface of {he equation z */(x,y) where
t h e * - and y-axes arc parallel to the axis of the image and z is the measured depth. This choice of axis
is natural since the image plane is usually parallel to the plane of the scene. In our case, however, the
"natural1* reference plane is not the image {ttane Wit t the ground plane. In this context, "ground plane"
refers to a plane that is horizontal with respect to the vehicle or to die gravity vector. The representation
1 =ffay) & then the usual concept of an elevation map* To transform the data points into an elevation
map is useful only if one has a way to access them. The most common approach is to discrctizc the (x,y)
plane into a grid. Each grid cell te,#) is the trace of a vertical column in space, its field (Figure 10). All
the data that falls within a cell's field is stored in that cell. The description shown in Figure 10 does not
necessarily reflect the actual implementation of an elevation map but is more of a framework in which we
develop the terrain representation algorithms. As we shall see later, the actual implementation depends
on the level of detail that needs to be included in the terrain description.

Although the elevation map is a natural concept for terrain representations, it exhibits a number of
problems due to the conversion of a regularly sampled image to a different reference plane [25]. Although
we propose solutions to these problems in Section 3.5, it is important to keep them in mind while we
investigate other terrain representations. The first problem is the sampling problem illustrated in Figure 11.
Since we perform some land of image warping, the distribution of data points in the elevation map is
not uniform, and as a result conventional image processing algorithms cannot be applied directly to the
map. There are two ways to get around the sampling problem: We can either use a base structure
that is not a regularly spaced grid, such as a Dclaunay triangulatioa of the data points [33], or we can
interpolate between data points to build a dense elevation map. The former solution is not very practical
because of the complex algorithms rcquifpd to access data points and their neighborhoods. We describe
an implementation of the latter approach in Section 3.5. A second problem with elevation maps is the
representation of the range shadows created by some objects (Figure 12). Since no information is available
within the shadowed regions of the map, we must represent them separately so that no interpolation takes
place across them and no "phantom1* features are reported to the path planner. Finally, we have to convert
the noise on the original measurements into a measure of uncertainty on the z value at each grid point
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Sensor Field
fit Measured points

Discrete grid

Figure 10: Structure of an elevation map

(x,y). Tins conversion is difficult due to the fact that the sensor's uncertainty is most naturally represented
with respect to the direction of measurement (Figure 13) and therefore spreads across a whole region in
die elevation map.

Sensor

Regular sampling in image plape

Sparse sampling in map

Figure 11: Hie sampling problem

3-2 Terrain representations and path planners
The choice of a terrain representation depends on the path planner used for actually driving the vehicle.
For example, die family of pbugm* derated from the Lozano-Perez's A* approach [28] uses discrete
obstacles represented by 2-D polygons. By contrast, planners that compare a vehicle model with the local
tenain [938] use some intermediate representation of the raw elevation map. Furthermore, the choice of
a terrain representation and a path planner in turn depend on the environment ia which the vehicle has to
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Figure 12: An example of a range shadow

- r
Figure 13: Reprcscntiiig unccrtflinty
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navigate For example, representing only a small number of discrete upright objects may be appropriate
if it is known in advance that the terrain is mostly flaw<<$. a read) with a fcw obstacles^*.*, trees)

" ^scnpi^c^n^eievatMnmap-Genemi
^tk^s^bk^l f̂ĉ L â̂ B k̂â aM ^B^SsttB^haB^MhaflaVapv^B^^B^V ^ P ^ B ^ ^ B ^ a^B^BWft^BnWaYa^BiflYsfev^ vav^KiVMiaa^B^BYa^haYavntw^^isaBiL 2 a t t « 4 J B U A a^ha^Bfe a^B\^ftdlBaa^hMAA^Bn^^hB^X>^BBi a^ftav^kvBafV^Nft^^BflMi

T>H^9^M T ^L^L^^^^H, -j^B^^l^^^^^^i^^^^^B^E^ ̂ L^^^B 1^^B^L1BB^BPB^B^B^B&- ^ n t t ^ ^ ^ o l ^ ^ ^ B ^ H i •wfc- • M a m ^ ^L^B^K AB^L^^L^^^Q^^^L^L^H^S. ^•^^L^SM^j^^ff]

JW~ ^HPl^SBBfiLS^ ^Bj^^^HH^^BQfl|^l^^^p|'> ^SC^^B^^^B^M^^. »^^B^S ^Bf l^^fQj j^^^^^f l^^yQHt J^J^L*t ^^BEt . ^K^P]BflB^i^K^ ' ^ U v 1 flHB^B^B^sQ9JB^BWj>^8^aByKB^B^3B^B^B^B3lBB^B^B^B^BB-r X • ^ • | B ^ P B B W ^ J ^ ^ # S 1 ^ VIF^BV

need sevenl levels of terxam wtpfftsantation jCataapondlBĝ ta'td ŝwpjjt WJO1UU,OJBI, it which the terrain isdescabed CÊ goR U). At the low lefotation ievel we describe only discrete obstacles, withoot explicitly

tnroagh s a ^ pitches t b t f ^ s m ^ ^ features. M that levei, the r«ohition is the
itod^aathese£iMir«s.Finafly.thei

involved under coattol the i«solntioii b Qpkally alated to the aae of the vehids;* p«m that enter in
contaa with the tenavx Per exaaple% the ttee of o»e foot is used to compute the terrain resolution in the
ease of a legged vehide.

High resolution:
Ddase elevation map.

Tenain features

Low tesohitiQii:
Obstademap

Polygonal obstacles
14i Levels of tenam reptesentstion

3 3 Low resolution: Obstacle map
The lowest resolution terrain representation is an obstacle map which contains a small number of obstacles
represented by their trace on the ground plane. Several techniques have been proposed for obstacle
detection. The Martin-Marietta ALV [10.11,43] detects obstacles by computing the difference between
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the observed iange image andpre<c*^uted images of ideal ground at several different slope angles.
"PtointJ that are far frc^ the iaeUtfr in&p^ reported^ obstacles
to a path planner. A Very farfimplementatidn of 1hia tedrmque is p&sfbfc since it require*(only Image
differences-attiregSbtt grottping. ft makes, ̂ however, very strong assumpdomoo the shape of the terrain.
It also talced itt&mmt M y tfie positions atthe potential obstadd'rxratTandas a resale a vefy high

i
s ed tt&mmt My tfie postions atthe potenti

slope ridge thai is n« deep enough wc^dmx be (letec^
'"-'"%aad& alppioadiproposedijy Hughes AI group T̂ J is to detect the obstacles by thresholding the
normalized range gratet, ̂ 1D/A a n d ^ thrcshoWiflg thfe radSl slope; &A$fm.: The first test detects
the dis«jntfniuties m ranged* while the second test defects the portion of the terrain with high slope. This
apprbach has the adtauge of taking a vehicle model imo accotmt when deciding whether^ point is part
of ̂ n obstacle. We used flfterrafa map patadignt to detect obstacles fof the Navlab. Each cell of the
terrain contains t h e ~ * ^ ^vto^^*itoMk field (Rgorf 10). We can then estimate Surface
nonnAl and curviiutbs &t tadfc clcvdtiod niBp tell tr̂  uitiA^ a reference surface to the bonesponding set
of data points. Cells that have a high curvature or a surface normal far from the vehicle's idea of the
vertical direction are reported as part of the prajectioa of an obstacle. Obstacle cells are then grouped
into regions corresponding to individual obstacles. 1MT ftaal produa of the obstacle detection algorithm
is a set of 2-D polygonal approximations of the boimdaries of die detected obstacles that is sent to an
i4*-type path planner (Figure 15). In addition. w$ OBiiwghly c i t i fy the o into holes or bumps
according to the shape of the surfaces inside the polygcwui-

Figure 16 shows the result of applying t|ie obstacle detection algorithm to a sequence of ERIM images.
The Figure shows the original range images (top), the range pixels projected in the elevation map (left),
and the resulting polygonal obstacle map (right), the large enclosing polygon in the obstacle map is the
limit of the visible portion of the world. The obstacle detection algorithm does not make assumptions on
the position of the ground plane in that it only assumes that the plane is roughly horizontal with respect to
the vehicle. Computing the slopes within each cell has a smoothing effect thai may cause real obstacles
to be undetected. Therefore, the resolution of the elevation map most be chosen so that each cell is
significantly larger than the typical expected obstacles. In the case of Figure 16, the resolution is twenty
centimeters. The size of the delectable obstacle also varies with the distance from the vehicle due to the
sampling problem (Section 3.1).

One major drawback of our obstacle detection algorithm is Ait the computation of the slopes and
curvatures at each cell of the elevation map is an expensive operation. Furthcnnore, since tow-resolution
obstacle maps are most useful for fast navigation through simple environments, it is important to have a fast
implementation of the obstacle detection algorithm. A natural optimization is to parallelize the algorithm
by dividing the elevation map into blocks that are processed simultaneously. We have implemented such a
parallel version of the algorithm on a tcn-pipccssor Waip computer [45,21]. The parallel implementation
reduced the cycle time to under two seconds, thus making it possible to use the obstacle detection
algorithm for fast navigation of the Navlab. In that particular implementation, the vehicle was moving
at a continuous speed of one meter per second, taking range images, detecting obstacles, and planning a
path every four meters. '••- : - v
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3.4 Medium resolution: Polygonal terrain map
Obstacle detection is sufficient for navigation in flat tenasn with disc&te obstacles, such as following a
road bordered by trees. We need a more detaak& dNOription wbmdlr terrain is uneven as in the case
of cross-country navigation. For that purpose, an etev*tfon map could be used directly [9] by a path
planner. This approach is costly because of the amount of data to be ka&fle4 by the planner which does
not need such a high resolution description to do the job in siuny ^MHI (attbough we will investigate
some applications in which a high resolution representation is reqitfrod in Section 3 J). An alternative is
to group smooth portkms of the terrain into regions a d edges thtt ate &e baiic units manipulated by
the planner. This set of features provides a compact repfeapOlfem of ^ thus allowing for more
efficient pitming pit]

The features used are of two types, smooth regions, and shatp tetiain discontinuities. The terrain
discontinuities are either discontinuities of the elevation of die tenain, as in the case of a hole, or
discontinuities of the surface normals, as in die case of the shoulder of a road [3]. We detect both types
of discontinuities by using an edge detector over the elevation map and die surface normals map. The
edges correspond to small regions on the terrain surface. Once we hive detected the discontinuities, we
segment the ternin into smooth regions. The segmentation uses a region growing algorithm that first
identifies die smoothest locations in the tenain baaed on the behavior of the surface normals, and then
grows regions around those locations. The result of the processing is a covering of the terrain by regions
corresponding either to smooth portions or to edges.

The final representation depends on the planner that uses it In our case, the terrain representation is
embedded in the Navlab system using the path planner described in [38]. The basic geometric object used
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Figure 16: Obstacle detection on a sequence of images
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3*5 High resoiutioii: Elevation maps for rough terrain
The elevation map derived directly from die sensor is sparse and noisy, especially at greater distances
from the sensor. Many applications, however, need a dense and accurate high resolution map. Oneway
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where <£, 0 , and D are defined as in Section 2. Equation (9) was derived by inverting Equation (2), and
assuming x and y constant, Similarly, the range image can be viewed as a surface D » /(<M) in <£A
D space. The problem is then to find die interaction, if it exists, between a curve parametrized by <f>
and a discrete surface- Since the surface is known only from a sample of data, the intersection cannot
be computed analytically. Instead, we have to search along the curve for die intersection point The
search proceeds in two stages: We 8m locate die two scanlincs of the range image, famdfa, between
which die intersection must be located* that is the two consecutive «*-tft«»f such that, Dtff(4>\) «

column that is the closest%J|#), We tea apply a binary search between ^i and fa. The search stops
when the differencfbetwecQ the twouiQgjtas ^ and ^*+it whcie Diff{$$ and Diff(<i>a+\) have opposite
signs, is lowerikan a flwabold c. Since tb«e are no pixels between^ and fa%we have to perform a
local quadratic interpolation of d»ftnage in oider to compute #K<W nd pt(4>) for fa < <f> < fa. The
control points for the intapolatioQ are the four pixels that surround the imttsection point (Figure 20). The
final result is a value ̂  thai is convcrt»d to an dcyasiqii vahie by apptyng Equation (2) to <f>,9i(<t>)yDt(<j>).
The resolution of the elevation is comroUed by At ch^ce *£ the parameter e.

The locus algorithm enables us to evaluate the elevation at a t t a i n t nice we do not assume the
existence of a ffkL Rgwe 21 showa the iwult of ̂ jplying the locus algorithm cm range images of uneven
terrain, in this case a construction site. Tt^Hgux^ stows the tmginal range images and the map displayed
as an isoplot surface. The centers of the grid cells am ten cemimefan apart in the (x,y) plane.

3SJ. Generalizing the locus algorithm

We can generalize the locus algorithm from the case of a vertical line to the case of a general line in
space. Th?f gener^^yfltion allows us to frffiVf WMG using any icfeiraoe p?ff^ iyiffff4 fff bfipg TTstiiictf<1

h ( ) U Thi i i h f l h *<) l i hto the (x,y) pUne. This is impoitant when, for example, the sensor*s<x,y) plwe is not orthogonal to the
gravity vector. A line in space is defined by a point u * [**$*& **¥> **** a unit v c c t o r v * Cv»» vy» vry.
Such a line is parametrized ia A by the idattoa jr« m+Av if p is a point on tte line. A general line is
still a curve in image space dot can be parametrized in <£ if we assume that the line is not parallel to the
(x» y) plme. The equatUm of the curve <

(10)

We am tten compute the intersection between the airv
as before except that we have to use Equation (10) instead of Equation (9).

The representation of the fine by die pair (u, v) is not optimal since it uses six parameters while only
four parameters are needed to represent a line in space. For example, this can be troublesome if we want
to compute die Jacobian of the intersection point with respect to the parameters of the line. A better
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Figure 19: The locus algorithm for elevation maps
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alternative [22] is to represent die Uoe by its slopes ia x and jr aa* by its intersection with the plane z = 0
(See [35] for a complete survey of J # lfa$ i s m

(ID
ymbz+q

We can soli use Equation (10) to compute the locus because we can switch between the (a,b,p,q) and
(u, v) T""T*"«^«^f by wing the Equations:

(12)

a a

a
b
1

B m

• •

P

0
• a

In the »ibsequem Secti-Mis, we wiU denote by/^^ to/?3 that maps a line in
space to the intersection point with the range image.
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Figure 21: The locus algoridun on range images
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Hgure 21: The locus «l§ori|hm on nnge imafw (Continued)
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Figure 21: i l l locus-aifrfritfam off range images (Continued)
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Figure 21: The locu* JdgoilthiB-«i nuige images (Continued)
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3-53 Evaluating the locus algorithm

We evaluate the locus algorithm by comparing its performance with the other "naive'1 interpolation algo-
rithms on a set of synthesized range images of ample scenes. The simplest scenes arc planes at various
(mentations. Furthermore, we add some range noise using the model of Section 2.3 in order to evaluate
the robustness of the approach in the presence of noise. The performances of the algorithms arc evaluated
by using the mean square error

(13)

Figure 22 plots £ for the locus
observed plane and the noise level,

to surface orientation and noise
interpolation in image space

where A, is the true elevation varoe aad
algorithm and the naive
This result shows that the
level than the other algorithm. This is
instead of first convertingthe dau points into
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Figure 22: I|v8|»ation images

3*5.4 Representing the uncertafaty

We have presented m Section 2 3 a mod^l of tl̂ c sensor noise that is a Gaussian distribution along the
direction of measurement We need to transform this model into a model of the noise, or uncertainty,
on the elevation values returned by the locus algorithm. The difficulty here is that the uncertainty in a
given range value spreads to many points in the elevation map, no matter how the map is oriented with
respect to the image plane (Figure 13). We cannot therefore assume that the standard deviation of an
elevation is die same as the one of the corresponding pixel in the range image. Instead, we propose to



87

use the nature of the locus algorithm itself to derive a meaningful value for the elevation uncertainty. To
facilitate the explanation, we consider only the case of the basic locus algorithm of Section 3 J.I in which
we compute an elevation z from the intersection of the locus of a vertical line with a depth profile from a
range image. Figure 23 ibows the principle of the uncertainty computation by considering a locus curve
that corresponds to a Hup ia*pac£«id the depth profile from the range image in the ndgfrbodtood of the
intersection point, each point on the dqptfc profile has *n uncertainty whose density cm be represented by
a Gaussian distribution a* conpulad fa
along the line. The vafaft ofthe unceitainty refect* how likely is the given point to be on the actual

Let us consider * elevation h along the vertical li$c. This elevation corresponds to a measurement
direction 4<H) and a measured range <£(h). tt&h) U the disttnee between the origin and the devatkm h,
we assign to k the confidence [39]:

(14)

where cr(<t(h) is die variance of the measurement at die range cf(h). Equation 14 doea not tell anything
about the shape of the uncertainty distribution J(*) along the * axis except that it is maximum at the
elevation A» at which dQi) » <f(h)f that is the elevation returned by the locus algorithm. In order to

the shape of J(A)V we fj-*Ay*—* Kh) around ho by replacing the surface by its tangent plane
at ho. If o is the slope of the plane, and H is th**levabon of Ae intersection of thcplarc with the 2 axis,
we have:

(16)

where a is the cBstance between die fine aod the oiigin in the i - y ptanfr«idJr i« defined in Sectioa 2 J
by <r<A w KS. By Mwminf tint A i* c|pf»ta A,, th«t«A» A, *e with € <c A., and bjr using tbc fact
that J5T m ha • tf ttner. we have the appgnMgas:

^ J (17)

(18)

In the neighborhood of Ao. Equation 18 shows that (d(h) - d{h))2l2a{d{h)f is quadratic in h - ho,
and that *(•/(*)) is constant. Therefore, Kh) cm be approximated by a Gaussian distribution of variance:

(19)
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Equation 19 provides us with a first order model of the uncertainty of h derived by the locus algorithm.
In practice, the distance D(h) » (d(h) - <f(A))*/2<7(<f(*))2 is epmpvtff, for several values of h close to
Ao, the variance o^ is computed by fitting die function (A ̂ A o ) 2 / ^ to the values of D(A). This is a
first order model of the uncertainty in the sense that it takes into account the uncertainty on the sensor
measurements* but it does not include the uncertainty TOR to thfe Ifrctis tffrc"fl™ M̂ fMs w ptfpndar the
errors introduced by die interpolation. v " :L

3-5-5 Detecting the ran^es^dow^ c ^

As we pointed dot in Section 3.1, thb tertain mmy exhibit range shadows in Hie elevation mtp. It is
important to identify the shadow regions because the tferrtaa may have any shape within the botifedarics
of the shadows, whereas the surface would be smoothly interpolated if we applied the locus algorithm
directly in those areas. This may result in dangerous situations for the ftfbot if a path crosses one of the
range shadows. A simple idea would be to detect empty regions m the raw elevation map, which are the
projection of images in the map without any interpolation, tftfis apptoichdoes not woik because the size
of the shadow regions may be cm the order of the average distance between data points. This is especially
true for shadows that are at some distance from the sensor in which case the distribution of data points
is very sparse. It is possible to modify the standard locus algorithm so that it takes into account the
shadow areas, the basic idea is that a range shadow corresponds to a strong occluding edge in the imdge
(Figure 12). An (x,y) location in the map is in a shadow area if its locus intersects the image at a pixel
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3-5-6 An application: footfall selection for a legged vehicle

The puipose of using the locos algorithm for building ttapta is to provide higfc resolution elevation data.
As an example of an application in which suck* motation » needwl we briefly describe in this Section
the problem of perception for a legged vehicle [24]. One of die main responsftniities of perception for
a legged vehicle is to provide a tenant description that enables the system to deremrinc whether a given
foot placement, or footfall, is safe. la addition, we consider the c m of locomotion on very nigged terrain
such as the surface of Mais.

Afoot is modeled by a flat disk of diameter 30 cms. The basic criterion for footfaU selection is to
select a footfall area with the maximum soppon area which is defined as the amtact arot between the foot
and the terrain as shown in Figure 26. Another constnum for footfaHsdecti^
necessary to penetrate die ground in order to achieve sufficient support area most be minimized The
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caogy is propcmicQal to the dqxh of the foot in the pound. The support asm is estimated by counting
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Figure 27: Support area versus elevation

3-5*7 Extracting local features from an deration map

The high resolution map entries us to extract very local features, such as points of high surface curvature,
as opposed to the larger terrain patches of Secoon 3A The local features that we extract are based on
the magnitude, of the two principal curvatures of the terrain surface. The curvatures arc computed as
in [34] by fim smoothing the map, and tlmt computing the derivatives of the sur&ce for solving the first
ruiKiarnenuu rorm. ngure zo snows me curvature images compmea irom an eievaiion map using toe
locus algodthm. The resolution <rf tie map is ten centimeters. Paints of high curvature correspond to
edges of the terrain, such as the edges of a valley, or to sharp terrain features such as hills, or holes. In
my case, the high curvature points tie viewpoint-independent features that can be used for marching. We
extiact the high curvature points from both images of pnncipal curvature* we group the extracted points
into regions, then classify each region as point feature, line, or region, according to its size, elongation,
and curvature distribution. Figure 28 shows the high curvature points extracted from an elevation map.
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The two images correspond to the two principal curvatures. Figure 29 shows tiie three types of local
faults detected oaWM^W^^e 28 superifltooscd in black over t̂ ife bHgteal elevation map. the

i shows m£ while some features conesribdd merely to iBcaT extremf of HK' surface, some such as
V & i ^ ^ ^

an Importable ^ c

Figure 28: The high curvature points of aaelevakion

4 Combining multiple terrain maps
We have so far addressed the problem of building a representation of the environment from sensor data
collected at one fixed location. In the case of mobile robots, however, we have to deal with a stream of
images taken along die vehicle's path. We could ignore this fact and process data from each viewpoint as
if it were an entirely new view of the worid, diua forgetting whatever information we may have extracted
at past locations. It has been observed thai this approach is not appropriate for mobile robot navigation,
and dial there is a need for roflftfoing ibt represiwarions computed itom different vantage points into a
coherent map. Although this has been observed first in the context of indoor mobile robots [13,15], the
reasoning behind it holds true in our case. Hist of all, merging representations from successive viewpoints
will produce a map with more infemutioa and better resolution dim any of die individual maps. For
example, a tall object observed by a range sensor creates an unknown area behind it, the range shadow,
where no useful information can te exacted (Section 3.1). The shape and position of die range shadow
changes as we move to another location; merging images from several locations will therefore reduce
the size of die shadow, thus providing a more complete description to the path planner (Figure 30).
Another reason why merging maps increases die resolution of the resulting representation concerns the
fact that the resolution of an elevation map is significantly better at dose range. By merging maps, we
can increase the resolution of the parts of the elevation map that were originally measured at a distance
from the vehicle.

The second motivation for merging maps is that the position of the vehicle at any given time is
uncertain. Even when using expensive positioning systems, we have to assume that die robot's idea of
its position in die worid will degiade in die course of a long mission. One way to solve this problem
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Hgare 29: Local features firom a high ipsohttion tlevation map



is to compute the position with respect to features observed in the world instead of a fixed coordinate
system [3730]. That requires the identification and fusion of common features between successive
observations in order to estimate the displacement of the vehicle (Figure 31). Finally, combining maps is
a mission requirement in the case of an exploration mission in which the robot is sent into an unknown
territory to compile a map of the observed terrain.

Reduced range shadow
from the combination of 1 and 2

Range shadow from
position 1

Position 1 Position 2

Figure

Many new problems arise when
combined in

position 2

shadow

>wfrom

itainty, data structures for
focus on the terrain matching

problem, thai is the problem of finding common features or common parts between terrain maps so that
we can compute die displacement of the vehicle between the two corresponding locations and thai merge
the corresponding portions of the terrain maps. We always make the reasonable assumption that a rough
estimate of the displacement is available sincft an estimate can always be computed either from dead

orfitompastteftraktmatchingsjv : . , •••; <L •• • ....

4.1 The terrain matching problem: iconic vs. feature-based

In the terrain matching problem, as in any problem in which correspondences between two sets of data
must be found, we can choose one of two approaches: feature-based or iconic matching. In feature-based
matching, we first have to extract two sets of features (F\) and (Fj) from the two views to be matched, and
to find correspondences between features, (F^FJ) that are globally consistent We can then compute the
displacement between the two views from the parameters of the features, ami finally merge them into one
commcm map. Although this is the standard approach to object recognition problems [5], it has also been



95

Feat&re observed
£pom position

Feature observed
from position

Position 1 Position 2

Figure 31: Matching maps for position estimation

widdy used for map matching for mobile robots [13,2330,7,1,41]. In contrast, iconic approaches woxk
directly on the two sets of data points, P1 and P2 by minimiring a cost function of tbe form FQXP2), Pl)
where 7T/*2) is the set of points fiom view 2 transformed by a displacement T. The cost is designed so
tlat its mittimttm concspmds to a "best1* estimate of Tin some sense. The minimization of F leads to an
iterative grac&nt4ike algorithm. Although less popular, iconic techniques have been successfully applied
to incremental depth estimation [30,29] and map matching [40,12].

The proponents of each approach have valid aigumems. The feature-based approach requires a search
in die space of possible matches wfaicfa may letd to a combinatorial explosionof tibe matching program.
On the other hand, iconic approaches are entirely predictable in terms of computational requirements
but are usuaOy quite expensive since die size of die points sets /" is typically on the cider of several
thousands. As for the accram^ of the resulting dispUcem^
better than the resolution of the sensors if we iterate the minimization of F long enough, while any feature
extraction algorithm loses some of the original sensor accuracy. Furthermore, feature matching could in
theory be used even if no a-priori knowledge of T, 7b, is available while iconic approaches require To to
be dose to the actual displacement because of the iterative nature of the minimization of F.

Keeping these tenets in mind, we propose to combine both approaches into one terrain matching
algorithm. The basic idea is to use the feature matching to compute a first estimate f given a rough initial
value To, and then to use an iconic technique to compute an accurate estimate f. This has the advantage
of retaining the level of accuracy of iconic techniques while keeping die computation time of the iconic
stage under control because die feature matching provides an estimate dose enough to the true value. We
describe in detail the feature-based and iconic stages in the next three sections.



96

4.2 Feature-based matching
Let F/ and Fj be two s*stt of features extracted from twoimagei of <u* outdoor scene, /i and I2. We
want to find a transfomurtoa t *nd a set of pairs C* * (JP^fJ);w«hnitarFj « tlFl

k), where T(F)
denotes the transformed by 7of a feattre F. The features can be any of those discussed in the previous
Sections: points or lines from the local feature extractor, obstacles represented by a ground polygon, or
terrain patches represented by iheir surface equation and their polygonal boundaries. We first investigate
the feature matching algqptbn^ independently of any particular feature J&xf so that we can then apply it
to gny lgvd of̂ tsfltiflft"̂ ^BSfttfPfat̂ 11- -

For each feature F/, we can first compute die set of features F | that could correspond to F\ given
an initial estimate To of the displacement The f | f s should lie in a prediction region centered at TQ(F}).

The sue of the prediction region depends on the confidence we have in To and in the feature extractors.
Fbr example, the centers pf the polygonal obstacles of Section 3.4 are not known accurately, while the
curvature points from Section 3.5.7. can be accurately located. The confidence on the displacement T is
represented by the maximum distance 6 between a pdnt in image 1 and the transformed of its homologuc
in image 2, \\Tpl1 — pl\\f and by the maximum angle €, between a vector in image 2 and the transformed
of its homologuc in image 1 by the rotation part of T. The prediction is then defined as the set of features
that are at a Cartesian distance lower than £, and at an angular distance lower than e from TQ(F}). The
parameters used to determine if a feature belongs to a prediction region depend on the type of that feature.
Fbr example, we use the direction of a line for the test on the angular distance, while the center of an
obstacle is used for the test on the Cartesian distance. Some features may be tested only for orientation,
such as lines, or only for position, such as point features. The features in each prediction region are
sorted according to some feature distance dCF},7b(F$)) that reflects how well the features are matched
The feature distance depends also on the type of the feature: for points we use the usual distance, for
lines we use the angles between the directions, and for polygonal patches (obstacles or terrain patches)
we use a linear combination of tbe distance between the centers, the difference between the areas, the
angle between tbe surface orientations, and the number of neighboring patches, The futures in image 1
arc also spited according to an "importance" measure that reflects how important the features are for the

Such importance measures include the length of the lines, the strength of the point features
(Le. die curvature value), and the size of the patches- The importance measure also includes the type of
the features because some features such as obstacles are more reliably detected than others, such as point
features. . .

Once we have built the prediction regions, we can search for matches between tbe two images. The
search proceeds by "T^fojg tbe features f ] to the features F§ that are in their prediction region starting
at the most important feature* We have to control the search in order to avoid a combinatorial explosion
by tafrfog advantage of the fact fhflt fuch time a new "latch is added both the displacement and the fixture

are further constrained* Tbe displacement is constrained by combining the current estimate 7*
}%

p y g
with the displacement computed from a new match (F}jF%). Even though the displacement is described
by six components, the number of components of tbe displacement that can be computed from one single
match depends on the type of features involved: pdnt matches provide only three components, line
matches provide four components (two rotations and two translations), and region matches provide three
components. We therefore combine the components of T with those components of the new match that
can be computed. A given match prunes the search by constraining the future potential matches in two
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4.2*1 Example: Matcfaiog polyfonal npifHintaHons

We have
and 33. The features are in das case:

algorithm on the polygonal descriptions of Section 3.4

• The polygcms describing die terrain parametrized by their areas, the equation of die underlying
surface, and die center of die region

• The polygons describing die trace of the major detected (if any).

• The roAd edges found in die reflectance vinmp*+ if die road detection is reliable PKKfgh, The
reliability is measured by how much a pair of road edges devices from the pair found in the
previous image.
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Figure 32: A sequence of range and reflectance images

The obstacle polygOMh«»ct higlwwrigta to t t e » c ^ JciacUuu iamowrali^le

estimate of the displacement rince thdr toca»T«iort is better, Once a » of matches and a displacement T
af&cottipirtbdf the obstacles and tfeirain patches1 thai we cotmnon between tfapcuiiteiit nulpand^anew image
arc axnbteed into tiew polygons, Ac nc^ tbe miip .while updating the^c^
between features. ' r '••' •- .

This application of the featnre matching lias been integrated with the rest of the Navlab ^stcm. In
the actual system, the estimates of the disfjiacemeat TQ a » tBkctk fion the central database that keeps
track of the vehicle's position. Thi size of prediction region is fixed with 6 * one meter, and e = 20°.
This implementation of the fe^ure matching has perfoimed mccessfiyiy over die course of runs of several
bundled meters. The final pnxhict of the matchiflg is a map that combines ail the observations made
dumgthcnm, andaiistafypdatedobat*^
Since errors in determining position tend to ft/%n?tir>!ilatg (hiring such long runs, we always keep the map
centered around the current vehicle position. As a result, the map representation is always accurate
dose to die current vehicle position. As an eyamph^ Figure 34 shows the result of the matching on five
consecutive images sqpanted by about one meter* The scene in this case is a road bordered by a few trees.
Figure 32 shows the original sequence of raw range md reflectance images, Figure 33 shows perspective
views of the corresponding individual maps, md Figure 34 is a rendition of die combined maps wing the
displacement and mrt^h^ computed from the feature matching algorithm* This last display is a view of
the map rotated by 43° about the x axis and shaded by tte values from the reflectance image.

4*2*2 Example: Matching local features from high resolution maps

Matching local features fiom high resolution slaps provides the displacement estimate for iht iconic
matching of high resolution maps. TTieprimWvcS used for the matching are the h i g h e r
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Hgore 35: Matching maps using local features

Figure 36: Matching maps using local features (lafge rotation component)
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a point in by die generalized locus algorithm of Section 3.52 applied to image L We have then:

where g(u, v, 7) is the intersection of the transfoqncd of the line (u, v) by T with image 2 expressed in the
coordinate system of image 1 (Figure 37). The suntinatiqn in Equation (21) is taken over all the locations
(it, v) in the first map where both/i(u, v) and giu,vr7) aie defined The lines (u,v) in the fim map are
parallel to die z-axis. In other words: :

g(u, v, 7) « 7wl(fe(ii/, i/)) * Rffflrfi y{)*& i ' (22)

where r~* » (/^,0 * (R~x,-R-Xt) is die inverse transfonnation of 7t and ( i / y ) = (/?u+ r,/fv) is the
transfonned of die line (u, v). This Eqmfkm demonstrates me of the reasons why the locus algorithm
is powerful: in order to compute/i(/te ^ (,/fv) we can apply diitctfy the locus algorithm, whereas we
would have to do some interpolation or tcsamppg if we were m^conven t t f i ^ grid-ba^ techniques.
We can also at this point fully justify d»e Emulation of the geaml&M k)Qts a l g o r i ^ in Section 3.5.2:
The transformed line (u!,y/) en be ittyw^re in space in the ooo t#« t t e sy | ^ of image 2, even though
the origmal line (u, v) is parallel to the r-axis, necfaMritating the generattzcll locus algorithm to compute

Terrain

Transfonned line
T(u,v)

finom locus algo^thm

Rgnre 37: PtiiM^pk of the iconic matching algorithm

We now have to find the displacement T for which £ is minimum, tt v m [a,f3,iytXyty,tz]' is the
6-vectOT of parameters of 7*, where die first three components are die ntatm »gles and the last three
are die components of the translation vector, then E readies a minimum when:

(23)
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an initial estimate 7b, such a minimum can be found by an iterative gradient descent of
the form:

i^ l«i /+*|^V) (24)
ov

where i/ is the estimate of v at deration i. From Equation (21), the dmvative of £ can be computed by:

^ (25)

NOttk EXQBtBOB \£&h W6 (61 UIC CKAVaiiVe Of gl

+%; (26)

The derivatives appearing in the last two components in Equation (26) are the derivatives of the
tnttfofmatioo with respect to its parameters which can be computed analytksatty. The last step to
compute the derivative of g(u, v t l ) is therefore to compute the derivative of Ao^V) wnh respect to v.
We raukl write the derivative wkhrespea to each com

&tfyJ)m?tL~ + ?£L— (27)

Equation (27) leads however to instabilities in the gradient algorithm because, as we pointed out in
Section 3-5.2, the (u, v) representation is an ambiguous representation of lines in space. We need to use a
non ambiguous representation in order to correctly compute the derivative. According to equation (13)* we
can use interchangeably the (it, v) representation and the unambiguous (a,b,p,q) representation. Therefore
by considering^ as a function off the transform by T, t *(&>#,& rf\ of a line l = {a,b,p,q) in image
1, we can transform Equation (27) to:

Since the derivative dfijdt depends only on die dau in image 2, we omixn compute it
sod have to estimate it from tbt image data. We appmximate die derivatives of >5 with respect to a,b,p,
sod q by differences of die type:

a.7 Aa
Approximations such as Equation (29) work well because the combination of the locus algorithm and the
GNC itnaar ««rhnthing nroduce* mm***fa. wiat ioBs of AJ> t***r****ian ********

The last derivatives that we have 10 cooiputc to complete the evaluation erf dE/dv am the derivatives
of t with respect to each motion parameter u%. We start by observing that if X « [x,yyzf is a prat on
the line of panoneter /, and ;P * [ô , / , i 7 is the tnmsfonncd of Jf by T that lies on a line of parameter
f f then we have the following relations from Equatioo (13):

(30)



104

By eliminating X andX between Equation (30) and the relationX = RX+U we have the relation between

^ (3D

where RXjRyjRz are die row vectors of die rotation matrix*, A » [a,*, 1]', B =? [pr^oy. We now have t
as a function of / and T, making it easy to compute the derivatives with respect to i/rfrom Equation (31).

In die actual implementation of the matching algc^iUu^tl^ pointy at which M» pl^atippis oomputcd
in the first map are distributed on a square grid of ten centimeters resolution. The lines (u, v) are therefore
vertical and pass through the centos of die grid &Uf* E is normalized by tfeenumbcg'tf points since
the since of the overlap region between the two maps is not known in advance. We first compute the
/i(«,v) for tbc entire grid for image 1, and then apply diroctly the gradknt descent algoibhm described
above. The iterations slop either when the variMkm trf aaat AE is smatfr enough, or when £ itself is
small enough. Since the matching is coffipufafiooally 6 mmsivc, we compute £ over an eight by eight
m*ter window in the first image. The last test ensurw that »c do not keep
than what can be reasonably achieved given the characteristics of the sensor. Figure 38 shows die result
of combining three high resolution elevation maps. The displacements between maps arc computed using
the iconic matching algorithm. The maps are actually combined by replacing the elevation/i(u, v) by the
combination:

~ * - (32)

where <?\ and at are the uncertainty values computed as in Section 3.5A Equation (32) is derived by
considering die two elevation values as Gaussian distributions. Tb$ resultingmom error in elevation is
lower than ten centimeters. We computed die initial To by using the local feature matching of Section 4.22.
This estimate is sufficient to ensure the convergence to die true value. TTji? is important because the
gradient descent algorithm converges towards a local minimum* and it is therefore imp6itant to show
that 7b is close to die minimum. Figure 39 plots the value of them's with respect to the number of
iterations. These curves show that E converges in a smooth fashion. The coefficient k that controls the
rate of convergence is very conservative in this case in order to avoid oscillations about the minimum.

Several variations of die core iconic matching algorithm ate possible. First of all, we assumed
implicidy that £ is a smooth function of i/; this not mie m general because the sum
is taken only over the regions in which both fi and g are defined, that is the intersection of the regions of
map 1 ami 2 that is neither range shadow Such a summation implicitly
involves die use of a non-diffct«ntiable function that is 1 inside the acceptable region and 0 outside. This
does not afifect the algorithm significantly because the changes in u from one iteration to die next are
small enough. A differcntiable formulation for £ would be of the form:

where /i,(a,v) is a function that is at most 1 when the point is inside a region where ̂ (utv) is defined
and vanishes as die point approaches a forbidden region, that is a range shadow or a region outside of
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Figure 38: Gombining four mips by the iconic matching algorithm
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Figure 39: Convergence rate of die matching algorithm



107

the 6eld*f view. The tanf?vrm hi Eq. tth taken over the eotiie map, la order to avoid a sittiation in
which the minimum is attained when the two maps do not overiaf (£ * $ , we must also noxmaiixe E by
thenunberof points in the overiap region. For £ to be still smooth, we should therefiaie notmalfae by:

(34)

we also assumed that matching tb* two maps w e l y determine the
sis; paiwiHrrrof T. This assumption may no; be tnie in all eases, A tmrial atpmpfeis got in which we
inaicfa tiro iaiafea of a ftto plane, where o s d ^ ^
The gradknt algorithm does not convene m those degenerate casts because the mrnimam T\v) may have
arbitrarily large vahjes within a surface in parameter space. A modification of the matching algorithm
that would ensure mat the algorithm does convene to some infinite value changes Equation (21) to:

f C35)
i

The effect of the weights A,- is to include the constraint that the i/,'s do not increase to infinity in die

5 Combining range and intensity data
In the previous Section we have concentrated on the use of 3-D vistaqyw it relates solely to the navigation
capabilities of mobile robots. Geometric accuracy was the deciding factor in the choice of representations
and algorithms whUe we gave veiylha^ A mobile
robot needs more than just navigation capabilities, however, since it also must be able to extract semantic
descriptions from its sensots* For example, we will describe a tanrtmaifc recognition algorithm is Section
5. to that case, tte system » abte.wod^
relate it to a stored model.

Extracting semantic urfonnation fix* landmark recognition or scene analysis may require much more
than just geometric data from a range sensor. For example, interpreting surface markings is the only way
to unambiguously recognize traffic signs. Conversely, the twogRitkx! of a complex man-made o$ect of
uniform color is easiest when using geometric infonnaiion. In this Section we address the problem of
combining 3-D data with data from biter sensors- The mm interesting problem is the combination of
3-D data with color images since tfaeae are the two most common sensors for outdoor notxa*. Since the
senson have different fields of view and positioos> we Am imsott an alymihfP Sot oaslmniiig the
images into a common frame- As an example (rf the use of cmkkmA range/color images, we describe a
simple scene analysis program in Section 5*3*

5.1 The geometry of video ca
The video camera is a standard color vidicon camera equipped with wide-angle lenses. The color images
are 480 rows by S12 columns, and each band is coded on eight bits. The wide-angle lens induces a
significant geometric distortion in that the relation between a point in space and its projection on the
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image plane does not obey the laws of the standard perspective transformation. We alleviate this problem
by fim transforming the actual image into an TdeaT Image: if <^,<^»Aepositi6n in'thereat image,
the»thepc«mon(r;c) to o«i<leal image is given by: * ' " -

where/r and/c are third order polynomials. This correction is cheap since the right-hand side of (36)
be $ot in lookup tables. The •ctttatcomptitlflbn of the pdynonHalfa described in [3fl Tht geometry

faiage oteeys the lavs of the penptitiW ^jecdonWtffit if /> * U,y, zf is a pomt in space,

rmfxfz,c*fy/z * (37)

where/ is the focal length. In the rest of the paper, row and column positions will always refer to the
positions in the ideal image, so that perspective geometry is always assumed. -

Figure 40: Geometry of die video^ camera

5-2 The registc»tion problem
Range sensor and video cameras have different fields of view, orientations, and positions. In order to
bejible to merge dita finodi bbth itnsdis, to «dmatc thdr itlative positions,
calibration or R

as the
problem (Rgure 411 Wr? typt&ch fht pro&ati *s a mittim^tion problem in

which pain of i*teb «ne selected in the range and video images. The pairs ait selected so that each pair
is the image of a single pdint in space as viewed fix>ffl the two sensors, the problem is tlien to find the
best calibration parameters given these pairs of points and is further divided into two steps: W first use
a simple linear least-squares approach to find a rough initial estimate of the parameters, and then apply a
non-linear minimization algorithm to compute aa optimal estimate of the pgamctcre.
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Range sensor

(•,©)

Figure 41: Geometry of the calibration problem

5.2.1 The calftration problem as a minimization problem
Let Pi be a point in space* with coordinates P\ with reapect to die _
respect to die video camera. The relationship between the two cooiomsaes

coordinatesP\ with
is:

T (38)

where ft is a rotatioe m*trix, a&d T m a tnoshttioii vector it n a mm Biwai fiMCtton of 4*e orientation
angtes of the camera: pan (a), tilt (/3), and rotation (7). ff can be computed bath m pixel location in the
range image. Pf is not comirfetcly known, it is related to the pixd position in the video image by the

where/ is the focal length. Substituting (38) into (39) and (40) we get:

wfieifS *

ii- T,rt -fRJ* + Tx « 0
0

(39)

(40)

(41)
(42)

Rv and /?t are the vow vectors of the rotation matrix R, and 7^ «/Ty, Tx */Tx.
We are now ready to reduce the calibration problem to a least-squares mftnmiiation problem. Given

H points Pit we want to find the trtosfimnation (R,T) that minimizes the left-hand sides of equations (41)
and (42). We first estimate 7 by a linear least-squares iftgimtim, and then compute the optimal estimate
of aUtbeparameten.

5±2 Initial estimation of camera potitkn

m have an estimate of die orimtatinn R, we want to estimate the corresponding T. The
hn'tial value of it can be obtained by physical measurements using inclinometers. Under these conditions.



110

the criterion to be minimized is*

n

ml '' '' "...where A; * *,/**•,•, Bi * rlf Cj«**/>?, D\
f ait the unknowns.

Equation (43) can be put in matrix foim:

wnere r ••

£, -1 0

Em - 1 0

+ (Of-W-/F i .+ JJ)*]. (43)

i, £,-* c,-, and F^RyPf^vn known and r«, 7 ,̂ Ty,

(44)

, . . , ^ ] 1 , A
0 -1 C

0 -1 .
.and

* . • • ".* ~ u .

. The minimum for the criterion of Equation (44) is attained at the parameter vector

- • n - -.. •. . . . . , -: • - - ' •• .. >. . '"A ( 4 5 )

5.23 Optimal estimation of the calibration parameters

Once we have computed the initial estimate of V, we have to compute a more accurate estimate of (R,T).
Since **!#* ftmction of (a, />,7). we can transfbnft m criterioB fpom tt^iiti(XJ<43) iiKo thfe forrar.

- . 2̂ (46)

where /, is the 2-vector itfmsenting the pixel position in the video image, h = [r,, ft]1, and S is the full
vector of parameters, S = [7 9̂ 7^ r,,/, ar/3t T!1. We cannot directly compute Cm since the functions //<
are non-linear instead we linearize C by using the first order approximation of Hi [27]:

(47)

where Ji is the Jacobian of Hi with respect to S, So is the cuircnt estimate of the parameter vector, and
AS*S-SQ. The right-hud side of (47) is minimized when its derivative with respect to AS vanishes,
thatis: , r •-.& , . - - r , * ••- :» :- .-.. ' t - • . ̂ -

. » . . * ' • <*•

ml

where ACi * /, - A,<5b). Therefore, the best parameter vector for the linearized criterion is:

(48)

(49)
m\

Eqtlatioa (49) is iterated until there is no dtattfe in 5. At each iteration, the estimate So i»4»dated
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5.2.4 Implementation Mid per for gurnet

procedujc follows the gaps described above. Piinof conwpoodingThe implementation
points are selected m a sequence of video sad range images. We typicaUy use twenty pairs of points
carefully selected at uxeieltiarllCBtions in the image {g.gr comers). An haaaT estimate of the camera

is (0,0,0), where 0 bffcufcaiy aetmdustag an inclinometer. The final estimate of S is

long as die
This calibration ptoctdme his to be spplied only once, as

the calflxatka parameters, we can merge range n d video images into a
of having one single fttnm program, we unpieoiemed this as a library of

be divided in two categories;

L Range -+ video: This sit Of fractions takes a pixel or a set of pixels (f, <?) in the range image
and computes the location (r*, <f) in the video image. This is implemented by directly applying
Equations (41) and (42).

2. Video -+ range: This set of fiffictions takes a pixd or t set of pixels (r*,c*) in the video image
sod computes the location (/*,c*) in the range image. Hie computed location can be used in
turn to coenpuae the location of a intensity pixel in 3̂ D space by directly applying Equation (3).
The algorithm for this second sec of fimctkns is more involved because a pixd in die video image
corresponds to a line in space (Figure 40) so that Equations (41) and (42) cannot be applied directly.

image. C immcas * ims* al locstiom (r*,O, wtere the iigorfahm reports the location (r<, C)
thai is thesuwBin among afl the qpge iwagr piirdBihw lie oo C of tlis distance between ( ^ ^ )
«id the liifaMllil ilf (r̂ _ infin rtwi Tlrtm inliî iii fnnimi ttwi flirif wt rwf ftwctlk^^) The algorithm is

Rgure 43 riwwthe cdJotmtmtt kmft>&% tomb of aiiw « d adcwilks, the imigc is obtained by
impping the jmeaaty vriimi In* Urn color iaige o«o the nage image. Figure 44 shows t perspective
view of the ookMtd-nnge huge. ID dus example [16], we fint oompuie the locatkn of each range pixel
(r*tcf) hi the video image, and then assign the color value to the 64 x 256 colored-rmge image. The final
display is obtained by rotating the range pixels, the coordinates of which are computed using Equation (3).

53 Application
An example of the me
which we want to identify

is outdoor scene analysis [2026] in
soch at trees, roads, grass, etc. The

Itiff feptovtfng data pertinent to both
hifipaaiton <%tfae color of the road).

53.1 Fcattire extraction from a cotored*ranfe image

The features that we extract fiom a colored-range image must be related to two types of information: the
shapes and the physical properties of the observed surfaces.



112

. Backprojectioa ofr
Projection of the line a range pixel from (C)

color image (rc,cc)

Line&om
inverse perspective

Figure 42: Geomttry of the "video-+ range" transformation

Figure 43: CokMed-range image of stairs

.? -4

Figure 44: Pcrspccd^^cw^bf^gistered range and color im^
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The geometric features arc used to describe the dupe of the objects in the scene We impose to use
two types of features* regions tbat correspond to smootii pawhes of surface, and edges that correspond
either to nwiHtkiOT ^tw^p r^iaas, or tt> ttansitinwt between objects (ocduding edjwX Fuxthcimorc,
we must be able to describe the features in a coppact way. One common approach is to describe the
regions as ouadric patches, f d the Edges as sets of fT'w1"ngiif'onal line segments^ Mocc sophisticated
descriptions are poaaflfle [3], such as bicubic patches or curvature descriptors. We use simpler descriptors
since die range data is relatively km iwotatkw, and we do not have te
that if suited for using higher order geometric descriptors. The descriptors attached to each geometric
feature arc:

• The parameters describing the shape of the surface patches. That is the parameters of the quadric
surface that approximate each sur&ce patch.

• The shape parameters of the surface patches such as center, area, and elongations.

• The 3-D polygonal description of die edges.

• The 3-D edge types: coovcx, coocave, or occluding.

The surfiee patches are extracted by fitting a quadric of equadcmX*AX^B^A:+C«0 to the observed
surfoce*, where X is die Cartesian coordinate vector computed fitom a pixel in die range image. The
fittktg error,

C]2 (50)
Xitpatch

is used to control the growing of regions over tl»<Aserved surfaces. The paramcteis A, B, Care computed
by minimizing E(A,B, Q as in [14].

The femna relied to physical properties are regions of ham)geneous cokar in the video image, that
is regions within which die color values vary smoothly. Thê  choice of these features is motivated by the
fact that an homogeneous region is presumably part of a single scene component, although the CUQVCI5C

isntttraeasindiecasetf theAadowsattbytt The
color homogeneity criterion we use is die distance ( 7 - mfE~xQt- m) where m is die average mean
value on die region, 27 is the covarimce matrix of die color distribution aver the region, and X is the
color value of die current pixel in (red, green, blue) space. This is a standard approach to color image
segmentation sad pattern recognition. The descriptive parameters that are retained for each region are:

• Tte color statistics (m, 27).

• The polygonal representation of die region border.

• Shape parameters such as center or i

The range and color features may overlap or disagree. For example, die shadow cast by an object cm
a flat patch of ground would divide one suifttt patch into two color regions. It is therefore necessary
to have a cross-referencing mechanism between die two groups of features. This mechanism provides
a two-way direct access to the geometric features that intersect color features. Extracting the relations
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between geometric and physical features is straightforward since all the features are registered in the

An aAixtional piece of knowledge that is important for scene intetprctatibft is the spatial relationships
between features. Fbr example, the fact that a vertical object is connected to a lirge flat plane thitougi a
concave edge may add evidence to the hypothesis Aat this object is a tree. As in this exliips, we iisc
thm types df relational data: "**

• :!!» fist of features coimected to each geometric or cotor feature.

• The type of connection between two features (convex/concave/occluding) extracted from the range
data.

• Hie length and strength of the connection. This last item is ad<Jed to "avoid situations ij* which two
very close regions become accidentally connected along a small edge.

53.2 Scene interpretation from the colored-range image

Interpreting a scene requires the recognition of die main components of the scene such^s trees or roads.
Since we arc dealing with natural scenes, we cannot use the type of geometric matching that is used in
the context of industrial pfirfe recognition [5]. For cxampte, we canad assui»e that * given object has
specific quadric parameters. Instead, we have to rely on "fuzzier" evidence such as the vcrticality of
some objects or the flatness of others. We therefore implemented the object models as sets of properties
that translate into constraints on the surfaces, edges, and regions found in the image. For example, the
description encodes four such properties: "

• PI: The color of the trunk lies within a specific range as> constraint on the statistics (m, 27) of a
color region.

P2: Thcsha|>ecrfthetiTmkisioughl̂ ^^
values of (be matrix it of the <|6aditc' a|<yioW>iritf Ioa. ' •' •

• P3: The trunk is riwp f̂ftirf to a flat regioo by a coocave edge «^ constraint on the neighbors of
the surface, and thê type of the connecting edge.

• P4: The tree has two parallel vertical occluding edges *=> constraint on the 3-D edges description.

Other objects such as roads ttr grass areas have similar descriptions. The properties Pij of the known
objea models Mj are evaluated on all the features Fk extracted finom the colored-range image. The result
of the evaluation is a score Sjjt for each pair (P^F*). We cannot rely on individual scores since some
may not be satisfied because of other objects, or because of segmentation problems. In the tree trunk
example, one of the lateral occluding edges may itself be occluded by some other object, in which case
the score for PA would be low while the score for the other properties would still be high. In order to
circumvent this problem, we first sort the possible interpretations Mj for a given feature Fk according to
all the scores (5i/)i. In doing this, we ensure that all the properties contribute to title final interpretation
and thai no interpretations are discarded at this stage while identifying the most plausible interpretations.
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We have so far extracted plausible interpretations only for individual some features Fk. The final
stage in die scene inteipretation is to find die interpretations (M/ft,F*) thai are globally consistent For
example, property P3 for the tree implies a constraint on a neighboring region, namely that this has to be
a flat ground region. FtmnaUy, a set of consistency constraints C ^ is as
(MmyMm). The Cm amsnninw are propagated through the individual interpretations (M^Fk) by using
die connectivity infonnatkn stored in die colored-range feature description. The propagation is simple
considering die snail imiflbor of features remaining at this stage*

The final result i§ a consistent set of interpretations of the scene features, and a grouping of die
features into sets that correspond to the same object Hie last result is a by-product of die consistency
check/md die use of coowctivity d * * 1 ^ ^ ttows the color and nage kw«es of a scene which

i d #%fcontains 1 i w d ,
colofednrji
into the video image- Tliis act
the two sensors, am

Only a portion
sensors (60* for die
a portion of die
Tlie edges are
ace. H o n e 4 S * * « *
image. ii
The road in this •
satisfy die odor
the consistency <^»ii»$«Mh wfettift*«hcr
interpreted as
is in general dmo*$
such as an

lastency iimtiaprinw a

of die corresponding
th* have been mapped
kl resolutions between

of Rgure46.
between the two
Figure 47 shows

on the color image,
die ground and the

*d*p found in the range
the road is extraaed.

the shadows do not
(flatness), and on

id with d * tree$\ The shadows are therefore
type of reasoning

models of the objects
also makes die
programs [32].

6 Concluffloa

We have described tedmiques for taiiding art
We have demonstraed these trrim^ Some ofthem (Sections 33,3.4,
and 42) were i mcfraifd in a latgc mobile robot system diat was successfully tested in die field We expect
that the module dutt manipulates and a n t e s tbeat terrain representations will become part of the standard
owe system of our outdoor mobile robots, jost as a local path planner or a low-level vehicle controller
are standard modules of t mobile robot system independent of its application. This wcxk will begin by
combining die polygonal tenain representation of Section 3.4 with dm path planner of [38] in order to
generate the basic capabilities for an ofif-road vehicle.

Many issues still remain to be invegrigafrd f la t of all* we must define a uniform way of representing
flm^j lywnhifitTiff the ^w?cftf*<l*f>f*#Mt "* tht tiCiTyn iwnpf. Cuncntly, the unceitainty models dftpend heavily on
the type of sensor used and on die level at which the tenain is represented. Fuithcnnore, tte displacements
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Figure 45: Color and range image* of an outdoor scene
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Bgure 47: Edge features from the colored-range image
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between terrain maps are known only up to a certain level of uncertainty. This level of uncertainty must
he evaluated and ***>A**mA th iwiA th^ matrhino **f « * — whether iccxiic or f***"**-1!****** Resardinff
the combination of die 3-D repmciuafioiis wiA lepiescntatioBS ftoin other souofSvwe aec î̂ o define
an algorithm for sensor registration that is general enough for application to a variety of situations. The
algorithms pit wnruil in SWUMB 5 are sill wry depwdea* en m^wmmmtim <m used, sod OP the intended
application. Registntiofi schemes such as [17] would enable i» to ha^e «more ttifban appHJch to the
problem. ApadiMelSmrf^
causco oy tne ooraomciop 01 toe M&socSt wotco we 010 tsot oo m oecoon p« Anomer IMK conccnis

' f h 4 ^ iour of die three the and the sensor

A natural extension of this

these algoriduns in a cotnnion representation that can be part of the coie system o& a mobile
robot Finally, *m have tackled die terrain representation problems mainly from a geometrical point of

to identify knows objects in the
.such

perfl^ited

remains a major research area for oimtoor motwte robots.

is to use the 3-D tenain
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