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| ntroducti on

The decade of the 1970's witnessed a stunning inproverment in the
conputability and applicability of network programm ng problens. Current
applications involve problenms having thousands or mllions of variables
-and thousands of constraints.. Net wor k codes devel oped in the 1970's are
100 - 200 tinmes as fast as their predecessors. -

The nain purpose of this talk is to survey the capabilities of
network codes and their extensions to specially structured integer program
m ng probl ens which can be solved by using the solutions of a series of
ordi nary network problens.

Most of the actual conputational nethods and results surveyed in this
talk are taken from papers or working papers by the author and his students.
This was done because of their easy availability. Many othc’r authors have
contributed inportant ideas to this area which we do not have time to
di scuss here. References to their work are given in the bibliography. It
is not the purpose of this talk to give a historically accurate and conpl ete
account of the advances in network nodelling and conputing, so that the
bi bl i ography will have to suffice as a substitute for such a historical ac-

count .

D scussion of the Slides

SLIDE 1 gives the basic notation for a transportation problemhaving m
factories and n narKets. The factories have supplies a1 and the markets.
have denands bj' Note that the sumof the supplies is assumed to be equal to
the sum of the demands. Wen the demands are |'s the problemis called a

sem - assi gnment problem and when the supplies are also |f's, it is called an

assi gnnent probl em
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SLIDE 2 gives the transportation problem constraints which the

vari abl es Xij must satisfy. The first constraint says that the tota
amount shi pped fromwarehouse i is equal to the anount it contains; the
second constraint says that the sumof the anounts shipped to nmarket | is

equal to its demand; the last constraint is just nonnegativity. The (bipartite)
gréph at the bottom shows that the direction of shipping is fromfactories to
mar ket s.

SLIDE 3 gives the two kinds of objective functions we will con;ideh
The sum objective adds together all the shipping costs from each warehouse
to each market. It is appropriate for bul k shipnents of nonperishabl e goods.
The bottl eneck objective is appropriate when Cij is interpreted as the time
to ship goods fromfactory i to market j, and the objective is to mnimze
the maxi mum tine along any route which carries a positive shiprment. The bottle-
neck objective is appropriate when considering problens such as: shipping
peri shabl e goods to markets in which we are concerned with the | ongest time
for any shipnent to get to its destination; or sending troops to staging areas
in a case in which the unit is not ready to go until all sub-units have
achieved their starting positions.

SLIDE 4 introduces the concept of a transshipment node, that is, one
which is both a source and a sink. Network problens are transportation probl ens
in which nost nodes are transshi prment nodes. Usually, not all of the possible
arcs connecting pairs of nodes are assumed to exist in network problemnms, that
is, the problens are sparse. Very large sparse problens have been fornul ated
and solved relatively quickly.

The idea of conputationally conplexity is in vogue anmbng conputer science

and OR practitioners. As noted on SLIDE 6, transportation and network problens




are anong the easiest such problens since they are polynom ally bounded; that
is, in the worst case the nmaxi numnunber of steps required to solve such a
probl em can be constrained by a bound which is a polynom al function of the
amount of input data needed. Transportation problens are natural integer
problens since they will have integer solutions when the ai's and b.'s are
integers. For both these reasons, these problens are inportant in applications.

SLIDE 7 shows a typical network application in the area of manpower
pl anning. Here there are three ranks an<? a maxi nrumof five years of organi-
zational age. Separations fromthe organization are indicated by upward
slanting arrows, pronotions by downward slanting arrows, and continuations
in rank by horizontal arrows. The full nodel also has upper bounds on flows
in each of these arcs. Note that there is one source node and one sink node
(retirement), and all other nodes are retirenment nodes. This is fairly typical
for a network application

SLIDE 8 shows a fairly typical warehouse (or factory) to narket applica-:
tion which is a straightforward transportation problem application. Unfortun-
ately, many such applications also have other constraints which are not trans-
portation type constraints. The single source constraint at the bottom of
the slide is one such. It inposes the very commonly occurring requirenent
that all the demand at a given market be supplied froma single warehouse. W
di scuss net hods for inposing such constraints next.

SLIDE 9 gives a conputational flow diagramof the Regret Heuristic which
(soretimes) finds good feasible solutions to single source problens. Note
Fhat it contains a random choice element so that each time it is run a
(potentially) different solution is found. This heuristic is not guaranteed
to get a feasible solution, but it usually does, and about hal f of the time the

feasible solution is also optinal
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In contrast to a heuristic code which can only produce feasible solutions,

an algorithm is a code which will, if it is run long enough, produce an optimal
solution to a decision problem (when such an optimal solution exists).

SLIDES 10 and 11 discuss some of the concepts needed to implement a branch

and bound algorithm for solving the single source problem. On SLIDE 10 note
that the first thing we do is to relax the integer single source constraints

to be just nonnegativity constraints. The relaxed problem is an ordinary
transportation problem whose solution value gives a lower bound on the value

of the unrelaxed problem. Usually the relaxed solution will not satisfy all
the single source constraints; variables which violate these constraints are

called fractional variables. We choose one such variable and branch, thzt is,

we consider the two subproblem in which the fractional variable is set either

to zero or to the total demand of the column it is in. We relax the remaining
variables in these two subproblems and solve them as transportation problems

to get their lower bounds. This process is continued until we get either a
feasible solution which allows us to update the upper bound (UB) or else we
obtain a lower bound greater than an already achieved upper bound and can termi-
nate search on this branch of the search tree--the latter step is also called
fathoming. A typical search tree is shown in SLIDE 11.

SLIDE 12 gives a LIFO (Last In First Out) or depth first branch and
bound algorithm for solving the single source transportation problem. Note
that it begins by finding a heuristic solution to give the initial value of UB
the upper bound. Then the relaxed problem is solved. Then a column having
a fractional variable is selected and one of the cells having largest flow is
selected; it is fixed in, that is, made to supply the total demand. If the
resulting solution is single source we update UB and batktrsck; that is, go

upward on the search tree. If it isn't a single source solution we test to




see if the value of the subproblera is >"UB to see if we can fathom |If we
can fathomwe backtrack, otherw se we choose another fractional variable and
search deeper in the tree. The conputational procedure stops when we try to
backtrack fromthe initial node of the search tree

As noted at the top of SLIDE 13, the forward and backtrack novenments in
the search tree are actually perforned by using cost operators which are
comput ationally inexpensive. Also shown there are conputation tinmes obtained
recently by Nagel hout and Thonpson. Note ths.t the heuristic frequently finds
the optimum Al so note that solution times vary erratically depending on the
size of the search tree. In one case conmputation was stopped because of ex-
cessive tine. These are typical results for this kind of problem

SLIDES 14 and 15 discuss the Travelling Sal esnan probl emwhi ch can be

solved by simlar procedures. The rubber band heuristic for the travelling
0
sal esman proceeds as follows: chose any three cities and find their snallest

subtour; now choose any city omtted and try inserting it in between pairs of
cities on the subtour so far constructed; continue until a conplete tour is
obtai ned. The relaxed problemis an assignnment problemwhich, if solved, wll
usual Iy have loops or subtours. To develop a branch and bound code we sol ve
the relaxed (assignment) problem select a snallest subtour, choose an arc
on that subtour and fix it out; now solve the new relaxed problemand iterate
until a feasible tour is found; then backtrack etc. The rest of the code is
simlar to that for the single source problem

SLIDE 15 gives sone conputation tines for sumand bottl eneck travelling
sal esman problenms. Note that for the sumcase, the total solution tine: goes
up rapidly with the nunber of cities, but the average tinme to the first tour
(which is usually within a few percent of the optinum) renmains small. The

first tour found by the algorithmcan be used as an inproved heuristic solution.
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The nost anmmzing results are for the bottleneck travelling sal esman probl em
Smith and Thonpson have solved such problens up to 2,000 citié;. The reason
that this is possible is that the search trees remain surprisingly snmall as
noted at the bottom of SLIDE 15.

The last major exanple to be discussed is the capacitated warehouse
| ocation problemstated in SLIDE 16. Note that the Xij vari abl es are as

before, but the yi variables take on only the integer values 1 if warehouse

i is open, and O if it is closed. |In the objective function a fixed charge
Fi i s added when warehouse i is opened. The relaxed problemhere is ob-
tained by just requiring vy i>A 0, i.e., nonnegativity. W do not discuss

further details of the branch and bound code.

SLIDE 17 gives conputational results obtained by Nagel hout and Thonpson
on this problem Note that the bottl eneck problenms are nuch easier than the
sum probl ens, since the bottl eneck code has no failures while the sum code
failed to solve two sumobjective problens. It is also true that the variance
of times is nuch less for the bottleneck than for the sum objective problens. .

The probl ens discussed so far are far from exhausing the applications
of network and transportation problens.

SLIDE 18 lists 8 other application areas which will be briefly di scussed.
Al so discussed are two other network nodels. The first is a network with gains
in which the quantity of the good can increase or decrease as it flows along
an arc. An exanple of an i ncrease is: suppose the comodity is noney and
flowing on the arc neans being on deposit in a savings account for a period of
tinme; the nmoney can then be augmented by an interest paynent. An exanple of
a decrease is: suppose the quantity is electrical power flowng in a wre;
it can be decreased due to power |osses. The final generalization is to nmulti-
commodity flows in which we consider several commdities flowi ng on the sane

arc and conpeting for its capacity.




Many further results on these and other nodels are available in the

literature cited in the followi ng references.
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GBIECTI VE FUNCTI ONS

SUM GBJECTI VE

Cr ., = COST OF SHIPPING ONE UNIT FROM | TO J.

L

MINIMZE {11 | X.. €. |}
el vel

Z = TOTAL SHIPPING COST

EXAMPLE:  GROCERY WAREHOUSES TO SUPERMARKETS

BOTTL ENECK (BIFCTI VE

Ct, = TIME TO SHIP ONE UNI'T FROM | TO J

MIENIMIEZE {Z = )IEAAXI MUM C{Jj
u>°

Z - MAXIMM SHPPING TI ME

EXAMPLES:  PER SHABLE GOCDS, STAA NG OF TROCPS
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TRANSSH PMENT_NQDE: ~ ONE THAT APPEARS BOTH AS A SOURCE
AND AS A SINK

EXAVPLE:  FACTORY- HAREHOUSE- MARKET  SYSTEM

NETWORK PROBLEMS:  MOST NODES ARE TRANSSH PMENT.

SPARSE:  NOT ALL ARCS ARE USED.  CAN RE TAKEN ADVANTAGE CF.
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FAST PRIMAL METHODS FOR SOLVING BOTH SUM AND BOTTLENECK
PROBLEMS VERE DEVELOPED IN THE 1970's.

TYPI CAL RESULTS IP? x 100  DENSE PROBLENG.

_ COST CHOSEN [N I NTERVAL
OBJECTI VE 0-10  0-100  0-1000  0-10000
S 33 2.000 2.351 2. 419
BOTTLENECK 490 1209 1123 . 1.023.

NOTE THAT BOTTLENECK PROBLEMS ARE APPROXI MATELY ONE HALF AS
DI FFI CULT AS SUM PROBLEN.

NOTE M NTMM COST  EFFECT.

SPARSE PROBLEMS CAN BE SOLVED MUCH FASTER

1000 x 1000 SPARSE PROBLEMS CAN BE SOLVED IN LESS THAN
2 M NUTES.

MJICH Bl GER PRCELEMS HAVE BEEN SCLVED
50,000 x 50,000

SLIDE 5




THERE ARE SEVERAL POLYNOM ALLY BOUNDED PRIMAL ALGRI THVS FCR
THE SUM PRBLE .
FCRD- FULKERSON DUAL METHCD
BALI NSKI - GOMORY PRI VAL METHOD
SRI NI VASAN- THOHPSON COST CPERATCR METHOD

THE SRI NI VASAN- THOVPSON- SZWARZ- HAMVER ALGCRI THM CAN' BE
SHOM TO BE POLYNOM ALLY BOUNDED.

THOWPSON HAS A NEW RECURSI VE METHCD FOR BOTH SUM AND
BOTTLENECK PRCBLEMG WH CH 'S PCLYNOM ALLY  BOUNDED.

ALSO, IFTHE A,"S AD B/ S ARE INTEGRAL THEN A BASIC PRI MAL
FEASIBLE [NTEGER SCLUTION H LL BE FOUND BY THESE

PRIVAL ALGORITHVS.  TH'S IS A NATURAL 1NTEGER PROBLEM

THE NATURAL |NTEGER PRCPERTY MAKES THESE HOPELS USEFUL F(R
APPLI CATI ONS.
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State version of the manpower model with R =3 and T = 5. Upward slanting
arrows denote separations, horizontal arrows denote continuation in rank, and
downward slanting arrows denote promotions. The yearly number of new employees
is Xqs the yearly number of retirements is Xp» and the yearly separations

(sum of flows on all upward slanting arrows) is xg: we require X + Xg = Xge
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EXAVPLE 2. WAREHQUSES TO MARKETS

M F12 MN
Wl 92 0 9N AL
Q1 Y92 - oyl M

Bl BZ BN

|F VE ADD OTHER CONSTRAINTS VE USUALLY DESTROY THE NATURAL
| NTEGER PROPERTY.

EXAMPLE:  SINGLE (SOLE) SOURCE CONSTRAI NT

|.E, ALL THE DEMAND AT A MARKET MJUST BE SUPPLIED FROM A
SINGLE WAREHQUSE
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SINGLE SOURCE REGRET HELRISTIC

REGRET] = (SECOND SMALLEST ENTRY - SMALLEST ENTRY)J

INTIALI ZE

_¥
|  CHOOSE QOLUW
W HAVING LARGEST REGRET

I
—OHO0%E AT RADOV

UPDATE
0STS AM;J\G THE SMALLEST COSTS

-
- o <
4 55160y b

‘S|

RIN TH'S PROGRAM SEVERAL (SAY 10) TIMES:  SAVE BEST
SCLUTI ON' FOUND.
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BRANCH AND BOUND ALGORI THM
RELAX THE SINGLE SCURCE CONSTRAINT

X 0 Xu/\n

U= ILO

SOLVE THE RESULTING TRANSPCRTATI ON PROBLEM TS VALUE
G VES A LOAER BOUND ON THE VALUE OF THE SINGLE
SQURCE PROBLEM

FIND A CCLUW WTH A FRACTI ONAL VARIABLE, I.E,

0 <X,, <B

IJ J

BRANCH  DEVELCP THE SEARCH TREE

SOLVE EACH TRANSPCRTATI ON PRCBLEM TO GET LOVER BOUNDS  (LB).

SLIDE 10




BRANCH AND BOUND ( conT)

WHENEVER LB > UB FATHOM |.E, DON T SEARCH
LOAR N THE TREE.

\\HENEVER A FEASIBLE SOLUTION IS FOUND (SATISFYING
SINGLE SCURCE CONDI TI'ONS) VI THA BETTER BOUND
UPDATE  UB

VHEN SEARCH |'S COMPLETE HAVE CPTI MAL SOLUTI ON

FEASI BLE
SLIDE 11

erimML X N
X X
FATHOM




LI FO BRANCH AND BOUND ALGCRI THM
FCR THE SINGLE SCURCE PROBLEM

FIND HEURI STIC SOLUTI ON
SET |B = HEWR STI C VALUE,
]

\ 4
SOLVE RELAXED PROBLEM
|

\
CHOOSE OCLUW W'TH _FRACTI ONAL

// " VAR ABII_E HAVING LARGEST DEMAND

L

CHOOGE CELL IN THAT COLUW
HAVING LARCGEST RO;'.  El |
ALL CELL IN ngVAKE ALL OTHER

COSTS IN THAT OCLUW - AND
RESS_VE).
N . ST S
> U 8 JA SNGLE  \ Ji J[UPDATE UE
@\L;E UBa— 00— A SN | | |
ves | SOLUTION? |
{ [ o v
BACKTRACK. ~FTX YES /" LAST CELL\
; QUT LAST CELL FIXED IN?)
\ THAT WAS FI XED [N

A
STCP.  BEST FEASIBLE
SQLUTION FOUND 1S CPTI MAL

SLIDE 12




MOVING UP AND DOM THE SEARCH TREE
|'S DONE BY APPLYING COST CPERATCRS,
A TYPE OF PARAVETRI C PROGRAMM NG

COVPUTATI ONAL RESULTS FOR SI NGLE- SQURCE SUM PROBLENS

| NUMBER OF
| HER STI C iy —
Mx N %ERR CPU TIME NODES TIVE (SECS)
100 x 100 0 2.11 505 23.88
100 x 200 . 3.3 4.38 946 4P. 07
100 x 300 | 0 7.71 20 18. 75
100 x 350 | : 9. 94 6749 7600
100 x 400 0 10.78 3 23.39
COVPUTATI ONAL TIMES FCR SI NGLE- SOURCE BOTTLENECK PROBLENS
NUMBER CF
HEUR! STI C SEARCH TREE TOTAL
M X N GET CPTI MAL? NCDES TI FE (SECS)
100 x 100 No UG 19.1
100 x 150 \b 9263 115. 4
100 x 400 YES - 12. 48
100 x 400 No 133 106

SLIDE 13




TRAVELLING SALESMAN PRCELEM

GIVEH w~ CITIES FIND A ROUTE THAT GOES
THROUGH EACH CITY EXACTLY ONCE AMD
MINIMIZES THE TOTAL MILEAGE TRAVELLED
(QR, MINIMIZES THE MAXIMUM INTERCITY
DISTANCE.)

HEURISTIC SOLUTION:  RUEBER BAND HEURISTIC.

PROBLEM RELAXATIONS:  ASSIGNMENT PROBLEM OR
BOTTLEMECK ASSIGNHMENT PROBLEM

RELAXED PROBLEM HAS SUBTOURS.

I NV
</' C / //

BRANCHING RULE, CHCCSE A SMALLEST SUERTOUR AMD
BRAFHCH OM SOME ARC INM IT.

SLIDE 14




RANDOMLY GENERATED ASYMVETRI C SUM PRGBLEMS COSTS (O 100
(SM TH SR M VASAN- THOWPSCH,  1977)

N0 CTIES } 50 100 150 180
AE TIME |
TO CPTI MALI TY | 1.72 52.98 65. 28 617. 12
AVE. TIME |
TO FIRST TOR 6 5.2 9.0 23.00
TI VES ARE MEASURES ON UMYAC- 1108.
FIRST TOURS ARE ALVWYS WTH N 5% CF CPTI MM
AND USUALLY MJCH CLOSER
BI VALENT ((QOSTS 0-1) PROBLEMS WTH 200 C TIES SOLVED
IN LESS THAN 6 SECS.
RANDOM.Y GENERATED BOTTLENECK PROBLENS
(SM TH THOWPSQN,  1975)
N0 CTIES 200 - 500 ~1000 1500 2000
AVE Tl | |
T0 CFT] NMEU Ty 2.75 | 20.08 | 33.72 206. 43 313.87
AE NO. CF
NCDES | N 6.6 16.8 7 15 12
SEARCH TREE |

SLIDE 15




CAPACI TATED HAREHOUSE LOCATI ON
VOTER REDI STR CTING

PROBLEM
LC FiY1 )
MINIMIZE [llGl f,gjx.JC.J LAY
JiNIA

0 WAREHOUSE | CLGOSED
1 WAREHOUSE | OPENED

PROBLEM RELAXATI ON

TRANSPORTATI ON' PRCBLEM

1 N N+
Loey °IN 0 1 A
M Clm MN 0 Ay

B By BN+1

SLIDE 16




WAREHOUSE LOCATI ON' PROBLENS

SUM GBJECTI VE
SEARCH
SIZE TREE NCDES TIME (SECY)
15 x 50 35 3
25X 50 500 30 (2 FAILURES)
15 x 45 1000 35

BOTTLENECK OBJECTI VE

| SEARCH

SI ZE TREE NCDES TIME (SECY
15 x 50 102 2.1
30x 90 214 5.3

50 x 150 451 17.0

NO FAI LURES

SLIDE 17




OTHER APPLI CATI O\S

K-TOUR TRAVELLING SALESVAN

OPTI MAL GROATH PATHS

CASH MANAGEMENT MODEL

ELECTRI CAL POV R DI STRI BUTI ON

ELECTRI CAL POVER CAPACITY PLANN NG
TRANSPORTATI ON W TH STOCHASTI C DEMANDS
DECI SION CPM

CLUSTER ANALYSI S

EXTENSI ONS
1. NETWORKS WTH GAI NS
2. MLTI - COWCDI TY FLON MODEL

SLIDE 18




