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A CLASS OF LOCATION, DISTRIBUTION
AND SCHEDULING PROBLEMS:

MODELING AND SOLUTION METHODS

by

Egon Balas
Carnegie-Mellon University
Pittsburgh, Pa., U.S.A.

1. Introduction

A large variety of location, distribution, scheduling and other prob-
lems can be formulated as variants of a mathematical model known as the
covering or set covering problem. A partial list of real world problems to
which this approach has been successfully applied includes the following
instances (see the Bibliography on Applications at the end of the paper):
- gite selection and facility location-allocation problems
= location of emergency service facilities (fire stations, hospitals etc.)
= choice of size and location of drilling platforms.in offshore oilfields
- vehicle routing: truck dispatching problem, tanker fleet and air-
line fleet scheduling
- crew scheduling for airlines, bus companies, railways
- the minimum test set (diagnostic) problem (in industry, medicine,
experimental design)
- switching circuit design (electrical engineering)
- distribution of broadcasting frequencies among radio or TV stations
- information retrieval (from computer files)
- assembly line balancing
- stock cutting

- various capital investment decisions.




The (weighted) set covering problemis

(SO m n(cx| Ax >_e, xj«Oor 1, jeN
where A» (%j"%j°0or 1, ieM» [I,..., n, jeN» [I,..., n}, ceRR
ecR’n, and e® (1,..., 1). Its nane comes fromthe follow ng interpretation:

if the rows of A are associated with the elenents of the set M and each

Tk 1, then (SO
j eN whose

col um aj of Awith the subset MJ of those ieMsuch that a

is the problemof finding a mninumweight fanly of subsets MJ,
unionis M i.e., which "cover" M each subset I\/5 bei ng wei ghted with C)'

The speci al case when Cj« 1, ¥ jeN is called the sinple (unwei ghted) covering
pr obl em

Anot her interpretation of (SO is as follows. Let G* (V, E) be a

bi partite graph, i.e., a graph whose vertex set V can be 'partiti oned into
two subsets, V| and Vi such that ECAXVj, i.e., every edge (i, j)eEis
of the formieVl, jeVr. W say that a vertex j in V2 covers a vertex i in

Vpif (i, j)cE If vertex | has weight ¢c , ¥e jeV2, then (SO is the probl em

b
of covering the vertices of V.l with a mnimumwei ght subset of the vertices
of Vo, with M- Vs H- V,, and for jeV,, MJ* [icVjJd, j)eE}.

Aclose relative of (SO is (weighted) set partitioning (equality-

constrained set covering) problem

(SP) ndnCcx| Ax » e, xj » 0or 1, jeN

where A, e and c are as before. (S?) can be brought to the form (SO by
witing
mneEcx + 8ey|AX - y - e, y >0, xj* Oor 1, jeN

and then, using y * AXx - e,




mnt-em+ c' xJAX >_e, Xy » 0 or 1, jeN}

with ¢ »c+ SeA For sufficiently large 9 (for instance, 9 > £ ¢
j cN
probl emhas the same set of optimal solutions as (SP) whenever the latter is

, this

feasible. Both set covering and set partitioning are used in formulating
the problens |isted above, and sonetines a mxed covering-partitioning prob-
lemarises. Also, in many real-world situations a few extra constraints may
be needed, which require appropriate modifications of the solution nethods.
In the next section we discuss the nodeling potential of the set

covering approach, illustrating the problemformulation techniques on severa
inportant classes of real-world problems. In section 3 we describe a class
of algorithms for solving set covering problens, based on cutting planes,
heuristics and subgradient optimzation. Finally, as an Appendi x we provide
t wo bibliograbhies, one on theory and al gorithms, the second one on applica-
tions (classified by area) of the set covering and set partitioning nodels.

2. Modeling Technigues

The high versatility of the nodel under discussion stems fromthe
fact that all the real world problems |isted above, and a great variety of
ot her problens, can be formilated as follows. G ven

(i) afinite set M

(i1) a systemof constraints on the elenents of M defining a famly F

of "acceptable" subsets of M and
(ii1) a function on Mdefining a cost for every menber of the famly F,

find a mninmumcost collection of nenbers of F which, cover M i.e., whose
union is M

The applicability of the set covering nmodel to problens anmenable to

this fornulation is based on the sinple but inportant observation that in




nost cases problens of this formcan be solved with a satisfactory degree of
precision by the foll owing two-stage approxi mati on procedure.

Stage 1, Wsing (ii) and (iii), generate explicitly a subfamly ‘I‘:CF,
= ch}ﬁcﬁr\{» With associated costs C jeN for which the probability that
F contains an optimal solution is sufficiently |arge.

Stage 2. Replace the objective function (iii) by ex, and the system

of constraints (ii) by Ax > e, x.J * 0or 1, jeN where the colums of A

correspond to the elenents of F (i.e., aij * 1 if ieM-1 and ay =0 ot herwi se),

|
and solve the resulting set covering probl em

In the following we illustrate this modeling procedure on several
exanpl es.

Ofshore Drilling Platforns. To start the exploration of an offshore

oilfield, after fixing the location of the wells to be drilled on the basis

of geol ogi cal data, one has to choose the appropriate size and | ocation of

the platforns to be used for the drilling (gnd later for the expl oi tati on)

of the wells. Drilling platforns vary imensely in size and cost. A platform
may handl e just one or two wells, or as many as 30-40 wells; it can be just

a fewyards high or as high as the Enpire State Building;. and it may cost any-
wher e between a few hundred thousand dollars and 100 mllion dollars. The
best platformwell configuration depends on the di stances between the wells,
the shape of the seabed, the depth of the water, the depth to whi ch one has
todrill toreach the oil, etc. These factors define both the system of
constraints on the size and location of the platforns, and the cost function.
Rather than trying to wite down explicitly these conplicated and hi ghiy non-
linear functions and constraints, one can proceed as follows. @ven the

location of mwells expressed as a set of coordinate pairs in 2-space,




(Wy, " 20»efen(Mi» W2n> @ set on heuristic rules are defined and put into

a conputer program for grouping together wells that might lend thenselves to
being drilled froma single platform For each such group of wells, say NE,
the cost of the corresponding platform connecting pipes and other necessary
equi pnment, is estimated and expressed as a single nunber %. The wells are
grouped in many different ways, and each group NH corresponds to a candidate
platform i.e., one that may or may not be built. Each candidate platformj
is associated with a cost cy and a colunn-aj of a 0-1 matrix to be used in

a set covering problem narely aijS 1 if well i is included in the group of
candi date platformi, aij e 0 otherwise. Solving the set covering (or set
partitioning) problem fornmulated this way will then select an optinal conbina-
tion of drilling platforns to be built. Al though the set "covering problem
can usually (i.e., up to 1000-2000 colums) be solved to optimality, the
solution obtained is not necessarily optinmal for the real problem since sone
conbi nation of platforns and wells nmay have been omtted in the Stage 1 pro-
cedure of generating platformcandidates. But if a sufficiently reliable
procedure is used in Stage 1, i.e., one that does not onit any prom sing
candi date, then the optinmal solution of the Stage 2 problem should be pretty

close to the optimumof the real problem

Location and Nunber of Energency Service Facilities. In deciding upon

the nunber and | ocation of hospitals, fire stations or other enmergency service
facilities dedicated to fill the needs of a certain area, one good criterion
to use is that each point in the area be reachable fromat |east one facility
in no nmore than sone predetefnined tine limt t. |If the points of the area
(popul ation centers, villages, quarters of a city, etc.) are represented as

vertices of a graph, and the candidates for the location of a service facility




as a subset of those vertices, and if the edges of the graph have I|engths
associated with themthat reflect the time needed to reach an end-vertex of
the edge fromthe other, then Stage 1 consists of determ ning, for each

candi date location j, the set NB of vertices reachable fromj within the
“time limt t. Stage 2 will then solve a set covering probl emwhose coefficient
matri x A has a col um a.J for each candidate |ocation for a service facility,
Wi th iij e« 1 if point i can be reached fromcandidate facility j in no

nore tine than t, aij « 0 otherwise. The solution gives both the nunber and
location of the facilities neededs bviously, the result is a function of
the time limt t, and solving the problemfor the relevant range of val ues

of t also provideé i nformati on about the cost of inproving the energency

services, or the savings achievable through a relaxation of the service

requi renents.

Crew Scheduling. Airlines, bus conpanies, railways are facing the

probl em of scheduling their crews for the fIighfs or trips to be provided in

a given time period. To take the case of an airline, crews based in various
cities have to bé scheduled to man the flights of a given time period, say

a week, so as to make the best use of their time. The conditions that have

to be net are those of avoi ding conflicts in the schedule, providing for reason-.
abl e breaks between flights, keeping a limt on the nunber of hours flown

at night as well as a bal ance between the various crews in this respect,

havi ng each crew spend tinme periodically at its home base, etc. All these

and ot her considerations that have to be taken into account give rise to a

hi ghly conpl ex cost function and constraints, hard even to formnul ate.

Instead of trying to do so, however, one usually sets up this problemas a




set covering problem without ever writing down the constraints in functional
form. In Stage 1, tentative routes are explicitly generated for each crew,
that take into account the requirements, i.e., exclude conflicts, provide for
breaks, etc. This is done by many airlines through heuristic programs that
examine explicitly a very large anumber of possible schedules for each crew
and retain those among them that are not obviously bad. Each such candidate
schedule for a crew generates a column aj of the 0-1 matrix A, where a,, = 1

ij

if schedule j (for a given crew) includes flight-leg i, aij = 0 otherwise,

and a cost cj which is a synthetic expression of the extent to which schedule
j meets (or violates) the above listed requirements. Here a flight-leg is

a flight leaving a given city at a given time and reaching another city at

a8 given time. Solving the set covering problem (or set pértitioning problem;
depending on conditions specific to each airline), provides a schedule for
egch crew that covers all the flight legs to be covered during the period in
question, while minimizing the total cost of the overall schedule kin terms
of inconvenience, or sometimes actual monef).

The Minimum Test Set Problem. The following problem arises in environ-
ments as diverse as product classification and quality coatrol in industry,
medical diagnostics, design of experiments, etc. Given a2 set of objects
Q= {1,...,9}, and a set of attributes (properties) P = {1,...,p} of some
of these objects, find a minimal set S of properties to enable ome to distinguish
between the objects; in other words, find a set S &< P such that for every pair
of objects i, jeQ, there exists at least one property keS such that object i
has property k and object j does not have it, or vice versa. In an industrial

context, the properties in question are characteristics that make it possible




to classify a product (as belonging or not belonging to a certain class,
being or not being admissible, etc.) on the basis of a minimum number of
measurements or tests. In a medical context, one is looking for a minimum
number of tests that one has to perform in order to safely diagnose a disease,
or, which is the same thing, be gble to distinguish between diseases showing
similar symptoms. Other applications abound, and the problem can also be
formulated somewhat more genmerally by assigning weights to the properties
and asking for a minimum-weight (rather than a minimum-cardinality) set of
properties to satisfy the required condition. BHere the interpretation of
the weights may be the cost of the tests or measurements (in industry), the
risk involved in the tests (in medicine), etec.

The formulation of this problem as a set covering problem is not so
straightforward as in the other examples discussed above. Let D = (dij) be
the incidence matrix of objects versus properties, i.e., let D have a row

for every object and a column for every property, with di = 1 if object 1

3

has property j, dij = 0 otherwise. Then our problem can be stated as that

of finding a minimum number of columns (or, if the properties are weighted,

a minimum-weight subset of the column set) such that the submatrix of D
consisting of these columns has no pair of rows that are componentwise equal;
in other words, such that for every pair i, k of rows (objects), the submatrix

in question contains at least one column (property) j such that d,, = 1 and

ij

dkj = 0, or dij = 0 and dkj = 1.

Now define a new O-1 matrix A = (a,,) with n = p columns, one for

ij
every column of D, and m = % q(q-1) rows, one for every distinct pair of
rows of D and such that, if row k of A corresponds to the pair of rows

1k’ jk Of D, then




r

ud *
) 1 - @ ‘X/
s 1
10 if dy o =d
Lt gt
Wth this definition, the m.ni.mni. test set problemcan be fornulated

as the set covering problem

(SO mn{cxjAx >e, x,* 0or 1, jeN},

b
where e and N are as before, while c.J is the weight assigned to property |
(i.e., if we are solving the unweighted problem c j* 1, ¥>jeN).

3.  Solution Methods

In this section we discuss a class of algorithms for solving set
covering problens, based on cutting planes fromconditional bounds [1, 2].
Several versions of such an algorithmwere inplenented jointly with A Ho [3],
and extensively tested on randomy generated and .real world problens, with
the conclusion that this algorithmis a reliable and efficient tool for solving
| arge, sparse set covering problenms of the kind that frequently occurs in
practice. Wth a time limt of 10 minutes on a DEC 20/50, we have sol ved
all but one of a set of 50 randonly generated set covering problems with up
to 200 constraints, 2000 variables and 8000 nonzero matrix entries (here
"solving" neans finding an optimal solution and proving its optimality),
never generating a branch and bound tree with nore than 50 nodes. For prob-
lems that are too large to be solved within a reasonable tinme limt, the
procedure usual ly finds good feasible solutions, with a bound on the distance

fromthe optimum (for the one unsolved problem this bound was 2.3% .
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W consider the set covering problem (SC introduced in section 1, and
denot e
M; * CieM|a; « |}, jcN; H. » CjcNJa* » |}, icM.

We also use the pair of dual linear programs

(L) min {cx|Ax> e, x> 0}
and
(D) max {ueluA <c, u > 0}

associated with (SC).

A 0-1 vector x sgtisfyi ng Ax > e is called a cover, and S(x) = [jel\Ux.J * |}
its support, A cover whose support is nonredundant is prine., For a cover X, we
denote T(x) « {ieMa'x= 1}, where ai' is thei-th row of A

The theory underlying the famly of cutting planes from conditionai bounds
can be summarized as follows (for proofs of these statements, interpretation of
the cuts in terms of conditional bounds, and further el aboration.on their
properties, see [2]).

Let z3 be some upper bound on the value of (SC), and let u be any feasible

solutionto (D), with s « ¢ - uA such that the condition

(1) Z s. >z" - ue
jeS J u
is satisfied for some SSN. Let S* [j(D, .-., j(p)}, and let Qi.i * 1, ... ¢t P,

be any collection of subsets of N satisfying

2) jeN.

z 8 <s,,

Then every cover z such that ex < z_ satisfies the disjunctioa

(3) $ (*. .0 jQ.).
=1 - :
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Further, for any choice of indices h(i)eM i » 1,..., p, the disjunction

(3) implies the inequality

(4) E rr=1
wher e
P
W= (N \Q,).

Finally, if j(i)cQ, i = 1,...,P, and if X is a cover such that SES(X-),
and h(i)eT(Y)nI\/}(i), I =1,...,p, then the inequality (4) cuts off X and defines

a facet of
P«coov{x e RAx >e, Z x.>1, x>0, x. integer, jctf},
j cW J J
where convV means the convex hull of the set V.

"Using the above results, one can generate a sequence of cutting planes that
are all distinct fromeach other, by generating a séquence of covers x and
feasible solutions u to (D). The covers x provide upper bounds, while the vectors
u provide |ower bounds on the value of (SC). Since every inequality that is
generated cuts off a cover satisfying all previously generated inequalities,
and the nunber of distinct covers is finite, the procedure ends in a finite
nunber of iterations, with an optimal cover at hand.

The algorithmalternates between two sets of heuristics, one of which finds
a "good™ prime cover z for the current problemand a (possibly inproved) upper
bound, while the other generates a feasible solution to (D) satisfying condition
(1) for S« S(x), and fromit a cutting plane (4) that cuts off x, as well as a

(possi bly inproved) |ower bound. Wienever a disjunction (3) is obtained with p * 1,
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all the variabl es indexed by QL are set to 0. The second set of heuristics is
periodi cal |y suppl emented by subgradient optimnm zation to obtain sharper |over
bounds.

Though this procedure in itself is guaranteed to find an optinal cover in a
finite nunber of iterations, for large problenms this nay take too many cuts*
Therefore, as soon as thé rate of inmprovenent in the bounds decreases beyond a
certain value, the algorithmbranches.

A schematic flowhart of the algorithmis shown in Fig. 1. PRI MAL
desi gnates the set of heuristicé used for finding prime covers, DUAL the
heuristics used for finding feasible dual solutions. TEST is the routine for
fixing variables at d. CUT generates a cutting plane violated by the current
cover. SGBAD uses subgradient optimization in an attenpt to find an inproved
dual solution and |ower bound. BRANCH is the branching routine which bfeaks
up the current probleminto a nunber of subproblens, while SELECT chooses- a new
subproblem to be processed.

The four decision boxes of the flowhart can be described as follows. Let
Z5 and z., be the current upper bound and |ower bound, respectively, on the
val ue of (SC).

1. If zt >z, the current subproblemis fathomed (1.1). |If zy <zt and
Lo U L u

sone variable belonging to the last prime cover has been fixed at 0, a new
cover has to be found (1.2). Oherwise, a cut is generated (1.3).

2. After adding a cut, the algorithmreturns to PRIMAL (2.1) unless the
iteration counter is a nultiple of some constant a, in which case (2.2) it
uses subgradient optimzation in an attenpt to inprove upon zy. Based on sone

experimentation, the value of < is chosen such that (|M/10) <3 < (|M/20).
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3. Ifz > Zys the current subproblem is fathomed (3.1). If z, < zy but

the gap Zy -2y has dec:eased by at least ¢ > 0 during the last 3 iterations for

some coastant 3, we c<ontinue the iterative process (3.2). Otherwise, we branch
(3.3). Again, based on some experimentation, we use ¢ = 0.5 and 8 = 4o, with

a as defined in 2.

4. 1If there are no active subproblems, the algorithm stops: the cover

associated with z, is optimal (4.1).

to the selected subproblem (4.2).

Otherwise, it applies the iterative procedure

Next we briefly discuss the various ingredients of the algorithm and their
role in making the procedure efficient.
Primal heuristics. Most of the procedures we use to generate prime covers are

of the "greedy" type, in that they comnstruct a cover by a sequence of steps, each
of which consists of the selection of a variable X, that minimizes a certain
-function of the coefficients of xj. They differ in the function £ used to
evaluate the variables. 1If kj denotes the number of positive coefficients of xj

in those rows of the current constraint set not yet covered, the general form

of the evaluation function is f(cj,kj).
Since it is computationally cheaper to consider only a subset of vafiables

at a time and since every row must be covered anyhow, we restrict the choice at
each step to those variables having a positive coefficient in some specified
row i _eM, where M indexes the rows. Denoting by R the set of rows not yet
covered and by S the support of the cover to be comnstructed, the basic procedure

that we use can be stated as follows.
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Step 0. Set R« M S+« 0, t « 1, and go to 1.
Step 1. If R=0, goto 2. Oherwi se let kj = iMHR , choose i*sR and
ol

choose j(t) such that

f(cKtV ki(t)} a m'nf(cr V#

4 =y
i*

Set Re- R\I\él(m S* SUj(t)}s t <<t +1, and go to 1.

Step 2. Consider the elenents ieS in order, and if S\{i} is the support of
a cover, set S<- S\(i}. \When all ieS have been considered, S defines a prine
cover. .

As to the choice of i~ in Step 1, we order the rows of the initial coefficient
matri x once and for all according to decreasing N., and then al ways choose i. as
the last element of the ordered set R Since the cuts generated in the procedure
also tend to have a decreasing nunber of Ifs, i.e. later cuts tend to have
fewer positive coefficients than earlier cuts, this rule approximtes the criterion
of always choosing a roww th a m ni mrum nunber of pésitive coefficients.

If the set Nl*in step 1 is replaced by N and step 2 is renoved, i.e.
if the choiceof colums is not restricted every tine to a particular rowand

the procedure is allowed to stop whenever a cover is obtained, whether prine or

not, then the above procedure is the greedy heuristic shown by Chva?al [4] to

have the following property: if z ¢ is the value of (SC and z_. t he val ue of
opt neu
the solution found by the heuristic, then
z /s < & =
heu opt — gmyj *
wher e

o
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and this bound is best possible. From a practical standpoint, this bound is

of course very poor and it was shown by Hc [6] that there is no better bound for

o

any function f used in the above procedure. Ho's proof of this result relies on
the comnstruction of examples for which the worst case bound is attained, and
different families of functions f require different examples. This suggests as

a practical remedy against the poor worst case performance of the heuristic, the

intermittent use of several functions f rather than a single one. This idea

was implemented and tested with reasonably good results. The following five

functions were considered: (i) cj; (i1) cj/kj; (iii) ¢ /logzkj; (iv) e./k logzkj;

3 AR

(v) ¢./k, ./ak,. In cases (iii) and (iv), logzk is to be replaced by 1 when k, = 1;

I3 3

and in case (v), in k

3
is to be replaced by 1 when k

3

j j =1 or 2.

The five functions were tested on a set of randomly generated problems, with

the result that mixing them intermittently rather than using any ome of them by itself
improves the quality of the solution considerably.
A different primal heuristic, that we use every time the subgradient method
is applied to obtain an improved lower bound, is based on the reduced costs
sj = ¢, - ua, produced by the subgradient method. This procedure sets xj =1

3 j
if sj =0, xj = 0 otherwise. The resulting vector x either is a cover, or else
if row i is uncovered, then sj > 0 for all jsNi, and u, can be increased to
ui + ?ig sj. This creates at least one new reduced cost Sk equal to 0, and for
each szcﬁ k we set x = 1. We proceed this way until every row is covered, after
which we apply step 2 of the first heuristic to make the cover prime. This
second heuristic, though considerably more expensive than the first ome (because

of the computational effort involved in the subgradient method), consistently

outperformed the first heuristic.




16

Dual heuristics and subgradient optimnmization. The purpose of these procedures

is to find, at a |ow conputational cost, "good'! feasible solutions to (D), hence
"good" |ower bounds are the value of (SC). The heuristics used are again of the

" greedy type, in that they construct a feasible solution to (D) by a sequence of
steps, each of which consists of selecting a rowi”™ with a snall nunber of
positiVe coefficients, and assigning to u. the maxi numvalue that can be assi gned
without violating the constraints or changing sone earlier value assignnent. In
choosing i”, priority is given to ieT(x) = (ieMaix » 1}, where x is the current
cover. This is done in order to obtain a reduced cost vector s » ¢ - UA that

satisfies condition (1) for S

S(x), since it is known (see [2]) that this is the
case if u satisfies u(Ax-e) = 0.

VWhile this heuristic (used with minor variations depending on the situation)
provi des reasonably good solutions to (D) at a very low conputational cost, a
- sharper |ower bound could of course be obtained by solving (D) to optinmality.

After sufficient cuts have been added, the value z; ,of (D) may exceed z., thus
L u

bringing the procedure to an end. However, the conputational effort involved in
repeatedly solving (D) by the sinplex nethod is considerable, and increases about
quadratically with the nunber of cuts added to the constraint set of (SC). On
the other hand, one can use subgradient optimnization to find a near-optinal
solution to (D) at a conputational cost that increases only linearly with the
nunber of cuts added. This is what we are doing periodically in order to generate
| oner bounds stronger than those provided by the heuristic.

Qur experience with the subgradi ent method has been that although it is nore
expensive than the dual heuristics often by 1 or 2 orders of nagnitude, it

neverthel ess pays off if used sparingly, in conbination w th the heuristics.
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On the one hand, it usually inproves the lower bound; on the other, it produces
a set of reduced costs that can be used to obtain inmproved covers, as explained
in connection with the primal heuristics. At the sanme tine, subgradient optim -
zation cannot replace the dual heuristics, since it usually provides fractional
solutions to (D) and such solutions tend to yield weaker cuts than the integer
sol uti ons obtained by the heuristic.

Fi xi ng_variables and generating cuts. Every time a new solution u to (D is

obt ai ned either by the heuristic or by subgradient optimzation, the algorithm
searches for variabl es X.J such t hat S'.'I >2zy - ue, and fixes themat 0. This
feature cones into play fromearly on in the procedure, and in the randony
generated test problens that we solved, the nunber of variables left by the tine
the first branching occurred, was alnost always close to the initial nunber m of
constraints.

To generate cuts, the algorithmuses the results stated at the begi nning of
this section. |In order to obtain a cut (4) as strong as possible, i.e. with |w
as small as possible, the construction of the sets QL and the choice of the indices
h(i)eMis done sequentially, so that at each step the set N, ..AQ. is mnimzed.
The (éut generating subroutine is as-follows. Let x be a CO\r/neIzr;vvitlh S(x) and T(x)
defined as before, let u be a feasible solution to (DX with s * c-uA and assune

that s satisfies (1) for S » S(x).

Step 0. Set W- 0, S » [jcS(x)|s; >0}, y «ue, t » 1, and go to 1.
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Seep 1. Let
v - tninfmax s., mnEs.|s. 27 - v},
J = [JEYs. - v}, Q- (J«| «. >v}, M- UM.
J J c J Jej J

Choose i(t) such chat

IN.,.. \ggw - mn | N-\ QUW
and let £ (1)} » Mgy - J
Then set W- I*J(N()\Q, 7 -7 +°%(¢)- "7 >xp. 80 to 2.

O herwise set S- S\ G (t)},

i T TCORPRS £ 1 JPR
’j- :

ot herwi se

t -t+1 and go to 1.

Step 2. Add to (SC the inequality

Z X4 > 1.

This procedure ternminates after a nunber of Iterations equal to the nunber
of jeS(x) such that S.'i >0, with an inequality satisfied by every cover better
than the one associated with Zn, and violated by the cover x.

Typically, the cuts tend to beconme successively stronger during the procedure,
the last few cuts often having just one or two |'s. The total nunber of cuts
required to solve an mx n problemtends to increase with both mand a. For the

random y generated sparse problens solved in our experiment, the number of cuts
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needed was typically less than 3mor n/3. This of course refers to the nunber
of cuts required when the cuts are used within the framework of an algorithm
that also uses inplicit enumeration. The cuts by thenselves, w thout branching
were able to solve all 20 test problens fromthe literature that we could obtain,
and all but one of 10 randomy generated test problems with m= 100 and n = 100,
200,...,1000. As to the larger problens, six of the ten 200 x 1000 problens
and four of the ten 200 x 2000 problens that we generated, were solved by
cutting planes only w thout branching.

Branchi ng_and node selection. W branch whenever the gap «v - z. decreases
u Li

by less than e - 0.5 during a sequence of 4 a iterations, where ot is the frequency
of applying the subgradient nethod (in nunber of iterations). The algorithm
uses two branching rules internmttently. The first one is based on disjunction
(3), the second ane is a variant of the dichotony proposed by Etcheberry [5].
Since our tests showed that none of the two rules dominates the other, we use
both rules, with the follow ng choice criterion: since rule 1 fixes nore variabl es,
but at the cost of creating nore branches, we prefer fule lonly if it fixes
nore variables than could be fixed by creating the sane nunber of branches through
bi nary (dichotomic) branching. More precisely, we choose rule 1 if, while
creating p branches, it fixes at least p log2p variables. As to node selection
we use the LIFO rule.

Cool-pri-aiohal—axpa--anca. A detailed account of our conputational experience
is to be found in [3]. Here we reproduce only the results on the largest 10
test problens, a set of randomy generated problens with 200 constraints and
2,000 variables, with 8,000 non-zero entries in the coefficient matrix and with

costs drawn fromthe interval [1,100]. The results are shown in Table 1.
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Table 1. Results on 10 randomly generated problems.

‘ Before first branching Nodes in Time

No. z z z Variables search tree | Cuts Dec 20/50
opt 9] L left seconds
1 253 256 250.6 204 30 473 327.9

2* 307%* | 315 299.3 408 >51 >625 >600
3 226 226 226.0 0 1 0 26.9
A 242 247 240.3 258 49 765 393.2
5 211 211 211.0 0 1 15 38.7
6 213 213 213.0 0 1 10 32.7
7 293 296 291.0 173 15 298 248.7
8 288 288 286.1 125 28 413 241.4
9 279 |281 | 276.2 181 7 118 140.6
10 265 265 265.0 0 1 0 25.9

* Time limit of 10 minutes exceeded.

*%* Best solution found in 10 minutes.

Based on our computational experience, we can assert that the above described
algorithm performs considerably better than earlier procedures proposed in the
literature, and is in fact a reasonably reliable, efficient tool for solving
large, sparse set covering problems, as well as for finding good approximate

solutions to problems that are too hard to solve exactly.
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