NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A FORWARD SI MPLEX METHOD

by
Jay E. Aronson, Thomas E. Mrton & Gerald L. Thonpson
DRC- 70- 09- 80
April 1980

Aut hors' address:

G aduat e School of Industrial Admnistration
Car negi e- Mel | on Uni versity

Pittsburgh, PA 15213

Prepared under National Science Foundation Gant ENG 7725691.

A Forward anplex Met hod
Jay E. Aronson
Thomas E. Morton
Cerald L. Thonpson
ABSTRACT
Forward al gorithms are an approach to solving dynamc probl ems by

sol ving successively longer finite horizon subproblens, termnating when

a stopping rule can be invoked (or planning horizon found). Such procedures

are now available for a large nunber of special structure models. Here

we discuss the devel opnent, inplenmentation and testing of such a procedure

for general dynamc (staircase structure) linear programs. Tests suggest

that solution time is linear in the problem |ength, versus quadratic or

cubic for-earlier linear programmng codes. Planning horizons are often ob-

t ai ned.

1. Introduction
Forward algorithms are an approach to solving dynamic problems by

solving succassively longer finite horizon subproblems, terminating when
a stopping rule can be invoked (or plamming horizom found). (See [4],
[14])

Formally, a forward algorithm is a procedure which solvas first a
one period problem, then a two period problem, then a three period problem,
and so onm. ﬁu solution to the T period subproblem is ideally found by
augmenting the T-1 period optimal solutiom. Such a forward algorithm is
termed efficient. A forward algorithm thus develops a sequance of better
approximations to an optimal first decision (which is oftem all that is
desired). When the current approximation of the first period decision is

guaranteed to be ''good enough'', then computation stops. A forecast horizom

is the number of periods of forecast information required to guarantee that
the first several periods are optimal irrespective of informationm past it.
The initial periods are called the plamming horizon corresponding to the
forecast horizon. Heuristic planning horizons may also be considered.
These horizons may be dafined for when the decisians for any longer finite
subproblem have stopped fluctuating very much (apparent plamning horizom);
are guarantsed to be exactly optimal (exact plamming horizom); guaranteed
to be within ¢ of cost of the optimum (near cost horizon); or guaranteed

to be within ¢ of the optimal decision (near policy planning horizom).
Forecast horizons are also described as being apparent, exact, near cost or

near policy. A planning horizon procedure is an efficient stopping rule

for a forward algorithm, since it determines the longest finite subproblem

that must be solved. A planning horizon decomposes a dynamic problem into

three parts: the ''stable’ part up to and including the plamming horizon,
University Libraries

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

the second paft fromjust beyond the planning horizon to the forecast
horizon, and the third part past the forecast horizon- The values of the
dynam ¢ variables at the planning horizon become the initial conditions for
the second part of the problem Forward algorithns and planning horizon
procedures are now available for a large number of special structure nodels
([4], [Y], [12], [17], [13]). For the first time the authors have extended
these techniques to general dynam ¢ |inear programmng problems.

W\ now torn our attention to planning horizons relative to such
staircase- structure |linear prograns. Basic solutions to staircase struc-
ture linear programs typically have the property that simlar types of
activities persist In the.basis. over several consecutive tine periods
(Perold and Dantzig [161). In [1], weobserved that these activities isolate
bl ocks of variables by tine périods* These bl ocks form a natural deconpo-
sition, which in a sense, is equivalent to a planning horizon. For-those
model s whi ch have theoretical planning horizons, the natural deconposition
occurs at such horizons. For nodels with no known theoretical . horizon, the
natural deconposition of problenms can sonetines still be utilized to increase

the efficiency of the sinplex nethod.

In this paper we discuss the devel opnent, |nplenentation, and testing
of the Forward Sinplex Method, which is a forward algorithmfor solving
general staircase structure programs. Problem size has been found to be
a major bottleneck in large-scale mathematical programmng. By exploiting
the natural deconposition of the staircase linear program the forward
sinpl ex method sol ves very large problems in core, since the size of thé

working tableau (basis) is reduced. 1In the Inplementation stage, we even

discard part of the updated tableau after it is no |onger needed, retaining
only enough of it to continue the procedure. Furthernore, under certain
conditions, problems having arbitrarily large nunbers of periods are solvable.
In section 2 we present the general dynamic |inear programming nmodel .
Section 3 gives-a brief exposition on planning horizons. 1In section 4, we
di scuss the Forward Sinplex Method. A stannary of the conputational study
of Aronson [2] appears in section 5. Tests suggest that the solution tine
is linear.in the problem length, versus quadratic or cubic for earlier
l'inear programming codes. Planning horizons are often obtained. In
appendi x A we discuss specific'progranning techni ques for inplenenting
the algorithm These include the issues of basis or tableau representation,
augmentation, pivoting, primal feasibility follow ng augmentation, horizon
detection, etc. Appendix B gives inprovements for |ater versions of the

code*

2. The Modal
Consi der Che- general staircase linear program
T
r (a) ain S cT.
f 1 c C
subject to
%
te A L

() By X, | +AX, =d., t-2,...,T

(<) X 20, t*l,...,T

.

wher e ctis 1bynt Atis mtby n.{:_Bt_is BL‘._ﬂ_*L by N dc IS rrEby 1, and
Xt IS n, by 1. W assunme, for sinplicity, AE « A and Bt*‘B, for t*l,..., T
where A and B are fixed matrices. This assunption can easily be rel axed.

The staircase structure is evident in Figure 1.

In staircase nodels, the vector Xt is divided into two sets: loca

and pass-on variables. A pass-on variable is one which has a non-zero

colum in B. That is, it appears in the constraint set of the next tine
period, thus directly influencing it. Usually there are only a few pass-on
variables as conpared to the total number of variables. In the dynamc
programmng and control theory approaches to these problens, the state
variabl es are the pass-ens- For exanple, in a production snoothing nodel,

the "n<ifpg inventory and work force |level are pass-on variables. A loca

variable has a zero colum in B. It does not directly link to the next
period, but indirectly affects them through the pass-cns. Hring of workers
is an exanple of a local variable. Its value directly affects the current
workforce level (a pass-on). The linkage to the next period is through the

workforce level. Furthernore, there may be local constraints (zero rows of

B) only on the local variables; and only on the pass-on variables. These

may be upper bounds on the variables, etc. Pass-in constraintsg are Che

nonzero rows of B. These are the constraints that pass the pass-on var--

iables into the next period. Thus we partition A and B as shown in

Figure 2.

A a4

B A do

B A d3

B A a4

dr.1

B A d

§ pre—

Figure 1. Block structure diagramof the constraint matrix of die
general staircase linear program

@l tmus Gol urms
| ocal pass-on local pass-on
| ocal Al 0 0 0 | ocal
Sows pass-in | A? Al 0 B! pass-in Rows
| ocal 0 A? 0| O | ocal
A "B

Figure 2. Partitioning of the Aand B natrices for the general staircase
| i near program

3. Plamning Horizons and Natural Decomposition
Staircase linear progranmming problens often result from planning nodel se

In many planning situations, a decision nust usually be made only for the
first: periode Accurate data are typically available for early tinme periods,
but equal |y accurate forecasts far into the future are inpossible to obtain.
So, once a first period decision has a |ow probability-of changing, the

deci sion can be made. As nore reliable data becone available, the problem
can be re-solved in the next period. This technique is sometimes called

the "rolling horizon" nethod [14].

A forward algorithmis a foxaal procedure which solves l|onger and |onger

finite horizon subproblems. |ldeally it augments the (T-1)-period subproblem
optimumto generate the solution to the T-period subproblem Consider (1)
to be a T-period subproblemof a longer staircase linear programof |ength,
say Tp. When a.formard algorithmis applied to (1), the staircase structure
is maintained. The new ''steps" of the staircase usually consist of blocks

| arger than the original Amtrix. See Figure 3a. Specifidally, we define
a block B to be a maximal rectangular submatrix such that if a sinplex pivot

is chosen on any entry in the block, then the pivot will.not affect any

entry in any other block. W define the set of affected elenents, S(B),

to be the submatrix that contains all rows and colums affected by pivots

chosen in block B. W define an extended bl ock, E(B), to be the maxi ma

_ rectangul ar submatrix contained in S(B). Cearly BCE(B)£S(B). W
say that two bl ocks Bi and Bj’ (and al so the extended bl ocks E(Bj) and
ECBE)) are adjacent if S(B;) d S(B)) *$. W define a pinch block, pjL,
to be the rectangular submatrix formed by the intersection of two adjacent
extended bl ocks; P, - Z(B.) HE(E[+i)- A'Prck block is the connecting
link between adjacent extended bl ocks. Usually a pinch bl ock has snaller

di mensi ons than A,

because there are fewer pass-on variables than locals. The initial tableau
has only linking in the colums, thus the pinch blocks are enpty matrices
since the adjacent extended bl ocks do not overlap in the rows. As pass-

on variables enter the basis, the rows overlap, formng non enpty pinch

bl ocks. For exanple, in the Wagner-Witin nodel [20], inventory is the only
pass-on variable. When it is basic, it links the rows, but when it is non
basi ¢ an enpty pinch bl ock occurs, even though its colum still links two

adj acent #xt?iyJd bl ocks*

The pinch blocks forma natural deconposition of (1)« They isolate
adj acent blocks fromthe effects of pivoting by at |east one pivot* |f
a pivot is performed on an entry in a block, then only entries inits
extended bl ock ax" affected. Even if a pivot is performed on an entry in
a pinch block, only the two adjacent extended bl ocks are affected. Usually
they will formone larger extended block. Extended bl ocks adjacent to this
new | arger one are not affected by the pivot* For exanple, in Figure 3
a pivot on an entry in block B; can not affect entries in blocks 81 and
B,- A pivot on an entry in extended bl ock E(B? affects entries in block
By, may affect those in By; but never entries in Bm Thus Bl and BB are
isolated from each other by at |east one sinplex pivot.

For certain models, the natural deconposition caused by pinch bl ocks
occur where there are exact planning horizbns [1], [4], [11], [12], [13],
[17], [19]. For these nodels, once such a horizon is found, conputations
may stop. For the special nmodel discussed in [1] and [4], exact planning
horizons can be identified by a planning horizon procedure, by dual analysis, or

by the adjoint -analysis of optimal control theory.

/Block BI
,/ S FEr

', Blodk B3V
Periods /

Figure 3a: Possible natural deconposition of a 7 period staircase |inear
programmng probl enf Basic and non basic variables only from

periods 1-4 appear in block Bi, 4-6 in B2, «** 6-7 in B3-
Pivots on entries within a bl ock cannot affect entries in any

ot her bl ock:

2
(ST .

rsa>2_)

_\

’

E(8,)

56827 /)

L/

5(8,) B,
i

Figure 3b: The Blocks Bl, B2 and B3; Set of affected elements SB2> (shaded);
and Extended Block E(BZ>> (doxxble shaded). B,fIS(B,) =% ad

Bsns(By) - 5.

10

7217

\

\':‘ﬂi
0

N

Figure 3c: Pinch blocks Pj, P2 in the tableau. The pinch blocks isolate
. pivoting effects from one block to the next.

11

For Che general dynamc linear program ng problem it may noc be
possible to find an exact planning horizon. Each problemhas its own
characteristics and the existance of exact horizons depend on the specific
structure of the nodel. However, the natural deconposition caused by
tnxltiple pinch blocks can be used to define a heuristic planning horizon
for general staircase linear programs. As longer finite subproblens are
solved, multiple pinch blocks tend to prevent variables in the earliest
bl ocks from changing value or fromentering or leaving the basis. So, the
probability that variables in the first block change value is "l ow enough”
for- any longer. finite subproblem A reasonable stopping rule for a forward
_linear programng algorithmis when a predetermned nunber of pinch blocks
occur in the tableau.

W termthe length of the subproblem (1) a heuristic forecast horizon

when the stopping rule is invoked. By specifying the nunber of pinch bl ocks
in advance.and not the forecast horizon, we define a true forward algorithm
and pl anning horizon procedure [14]e

In a typical planning situation, nultiple pinch blocks can be expected
For these problens, the stopping rule inplies finlteness. The nunber of
pinch bl ocks. to use must be determned by the probl emsolver on the basis
of his know edge of the nodel. The forward sinplex method discussed in
the next section exploits these heuristic horizons to devise an efficient

algorithm for solving the general staircase |inear praogrammng problem

12

4. The ForwrTd S 2rol ~x_Met hod

The forward sinplex nethod is a forward algorithmapplied to staircase
lingar prograns (1). Let (1) be a T-period subprobl emof sone |onger prob-
lemwith length Ip. The forward sinplex nethod partially solves the 1-period
subprobl em augnments this solution to forman initial basic feasible solution
to the 2-period subprobl em solves this one, and so on for T+ 3 to Tp.
When T o TPthe whol e problemis solved. It is efficient because it exploits

a natural deconposition of the problem No reordering of the rows and
colinns are necessary to maintain the staircase structure. Thus there is
an automatic spike reduction [7], [3]. Bl ocks appear in the tableau as
shown in Figure 3. Pivoting conputation in later periods usually affect
only prinmal and dual variables within |ater bl ocks.

Intuitively, later period forecasts should not have nuch inpact on
early deci sions. The natural deconposition of the staircase probl emtends
to isol_ate early decisions fromthe effects of |ater peri ods.

Let the colums of A and B be partitioned as explained in section 2.
The maxi numtabl eau di mensions are mby a. The A and B natrices have nuch
smal | er dimensions. Let Stbe the "optinal" basic solutionto (1), with

1
the pass-on variables in period T restricted to be non basic at zero , unless

T ml

V¢ start by solving die 1-period subproblem W set Tto 1 and |oad
Ainto the upper left corner of the tableau. A slack starting basis is
used. Ve optimze to find Sy, restricting the pass-on variables to be
non basic at their |lower bound zero. The initial candidate list for basis

entry is conprised of only the local colums; 1 to the rightnost | ocal

]'The pass-on variables are restricted to be non basic at zero to
prevent excessive bookkeepi ng and die need for dual sinplex pivots to
attain primal feasibility follow ng augnentati on.

13

- colum. The reduced costs of the candidate list are scanned fron1righf to
left, the first positive reduced cost identifies the entering variable.
The mnimumratio test is performed frombottomto top. For the 1-period
stthprobl em the. candidate |ist size does not change.

Once S

1
solution to the 2-period subproblea. 1In general, once S: is found, we

is attained, we augment it to forman initial basic feasible

increment T by 1 aod forman initial basic feasible solution S% fronuSE_l.
fte now augment the tableau to include the rows and col ums associ ated with
the period (T-1) Bmatrix and the period T Amatrix. W copy the B matrix
directly bel ow t he position of the previous period's A mtrix* W copy a newA
matrix Into the tableau just to the right of this B mtrix. The right hand
side and costs for period T are copied inas well. The initial basic
feasible solutionis the optimal basis to die (T-1)-period subprobl em plus
the slacks in period T (some may be artificial). The initial candidate
list follow ng augnentation consists of the pas3-on colums in period T-I
and the period T locals. It is clear that immediately following augment a-
tion colums not inthe list are not eligible for basis entry, else the
condi tions for Si_: «ould be violated, a contradiction. As before, the
current period pass-on variables remain non basic at zero. During the
optim zation of this subproblem the candidate is expanded (to the left)
to include-those colums up to the earliest one affected by the current
series of pivots.

If a pivot entry is in a block, it affects only those entries in the
extended block. If the entry is in the extended bl ock, but not in a
pinch point, it may affect only entries of its extended bl ock and a part

of the adjacent extended bl ock not containing the adjacent block itself.

14

If the entry is in a pinch block, the pivot may affect entries in both
the adjacent extended bl ocks (often forming one |arger extended bl ock).

I deal |y the pinch blocks prevent pivoting activity in later periods
fromaffecting early period variables. In fact if a pinch block contains
only non positive entries, its entries cannot be chosen as pivot elenents.

Vi “index the first aod last non zero entry of éach row and col um
to define the extended bl ocks and reduce pivoting work. Follow ng each
pivot, these indiceé are updated, as well as the list of colums included
in the candidate list. Pivoting continues until Sf Is attained. W use the
standard tests for infeasibility and unboundedness. The notions of pivoting
and augnentation are shown in Figure 4.

\\& continue augnenting and pivoting until either the T period
P

problemis solved or the entire allowable tableau fills up. When the

tableau is full, we consider the available tableau space to be a small

window into the entire problem W slide this tableau w ndow down
and to the right, discarding early stable data fromcore, and augnenting

the newest data into the tableau window. Instead of actually sliding the

wi ndow, we enploy a wrap-around tableau; which puts tableau entries appear-
ing belowand to the right of the windowin the upper left hand part of
the tableau window. An illustration of this appears in Figures 5 and 6,
and will be explained nore fully next.

To detect a heuristic horizon we scan the tableau for a pinch block
whi ch allows enough space for at |east one augmentation as in Figure 5.
Ve discard the stable block fromcore, zero that portion of the tableau,
and augment as in Figure 6. W define the pointers FROWand FCOL to be
the first valid row and colum of the tableau, LASKOWand LASCOL to be the

| ast, and BORROWN and EORCCL as |ower bounds on the row and col unm pivoting

Figure 4: DiagramatXc representation of the tableau* for the 1, 2 and

3-period subprobiens of a three period dynamic |inear program

local ~ pas3-on
=__col 2nnis

e

b

Candi dat e
Ust _
(4a) 1-period subproblem optimal tableau

period L period 2
_pa53- on |ocal pas3-on

F— o
Initial
Candi dat e Li st

(4b) 2- period siibproblem initial tableau follow ng augnentation

period 2
pass- on

fa s pstumspinpinn bua e

L

Fi nal Candi date
Li st

(4c) 2-period subproblem optimal tableau

16

e ‘ "
Initial Candidate
Li st

(4d) 3-period subproblem initial tableau follow ng augnentation

2

te Fi nal Candi date Li st

(4e) 3-period subproblem optimal tableau

17

Y

-
H

pr oposed
augnent ati on

Figure 5: A full tableau windowwith the proposed augrentation. The
pi nch poi nt P,J_ i ndi cates the heuristic planning horizon.

LASCOL n

LASBOW—e 7////; N

FCOL H3RAOL

F8OW —* Py

HDKBOW» [ommmme s se o mmen e

P2

L LT

| ih

't

LRANGE

Figure 6: The resulting tabl eau wi ndow follow ng hori zon detection, stable
data del etion, and augnentation. ‘The indices F&OWand FOOL
identify the first valid row and col um;, HORRONand HDROCL, the
| owner bounds on row and col umm pivoting effects.

18

activity. 1f, as a result of pivoting, any column to the left of HORCOL
or any row above HORROW are affected, then the missing data are affected
by the pivot. Because the data ars not available, we have a horizomn violation
and cannot solve the problem in core. By the same token, if no natural de-
composition occurs, then we cammot detect a horizom, and the algorithm
fails due to space limitatioms. Either of these conditions can occur as
a result of a spike exceeding the allowable window size. When this happens,
we have a block too laxge to fit into the finita tableau window. Such a
problem must be solved with either a larger window, or other methods. In
Appendix B we present a technique, disk swapping, to handle these cases
when implementing the algorithm. The latter technique degrades the overall
performance in some instances, but upgrades the forward simplex method so
that it can solve more general problems.

To perform the augmentation, we incr_emcnc T by 1, copy A_ into

T

the upper left cormer of the tableau, and B into the upper right.

T-1
We now index the rows and columms in modular fashion. For the true in-

dices of row i and column j we find their actual positions in the tableau

by

i’ = mod(i-l,m) + 1
(2) .
j = md(j'l:n) +1
We continue augmenting and pivoting umtil ‘anot:her horizon must be
detected because of space limitations; i.e., an attempted augmentation
would write over row FROW or columm FCOL. Then we perform horizon detection,
zeroing, and repeat the augmenting and pivoting. We continue in this manner

until either T = rp or else a horizon violation occucss. Another valid

19

stopping rule is to find a predeterm ned nunber of pinch blocks. This
rule is not inplenented in the first version of the code. W present a
fl ow di agramof the' forward sinplex method in Figure 7.

V¢ hypot hesi ze the forward sinplex nethod should be able to solve
typical stationary planning nodels (1) in linear time* This hypothesis
i's based on results for special structure nndelé [4), [12] and prelimnary
.conputational testing. If, for aproblem a natural deconposition due to
a theoretical planning horizon is expected every g periods, then the ex-
pected amount of conputations tshen T * q is doubled for T * 2q, tripled
for T« 3g, and so on. Thus, even if the worst case bound for the g-
period subproblemis encountered, we suspect that the probl em deconposition
into a series of g-period subproblens yields a linear time result. This
is denonstrated in the computational results of the next section. In
appendi x- A we di scuss the conputer inplenentation of the forward sinplex

method. In appendix B, we discuss refinements to the code.

. START

Set r -1 e
Solve for SE (Initialize)
>
?«t T-T+ 1 (Augment)
] Augment S tc) G«neraca
-1
4 l
Solve for the "Optimum" S‘F (Solve)

t

XPin

- WO M hé ' (Pivot Error?)
FN VIW)
. TN { SToP]
N

(Done?)
ﬁﬁ
STOP
Horizon N s,

+ N_ o~ Detection "7 (F';Srhizfgdr;)
\"cesaary’?"" g '
hel
T Detect Planning Horizon - (Hori zon
Cleaze the Appropriate Portion of the Tableau Det ect | on)

Figure 7: Flow Diagram of the Forward Simplex ttathod

21

5. Conputational Result 52

V¥ tested the perf ormaace of the Forward Sinplex Method on sets of
randomy generated problens of three typical planning nodels. The results
are extrenely encouraging. Problens over ten times the size of the tableau
w ndow were solved. For all three nodels, both the solﬁtion tine and.nunber
of pivots were found to be |inear versus the problemlength T. For exénpl&
even for very small problems that the standard LP code could solve, the
standard code required 23 to 300 tines longer solution tines than the
Forward Sinplex Method* Detailed results follow.

The Forward Sinplex Method was inplenented in FORTRAN on the Carnegie-
Mel I on University DEC 20/60 B. The code can handle a maxi num of 5000 tine
periods. The largest tableau w ndow has dimensions 336 by 322. The max*

i mum di mensi ons of the A and B matrices are 22 by 22, so that a maxi mum of
14 periods of the largest Amtrix fit. The condensed Tucker tableau [3]
was used for ease of inplenmentation. All input is read froma disk file.
Qutput is printed onto a disk file, or the user's termnal. No basis
reinversion is enployed in the first version of the code. For conparison
purposes, a standard |inear progranmng code was devel oped from the forward
code.

The three nodels tested were the production snoothing problem wthout
i nventory discussed in Aronson, Mrton, and Thonpson [4]; a simlar node
with the addition of inventory; énd the manpower planning nodel discussed
in N ehaus, Scholtz, ao& Thonpson [15]. The characteristics of the nodels

are suxnnarized in Table 1.

2
"This section is a brief susmary of Aronson [2].

22.

In all cases, .for problens solved with the Forward Sinplex Method,
both the pivoting GPU time (a nmeasure of solution time) and the nunber of
pivots were found to be linear in the problemlength 1. Even problenms

_ ﬁaving di mensi ons exceeding ten tinmes the tableau w ndow size were sol ved
in linear time. The 200 period manpower planning nodel required a mean
of 43.43 seconds of CPU tinme to performa nean of 3064.13 pivots to solve
to optimality. These problens each had 2600 rows and 2600 col utms. The
conventional codes could only handle 312 rows and 312 colums. The nean
pivoting CPU tine and nean nunber of pivots for this set are shown in
Figures 7 and 8. The wap-around tableau w ndow saves conputer storage
space. The maintenance of the staircase structure saves time. The per-
formance of the Forward Sinplex Method on this nodel is representative of
the results found for the other two. All of these results are summarized
in Table 2.

In Table 3, we sunmarize the results of the Forward Si npl ex Met hod
applied to the largest problens for which the standard sinplex code was
test ede

The results for problens of each nodel solved with the Standard L?
code are presented in Table 4. In all cases, the pivoting CPU time was

found to be at least cubic in T. The nunber of pivots for the Standard

LP code to solve the first mdel was O(T °°7) , while for nodels 2 and
3, it appeared linear. -

VW conpare the results for the Forward Sinplex Method to those of
the standard code on the largest problenms solved wthout wap-around. The
standard sinplex method required about 28 to 500 tinmes the CPU time re-
quired by the Forward Sinplex Method to solve these small problems. For

exampl e, the Forward Sinplex Method solved the 30 period nodel 1 problens

23

in 1.25 seconds. The standard L? code required 124.93 seconds, about
100 times longere It also required about 2 to 6 tines the nunber of pivots.
These results are sumarized in Table 5. Even for these small problens, the

Forward Sinplex Method proved to be far superior than the standard sinpl ex

net hod.

Maxi mum Maxi mum
Tabl eau Nunber of Nunber of Requi red Nunber of
Nunber of Denmand Matri x W ndow * Periods in Peri ods Tabl eau Tabl eau
Model Probl ens Pattern Si ze Size W ndow Sol ved Si ze W ndows Used
1 yal Random 46 212x318 53 500 2000 x 3000 9.43
2 n Cyclic 5x7 230x322 46 500 2500x3500 10. 87
Pl us
Random
3 n Cyclic 13x13 |} 312x312 24 200 2600 x 2600 8.33
Pl us
Random

Table 1. Characteristics of the Three Mdel s

v

T* Mean Pivoting CPU Time Mean Nunber of Pivots
Maxi mum The Order Seconds The Q der Nunber
Model Nunber of Periods of T at T* of T at T*
1 500 o(T) 22.45 o(T) 2820. 19
2 500 otf) 51.34 o(T) 4768. 00
3 200 o(T) 43. 43 o(Tm 3064. 18
Table 2; Summary of Conputational Results for the Forward Sinplex Method. T* la the length of
the longeat problens sol ved for each nodel. The nean pivoting CPUtine ia the average
of the problens inthe aet. It la the time required to performpivoting only. The
order of Tla the result of a regreaaion anaiyaia. The seconds at T* col umm i ndi cates
the mean pivoting CPU tinme for the longest problens of each nodel. A ainmlar explanation
hol ds for the mean nunber of pivot col umms.
Nunber of Mean Mean
Peri ods Pi voti ng Nunber of
Model T CPU Tine (Sec.) Pivots
1 50 1.25 282. 33
2 40 6. 00 435. 73
3 20 2.18 309. 00
Table 3; Summary of the Forward S npl ex Method' s Performance on Probl ens of the sane S ze

as solved with the Sandard S npl ex Met hod.

appr oaches.

These are used for conparing the two

T* Mean Pivoting CPU Time Mean Number of pivots
Maxi mum The Order Seconds The Order Nunber
Model | Nurmber of Periods of T at T* of T at T*
1 50 o(T*) 124. 93 o(T °07) 614. 85
2 40 073.097) 169. 54 o(T) 763. 50
3 20 o(13.594) 1092. 03 0(T) 1941. 83
Table 4: Summary of Conputational Results for the Standard LP Code, The
meaning of the colums Is Identical to that of Table 2
r\)
Ratio of Standard Forward Code
Nunber of Mean Pivoting Mean Nunber of
Model Peri ods CPU Ti me Pivots
1 50 99. 44 2.18
2 40 28. 26 1.75
3 20 500. 93 6. 28
Table 5: Conparison for FORLP to STDLP. The nean pivoting CPU tine and nunber

of pivots at T* presented in Table 4 for the standard LP code Is
divided by the sanme presented In Table 2 for the forward code. This
Indicates that for the nodels tested, the standard LP code required
about 28 to 500 times |onger than FORLP to solve these problems to
optlmallty. Also, It required about 2 to 6 tines more pivots.

4 CPU Time (seconds)

50 -

30 1

20 -

10 4

'

0 25 50 75 100 125 150 175 200

Problem Length T

Figure 7: Mean Pivoting CPU Time versus T for 11 randomly generated
manpower planning problems, solved with the Forward

Simplex Method

27

p. Nunber of Pivots
4000 +
3000 A
2000 +
1000 1
0 e
Q 25 50 5 100 125 150 175 200

Probl em Length T

Figure 8 Mean Number of Pivoes versus T for 21 randomy generated

manpower planning problenms, solved with the Forward
Si npl ex Met hod .

28

29

6. Conclusions

Tests suggest that the Forward Sinplex Method solution tine is |inear
is the problem | ength versus quadratic or cubic for earlier linear pro-
grammng codes. Planni.ng horizons due to the natural deconposition of
staircase models are often found. In nmost planning situations, these
horizons are useful in deternmining when a first period decision is good
enough, thus saving computation. The extension of forward techniques to
dynam ¢ linear progranmng yields a powerful new nethod for solving |arge

staircase structure problens efficiently-

30

Appendi x A

| npl enent ati on

In this section we discuss the specific techniques inplemented in
the first version of the forward sinplex nethod. W use the condensed
Tucker tableau [3] for ease of inplementation. This is a standard sinplex
tabl eau but without the identity matrix that corresponds to basic col ums.
At any time, the basis inverse can be generated if desired. This repre-
sentation has been used successfully [8]. Although it is not efficient in
terms of data storage, it is useful for testing purposes which involve
ffxamning the tableau. Later versions of the code will utilize a conpact
formof the inverse.

VW next devel op the general nethodology. A general |inear programm ng

problem wth a non-negative right hand side can be stated as

mn ex
subject to
(3) < Ax < d
l x>0

W sinply negate inequality constraints of the formA.Lx >—-d’:.'

If a subset of the constraints of (3) are equality constraints:
(4) A-X - dj

Ve convert themto the formof (3) by the follow ng transformation:

(a) Alx < dz

Where e is a vector of ones. If v is the dual vector of (4), then

v=yl. v]]"‘ e, Wwhere vlis the dual vector of (5a), and Iv"_the dual of (5b)..

31

VW drop the nonnegativity restriction on b, choose K sufficiently

large, and add the auxiliary variable x ..- to (3) in the transformation Co
ttri

mn ex - K Xn+1

Ax - dx 4 <0
(6) Xr _<
LIRS 1

ﬁsan.]_ >0

subject to

Cearly,
1. Problem(6) is feasible (x, x_*. - 0).

2. If (6) has an optimal solutionwith x__ * 1, then the sane sol ution
XXrL

Is optimal for (3).

3f If (6) has an optimal solutionwth xn#\<:1, then (3) is infeasible

V@ use the auxiliary X et variable to sinplify the attainment of a
basic feasible solution. A slack starting'basis Is used. Any solution of
(6) is not feasible to (3) until x~, * -1

For the general dynamc |inear program (1), we use an extra row for
equal ity constraints (5b), and a local auxiliary variable z&; in every
period* The tableau representation for periods t-1 and t appears in Figure
Al. In examning test problenms, we discovered that when a single equality
row and auxiliary variable are used, the tableau becomes quite dense.

Even for small nmodels, data instability sometimes occurs. This also destroys
the staircase structure and nakes natural deconpositions inpossible to
attain because all constraints in every period become interrelated. As
a result, horizons cannot easily be detected in the tableau.
For inplenentation, wehave three additional colum vectors associated

with the tableau. The first colum. is the true right hand side. The

MI
M2
MEQ
M3

M4
MS

M6

32

local t-1 pass-on
columns *n+l columns
NI H2 N3 Nb
. Local constraints
A <X 0 on local variables
0 1 0 x®.t < 1 constraint
ttrl —
-eA* -ed't-1 -eA' Extra constraint for equality rows
A? -di_l A3 Pass-In constraints
3 4 Local constraints
0 “deel A on pass-on variables
0 0 0 Al 0
<
0 1 0
0 0 eB' -eA’ -edf -eA'
0 0 B! A? A3
<
4
0 0 0 0 < A
At-1
Bt-1 At
Figure Al . Condensed Tucker Tabl eau Representation of periods t-1 and t

for the general staircase linear program A primed vector or
matrix means that only the rows corresponding to the equality
constraints are included. The vector d.. is also partitioned
into 3 parts. ‘

33

second is a perturbed right hand side to break ties and prevent cycling.

(W could also have used Bland's rule [51, or other anti-cyc_l i ng devices

[7], [21].) The third colum is an extra one used for pivoting. As the pivot
colum is transforned to a unit vector, this third col um becomes the

new col um associated with the variable leaving the basis. A separate
rowvector is maintained for reduced costs, and a separate elenment for the
total cost, W use a separate vector to inprove the reduced cost scan.

For an array el ement, three menory- accesses are required; for a vector,

only two. W store the rowand colum indices in vectors, using the schene
that var iable i inperiod t has i ndex 100t +i .

Data entry i's froma disk file. The A and B matrices are read and
converted to the formshown in Figure Al. The first period problemis
initialized with a slack basis, and pivoting is performed until S{ i's
found. Care nust be taken to specify A and B so that each T period sub*
problemis feasible with the pass-on variables set to zero. |If x;l <1,
conputation stops because the subproblemis infeaaible. Oherw .se, aug-
mentation and pivoting continue as outlined in section 4.

When the entire tableau windowis full we detect horizons, discard
stabl e data, and enploy wap-around. At this point FROWN» FCOL * 1,
LASBOW* m and |ASCOL * n« The adapted A matrix has dinensions M6 X N4.

Let ISMN.L be the first non zero entry of rowi, ISI\/AX.L the last. Simlarly,

define JSM N.J and JSH&X:I for colum j. .
We define
IHMIN. * Min f1SM Dkﬁi; - i-FBOW, .s. LARROW
foxi,...,LASSOW
(7) '
JHMIN. - Min (SMINL}; j*FCOL,... LASCOL

2 k-j,...,.LASCOL

34

«
To datect a horizon, we first recursively find IHKN and JHM N by the

fornul as:

mmti = Min [iHMr&r"ISMIN"; I"FSOW, .. LASROW-1

(8)
JHMN * Mn {JHM N'ISM N }; jAFOD, ..+, LASDD-1

Then, we scan the rows fromFBONto LASRONuntil a THMFN.l > N4, and the
colums for JHM Nll > MS. In essence, we find a series of blocks Iarge
enough, to augnent at |east one period.

If we detect no horizon, then the tableau windowis too small and
the problemoverflows. In the next appendix we discuss techniques to handle
this case. Oherwise we print the partial solution of the stable block onto
two disk files, one for the primal, the other for dual information. Wen the
entire problemis solved we reconstruct the solution fromthese files.

W clear out the block in the tableau. W set BORRONto the row i for which

IHND(N.1 is found to be a pinch block; BDRCOL to the colum j for which

JHMN; is found. W reset FBOWto JEtG\OQ *"* FCOL 1O 1M DBIa0BBOW
and augnent as shown in Figure 6. W now index the tableau W|th t he nod
functions (2). As described in section 4, if while pivoting JSMEL, <
BO.?RONor | STCEL, < BDRCDL then a horizon violation occurs. Later versions
of the code will handle the overflow ng of die tableau window The current
version sinply stops.

I'n determning subsequent horizons, we consider the true difference
in position between | ASCOL and | HM N‘:. to exceed N4, and bet ween LASROWN

and JHM N.J to exceed M6. This guarantees enough space in the tableau

35

window for at least m augmentation.

For all problems we assume that the data are appropriately scalad,
all lower bounds on pass-on variables are 0, and that the comstraint
matrices are partitioned as described in sectiom 2.

We employed no basis reinversion for this first versiom. The natural
decomposition of (1) effectively blocks numerical arrors from rippling
from early periods into later omes, so that we did not encounter numerical
difficulties on the test problems tried. The forward simplex method per-
forms automatic spike reduction, thus we do not reorder the basis to main-
tain a diagonal tableau ([é], (10]). The staircase structure is an
inherent feature of the multi-stage model. The forward simplex method
merely maintains as much as possible of the structure.

The first version of the forward simplex method was writtem in
FORTRAN and developed on the Carnegie-Mellon University DEC 20/60 B. It
requires 256K of addressable core. The global data require 224K, leaving
32K for local data. The code can handle up to 5000 time periods. The
maximum dimensions of the A and B matrices are 22 by 22. The tableau
window is-dm‘nsicned 336 by 322, so that 14 periods of the largest A
matrix fit. In the interest of programming in ''standard' FORTRAN, all
do loops increment. In appendix B we discuss improvements for future
versions of the code. A detailed computational study of the code is in

¢he thesis by Aromson [2].

36

'i
Appendi x B

pvanents

There are four immediate inprovenents that we plan to inplement in
| ater versions of the forward sinplex method. These include data packing,
updating the code so that horizon failures do not occur, not outputing
intermediate solutions to disk files, and not checking for infeasibility
at each T period subproblent ‘

The first inprovement is the data packing. The first version uses
a condensed, but conplete tableau window. Because of its sparseness, a
packing scheme of some kind should be inplemented in |ater versions. The
sinplest kind is rowpacking. W represent every rowi of the tableau as
[SHIN, 1SVWKkX;, the nunber of entries |SMAX - ISNHE.+ 1, followed by
the entries. Mre advanced techniques, such as an L-U deconposition of
the basis, mght also be applied.

The issue of horizon failure due to tableau window overflow affects
probl em sol vability. Instead of discarding the stable portion of the
tabl eau after horizon detection we could store it in a disk file. Then
whenever a horizon violation occurs while pivoting, we could retrieve
the presumed stable portion of the tableau. W can adapt this idea
for use mheh horizons cannot inmediately be f0l2nd. In this case, al
pivoting is perforned in a random access disk file, until a new planning
horizon occurs. This technique is basically the same as virtual core/disk
swaps, performed by conputer software. This swapping technique will slow
down the overal |l performance when horizon violations occur, or horizon existence
cannot be determned. On the other hand, it will inprove the code so that

it can solve all general dynamc linear programs. An interesting feature

37

to add to this is automatic tableau w ndow expansion. That is, if a larger
tabl eau window is required, then let the code change the w ndow size to
acconmmodate the problem Since this feature is machine dependent, we

shal | investigate the possibility of inplenmenting it at a later tine.

The third inprovenent involves not witing the internmediate solution
onto disk for subsequent retrieval, reconstruction and printing. Instead
of storing the whole solution, me_could sinply reconstruct as much as is
possible and print it directly. W could store on disk that portion of the
partial solution that needs data froma later block to conplete the recon-
struction. This_inprovenent reduces the size of the disk files and elim
inates most of the disk I/O which is perforned by the first version
of the code. This would also allowus to solve probféns | onger than
5000 peri ods.

The last inprovenent makes the code more general. The current
version requires that each T period subproblembe feasible with the pass-
on variables non basic at zero. |If we only check the val ues of xS, in
the stable bl ocks, then we would allow primal infeasibility to occur except
for stable data, and in the last period. This inprovenent allows for
positive |ower bounds on the pass-on variabl es.

Ve shall consider all of the inprovenents discussed in the devel opnent

of new versions of the code.

[1]

[2]
[3]

[4]

[5]
[6]
[7]

[8]
[9]
[10]
[11]

[12]

Y 38

Ref er ences

Aronson, J.E., "lInvestigation of Further Properties of die Production
Smoot hi ng Probl emwi t hout | nventory™, WP, #61*79-80 G aduate
School of Industrial Adm nistration, Carnegie-Mellon University,
Pittsburgh, PA. April 1980,

Aronson, J.E,, "The Forward Sinplex Method: Conputational Results",
W P. #62-79-80, Gaduate School of Industrial Adm nistration,
Carnegie-Mel'Ton University, Pittsburgh, PA*, April 1980.

Aronson, JJS., Forward Linear Progranm ng, Ph.D. Thesis, Gaduate
School of Industrial Adm nistration, Carnegie-Mllon University,
Pittsburgh, PA, April 1980.

Aronson, J.E., Mrton, T.E., and Thompson, G L., "AForward Al gorithm
and Pl anni ng Horizon Procedure for the Production Smoot hi ng
Probl emwi t hout Inventory , WP. #20-78-79, Gaduate School of
Industrial Administration, Carnegie-Nellon University, Pittsburgh,
PA., Uovenber 1978.

Bland, R.G, "HewFinite Pivoting Rules for the Sinplex Mthod",
Mat hemati cs of Qoerations Research, 2, 1977, 103-107.

Charnes, A, "Optimality and Degeneracy in L| near Programing",
Ecoooraetrrka 20, 2, 1952.

Dantzig, CB., Linear Prograrrm ng_and _Extensions, Princeton University
Press, Princeton, NJ., 1963.

Gaver, D*P», and Thonpson, G L., Program ng and Probability Mdels
' ' . Brooks Col e Publishing Co., Mnterey, CA,

1973.

HeHer man, E., and Rarick, R-, "The Partitioned Preassigned Pivot
Procedure (P*)", in_Sparse Matrices and their Applications,
Edited by Rose, D. an oughby, R, PlenumPress, w York,
NY., 1972, 67-76.

HeHerman, E., and Rarick, R, "Reinversionwth the Preassigned
Pivot Procedure", Mathematical Programmng, 1, 1971, 195-216.

Kunreuther, H., and Mrton, T.E, "Planning Horizons for Production

Smoothing with Deterministic Denands: |, II1", Minagenent
Science, 20, 1973, 1974, 110-125, 1037-1046.

Lundin, R A*, and Morton, !<£e, '"Plaxning Horizons for the Dynanic
Lot Size Model: Zabel vs. Protective Procedures and Conput a-
tional Results", Qperations Research, 23, 4, July-August 1975,
711-734.

39

[131 Mller, L, W, "UWing Linear Prograns to Derive Planning Horizons
for a Production Snoot hi ng Probl ent!, Wrking Paper 79-10-03,
Department of Decision Sciences, The Wharton School, Uhiversity
of Pennsylvania, July 17, 1979 (to appear in Managerment Science),

[14] Morton, |.E, "Forward Al gorithns for Forward Thi nki ng Manager s,
W«P. #7-78-79, raduate School of Industrial Admnistration,
Carnegi e-Mel lou University, Pittsburgh, PA, August 1978,

[15] ftiehaus, R J«, Scholtz, D., and Thonpson, 6,L., "Mnagerial Tests
of Conversational Manpower P anning Models," TIMS Studies in
the Managenent Sciences, North-Hol I and Publishing Co., 8,
1978, 153-171.

[16] Perold, AF., and Dantzig, GB., "ABasis Factorization Method for
Bl ock Triangul ar Linear Prograns, Technical Report SQL 78-7,
Systens ptinization Laboratory, Departnent of Cperations Re-
Search, Stanford University, Stanford, CA, April 1978.

[17] Sethi, S and Chand, S., "P anning Horizon Procedures for- Machi ne
Repl acenent Mbdel s*, Managerment Sci ence, 25, 2, February 1979,
140- 151.

[18] S monard, M, Linear Programmng, Prentice Hall, NJ., 1966.

[19] Thonpson, G L., and Sethi, S P., "Turnpi ke Hori zons for Production
P anni ng*, WP. #29-77-78, G aduate School of Industrial Ad-
mnistration, Carnegie-Mllon University, Pittsburgh, PA,
March 1978.

[20] Vagner, HM and Wiitin, T.M, "Dynamc Version of the Econonm c Lot
Si ze Model , ™' Managenent _Sci ence, 5, 1958, 39-96.

[21] Wwolfe, P., "A Technique for Resolving Degeneracy i n Li near Pr ogr amm ng"
- RAM Report RM 2995-PR The RAND Corp., Santa Monica, CA, 1962.

