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ABSTRACT

Forward algorithms are an approach to solving dynamic problems by

solving successively longer finite horizon subproblems, terminating when

a stopping rule can be invoked (or planning horizon found). Such procedures

are now available for a large number of special structure models. Here

we discuss the development, implementation and testing of such a procedure

for general dynamic (staircase structure) linear programs. Tests suggest

that solution time is linear in the problem length, versus quadratic or

cubic for earlier linear programming codes. Planning horizons are often ob-

tained.



I. Introduction

Forward algorithms are an approach to solving dynamic problems by

solving successively longer finite horizon subproblems, terminating when

a stopping rule can be invoked (or planning horizon found). (See [4],

[141)

Formally, a forward algorithm is a procedure which solves first a

one period problem, then a two period problem, then a three period problem,

and so on. The solution to the I period subproblem is ideally found by

augmenting the T-l period optimal solution. Such a forward algorithm is

termed efficient. A forward algorithm thus develops a sequence of better

approximations to an optimal first decision (which is often all that is

desired). Hhen the current approximation of the first period decision is

guaranteed to be "good enough11, then computation stops. A forecast horizon

is the number of periods of forecast information required to guarantee that

the first several periods are optimal irrespective of information past it.

The initial periods are called the planning horizon corresponding to the

forecast horizon. Heuristic planning horizons may also be considered.

These horizons aay be defined for when the decisions for any longer finite

subproblem have stopped fluctuating very much (apparent planning horizon);

are guaranteed to be exactly optimal (exact planning horizon); guaranteed

to be within € of cost of the optimum (near cost horizon); or guaranteed

to be within e of the optimal decision (near policy planning horizon).

Forecast horizons are also described as being apparent, exact, near cost or

near policy. A planning horizon procedure is an efficient stopping rule

for a forward algorithm, since it determines the longest finite subproblem

that must be solved. A planning horizon decomposes a dynamic problem into

three parts: the tfstable" part up to and including the planning horizon,
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the second part from just beyond the planning horizon to the forecast

horizon, and the third part past the forecast horizon- The values of the

dynamic variables at the planning horizon become the initial conditions for

the second part of the problem. Forward algorithms and planning horizon

procedures are now available for a large number of special structure models

([4], [ U ] , [12], [17], [13]). For the first time the authors have extended

these techniques to general dynamic linear programming problems.

We now torn our attention to planning horizons relative to such

staircase structure linear programs. Basic solutions to staircase struc-

ture linear programs typically have the property that similar types of

activities persist In the basis over several consecutive time periods

(Perold and Dantzig [161). In [1], we observed that these activities isolate

blocks of variables by time periods* These blocks form a natural decompo-

sition, which in a sense, is equivalent to a planning horizon. For those

models which have theoretical planning horizons, the natural decomposition

occurs at such horizons. For models with no known theoretical horizon, the

natural decomposition of problems can sometimes still be utilized to increase

the efficiency of the simplex method.

In this paper we discuss the development, Implementation, and testing

of the Forward Simplex Method, which is a forward algorithm for solving

general staircase structure programs. Problem size has been found to be

a major bottleneck in large-scale mathematical programming. By exploiting

the natural decomposition of the staircase linear program, the forward

simplex method solves very large problems in core, since the size of the

working tableau (basis) is reduced. In the Implementation stage, we even



discard part of the updated tableau after it is no longer needed, retaining

only enough of it to continue the procedure. Furthermore, under certain

conditions, problems having arbitrarily large numbers of periods are solvable.

In section 2 we present the general dynamic linear programming model.

Section 3 gives a brief exposition on planning horizons. In section 4, we

discuss the Forward Simplex Method. A stannary of the computational study

of Aronson [2] appears in section 5. Tests suggest that the solution time

is linear.in the problem length, versus quadratic or cubic for earlier

linear programming codes. Planning horizons are often obtained. In

appendix A we discuss specific programming techniques for implementing

the algorithm. These include the issues of basis or tableau representation,

augmentation, pivoting, primal feasibility following augmentation, horizon

detection, etc. Appendix B gives improvements for later versions of the

code*
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2. The Modal

Consider Che general staircase linear program:
T

(a) ain S c T .
f 1 c c

tt*

subject to

I.. - d l

(<*) Xc > 0, t*l,...,T

where c is 1 by n , A is m by n., Bt is BL. * by n , d is m by 1, and

X. is n by 1. We assume, for simplicity, A « A and B *B, for t*l,...,T,

where A and B are fixed matrices. This assumption can easily be relaxed.

The staircase structure is evident in Figure 1.

In staircase models, the vector X is divided into two sets: local

and pass-on variables. A pass-on variable is one which has a non-zero

column in B. That is, it appears in the constraint set of the next time

period, thus directly influencing it. Usually there are only a few pass-on

variables as compared to the total number of variables. In the dynamic

programming and control theory approaches to these problems, the state

variables are the pass-ens- For example, in a production smoothing model,

the n̂<ifpg inventory and work force level are pass-on variables. A local

variable has a zero column in B. It does not directly link to the next

period, but indirectly affects them through the pass-cms. Hiring of workers

is an example of a local variable. Its value directly affects the current

workforce level (a pass-on). The linkage to the next period is through the

workforce level. Furthermore, there may be local constraints (zero rows of

B) only on the local variables; and only on the pass-on variables. These



may be upper bounds on the variables, etc. Pass-in constraints are Che

nonzero rows of B. These are the constraints that pass the pass-on var-

iables into the next period. Thus we partition A and B as shown in

Figure 2.
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B ' A
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•
•
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•
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T

Figure 1: Block structure diagram of the constraint matrix of die
general staircase linear program.
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Figure 2: Partitioning of the A and B matrices for the general staircase
linear program.



g Horizons and Natural Decomposition

Staircase linear programming problems often result from planning models•

In many planning situations, a decision must usually be made only for the

first: period• Accurate data are typically available for early time periods,

but equally accurate forecasts far into the future are impossible to obtain.

So, once a first period decision has a low probability of changing, the

decision can be made. As more reliable data become available, the problem

can be re-solved in the next period. This technique is sometimes called

the "rolling horizon" method [14].

A forward algorithm is a foxaal procedure which solves longer and longer

finite horizon subproblems. Ideally it augments the (T-l)-period subproblem

optimum to generate the solution to the T-period subproblem. Consider (1)

to be a T-period sub problem of a longer staircase linear program of length,

say T . When a forward algorithm is applied to (1), the staircase structure

is maintained. The new ''steps" of the staircase usually consist of blocks

larger than the original A matrix. See Figure 3a. Specifically, we define

a block B to be a maximal rectangular submatrix such that if a simplex pivot

is chosen on any entry in the block, then the pivot will not affect any

entry in any other block. We define the set of affected elements, S(B),

to be the submatrix that contains all rows and columns affected by pivots

chosen in block B. We define an extended block, E(B), to be the maximal

rectangular submatrix contained in S(B). Clearly B C E ( B ) £ S ( B ) . We

say that two blocks B. and B., (and also the extended blocks E(Bi) and

ECB,)) are adjacent if S(Bi) d S(B.) * $ . We define a pinch block, pjL,

to be the rectangular submatrix formed by the intersection of two adjacent

extended blocks; P - Z(B±) H
 E ( B

i + i ) -
 A P^ck block is the connecting

link between adjacent extended blocks. Usually a pinch block has smaller

dimensions than A,
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because there are fewer pass-on variables than locals. The initial tableau

has only linking in the columns, thus the pinch blocks are empty matrices

since the adjacent extended blocks do not overlap in the rows. As pass-

on variables enter the basis, the rows overlap, forming non empty pinch

blocks. For example, in the Wagner-Whitin model [20], inventory is the only

pass-on variable. When it is basic, it links the rows, but when it is non

basic an empty pinch block occurs, even though its column still links two

adjacent #xt?eiyJ4Ki blocks*

The pinch blocks form a natural decomposition of (1) • They isolate

adjacent blocks from the effects of pivoting by at least one pivot* If

a pivot is performed on an entry in a block, then only entries in its

extended block ax^ affected. Even if a pivot is performed on an entry in

a pinch block, only the two adjacent extended blocks are affected. Usually

they will form one larger extended block. Extended blocks adjacent to this

new larger one are not affected by the pivot* For example, in Figure 3,

a pivot on an entry in block B3 can not affect entries in blocks B. and

B2- A pivot on an entry in extended block E(B~) affects entries in block

B«; may affect those in B2; but never entries in B,. Thus B- and B- are

isolated from each other by at least one simplex pivot.

For certain models, the natural decomposition caused by pinch blocks

occur where there are exact planning horizons [1], [4], [11], [12], [13],

[17], [19]. For these models, once such a horizon is found, computations

may stop. For the special model discussed in [1] and [4], exact planning

horizons can be identified by a planning horizon procedure, by dual analysis, or

by the adjoint analysis of optimal control theory.
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Figure 3a: Possible natural decomposition of a 7 period staircase linear
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B2

E£?2^3

B3

Figure 3c: Finch blocks P^, ?2 in the tableau. The pinch blocks isolate
pivoting effects from one block to the next.
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For Che general dynamic linear programing problem, it may noc be

possible to find an exact planning horizon. Each problem has its own

characteristics and the existance of exact horizons depend on the specific

structure of the model. However, the natural decomposition caused by

tmxltiple pinch blocks can be used to define a heuristic planning horizon

for general staircase linear programs. As longer finite subproblems are

solved, multiple pinch blocks tend to prevent variables in the earliest

blocks from changing value or from entering or leaving the basis. So, the

probability that variables in the first block change value is "low enough"

for- any longer finite subproblem. A reasonable stopping rule for a forward

linear programing algorithm is when a predetermined number of pinch blocks

occur in the tableau.

We term the length of the subproblem (1) a heuristic forecast horizon

when the stopping rule is invoked. By specifying the number of pinch blocks

in advance and not the forecast horizon, we define a true forward algorithm

and planning horizon procedure [14]•

In a typical planning situation, multiple pinch blocks can be expected.

For these problems, the stopping rule implies finlteness. The number of

pinch blocks to use must be determined by the problem solver on the basis

of his knowledge of the model. The forward simplex method discussed in

the next section exploits these heuristic horizons to devise an efficient

algorithm for solving the general staircase linear programming problem.
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4. The Forw^Td Sî rol̂ x Method

The forward simplex method is a forward algorithm applied to staircase

programs (1). Let (1) be a T-period subproblem of some longer prob-

lem with length I . The forward simplex method partially solves the 1-period

subproblem, augments this solution to form an initial basic feasible solution

to the 2-period subproblem, solves this one, and so on for T • 3 to T .

When T • T the whole problem is solved. It is efficient because it exploits
P

a natural decomposition of the problem. No reordering of the rows and

colinns are necessary to maintain the staircase structure. Thus there is

an automatic spike reduction [7], [3]. Blocks appear in the tableau as

shown in Figure 3. Pivoting computation in later periods usually affect

only primal and dual variables within later blocks.

Intuitively, later period forecasts should not have much impact on

early decisions. The natural decomposition of the staircase problem tends

to isolate early decisions from the effects of later periods.

Let the columns of A and B be partitioned as explained in section 2.

The maximum tableau dimensions are m by a. The A and B matrices have much

smaller dimensions. Let S* be the "optimal" basic solution to (1), with

the pass-on variables in period T restricted to be non basic at zero , unless

T m I
P

We start by solving die 1-period subproblem. We set T to 1 and load

A into the upper left corner of the tableau. A slack starting basis is

used. We optimize to find S*, restricting the pass-on variables to be

non basic at their lower bound zero. The initial candidate list for basis

entry is comprised of only the local columns; 1 to the rightmost local

The pass-on variables are restricted to be non basic at zero to
prevent excessive bookkeeping and die need for dual simplex pivots to
attain primal feasibility following augmentation.
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column. The reduced costs of the candidate list are scanned from right to

left, the first positive reduced cost identifies the entering variable.

The minimum ratio test is performed from bottom to top. For the 1-period

sttbproblem the candidate list size does not change.

Once S* is attained, we augment it to form an initial basic feasible

solution to the 2-period subproblea. In general, once S_ is found, we

increment T by 1 aod form an initial basic feasible solution S.Z from S* .

fte now augment the tableau to include the rows and columns associated with

the period (T-l) B matrix and the period T A matrix. We copy the B matrix

directly below the position of the previous period's A matrix* We copy a new A

matrix Into the tableau just to the right of this B matrix. The right hand

side and costs for period T are copied in as well. The initial basic

feasible solution is the optimal basis to die (T-l)-period subproblem plus

the slacks in period T (some may be artificial). The initial candidate

list following augmentation consists of the pas3-on columns in period T-l,

and the period T locals. It is clear that immediately following augmenta-

tion columns not in the list are not eligible for basis entry, else the

conditions for S- * «ould be violated, a contradiction. As before, the

current period pass-on variables remain non basic at zero. During the

optimization of this subproblem, the candidate is expanded (to the left)

to include those columns up to the earliest one affected by the current

series of pivots.

If a pivot entry is in a block, it affects only those entries in the

extended block. If the entry is in the extended block, but not in a

pinch point, it may affect only entries of its extended block and a part

of the adjacent extended block not containing the adjacent block itself.
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If the entry is in a pinch block, the pivot may affect entries in both

the adjacent extended blocks (often forming one larger extended block).

Ideally the pinch blocks prevent pivoting activity in later periods

from affecting early period variables. In fact if a pinch block contains

only non positive entries, its entries cannot be chosen as pivot elements.

We index the first aod last non zero entry of each row and column

to define the extended blocks and reduce pivoting work. Following each

pivot, these indices are updated, as well as the list of columns included

in the candidate list. Pivoting continues until ST is attained. We use the

standard tests for infeasibility and unboundedness. The notions of pivoting

and augmentation are shown in Figure 4.

We continue augmenting and pivoting until either the T period

P

problem is solved or the entire allowable tableau fills up. When the

tableau is full, we consider the available tableau space to be a small

window into the entire problem. We slide this tableau window down

and to the right, discarding early stable data from core, and augmenting

the newest data into the tableau window. Instead of actually sliding the

window, we employ a wrap-around tableau, which puts tableau entries appear-

ing below and to the right of the window in the upper left hand part of

the tableau window. An illustration of this appears in Figures 5 and 6,

and will be explained more fully next.

To detect a heuristic horizon we scan the tableau for a pinch block

which allows enough space for at least one augmentation as in Figure 5.

We discard the stable block from core, zero that portion of the tableau,

and augment as in Figure 6. We define the pointers FROW and FCOL to be

the first valid row and column of the tableau, LASKOW and LASCOL to be the

last, and BORROW and EORCOL as lower bounds on the row and column pivoting



Figure 4: Diagramatxc representation of the tableau* for the 1, 2 and
3-period subprobiems of a three period dynamic linear program.
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i

Initial Candidate
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(4d) 3-period subproblem, initial tableau following augmentation

Final Candidate List

(4e) 3-period subproblem, optimal tableau
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WM\ m

proposed
augmentation

Figure 5: A full tableau window with the proposed augmentation. The
pinch point P, indicates the heuristic planning horizon.
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Figure 6: The resulting tableau window following horizon detection, stable
data deletion, and augmentation. The indices F&OW and FCOL
identify the first valid row and column; HORROW and HDRCOL, the
lower bounds on row and column pivoting effects.
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activity. If, as a result of pivoting, any column to the left of HORCOL

or any row above HOBBOW 9X^ affected, then the missing data are affected

by the pivot. Because the data are not available, we have a horizon violation

and cannot solve the problem in core. By the same token, if no natural de-

composition occurs, then we cannot detect a horizon, and the algorithm

falls due to space limitations. Either of these conditions can occur as

a result of a spike exceeding the allowable window size. When this happens,

we have a block too large to fit into the finite tableau window. Such a

problem must be solved with either a larger window, or other methods. In

Appendix B we present a technique, disk swapping, to handle these cases

when implementing the algorithm. The latter technique degrades die overall

performance in some instances, but upgrades the forward simplex method so

that it can solve more general problems.

To perform the augmentation, we increment T by 1, copy A into

the upper left corner of the tableau, and B_ * into the upper right.

We now index die rows and columns in modular fashion. For the true in-

dices of row i and column j we find their actual positions in the tableau

by

f
1' * mod(i-l,m) + 1

j' «mod<j-l,n) + 1

We continue augmenting and pivoting until another horizon must be

detected because of space limitations; i.e., an attempted augmentation

would write over row FROW or column FCOL. Then we perform horizon detection,

zeroing, and repeat the augmenting and pivoting. We continue in this manner

until either T • T or else a horizon violation occurs. Another valid
P
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stopping rule is to find a predetermined number of pinch blocks. This

rule is not implemented in the first version of the code. We present a

flow diagram of the1 forward simplex method in Figure 7.

We hypothesize the forward simplex method should be able to solve

typical stationary planning models (1) in linear time* This hypothesis

is based on results for special structure models [4J, [12] and preliminary

computational testing. If, for a problem, a natural decomposition due to

a theoretical planning horizon is expected every q periods, then the ex-

pected amount of computations tshen T * q is doubled for T * 2q, tripled

for T'«• 3q, and so on. Thus, even if the worst case bound for the q-

period subproblem is encountered, we suspect that the problem decomposition

into a series of q-period subproblems yields a linear time result. This

is demonstrated in the computational results of the next section. In

appendix A we discuss the computer implementation of the forward simplex

method. In appendix B, we discuss refinements to the code.
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25. Computational Results

We tested the perf ormaace of the Forward Simplex Method on sets of

randomly generated problems of three typical planning models. The results

are extremely encouraging. Problems over ten times the size of the tableau

window were solved. For all three models, both the solution time and number

of pivots were found to be linear versus the problem length T. For example,

even for very small problems that the standard LP code could solve, the

standard code required 23 to 300 times longer solution times than the

Forward Simplex Method* Detailed results follow.

The Forward Simplex Method was implemented in FORTRAN on the Carnegie-

Mellon University DEC 20/60 B. The code can handle a maximum of 5000 time

periods. The largest tableau window has dimensions 336 by 322. The max*

imum dimensions of the A and B matrices are 22 by 22, so that a maximum of

14 periods of the largest A matrix fit. The condensed Tucker tableau [3]

was used for ease of implementation. All input is read from a disk file.

Output is printed onto a disk file, or the user's terminal. No basis

re inversion is employed in the first version of the code. For comparison

purposes, a standard linear programming code was developed from the forward

code.

The three models tested were the production smoothing problem without

inventory discussed in Aronson, Morton, and Thompson [4]; a similar model

with the addition of inventory; and the manpower planning model discussed

in Niehaus, Scholtz, ao& Thompson [15]. The characteristics of the models

are suxnnarized in Table 1.

2
This section is a brief susmary of Aronson [2].
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In all cases, .for problems solved with the Forward Simplex Method,

both the pivoting GPU time (a measure of solution time) and the number of

pivots were found to be linear in the problem length 1. Even problems

having dimensions exceeding ten times the tableau window size were solved

in linear time. The 200 period manpower planning model required a mean

of 43.43 seconds of CPU time to perform a mean of 3064.13 pivots to solve

to optimality. These problems each had 2600 rows and 2600 columns. The

conventional codes could only handle 312 rows and 312 columns. The mean

pivoting CPU time and mean number of pivots for this set are shown in

Figures 7 and 8. The wrap-around tableau window saves computer storage

space. The maintenance of the staircase structure saves time. The per-

formance of the Forward Simplex Method on this model is representative of

the results found for the other two. All of these results are summarized

in Table 2.

In Table 3, we summarize the results of the Forward Simplex Method

applied to the largest problems for which the standard simplex code was

tested•

The results for problems of each model solved with the Standard L?

code are presented in Table 4. In all cases, the pivoting CPU time was

found to be at least cubic in T. The number of pivots for the Standard

LP code to solve the first model was O(T 1 - 5 0 7), while for models 2 and

3, it appeared linear.

We compare the results for the Forward Simplex Method to those of

the standard code on the largest problems solved without wrap-around. The

standard simplex method required about 28 to 500 times the CPU time re-

quired by the Forward Simplex Method to solve these small problems. For

example, the Forward Simplex Method solved the 30 period model 1 problems
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in 1.25 seconds. The standard L? code required 124.93 seconds, about

100 times longer• It also required about 2 to 6 times the number of pivots.

These results are sumarized in Table 5. Even for these small problems, the

Forward Simplex Method proved to be far superior than the standard simplex

method.



Model

1

2

3

Number of
Problems

21

11

11

Demand
Pattern

Random

Cyclic
Plus
Random

Cyclic
Plus
Random

Matrix
Size

4 x 6

5x7

13x13

Tableau
Window
Size

212x318

230x322

312x312

Maximum
Number of

* Periods in
Window

53

46

24

Maximum
Number of
Periods
Solved

500

500

200

Required
Tableau
Size

2000 x 3000

2500x3500

2600 x 2600

Number of
Tableau
Windows Used

9.43

10.87

8.33

Table 1: Characteristics of the Three Models



Model

1

2

3

T*

Maximum

Number of Periods

500

500

200

Mean Pivoting CPU Time

The Order
of T

0(T)

otf)
0(T)

Seconds
at T*

22.45

51.34

43.43

Mean Number of Pivots

The Order
of T

0(T)

0(T)

0(T)

Number
at T*

2820.19

4768.00

3064.18

Table 2; Summary of Computational Results for the Forward Simplex Method. T* la the length of
the longeat problems solved for each model. The mean pivoting CPU time ia the average
of the problems in the aet. It la the time required to perform pivoting only. The
order of T la the result of a regreaaion anaiyaia. The seconds at T* column indicates
the mean pivoting CPU time for the longest problems of each model. A aimilar explanation
holds for the mean number of pivot columns.

Model

1

2

3

Number of

Periods

T*
50

40

20

Mean

Pivoting

CPU Time (Sec.)

1.25

6.00

2.18

Mean

Number of

Pivots

282.33

435.73

309.00

Table 3; Summary of the Forward Simplex Method's Performance on Problems of the same Size
as solved with the Standard Simplex Method. These are used for comparing the two
approaches.



Model

1
2
3

T*
Maximum

Number of Periods

50

40
20

Mean Pivoting CPU Time

The Order
of T

O ( T 3 5 )
0^3.097)
O(T3.594)

Seconds
at T*

124.93
169.54
1092.03

Mean Number of pivots

The Order
of T

O(T1'507)
0(T)
0(T)

Number
at T*

614.85
763.50
1941.83

Table 4: Summary of Computational Results for the Standard LP Code,
meaning of the columns Is Identical to that of Table 2.

The

r

Model

1

2

3

Number of
Periods

50

40

20

Ratio of Standard Forward Code

Mean Pivoting
CPU Time

99.44

28.26

500.93

Mean Number of
Pivots

2.18

1.75

6.28

Table 5: Comparison for FORLP to STDLP. The mean pivoting CPU time and number
of pivots at T* presented in Table 4 for the standard LP code Is
divided by the same presented In Table 2 for the forward code. This
Indicates that for the models tested, the standard LP code required
about 28 to 500 times longer than FORLP to solve these problems to
optlmallty. Also, It required about 2 to 6 times more pivots.
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6. Conclusions

Tests suggest that the Forward Simplex Method solution time is linear

is the problem length versus quadratic or cubic for earlier linear pro-

gramming codes. Planning horizons due to the natural decomposition of

staircase models are often found. In most planning situations, these

horizons are useful in determining when a first period decision is good

enough, thus saving computation. The extension of forward techniques to

dynamic linear programming yields a powerful new method for solving large

staircase structure problems efficiently-
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Appendix A

Implementation

In this section we discuss the specific techniques implemented in

the first version of the forward simplex method. We use the condensed

Tucker tableau [3] for ease of implementation. This is a standard simplex

tableau but without the identity matrix that corresponds to basic columns.

At any time, the basis inverse can be generated if desired. This repre-

sentation has been used successfully [8]. Although it is not efficient in

terms of data storage, it is useful for testing purposes which involve

ffxamining the tableau. Later versions of the code will utilize a compact

form of the inverse.

We next develop the general methodology. A general linear programming

problem, with a non-negative right hand side can be stated as

min ex
subject to

(3) < Ax < d

x > 0

We simply negate inequality constraints of the form A.x > d, .

If a subset of the constraints of (3) are equality constraints:

(4) AjX - dj

We convert them to the form of (3) by the following transformation:

(5)

Where e is a vector of ones. If v is the dual vector of (4), then

v - v ^ e , where v is the dual vector of (5a), and v^ the dual of (5b).
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We drop the nonnegativity restriction on b, choose K sufficiently

large, and add the auxiliary variable x . - to (3) in the transformation Co
ttri

min ex - K x
subject to

Ax - dx ., < 0
(6) xrfl-

Clearly,

1. Problem (6) is feasible (x, x_^. - 0).

2. If (6) has an optimal solution with x__ * 1, then the same solution
XXrL

is optimal for (3).

3. If (6) has an optimal solution with x ^ < 1, then (3) is infeasible.

We use the auxiliary x .. variable to simplify the attainment of a

basic feasible solution. A slack starting basis is used. Any solution of

(6) is not feasible to (3) until x ^ , * -1.

For the general dynamic linear program (1), we use an extra row for

equality constraints (5b), and a local auxiliary variable x- in every

period* The tableau representation for periods t-1 and t appears in Figure

Al. In examining test problems, we discovered that when a single equality

row and auxiliary variable are used, the tableau becomes quite dense.

Even for small models, data instability sometimes occurs. This also destroys

the staircase structure and makes natural decompositions impossible to

attain because all constraints in every period become interrelated. As

a result, horizons cannot easily be detected in the tableau.

For implementation, we have three additional column vectors associated

with the tableau. The first column is the true right hand side. The
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local
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0

0

0

0
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A3

A4

0

- e B '

B 1

0

Local constraints
on local variables
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ttrl —

Extra constraint for equality rows

Pass-In constraints
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on pass-on variables

A1
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A2

0

<
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A t -1
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Figure Al: Condensed Tucker Tableau Representation of periods t-1 and t
for the general staircase linear program, A primed vector or
matrix means that only the rows corresponding to the equality
constraints are included. The vector d. is also partitioned
into 3 parts.



33

second is a perturbed right hand side to break ties and prevent cycling.

(We could also have used Bland rs rule [51, or other anti-cycling devices

[7], [21].) The third column is an extra one used for pivoting. As the pivot

column is transformed to a unit vector, this third column becomes the

new column associated with the variable leaving the basis. A separate

row vector is maintained for reduced costs, and a separate element for the

total cost, We use a separate vector to improve the reduced cost scan.

For an array element, three memory accesses are required; for a vector,

only two. We store the row and column indices in vectors, using the scheme

that variable i in period t has index 100t+-i.

Data entry is from a disk file. The A and B matrices are read and

converted to the form shown in Figure Al. The first period problem is

initialized with a slack basis, and pivoting is performed until S« is

found. Care must be taken to specify A and B so that each T period sub*

problem is feasible with the pass-on variables set to zero. If x . < 1,

computation stops because the subproblem is infeaaible. Otherwise, aug-

mentation and pivoting continue as outlined in section 4.

When the entire tableau window is full we detect horizons, discard

stable data, and employ wrap-around. At this point FROW » FCOL * 1,

LASB0W * m, and IAS COL * n« The adapted A matrix has dimensions M6 X N4.

Let ISMN. be the first non zero entry of row i, ISMAX. the last. Similarly,

define JSMIN. and JSH&X. for column j.

We define

(7)

IHMIN. * Min f lSMDkJ; - i-FBOW, . • . ,LASROW
fc»i,...,LASSOW

JHMIN. - Min (JSMIN- }; j *FCOL, . . . ,LASCOL
2 k - j , . . . ,LASCOL
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«

To datect a horizon, we first recursively find IHKIN and JHMIN by the

formulas:

(8)

Min [ iHMnr^ISMIN^ ; î FSOW, . • . ,LASROW-1

JHMIN. * Min {JHMIN^JSMIN.}; ĵ FOOL, ..• ,LASCOL-1

Then, we scan the rows from FBOW to LASROW until a THMTN. > N4, and the

columns for JHMIN, > MS. In essence, we find a series of blocks large

enough to augment at least one period.

If we detect no horizon, then the tableau window is too small and

the problem overflows. In the next appendix we discuss techniques to handle

this case. Otherwise we print the partial solution of the stable block onto

two disk files, one for the primal, the other for dual information. When the

entire problem is solved we reconstruct the solution from these files.

We clear out the block in the tableau. We set BORROW to the row i for which

IHMXN. is found to be a pinch block; BDRCOL to the column j for which

JHMIN. is found. We reset FBOW to JEtG^^CQl *"* F C 0 L tO IHM:DlaOBB0W1

and augment as shown in Figure 6. We now index the tableau with the mod

functions (2). As described in section 4, if while pivoting JSMEL, <

BORROW or ISTCEL. < BDRCDL then a horizon violation occurs. Later versions

of the code will handle the overflowing of die tableau window. The current

version simply stops.

In determining subsequent horizons, we consider the true difference

in position between IAS COL and IHMIN. to exceed N4, and between LASROW

and JHMIN. to exceed M6. This guarantees enough space in the tableau
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•

window for at least one augmentation-

For all problems we assume that the data are appropriately scaled,

all lower bounds on pass-on variables are 0, and that the constraint

matrices are partitioned as described in section 2.

We employed no basis reinversion for this first version* The natural

decomposition of (1) effectively blocks numerical errors from rippling

from early periods into later ones, so that we did not encounter numerical

difficulties on the test problems tried* The forward 3Implex method per*

forms automatic spike reduction, thus we do not reorder the basis to main-

tain a diagonal tableau ([91, [10]). The staircase structure is an

inherent feature of the multi-stage model. The forward simplex method

merely maintains as much as possible of the structure.

The first version of the forward simplex method was written in

FORTRAN and developed on the Carnegie-Mellon University DEC 20/60 B. It

requires 256K of addressable core. The global data require 224K, leaving

32K for local data. The code can handle up to 5000 time periods. The

maximum dimensions of the A and B matrices are 22 by 22. The tableau

window is dimensioned 336 by 322, so that 14 periods of the largest A

matrix fit. In the interest of programing in ''standard11 FORTRAN, all

do loops increment. In appendix B we discuss improvements for future

versions of the code. A detailed computational study of the code is in

the thesis by Aronson [2].



Appendix B

There are four immediate improvements that we plan to implement in

later versions of the forward simplex method. These include data packing,

updating the code so that horizon failures do not occur, not outputing

intermediate solutions to disk files, and not checking for infeasibility

at each T period subproblem*

The first improvement is the data packing. The first version uses

a condensed, but complete tableau window. Because of its sparseness, a

packing scheme of some kind should be implemented in later versions. The

simplest kind is row packing. We represent every row i of the tableau as

ISHINi, ISWkXt, the number of entries ISMAXL - ISMHT + 1, followed by

the entries. More advanced techniques, such as an L-U decomposition of

the basis, might also be applied.

The issue of horizon failure due to tableau window overflow affects

problem solvability. Instead of discarding the stable portion of the

tableau after horizon detection we could store it in a disk file. Then,

whenever a horizon violation occurs while pivoting, we could retrieve

the presumed stable portion of the tableau. We can adapt this idea

for use when horizons cannot immediately be f012nd. In this case, all

pivoting is performed in a random access disk file, until a new planning

horizon occurs. This technique is basically the same as virtual core/disk

swaps, performed by computer software. This swapping technique will slow

down the overall performance when horizon violations occur, or horizon existence

cannot be determined. On the other hand, it will improve the code so that

it can solve all general dynamic linear programs. An interesting feature
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to add to this is automatic tableau window expansion. That is, if a larger

tableau window is required, then let the code change the window size to

accommodate the problem. Since this feature is machine dependent, we

shall investigate the possibility of implementing it at a later time.

The third improvement involves not writing the intermediate solution

onto disk for subsequent retrieval, reconstruction and printing. Instead

of storing the whole solution, we could simply reconstruct as much as is

possible and print it directly. We could store on disk that portion of the

partial solution that needs data from a later block to complete the recon-

struction. This improvement reduces the size of the disk files and elim-

inates most of the disk I/O which is performed by the first version

of the code. This would also allow us to solve problems longer than

5000 periods.

The last improvement makes the code more general. The current

version requires that each T period subproblem be feasible with the pass-

on variables non basic at zero. If we only check the values of x ., in

the stable blocks, then we would allow primal infeasibility to occur except

for stable data, and in the last period. This improvement allows for

positive lower bounds on the pass-on variables.

We shall consider all of the improvements discussed in the development

of new versions of the code.
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