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ABSTRACT

The following type of problem arises in practice: in a node-weighted
graph G, find a minimum weight node set that satisfies certain conditions
and, in addition, induces a perfectly matchable subgraph of G. This has led
us to study the convex hull of incidence vectors of node sets that induce
perfectly matchable subgraphs of a graph G, which we call the perfectly
matchable subgraph polytope of G. For the case when G is bipartite, we
give a linear characterization of this polytope, i.e., specify a system of
linear inequalities whose basic solutions are the incidence vectors of
perfectly matchable node sets of G. We derive this result by three different
approaches, using linear programming duality, projection, and lattice
polyhedra, respectively. The projection approach is used here for the first
time as a proof method in polyhedral combinatorics, and seems to have many
similar applications Finally, we completely characterize the facets of

our polytope, i.e., we separate the essential inequalities of our linear

defining system from the redundant ones.
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1. Introduction
Gven a graph G+ (V,E), it is often of interest to identify those
node sets of G that are perfectly matchable, i.e., those S£V such that
< S >, the subgraph of Ginduced by S, has a perfect matching. W call

the convex hull of the incidence vectors of perfectly matchabl e node sets

of a graph G the perfectly matchabl e subgraph pol ytope (PM5 pol ytope) of G

The identification of the perfectly nmatchable node sets of a graph G
woul d of course becone much easier if the "PI\/B pol ytope of G could be Linearly
descri bed, | i.e., if one had a systemof linear inequalities whose basic sol u-
tions are precisely the extrene points of the PM5 pol yt ope c;f G The existence
of such a linear systemfollows fromthe by now classical result that the
convex hull of a finite set of points inE®is the intersection of a finite
nunber of hal fspaces in]R, i.e., the solution set of a finite system of
linear inequalities in n variables. But the identification of such a linear
systemdefining a pol ytope given by the set of its extrene points (that are
either explicitly listed or specified by some definition, like here) is
usually a hard task, which has so far been solved only for a few cases. In
this paper we give such a linear characterization of the IM5s pol ytope of
a bipartite graph. The case of a general graph will be addressed in another
paper .

The question exam ned here arose in the context of a real world

problem that had to do with the optimal scheduling of drivers for a mnunicipal




bus company. This particular application, which gave the initial notiva-
tion for our research, is described in section 2 of the paper. Section 3
i ntroduces the systemof linear inequalities defining the IM5 pol ytope of
a bipartite graph and gives a first proof of the validity of this l|inear
characterization, based on linear programmng duality theory. Section 4
gives an alternative proof, using a projection technique that is of interest
initself, since it may serve as a proof method in situations anal ogous to,
but different from the one examned here. Finally, section 5 gives a third
proof, based on the theory of lattice pol yhedra.

Section 6 of the paper focuses on the question of redundancy in the
systemintroduced in section 3, and gives a conplete characterization of
the facets of the IM5 polytope of a bipartite graph.

"2, Mtivation: A Bus Driver Scheduling Probl em

The foll owi ng problemwas brought to our attention by M. A Roes
of the Operations Research group of Nederl andse Spoorwegen, the Dutch
Rai | way Conpany.

A nuni ci pal bus conpany had to schedule the tours of duty of its
drivers, so as to cover a daily set of trips to be executed. A set covering

approach was used, i.e., the problemwas fornulated as
mn{cx|Ax >e, x e {0,1}"},

where Ais an mX n 0-1 matrix whose jtﬂ'l colum represents a potenti al
daily (tour of) duty for a driver, wth aij’ 1 if duty j covers trip i,
a':.'] = 0 otherwi se, while c.J is the cost of duty j, and e = (1,...,1). In
a typical case the matrix A had about 150-200 rows and 3000-4000 col ums.

However, the way the columms of A i.e., the potential duties, were

generated, suggested another approach. Initially, a set of 'fearly parts




(morning half-tours) and "late parts® (afternoon hal f-tours) of duty were generated
i ndependent|ly of each other, then all the conpatible early part-late part
pairs were.explicitly generated as potential full day duties. The nunber
of earl_y parts and late parts was typically about 150 and 200 respectively,
and the 3-4000 colunms of A arose fromthe fact that only 10-13% of the
30,000 pairs were conpatible (because of starting and ending properties in
space and tinme). If the nunber of early parts and late parts is rLL and nz,
respectively, and the ratio of conpatible early part-late part pairs to all
such pairs is r, thenn=r X ri-X Ny, i.e., nis usually nmuch larger than
R *v

Now | et Al» %a.lj) and %\ = (aij) be m X n and m X N2 matrices,

respectively, defined by

1 1 if early part j covers trip i
a =
s 0 ot her wi se

and
’

2 J 1 if late part j covers trip i

L. = L
i I

J ~O .ot her wi se,

and |et c1 and 02 be the cost vectors of early parts and late parts,
respectively. Further, let G = O"UV-Z, E) be the bipartite graph whose
node sets V.L and VZ correspond to the early parts and the late parts,
respectively, and whose edges correspond to conpatible early part-late

part pairs. Then the above problemcan be refornmulated as foll ows:
(i) Fnd xl e{0,1} J—land x‘2e{0,l} Sto

11 2 2
(2.1) mnimze ex + c X

subject to

(2.2) Arct + A*x? > e




and
(2.3) (xl, x2) is the incidence vector of sone SS\[1 UV, such that
< S > has a perfect natching.
(ii) Find a mninumwei ght perfect matching in the graph < S >
wi th edge-wei ghts

cij = ¢y + s (1,§) <E.

Here, as before, < S > denotes the subgraph of G induced by
the node set S

Problem (ii) is of course polynomally solvable; whereas problem (i)
repl aces the original 3-4000 variable set covering problemby a 350-variable
set covering problemw th side condition (2.3).

The solvability of the problem thus hinges on whether one can con-

veniently rebr esent condition (2.3).

3. A Linear Characterization of the PM5 Pol vt ope

Let G= OMUV”™ E) be a bipartite graph with parts V, and V,, i.e.,
with node set V = VAUV and edge set E such that every eeE joins sone node
of Vl to sone node of V,.

Let 72(Q be the famly of perfectly matchable node sets of G i.e.,
M(G) « [SEV|< S > has a perfect matching}.

For any SSV, the incidence vector (characteristic vector) of Sis
x e{0,1}*7 such that X. - 1, jes, Xy = 0, jelS. Let £(G be the set of
i nci dence vectors of nmenbers of flJ(G, and for an-y set T, let conv T denote
the convex hull of T.

Qur objective in this section is to give a linear system of inequali-

ties defining conv % G), i.e., the EM5 pol ytope of G




Wienever it is not confusing, wew Il wite7f( for JfI (G and X‘for Z(G).
Many probl ens invol ving matchings, in particular in bipartite graphs,
can be shown to be special cases of certain matroid problens. For instance,

if G* OMNUV~A E) is the bipartite graph introduced above and for k * 1, 2,

‘]k is the fanily of those edge sets that nmeet every node in V‘u at nost

once, then the systemMK = (E J is amtroid; and the intersection of

)
the two matroids ML and I\/k_<£ i s the independence system (E J—Hj H"_) , Where
Jln«32 is sinply the famly of all (not necessarily perfect) matchings

in G The _matchi-ng pol ytope of Gis then the convex hull of incidence
vectors of all nenbers of ‘]1H‘]2'

Anot her exanple, nore closely related to our problemis the follow ng.
In an arbitrary graph Hwith node set N, let c? be the famly of those sub-
sets of N covered by some matching. Then the system (N «J), as shown by
Ednonds and Ful kerson [4], is a natroid.

In such cases as the above, results on matroid pol yhedra due to
Ednonds [2, 3] lead to linear characterizations of the type that we are
interested in. However, these results are not applicable to our case, since
the PMB pol yhedron of a graph (bipartite or not) does not have a matroidal
structure. To see this, it is sufficient to recall the fact that every
Sc#J(G is of even cardinality.

VW now briefly state our notational conventions. An edge joining
nodes i and j is denoted (i,j). For S, TE£V, the set of edges joining nodes
inS tonodes inTis denoted (S, T). For SCV, F(S) denotes the set of

nodes adjacent to sonme node in S. Cdearly, if SSV.L, then F(S) £V, and

vice versa. For the sake of brevity, we wite F(i) for F({i}).

i
For any x em ’* and any SEV, we let x(S) = L(x,:1ie8).




Next we state the linear systemdefining the M5 polytope of G i.e.,
the convex hull of X
Theorem 3.1. Let P be the convex pol ytope consisting of those
V]
x e3R ! satisfying

(3.1) 0<x: =21, ieVv
(3.2) X(V) - x(Vz) =0

and

(3.3) X(S) - x(r(S)) <0, V- SCV;.

Then P = conv X

Proof. It is easy to see that conv %CP. For let x be any vertex
of conv X; then x is the incidence vector of some T e#], hence (3.1) holds
trivially. Further, (3.2) is the requirenent that 1 TpPivr = JTfIV”, and
(3.3) sinply states that for any SdV-L, T nust contain at |east as many
nodes of F(S) as of S. Both of these requirenents are readily seen to bhe
necessary conditions for < T > to have a perfect matching, and together they
constitute the "easy' part of the well-known K8nig-Hall theorem[11], [6].

To prove the converse, nanely that PSconv X; we will show that
every vertex of P belongs to X This will be done by show ng that for
any vector ¢ » (ci:ie\/) of real node costs there is an optinmal solution x*

to the linear program
(L) max{cx|x s P},

such that x* e X Since every vertex of P is. the unique optinmal solution
to such a linear programfor sone ¢, this will give the result.

W define a vector Z = (c."l.J:
for all (i,j)eE For any matching MCE, if S is the set of nodes covered

(i,j)eE) of edge costs by letting C-T:.j =cC

by M then Mi s a perfect matching in < S > and




(3.4) Z(cij:(i,j)eM) = Z(ci:i€S).

Conversely, for any S ¢ and any perfect matching M in < S >, M is also

a matching in G, and (3.4) holds. Therefore the problem of maximizing cx
over x ¢ X can be solved by finding a maximum-weight matching (in terms of
the edge-weights ¢) in G.

Let M* be such a matching, and let x* be the incidence vector of the
node set S* covered by M*, We will show that x* is an optimal solution to
the linear program (L), by constructing a feasible solution to the dual of
(L) having the same objective function value as (L).

Since edge-variables are two-indexed, we amend our notational con-
ventions by writing, for S, T<V, u(S,T) = Z(uij:ies, jeT), and u(i,T) = u({i}, T),
u(s, ) = u(s,{ih. )

The graph G being bipartite, the incidence vector u* of the matching

M* is an optimal solution to the linear program

max cu
(L)) u(t,v,) <1 16V,
uV,) <1 jev,

whose dual is

min t(Vl) + t(Vz)

(Dl) & + tj > cij (1,3)eE
t >0
Let t* be an optimal solutiom to (Dl)' By linear programming
duality,




(3.5) E(Cij (i j)eM) = t*n) + t*(Vy).

W aowwite down the linear program (D), dual to (L):

mnyOt) +y(V)

(3.6) yi + £(zs:Ss: Vi, ieS) >c iev

i 1
(3.7) 77 - Z(zs: SSV, je r(9)) i':j jgvz
(3.8) Y& 77 2.0, 1ev,, jev,
(3.9) z4 20, sSCcv~h z unconst r ai ned.
- r Vl

How | et y;_ = t;_ for ievh y*‘tj » t; for jeV,; and z4 « O for all SSV.L..

Then (3.8) - (3.9) are satisfied, and

(3.10) y*(Vx) +y*(Vz) = t*(Vp + t*(Vp)
= S(E;j:ﬂ,j)rtf*) - ext.

Next we will describe a procedure for redefining the value of z_ for
certain subsets SSVTL in such a way as to satisfy (3.6)-(3.7), without changi ng
the val ue of any y*i. Therefore, the ‘vect or (y*, z) obtained in this way wil |
be the optimal solution to (D required for the conpletion of our proof.

At all stages of the procedure, the vector (y*, z) will satisfy the

following two symetric properties:

(3.11) If for sonet ~

y; +E(zS:SSV ieS) » c; - e for sone e >0,

11




then for every jeF(i),

y; - S(24:SCV,, jeT(S)) >g + e.
(3.12) If for some jeV;
y’é - S(zé:SCV.L, jcl Xs)) = 02 - e for sone e >0,

then for every ieF(j),

y;_ + E(zg:SCVys icS) =2 c: + e.

These conditions state that if the current solution violates the
inequal ity associated with sonme node by an anmount e, there is a surplus
of at least e at every adjacent node. By the initial definition of (y*, 2)
and in viewof the inequalities t*i + t*j >_£.1.J, conditions (3.11)-(3. 12)

are satisfied initially.

Defi ne

s, = [uvl\y; + z(zszs_:vl, ics) <c.},

To ~ tjeVaidry - S(zg:ScVir jeT(S)) < g}

Note that by (3.11) and (3.12), no ieSo and jeTo are adj acent.

If at any stage of the procedure S0 = T°=0, then (3.6) and (3.7)
are satisfied and we are done. |If So N0, let s =0 and performReduction 1.
If Sge O but T £ 0, let t =0 and performReducfion 2.

Reduction 1. Let

€= mnec, - yi - E(z :SSC\I/,ieS)
igS
3
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and define Z. = e(>0). Then (3.11) and (3.12) are still satisfied
s -
(since (3.11) was satisfied before), but the set

Sup * eV 1'1.y*.)(+ E(z SSV,, ie9) <c.}

is a proper subset of Sa.

If S ,.=(9 Reduction 1 is conplete; otherwise set s «- s 4- 1 and
STI

repeat Reduction 1.

RedoectTom2. Let

€=nin c. - y* +S(Z”ISCV1, jel"(S))_
Jer,
Then e >0. Definez. »z - € S =V\r(T), and 2= =2zr + e Note
N Vl t i t S'[ Sfc

that the effect of this change is to decrease c. - y* + 1 (z.:SEV., jer(S))
J j b [

by e for jeTt and to leave it unchanged for jc\VATE and also to decrease

y* + E(z.:ScV;, ieS) - ¢c. by e for ie (T.) but to leave it unchanged for
v \ra). ! x c

Conditions (3.11) and (3.12) still hold (since (3.12) was satisfied

before), and the new z, still satisfy (3.9); but the set
'zly; - B(zg:S V., jel(8)) < cj}

is a proper subset of Tt.

| f Tt—!-l = 0, Reduction 2 is conplete; otherwise set t «- t + 1 and
repeat Reduction 2.

After at nost Is | < JW] iterations of Reduction 1 and at nost
1T°1_§ IV2\ iterations of Reduction 2 we obtain a vector (y*, z) satisfying

(3.6)-(3.9), and thus the proof of the theoremis conplete.]||

At this point sone remarks are in order.
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First, there is a certain lack of symretry in the |inear system
(3.1)-(3.3) defining conv Z, in that it contains inequalities only for sub-
sets S of Vl’ but not for subsets T of V2, The anal ogous inequalities for

subsets of V2 woul d be

(3.13)  x(T) - x(T(T)) <0, ¥TCV,

These are clearly valid and could have been included in the system but
they can al so be derived from (3.1)-(3.3). For if TSV_z and we define
S 2 V.L\r(T), then F(S)CV,\T; and by subtracting (3.2) fromthe inequality
x(S) - x(T(S))_<0, we obtain x(Va\r(S)) - x(T(T)) <0. But since
T(S)SV AT inplies TCV,\r (S), and since x >0, this last inequality
inplies x(T) - x(r(T)) <0O.
If we had incl uded the-inequalities (3.13) in our system defin{ng
conv X, then Reductions 1 and 2 could have been nmade conpletely symetric
by using the new dual variables that woul d have been introduced.
Second, suppose SCVl is such that the graph < SUT(S) >is dis-
connected, with conponents <5 Ur(S.& > k=1,...,9. Then the inequality
X(S) - x(r(S)) =<0 is the sumof the q inequalities x(S«) - x(E(S)) <0,
k «1,...,0q, hence redundant. Now suppose < SUr(S) > is connected and Kis the
node set of the conponent of G containing < SUF(S) >, wth K.1: Kflvi, i =1,2,
but the graph < (Iq'_XS) U(K)\T(S)) > is disconnected, with conponents < T¢ >,
k=1,...,9. Let TK:Tknvt, i =1,2. Thenfor k =1,...,9, we have

r (‘Ik1US) ST"(‘ Ur(S), or else renoving the node set SUT(S) fromG would not

k k Ir I
make < T, UT, > a nmaxi mal connected subgraph. Al so, T(TMUS) 2T,UT(S), or
k k . \r h>
el se < Tj~UT" > would not be connected. Thus we conclude that F(TAUS) = OJ(S) .,
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But then adding the q inequalities x(TMUS) -x(r(TMUS)) <0, k=1,...,q,
and subtracting (g - 1) times the equation (3.2), yields the inequality
X(S) - x(r(S)) <0, whichis therefore redundant.
W have thus shown than Theorem 3.1 remains true if (3.3) is replaced
by
X(S) - x(1*(9) <0 for all SC\/1 such that the graphs
(3.3) < SUT(S) > and <(K\S) U(K\T(S)> are connected, where <K >is

the conponent of G containing < SUrxS) >, and K.1 = K(IV.I, i = 1,2,

Third, note that if ¢ is integer valued, then so is £ and thus t*
can be chosen to be integer valued. Then each iteration of Reduction 1 or
2 will result in integer e and hence in integer valued (y*, z). Thus for
any integer valued c, the linear program (D), dual to (L), has int eger
optinmal solutions. Thus our l|inear systemdefining the PMS pol yt ope of

a bipartite graph is totally dual integral. (This concept was introduced

by Hoffmman [9] and used extensively by Ednonds and Gles [5] . See also
Schrijver [12].)

‘Fourth, if we set c, s 1 for all ieV—L and c.J s 0 for all jeV’i, t hen
the val ue of (an optimal solution to) (L), and hence of (D), is the cardi-
nality of a n‘a_xi mummatching in G Now suppose G has no matching that covers

all ieV, thenif (y*, z*) is an opti.nal integer solution of (D),

y*(V) + y*(v2)>(: max{cx|x e P}) < V. (.

Si nce each y’i is a nonnegative integer, this inplies that y’i * 0
for sone ieV—L. But since (y*, z*) nust satisfy (3.6), there must be some

SSVlsuch t hat z*s> 0. Now suppose the optimal solution (y*, z*) is
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chosen such that the nunber of positive conponents of z* is mnimm and
let S=V, be such that z*,>0. Then \S\ > |[r(S)|; for if not, then

by addi ng z*Slto y* for ieS, subtracting gz fromy} for jer(S), and then

setting z. 2 0, we could obtain a new optimal solution to (D with fewer
positive conponents of z, a contradiction. Thus we obtain the hard part of
the KBnig-Hall Theorem nanely that if G . (V4 UV,, E) has no matching that
covers all of Vg then there exists SZV* such that \s\ >\ T(S |. Furthernore,
this last result conbined with our second remark gives a strengthened version
of the hard part of the KBnig-Hall Theorem for G such that JV1J = \wA to
have a perfect matching, it is sufficient that the condition \s\ < |[r(9( be
satisfied for every SCVj_ such that < SUr(S) > and <(Kj\S) U(K)\r(S))> are
connected, where Kis the node set of the conponent of G containing < SUF(S) >,
and Ky = KHV” i - 1,2 )

Fifth, any optinmal solution (y*, z*) to (D can be seen to have the
follofwng property. There exists a nested sequence of sets O £ Ucu - c...

n n*|

Cuj CUOCVI % Suoh that for any SCVj ZS Fo if aad oaIyS=Ui for some

ie{0,...,n}. This is so because if we did s iterations of Reduction 1,

we will have defined sets 0 £ S CS .C...CS.CS . If we did t iterations
S s-1 _ 1 o

of Reduction 2, we wiII_have defined sets S°£?]£. . £t Further, from

(3.11) and (3.12), Sch°. Conbi ni ng these sequences gives the claimed
sequence (UXi » 0,1,...,n).

Finally, we have shown that for any optimal solution t* to the
node covering probl em(Dl), there is an optinal solution (y*, z*) to (D
for which y* » t*. O course the converse is also true: if (y*, z*) is

an optinmal solution to (D), then setting t* = y* gives an optimal sol u-

tion to the node covering problem (DLY).
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4. An Alternative Derivation via Projection

In this section we give an alternative derivation of the Iinear syst'em
defining the IM5 pol yhedron of a bipartite graph, based on a pol yhedral
interpretati on of Benders's partitioning theorem [1]. This approach is of
nore general interest than its particular use in this paper, since it provides
a technique for projecting a polyhedron i aR®, or sone (not necessarily
pol yhedral) subset of a polyhedron in Hn, into sone specified subspace of IR

To be specific, let Qbe an arbitrary subset of | 9, and |et
Z={(ux)enf™ Au+Bx <bh u>0 xeQ

where AA, Band b are mX p, mXqg, and mX 1 matrices, respectively, such
that Z £ 0. The projection of Z into the subspace of the x-variables is

defined as
X = {x elR{ there exists ue*P such that (u,x)eZ}.

W are interested in describing the set Xin away simlar to Z, i.e., by
a set of linear inequalities plus, of course, the condition x e Q The
followi ng theorem acconplishes this.

Before stating the result, we recall that a polyhedral cone Cis the

intersection of a finite nunber of halfspaces through the origin, and a
pointed cone is one of which the originis an extrene point. A ray of a
cone Cis the set R(y) of all nonnegative nmultiples of sone ycC, called
the direction (vector) of R(y) . Avector yeCis extrene, if for any y”"
y,eC, y = ~(y* +y? inplies y!, y?eR(y). Aray R(y) is extreme if its
direction vector y is extreme. A pointed pol yhedral cone has a finite
nunber of extreme rays, and is the conical hull of its extreme rays.

O course, for every nonzero x e R(y), we have R(x) = R(y) and consequently

every cone that contains nore than the origin has an infinite nunber of
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extreme direction vectors. However the smallest set of vectors of which
é cone is the conical hull, consists of one direction vector from each
extreme ray.

For a cone C we let extr C denote such a (finite) set of extreme
direction vectors. Note that extr C is uniquely determined up to positive
multiples.

Theorem 4.1. Let Z and X be defined as above, and let
m
W= {veR |vA >0, v >0}.

Then
X = {x e]Rq\(vB)x < vb, ¥ ve extr W; x ¢ Q}.

Proof. The polyhedral cone W is a subset of ]R:, hence pointed..
Therefore W is the conical hull of its extreme rays, and.any x e RY satisfies
the inequality (vB)x < vb for every extreme direction v of W, if and only
if it satisfies it for all veW.

Now let x ¢ X; then X ¢ Q and there exists ue RP such that u >0
and Au + Bx < b. Further, let veW; then vBx <vb - vAu < vb, since u >0 and
vA > 0 imply vAu > 0. Thus (vB)x < vb, ¥ ve extr W.

Conversely, suppose X ¢ RY satisfies x ¢ Q and (vB)x < vb, ¥ ve extr W.
Then there exists no ve R such that vA >0, v>0 and v(b - Bx) < 0.
Therefore, from Farkas's well known Lemma, there exists some uc rP

|

{0} (like for instance in the case when A < 0), then

such that § > 0 and Ad < b - Bx. But then x ¢ X.

Note that, if W

X = {x eRYx ¢ Q].
We now turn to our problem of giving a linear characterization of

the PMS polytope of a bipartite graph G. Although we are looking for a
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linear systemin terns of the variables Xy associated with the nodes of G
we will start with the much easier task of giving a linear character-
ization in terns of variables associated with both nodes and edges. Such
a linear system of course defines a poI‘yhedron in a hi gher di nensi onal
space than the one that we are |ooking for, however by projecting this
pol yhedron into the space of the node variables we will obtain the system
of Theorem 3. 1. |
Recall that the IMs polytope of Gis conv Z, where Xis the set of
i nci dence vectors of perfectly matchabl e node sets of G Let, as before,
a variable xg be associated with node i of G and let a variable uLj be

associated with edge (i,j) of G As in section 3,we wite u(S,T) = £(u..jisS, jeT),
u(d,T) = u({L}, T), and u(s,3) = u(s,{j}). ;
V]

It is not hard to see that a 0-1 vector x em! is the incidence

vector of sone perfectly matchable node set of Gif and only if there exists

| El

sorte integer ue IR », such that

isVl
u(|,r-(|)) - xt. =0 j‘VZ
(4.1) u(r(J),uJi)j éﬂ_,: 0 (L.1) <.

Furthernore, since the coefficient matrix of (4.1) is totally
uni rodul ar, the integrality condition on u can be onmtted, and the 0-1

condition on x can be replaced by
(4.2) 0 <x: 21, i eVv.

Thus (4.1) and (4.2) provide a linear characterization of conv %
in terms of node and edge variables. One way of obtaining a linear char-
acterization in terns of the node variables only, is then to project

the pol yhedron defined by (4.1), (4.2) into the subspace of the node variabl es.




17

To this end, we first rewite (4.1)-(4.2) as a systemof |inear

inequalities. This can be done in several ways, and we choose to (a) change

the sign of the equations jsV.l; (j3 replace all equations by inequalities
of the form<, and (y) add all the inequalities thereby obtained for ieV-L
This yields

and jeV,, and change the direction of the resulting inequality.

the system

~u(i,I (1)) * x. <0 i sV,
u(T).j) - ¥ =<0 jeve
(4.3) -X(Vy) +x(Ve) £0
uyy >0 (i,j)<E
0 <x: <1 icV

which is equivalent to (4.1)-(4.2). Note that the coefficient matrix of

(4.3) is still totally uninodul ar.

VW now apply Theorem4.1 to this system The set Qand the matrices

A, B and b that define Z of Theorem4.1 are in this case as foll ows:

I 1
Q=[x elRY| - x(V.) +x(V.) <0, 0<x. <1, isV;

A is the node-edge incidence matrix of G with the signs of the

rows indexed by V-L changed;

Bis a diagonal nmatrix of order |v|, with +1 for the diagonal entries
i ndexed by V*, and -1 for those indexed by I‘2y and, finally,

b is the 0 vector with |v|] conponents.

Now the cone Wof Theorem4.1 is

=V, + v, >0, iev., iev_, (i,1)eE
W- <rverna|- i 1 3% (]

v, >0, i sV
y =
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and in order to project the pol yhedron defined by (4.3) into the subspace
of the node variables, we have to characterize the extrene rays of W

Ihearemd 2. The vector veWis extreme if and only if there exists

or >0 such that either

at for exactly onei =3J3*¢Y,
(4.4) AN
0 for all :LGVIUVZ\[_-]*]
or
a i eSUT(S)
(&4.5) v,
*+ 0 ot herw se

for sone SSV.L such that < SUF(S) > is connected.

Proof. Sufficiency. Let veWbe of the form (4.4), and assune Tor
the sake of contradiction that v is not extreme, i.e., v » 'I';L(%/ +v2) for
some vi,v7eW\R(v). Then v = v/ = 0, ¥ ievy UV,\[j~}, and v*v’eR(v). Thus
vV is extreme.

Nowv let V&V be of the forom (4.5), and again assume that v = ?1(37 + v2)
for some viv?eW. Then Vi = vi = 0 for i«(Vj\S) U (VAT(S))r and

(4.6) U IRTEE N ieSUT(S).

Note that from (4.6), for any ieS, jeT(S), v* >vJ if and only if

i
2 2 k k
vi < vy; but the constraints of Winply vi <vy3 k = 1,2, for any such pair

i,j. Hence v;_\ :vlJ?, k - 1,2, for all pairs ieS, jeF(S); and since <SU'(S) >
is connected, it follows that v.I:. :v.lJ( = ak(constant), k =1,2, for all
i,jeSUF(S). Therefore vl, v2eR(v), i.e., vis extrene.

Necessity. Let v be an extreme vector of W and let T = (ie\/|v.:L > 0}.

Define S = THV.L, and consider first tfie case where S = 0. Then if

*
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T=U» .-fj¢} witht >1, and if e.J denotes the unit vector |nluw» with 1

in position j, we have

vV=v,e, + +v, e
I It It
=j(v +v),
where vi* 2v. e. , vZ» 2(v. e. + ... +v. e. ), withv! v?eW and viiR(v),
2 2 I 12 92 It It

viR(v). Thus if |T| >1, vis not extreme, contrary to the assunption. W
conclude that if S=0, then | T| « 1 and thus v is of the form (4.4).
Now consi der the case when S~ 0. Then F(S) STflV,, or else there

exists ieS, | eF(S) such that vy > 0, vj =0, i.e., vviolates some constraint

of W Also, T(S) aT(lV,, or el se there exists j VoA r(S) such that V_] > 0.
o

But then for any e satisfying O < e <v. , the vectors v and v , obtained

— Jo

fromv by replacing v. With v.1 =v. + € and v.2 =vV. - e, respectively,
J

0 Jo Jo Jo 0
] ) 1 1 2 1 2
satisfy the equation v « j(v +v ), although v ,v €«\R(v), contrary to the

assunption that v is extreme. W therefore have F(S) = TdV2 i.e., T=SU(S),.

W claimthat < T >is connected. For suppose not, and let K be the

node set of a component of < T >  Then v e 21(\% + v2), wher e

and
2 rz"l i cK
v, =
lvi 1ev, UV,\K,
while at the sane tine v!, vZeW R(V), contrary to the assunption that v is

extreme. Thus < T >= < SLir(S) > is connected.

Finally, we claimthat v, =, ieT, for sone constant , > 0. For

suppose not; then again v = Jl(Vl +v?), with vl and v? defined by
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v}= m'n{vj:jeT} 1T
* 0 16V, UVN\T
and
2 vai - mini'v::is'r] i eT
it 10 LeV, UV,\T
whi | e vl,vzeV\YR(v), contrary to the assunption that v is extrene.

This proves that if Sj* 0, then vis of the form (4.5).]]|

Havi ng described the extreme rays of W we can now apply Theorem 4.1
to the system (4.3). The extrene direction vectors of the form (4.4) give
rise to inequalities Xy >0, ieV_2, whi ch are redundant (since they are part
of the definition of Q). The extreme vectors of the form (4.5) give r;i se
to an inequality x(S) - x(F(S))_< 0 for every SQV; such that < SUT(S) >
is connect ed.

“If Gis connected, then the inequality x(vp - x(V2) <0, which can
also be witten as x(V.L) - x(r(Vi)) < 0,' obtai ned fromthe extrene vector
of Wthat corresponds to S = Vl' together with the inequality - X(Vl) +xX(V2) <0
of (4.3), gives rise to the equation X(Vl) - X(VZ) =0. |If Gis disconnected
with conmponents < KM >, ..., <K t>’ where K £< S. 1L'JF(S.)]-, i =1,...,t, then
the equation x(vp - x(V2) = 0 is obtained by first adding the inequalities
X(Si_) - X(F(Si))f 0O, i =1,...,t, and then conbining the resulting inequality,
X(Vy) - x(Vz) < 0, with the inequality - xO") + x(Va) <_O of (4.3).

Thus appl]ning Theorem4.1 to the system (4.3), we obtain the l|inear
characterization of the RS polytope of G given in Theorem 3.1, except for
those inequalities (3.3) such that < SUT(S > is disconnected, which are
m ssing. But these inequalities are redundant, as shown in the renarks

following Theorem3.1, where the system (3.3) was replaced by (3.a').
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5. A Third Derivation via Lattice Polyhedra

Lattice polyhedra were introduced by Hoffman and Schwartz [10]
(see also [7], [8]) as a class of integer polyhedra that generalizes both
matroid polyhedra and bipartite matching polyhedra. We will show that the
PMS polytope of a bipartite graph can also be expressed in this form.

A lattice #Z is a partially ordered set closed under two associative
and commutative binary operations, A and V, and such that

for a,beZ, a N b <a,b<aVb;

(5.1)
a<b= a=anb, b=aV b,
To define a lattice polyhedron, we further need a set Y and a
mapping £:2Z - Zu that satisfies for every Wl’ WZ’ W3 e,
(5.2) W1 SWZ _<_W3 implies f(Wl) n f(W3) < f(Wz)
(5.3) f(Wl)ﬁf(WZ)C'E(‘W1 v Wz)f'\f(w1 /\WZ)
(5.4) f(Wl)Uf(Wz):f(Wl VWZ)Uf(Wl A Wz).

and a submodular function r:Z = Z + (the set of nonnegative integers). The
basic result on lattice polyhedra [10] can then be stated as follows.

Theorem 5.1. For any nonnegative integer de R‘u‘, the convex 'poly-
L)
hedron whose points are those x (-:]R“"l satisfying
(5.5) 0<x<d
and

(5.6) L(x;:ief(W)) < r (W), ¥ Wed,

has only integer vertices. Moreover, the linear system (5.5), (5.6) is

totally dual integral.
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To apply this theoremto our case, we let £ be the collection of all
WSV, ordered by set inclusion, and we define the operations v and A to
be Uand 0, respectively. Thensdis well known to be a lattice. W let
Us V, the node set of G

For Wej d we define f(W » SUW where S « TAYOO is the naxinal
subset of V; such that F(S) SW: Equivalently, S consists of all those

nodes of Vl adj acent only to nodes in W

Now for We=£, i = 1,2,3, condition (5.2) requires that V\iCWZCW3
i nply
(W usy) n(wsuss) C(wpusy),
wher e S:=r*r), i =123 Since W,CW,CW; inplies S~S”™S” this

condition is satisfied. -

Further, for Wesd, i - 1,2, (5.3) requires that
(Wus,) n(wusy) chnwur"(wnwmy,

where, again, S;=r"'(W), i- 1,2. Since (*US"0 (WUS, - (WTfl W) U(SXOSZ),
and since it is easily checked that S HS, « T"l(V\U’\HV\U), this requirenent
is also satisfied.

Finally, for We=d, i = 1,2, (5.4) requires that
WIUSIUWZUSZSWlUWZUru 1(WiUW2)-

Since S;US, ¢ r"ViLUWZ), this condition is also satisfied.
Next, we have to choose a nonnegative integer function r on sd that
is subnmodular. For Wesd, we define r(W = \w, which clearly satisfies

this requirement (and is in fact nodul ar).
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VW can now apply Theorem 5.1 to derive our linear characterization
of the PMB pol yhedron of a’bi partite graph. To this end, we set d.:L =1,

ieV, in (5.5), and use the above definitions to rewite (5.6) as

(5.6") x(r (W) + x(W < W, ¥WaY,.

I f we now conpl enment the variables x., ieV

, i.e., define new
b 2

variables x" = xg, i e, x» =1 - x" isV, then the system (5.5), (56")

becones

(5.7) 0 <x' <1, ieV

(5.8 x(FTH(W) - x' (W <0, fWeV,
F4

and Theoremb5.1 asserts that the convex pol ytope P* defined by (5.7), —(5. 8)
has integer vertices. .

The linear systemof Theorem 3.1 differs fromthe above in three
respects. First, there is an inequality (5.8) for every V\CV‘ not j ust
those for which W* T(S) for somne S£V1. Suppose that WE£ T(S) for any
SsVj and let w =rOT"**)). Thentf'ctfand the inequality (5.8) for W
is x'(r"*(W) - x0') <0, which together with (5.7) inplies the inequality
(5.8) for W Hence all such inequalities can be dropped wi t hout affecting
the integrality of the pol ytope. -

Second, (5.8) does not contain the inequalities (3.3) correspondi ng

to sets SCV—L such that T(S) = T(T) for some proper superset TSVl of S.

But if such T exists, then the graph < (K*S) U(~"(S)) > is disconnected,
where <K >is the conponent of Gcontaining S and T, and K':.: KfIV.l, i =1,2.
This is so because the nodes in 'S ~ 0 are not adjacent to any node in

KAA\F(S) = KéAr (T). As discussed in the remarks followi ng Theorem 3.1,

the inequalities (3.3) corresponding to such sets SCV1 are redundant.
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Third, the equation (3.2) is not present in the system(5.7), (5.8).

This is a genuine difference between the two pol ytopes, P defined by the
system (3.1)-(3.3), and P defined by (5.7), (5.8). However, the equation

(3.2) defines a face of P*, and since the vertices of a face are vertices

of the polyhedron, it follows that P also has integer vertices. This provides

the third proof of the fact that P+ conv Z

6. Facets of the PM5 Pol yt ope

In this section we address the question as to which of the inequalities
defining the IM5 polytope of a bipartite graph are essential. This is
obviously a matter of practical interest, as the nunber of inequalities in
the system (3.3) is rather |arge.

The facets of a polyhedron P are its maximal (relative to inclusion) non-
enpty proper faces. If dimPis the di mension of P, then the di mension of a facet

of Pis dmP- 1. Aninequality ¢x < a_is called facet-inducing (for P),

[+]

if it is satisfied by all x e P, and the pol yhedron PO[xjax = ao} is a
facet of P, i.e., has dinmension dimP - 1.
In the remarks followi ng Theorem 3.1, we have pointed out that some
of the inequalities defining the PM5 pol ytope of G are redundant, and that
the system (3.1), (3.2), (3.3) can in fact be replaced by the snaller system
2 (38.1), (3.2) and (3.3') . In this section we show that nost of the inequalities
of the ‘I atter systemare essential, i.e., facet-inducing.

First, we have to determ ne the dimension of our polytope. Let again

Vi
P denote the set of x el ' ' satisfying (3.1)-(3.3), shown in Theorem 3.1
to be the IM5 polytope of G = 0" UVA E) .

The equality set of the system (3.1)-(3.3) is the set of those

menbers that are satisfied with equality by all x e P. A basis of the
equality set is a maximal subset whose coefficient matrix is of full row

r ank.
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We can now apply Theorem 5.1 to derive our linear characterization
of the RS polyhedron of a bipartite graph. To this end, we set d':. =1,

ieV, in (5.5), and use the above definitions to rewite (5.6) as

(5.6')  x(r''(W) +x(W < |wW,  ¥WV,.

If we now conpl ement the variables x" ieV', i.e., define new

vari abl es x.:" =* Xg, icVA XA =1 - xMieV, then the system(5.5), (5.6")

becones
(5.7) 0 <xM <1, iev
(5.8) X' (r'{(wW) - x'"(W _<0, ¥ WEV,

and Theoremb5.1 asserts that the convex polytope P* defined by (5.7), *(5. 8)
has integer vertices.

The linear systemof Theorem 3.1 differs fromthe above in three
respects. First, there is an inequality (5.8) for every V\,£V2_, not j ust
those for which W» F(S) for sone S*£V1. Suppose that WE£ T(S) for any
SSV; and let Ww =r(r *(W). Then wdWand the inequality (5.8) for W
is x'(r~1(V\)) - X"CW ) <0, which together with (5.7) inplies the inequality
(5,8 for W Hence all such inequalities can be dropped without affecting
the integrality of the pol ytope.

Second, (5.8) does not contain the inequalities (3.3) correspondi ng
to sets SCV—l such that F(S) = F(T) for some proper superset T£V'.1. of S.
But if such T exists, then the graph < (Kf\S) U(K{:‘V"S)) > i s disconnected,

where < K >is the conponent of G containing S and T, and K.l = KPi V.

L, 0o» 1,2,
b

This is so because the nodes in 'S ~ 0 are not adjacent to any node in
Kz\ F(S) = KZAr_(T) . As discussed in the remarks follow ng Theorem 3. 1,

the inequalities (3.3) corresponding to such sets SCV.L are redundant.
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Third, the equation (3.2) is not present in the system(5.7), (5.8).

This is a genuine difference between the two pol ytopes, P defined by the
system (3.1)-(3.3), and P* defined by (5.7), (5.8). However, the equation

(3.2) defines a face of P*, and since the vertices of a face are vertices

of the polyhedron, it follows that P also has integer vertices. This provides

the third proof of the fact that P = conv Z

6. Facets of the PM5 Pol yt ope

In this section we address the question as to which of the inequalities
defining the PM5 polytope of a bipartite graph are essential. This is
obviously a matter of practical interest, as the nunber of inequalities in
the system (3.3) is rather |arge.

The facets of a polyhedron P are its maxi'mal (relative to inclusion) non-
enpty proper faces. If dmPis the di mension of P, then the dinension of a facet

of Pis dimP- 1. An inequality axgaois called facet-inducing (for P),

if it is satisfied by all x e P, and the pol yhedron Ffl {x]|ox = ao} is a
facet of P, i.e., has dinension dimP - 1.

In the remarks followi ng Theorem 3.1, we have pointed out that some
of the inequalities defining the PM5 pol ytope of G are redundant, and that
the system (3.1), (3.2), (3.3) canin fact be replaced by the smaller system
(3.1), (3.2 and (3.3"). In this sectionwe show that nost of the inequalities
of the latter systemare essential, i.e., facet-inducing.

First, we have to deternine the dinension of our polytope. Let again
|vi |
P denote the set of x el * ' satisfying (3.1)-(3.3), shown in Theorem 3.1
1
to be the IM5 polytope of G= (V-UVj, E).

The equality set of the system (3.1)-(3.3) is the set of those

menbers that are satisfied with equality by all x s P. . A basis of the
equality set is a maxi mal subset whose coefficient matrix is of full row

r ank.
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For any graph G, we define E, the set of adjacency vectors of G, to

be the set of all incidence vectors of pairs of nodes which are joined by
an edge. Thus G has as many elements as G has edges, and each x ¢ G has
exactly two components equal to 1 and all other components equal to 0. The

following Lemma will be useful in the rest of this section.

Lemma 6.1. Let F be the set of adjacency vectors of a forest
F = (V,E) with k components. Then F is linearly independent, \?\ = \V‘ -k,
and every x € F satisfies x(Kl) = x(Kz) for every component (tree) < K >
of F, where K1 and Kz are the parts of K.

Proof. Elementary.“

Theorem 6.2. Let X be the set of components of G = (VIUV?_, E), and

for every <K > el , let K, = KﬂVi‘, i = 1,2. Then the system

(6.1) x(Kl) - x(KZ) =0, ¥F<K>cel,

is a basis of the equality set of (3.1)-(3.3).

Proof. It is clear that the equatioms (6.1) are linearly independent
and belong to the equality set of (3.1)-(3.3). Let F be an edge maximal
spanning forest of G, and F the set of its adjacency vectors. Since every
pair of adjacent nodes is perfectly matchable, Fex. By Lemma 6.1, F is
linearly independent and each x € F satisfies (6.1). Since lﬂ = lV\ - k,
where k = l}Cl, no basis of the equality set can contain more than k equations.
But ‘k is the number of equations in (6.1), so (6.1l) is a basis.“

Corollary 6.3. If G = (VIUVZ, E) has k components, dim P = lVl - k.

Proof. The dimension of a polyhedron in ]Rlv\ is |V| minus the rank
of the equality set.ll
We now turn to the identification of facet inducing inequalities.

The following result will be of use in this task. We recall from section 2
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the definitions of 5/J(Q as the collection of perfectly natchabl e node sets
of G and Z(G as the set of incidence vectors of such node sets.

Theorem 6.4. For any SSV” the equality

(6.2) x(S) - x(r(S)) =0

is satisfied by the incidence vectors of precisely those T &TJQ such that

(6.3) (ViXS, T(S)) OM= 0

for every perfect matching Mof < T > .

Proof. Let x be the incidence vector of sone TeJ7J(Q . dearly, x
satisfies (6.2) if and only if )SOT\ = JT(S OT|. NOWif (6.3) holds for
at least one perfect matching Mof < T > then Mnatches the nodes of SOT
with those of F(S) PIT, hence x satisfies (6.2). n the other hand, i]: (6.3)
is vi.ol ated by some perfect matching M of < T > then M natches the nodes.
of SOT with a proper subset of the nodes of T(S) PIT, hence |SPITI < |[T(S) PT|
and (6.3) is violated by x. W conclude that (6.3) holds for at |east one
perfect matching of < T > if and only if it holds for all perfect matchings
of <T > and this is the case if and only if the incidence vector x of T
satisfies (6.2).]]

For any SCV-, let G denote the graph obtained from G by rean} ng

the edge set (\/1\3,r(S)), i.e., let

G =<SUT(S) >Uc< (\/J}S) U(V\T(S)) > .

Then Theorem 6.4 inplies

Corollary 6.5. For any S£V—L,

%6y N {x{x(s) - X(r(s)) =0} -z(Gs).
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Theorem 6.4 and Corollary 6.5 essentially say that for any SsV.L,
the pol yhedron [x e P x(S) - x(r(S)) « 0} is itself a PVb pol ytope, nanely
the one for the subgraph G of G obtained by deleting the edges in (V.S r(9)).

W are now ready to state the main result on facets of conv Z( G,

Freoremt—6: Let 0 f S€VL Then the inequality
(6.4) X(S) - x(r(S)) =0

is facet inducing if and only if G has exactly one nore conponent'than G
Proof~. The inequality (6.4) is facet inducing, i.e., th_e set
PHf>x(S) - x(F(S)) « 0} is a facet of P, if and only if it has di mension

d =dmP- 1. FromTheorem 3.1 and Corollary 6.5,
Pl x| x(S) - x(r(S)) « 0} -
=conv Z(Q (LEx|x(S - x(r(S) =0} =conv% &) .

FromCorollary 6.3, dimP = |v|] - k, and dimconv £(G;) = |v| - kg,
where k and k_ denote the nunber of conponents of G and G;, respectively.
Thus (6.4) is facet inducing if and only if k:.j =k + I.]]

At this point there is at least one feature of Theorem 6.6 that requirgs
nmediate conment. In the remarks fol | owi ng Theorem 3.1 we have stated that
any inequality (6.4) such that < SUT(S) > is disconnected, is redundant;
yet from Theorem 6.6, such an inequality may still be facet-inducing, pro-
vided that the graph Gy has exactly one nmore conponent than G a condition
that is not inconpatible with < SUF(S) > being disconnected. So it seens
that sone facet inducing inequalities are redundant. This is indeed the
case, due to the fact that dimP < |v|, i.e., that the equality set of
the system (3.1)-(3.3) is nonenpty. Every one of the equalities satisfied

by all x e P can be added, after multiplication with sonme arbitrary constant,




28

to any of the inequalities of (3.1)-(3.3), to yield another valid inequality.
This way infinitely many inequalities nmay induce the sane facet of P, where-
as in any mininmal linear systemdefining P, every facet of P is obviously
represented by only one (facet inducing) inequality. Thus we have to
address the question as to which anong the facet inducing inequalities of
(3.1)-(3.3) induce distinct facets.

Before answering this question, it will be useful to restate Theorem
6.6 in the following slightly different form

Theorem 6.6 '. The inequality (6.4), where MSy;V—L is facet
inducing if and only if Glhas a uni que conponent < K* > such that 0 # S* » Ki,
where S* = SPK and K; = KriV, 1o« 1,2, and the graphs < S*UT(S*) >
and < (K’i\S") U(KE\T(S*)) > are connect ed. -

This formof the theorem (which can easily be derived from the other
one) inplies that for all conponents < K > of G other than < K* > either
SOK + 0 or S (IK - V:L'

Theorem 6. 7. Facet inducing inequalities

(6. 5) X(S) -x(r(9) <o

and
(6. 6) X(T) - x(T(T)) <0

i nduce the sanme facet of P if and only if G has a conponent < K* > such that

(6.77 0% SIK- = TPIK* A K*nv,

Proof. Since (6.5) and (6.6) are facet inducing, if Ghas a conponent
< K+ > satisfying (6.7), then K* is unique, and x e P satisfies (6.5) wth
equality if and only if it satisfies (6.6) with equality, i.e., the tw

inequalities induce the sanme facet.
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Conversely, if no such < K* > exists, then there exists ueV,E“S, veF(S),

such that (u,v)eE and either u,veTUF(T), or u,vETURF(T) . Then the adjacency
vector of {u,v} satisfies (6,6) with equality, but (6.5) with strict
inequality; i.e., the two inequalities induce different facets.]||

W now turn to the inequalities (3.1).

Theorem 6.8. The inequality Xq >0 is facet inducing if and only
if vis not a cutnode or an isolated node of G

Proof. If v is neither a cutnode nor an isolated node of G there
exi sts an edge-maxinmal spanning forest F of G in which v has degree 1.
Then the set F of adj acency vectors of F contains a unique X such that x“.1 = 1.
Therefore, using Lenma 6.1, rFU{O}\{')'(} is a set of dimP affinely independent
nenbers of P, all satisfying Xg = 0. Thus, denoting Q= [Xx ¢C p|xv: 0}, we
have dimQ>dimP - 1. On the other hand, X e PQ -hence Qis a pr0|5er face
of P, therefore dmQ=dimP-| andsoxvio is facet inducing.

Ot;nversel y, if node v is isolated, then Xg = 0 for every x € P, and
t hus Xg > 0 does not induce a proper face. |If v is a cutnode, let L be
the node set of a corrpon.ent created by deleting v, and let L” = LU {v}.
Then every x e P such t hat X = 0 also satisfies x(I/nvl) - xft' d\/ﬁJ, = 0.
But let X be the incidence vector of fv,M for any weL adjacent to v. Then
X satisfies xtf/fiVA - X(L'HV,) =0, but XAt 0. Hence the inequality
Xg > 0 does not induce a maxi mal proper face of P||

Theorem 6.9. Facet inducing inequalities xvz_o and x(S) - x(F(S)) <0
define the same facet of Pif and only if {v} = K\S and F(v) cF( Kins),

1

where K* is the node set of the unique conponent of G satisfying
0+ SOK J Ky (= KiIV),

Proof. If the conditions hold, then the inequality Xg 2 0 can
be obtained fromx(S) - X(F(S)) < 0 by subtracting the equations

x(™) - x(Ky)) =0, where I& « Kflvr i = 1,2, for all those conponents
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< K > of G such that K—lfl S £ 0. Therefore the tw inequaliiies i nduce

the same facet. The converse can be shown by an argunent anal ogous to the

one used to prove the necessity of Theorem®6.7, and the details are onitted.]|
Theorem 6.10. The inequality Xg < 1 is facet inducing if and only

if v either has at least two neighbors, or belongs to a two node conponent

of G In the first case, no other inequality (3.1) or (3.3) induces the

same facet. |In the second case, only the inequality X <1, where uis

the other node of the conponent containing v, induces the same facet as

X < 1
v
Proof. Sufficiency. If v has two distinct neighbors, u and w,

define x by

- 2 if i =v -

Xz =

| 1 if i =uorw
0 if ie\Eu, v, w.

Then x"P, but x satisfies all the constraints (3.1)-(3.3) except
for the inequality x < 1. Therefore this inequality is essential, hence
facet inducing, and no other inequality of (3.1)-(3.3) induces the sane facet.

If v belongs to a two node conponent, with u the other node, define

a 2 if i =uorv
0 if ieW[u,v},

Then again X ft P, but % satisfies all the constraints of (3.1)-(3.3)
except for X 20 and x> 0. This shows that at least one of these two
inequalities is essential. But the equation (6.1) for the conponent of G

containing u and v gives X, = xvfor all x e P, so x e Psatisfies Xy = 1

if and only if it satisfies Xv =1. Therefore x, <1 and x, £ 1 are bdth

facet inducing, and they induce the same facet.
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Necessity. If v is an isolated node, x, = 0 for all x ¢ P and the
inequality x, < 1 does not induce a nonempty face of P.

Suppose now that v has a single neighbor u, and u has a neighbor
w#v., If veV,, the inequality (3.3) for S = {v} is x,-x, <0, 0orx <x.

v="u
1f veVz, this same inequality, though not part of (3.3), can be derived as
the inequality (3.13) for T = {v}. Therefore every x ¢ P that satisfies
x, = 1 also satisfies x, = 1. But the converse is not true, since the
adjacency vector x of {u,w} belongs to P, while ;; =1, ;; = 0. Therefore
the inequality X, < 1 does not induce a maximal proper face of P.H
From the last four theorems it follows that the set of constraints
(3.1), (3.2), (3.3") comes very close to, though is generally not exactly,
a minimal linear system defining P. To make it minimal, one has éo remove
- every inequality X, > 0 such that v is either an isolated noée
or a cutnode; ‘
- every inequality xv‘s 1 such that v has less than two neighbors and
does not belong to a two node component; and, finally,
- every inequality x(S) - x(I'(S)) < O such that \K{\S\ =1 and
F(K{\S) :IKK%!WS), where K* is the unique component of G such
that @ # K¥NS # K{ (= K*(\Vl).
This stili leaves a large number of inequalities, that can be
exponential in the size of G. The following example illustrates the
contents of this section and also is a case where the minimal defining

1]

system for P is exponential.

Let Gn be the graph of Fig. 6.1, consisting of n pairs of nodes
{ui, vi}, each pair joined by an edge, plus a node u, adjacent to every
Vs i-= 1,..:,n, and a node v, adjacent to every u;, i=1,...,n. Let

Vl = {uo’ u13'°':un}’ VZ = {vo, vl,...,vn].
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Ug u, u2 Up
vo v]. V2 “a
Fig. 6.1

Using the results of this section, we obtain the follow ng m ninal

defining systemfor P

0 <x <1, uev-

(6.14) —u :

0 <x_<1 wvsy,

v -
(6.15)  xTp) - x(Va) =0
(6.16)  X(S) - x(1(9)) 0, ¥ S0fi S gV \[u)

(6.17) x“o - x(vz\{vo}) < 0.

The inequalities (6.14) and the equation (6.15) are easily seen to
be needed. For any nonempty SCfR.....,u }, v eF(S), so <SUKYS >is

I no
connected; and uocV-i\S, so < (Vi\S) U( VQ\ F(S)) >is also connected; hence

from Theorens 6.6 and 6.‘7, the inequalities (6.16) all induce distinct

facets of P. Further, since S,Cvf\( Ugl inplies JVAS] 2 2, the facets

i nduced by these inequalities are also distinct fromthose induced by any

of the inequalities (6.14) (Theorem®6.9). Finally, since < [Ug}U(Va2\{Vg}) >
and < (V.‘l\(u (‘5) u [VO} > are connected, inequality (6.17) defines a facet of

P, which is easily seen to be distinct fromthe facets induced by any of

the other inequalities.
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It remains to be shown that the omi ssion of the renaining inequalities

of (33) is justified. If S - VXAU_OA then frOmTheorem6: 9 the inequali:y .

(3.3) induces the same facet as X4 > 0. Now |et u-aeS.

0
If S = f_uo}, we have the inequality (6.17). Nowlet S £ f_uo}. Then

T(S) « Vz, so < (Vj\S) U(V.\IXS)) >is connected if and only if \V":\S\ < 1
If |Vij\s| » 0, then S = V* and the inequality (3.3) is inplied by the equa-
tion (6.15). If \S » {,} for sonme ie{l,...,n}, then fromTheorem6.9

the inequality (3.3) induces the same facet as x > 0. This covers all

UI n

the cases.

Notice that the nunber of inequalities (6.16) for Gnis 2“- 2, hence
exponential in n.
’ Al t hough the nunber of inequalities in our |inear characterization of
the IM5 pol ytope of a bipartite graph nmay be large, this characteriza{ion is
still computationally useful. Indeed, a linear programwhose constraint
set includes the system (3.1)-(3.3) can be solved by generating the in-
equalities (3.3") as needed. However, the devel opment of such a procedure

goes beyond the scope of this paper.
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