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Introduction

The decade of the 1970fs witnessed a stunning improvement in the

computability and applicability of network programming problems. Current

applications involve problems having thousands or millions of variables

and thousands of constraints. Network codes developed in the 1970's are

100 - 200 times as fast as their predecessors.

The main purpose of this talk is to survey the capabilities of

network codes and their extensions to specially structured integer program-

ming problems which can be solved by using the solutions of a series of

ordinary network problems.

Most of the actual computational methods and results surveyed in this

talk are taken from papers or working papers by the author and his students.

This was done because of their easy availability. Many othĉ r authors have

contributed important ideas to this area which we do not have time to

discuss here. References to their work are given in the bibliography. It

is not the purpose of this talk to give a historically accurate and complete

account of the advances in network modelling and computing, so that the

bibliography will have to suffice as a substitute for such a historical ac-

count.

Discussion of the Slides

SLIDE 1 gives the basic notation for a transportation problem having m

factories and n markets. The factories have supplies a and the markets

have demands b.. Note that the sum of the supplies is assumed to be equal to

the sum of the demands. When the demands are lfs the problem is called a

semi-assignment problem; and when the supplies are also lfs, it is called an

assignment problem.
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SLIDE 2 gives the transportation problem constraints which the

variables x . must satisfy. The first constraint says that the total

amount shipped from warehouse i is equal to the amount it contains; the

second constraint says that the sum of the amounts shipped to market j is

equal to its demand; the last constraint is just nonnegativity. The (bipartite)

graph at the bottom shows that the direction of shipping is from factories to

markets.

SLIDE 3 gives the two kinds of objective functions we will consider.

The sum objective adds together all the shipping costs from each warehouse

to each market. It is appropriate for bulk shipments of nonperishable goods.

The bottleneck objective is appropriate when c.. is interpreted as the time

to ship goods from factory i to market j, and the objective is to minimize

the maximum time along any route which carries a positive shipment. The bottle-

neck objective is appropriate when considering problems such as: shipping

perishable goods to markets in which we are concerned with the longest time

for any shipment to get to its destination; or sending troops to staging areas

in a case in which the unit is not ready to go until all sub-units have

achieved their starting positions.

SLIDE 4 introduces the concept of a transshipment node, that is, one

which is both a source and a sink. Network problems are transportation problems

in which most nodes are transshipment nodes. Usually, not all of the possible

arcs connecting pairs of nodes are assumed to exist in network problems, that

is, the problems are sparse. Very large sparse problems have been formulated

and solved relatively quickly.

The idea of computationally complexity is in vogue among computer science

and OR practitioners. As noted on SLIDE 6, transportation and network problems
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are among the easiest such problems since they are polynomially bounded; that

is, in the worst case the maximum number of steps required to solve such a

problem can be constrained by a bound which is a polynomial function of the

amount of input data needed. Transportation problems are natural integer

problems since they will have integer solutions when the a 's and b.fs are

integers. For both these reasons, these problems are important in applications.

SLIDE 7 shows a typical network application in the area of manpower

planning. Here there are three ranks an<? a maximum of five years of organi-

zational age. Separations from the organization are indicated by upward

slanting arrows, promotions by downward slanting arrows, and continuations

in rank by horizontal arrows. The full model also has upper bounds on flows

in each of these arcs. Note that there is one source node and one sink node

(retirement), and all other nodes are retirement nodes. This is fairly typical

for a network application.

SLIDE 8 shows a fairly typical warehouse (or factory) to market applica-

tion which is a straightforward transportation problem application. Unfortun-

ately, many such applications also have other constraints which are not trans-

portation type constraints. The single source constraint at the bottom of

the slide is one such. It imposes the very commonly occurring requirement

that all the demand at a given market be supplied from a single warehouse. We

discuss methods for imposing such constraints next.

SLIDE 9 gives a computational flow diagram of the Regret Heuristic which

(sometimes) finds good feasible solutions to single source problems. Note

that it contains a random choice element so that each time it is run a

(potentially) different solution is found. This heuristic is not guaranteed

to get a feasible solution, but it usually does, and about half of the time the

feasible solution is also optimal.
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In contrast to a heuristic code which can only produce feasible solutions,

an algorithm is a code which will, if it is run long enough, produce an optimal

solution to a decision problem (when such an optimal solution exists),

SLIDES 10 and 11 discuss some of the concepts needed to implement a branch

and bound algorithm for solving the single source problem. On SLIDE 10 note

that the first thing we do is to relax the integer single source constraints

to be just nonnegativity constraints. The relaxed problem is an ordinary

transportation problem whose solution value gives a lower bound on the value

of the unrelaxed problem. Usually the relaxed solution will not satisfy all

the single source constraints; variables which violate these constraints are

called fractional variables. We choose one such variable and branch, ths.t is,

we consider the two subproblem in which the fractional variable is set either

to zero or to the total demand of the column it is in. We relax the remaining

variables in these two subproblems and solve them as transportation problems

to get their lower bounds. This process is continued until we get either a

feasible solution which allows us to update the upper bound (UB) or else we

obtain a lower bound greater than an already achieved upper bound and can termi-

nate search on this branch of the search tree—the latter step is also called

fathoming. A typical search tree is shown in SLIDE 11.

SLIDE 12 gives a LIFO (Last In .First Out) or depth first branch and

bound algorithm for solving the single source transportation problem. Note

that it begins by finding a heuristic solution to give the initial value of UB

the upper bound. Then the relaxed problem is solved. Then a column having

a fractional variable is selected and one of the cells having largest flow is

selected; it is fixed in, that is, made to supply the total demand. If the

resulting solution is single source we update UB and bafcktrsck, that is, go

upward on the search tree. If it isn't a single source solution we test to
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see if the value of the subproblera is >^ UB to see if we can fathom. If we

can fathom we backtrack, otherwise we choose another fractional variable and

search deeper in the tree. The computational procedure stops when we try to

backtrack from the initial node of the search tree.

As noted at the top of SLIDE 13, the forward and backtrack movements in

the search tree are actually performed by using cost operators which are

computationally inexpensive. Also shown there are computation times obtained

recently by Nagelhout and Thompson. Note ths.t the heuristic frequently finds

the optimum. Also note that solution times vary erratically depending on the

size of the search tree. In one case computation was stopped because of ex-

cessive time. These are typical results for this kind of problem.

SLIDES 14 and 15 discuss the Travelling Salesman problem which can be

solved by similar procedures. The rubber band heuristic for the travelling

o

salesman proceeds as follows: chose any three cities and find their smallest

subtour; now choose any city omitted and try inserting it in between pairs of

cities on the subtour so far constructed; continue until a complete tour is

obtained. The relaxed problem is an assignment problem which, if solved, will

usually have loops or subtours. To develop a branch and bound code we solve

the relaxed (assignment) problem, select a smallest subtour, choose an arc

on that subtour and fix it out; now solve the new relaxed problem and iterate

until a feasible tour is found; then backtrack etc. The rest of the code is

similar to that for the single source problem.

SLIDE 15 gives some computation times for sum and bottleneck travelling

salesman problems. Note that for the sum case, the total solution time: goes

up rapidly with the number of cities, but the average time to the first tour

(which is usually within a few percent of the optimum) remains small. The

first tour found by the algorithm can be used as an improved heuristic solution.
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The most amazing results are for the bottleneck travelling salesman problem;

Smith and Thompson have solved such problems up to 2,000 cities. The reason

that this is possible is that the search trees remain surprisingly small as

noted at the bottom of SLIDE 15.

The last major example to be discussed is the capacitated warehouse

location problem stated in SLIDE 16. Note that the x,. variables are as

before, but the y. variables take on only the integer values 1 if warehouse

i is open, and 0 if it is closed. In the objective function a fixed charge

F. is added when warehouse i is opened. The relaxed problem here is ob-

tained by just requiring y >^ 0, i.e., nonnegativity. We do not discuss

further details of the branch and bound code.

SLIDE 17 gives computational results obtained by Nagelhout and Thompson

on this problem. Note that the bottleneck problems are much easier than the

sum problems, since the bottleneck code has no failures while the sum code

failed to solve two sum objective problems. It is also true that the variance

of times is much less for the bottleneck than for the sum objective problems.

The problems discussed so far are far from exhausing the applications

of network and transportation problems.

SLIDE 18 lists 8 other application areas which will be briefly discussed.

Also discussed are two other network models. The first is a network with gains

in which the quantity of the good can increase or decrease as it flows along

an arc. An example of an increase is: suppose the commodity is money and

flowing on the arc means being on deposit in a savings account for a period of

time; the money can then be augmented by an interest payment. An example of

a decrease is: suppose the quantity is electrical power flowing in a wire;

it can be decreased due to power losses. The final generalization is to multi-

commodity flows in which we consider several commodities flowing on the same

arc and competing for its capacity.
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Many further results on these and other models are available in the

literature cited in the following references.
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FACTORIES (SOURCES) I - {1,...,M}

SUPPLIES A, FOR i€l

MARKETS (SINKS) J « { 1 , . . . , N }

DEMANDS B. FOR jeT
J

ASSUME
IT A. = I B.

I€l l j€j J

SEMIASSIGNMENT PROBLEM

Bj - 1 FOR jej

ASSIGNMENT PROBLEM

A, = 1 FOR id, AND

B, = 1 FOR j€j

SLIDE 1



x. , = AMOUNT SHIPPED FROM FACTORY i TO MARKET J,
1 J

CONSTRAINTS

FOR i el

X I J = BJ ^ J€v*

x I (J > 0 FOR i e h

SLIDE 2



OBJECTIVE FUNCTIONS

SUM OBJECTIVE

cT , = COST OF SHIPPING ONE UNIT FROM I TO J.

M I N I M I Z E {1=1 I x.. c.. }
iel J

Z = TOTAL SHIPPING COST

EXAMPLE: GROCERY WAREHOUSES TO SUPERMARKETS

BOTTLENECK OBJECTIVE

cf . = TIME TO SHIP ONE UNIT FROM I TO J

M I N I M I Z E {Z = MAXIMUM c{Jj
xu>°

Z - MAXIMUM SHIPPING TIME

EXAMPLES: PERISHABLE GOODS, STAGING OF TROOPS

SLIDE 3



TRANSSHIPMENT NODE: ONE THAT APPEARS BOTH AS A SOURCE

AND AS A SINK.

EXAMPLE: FACTORY-HAREHOUSE-MARKET SYSTEM

NETWORK PROBLEMS: MOST NODES ARE TRANSSHIPMENT.

SPARSE: NOT ALL ARCS ARE USED. CAN RE TAKEN ADVANTAGE OF.

SLIDE



FAST PRIMAL METHODS FOR SOLVING BOTH SUM AND BOTTLENECK

PROBLEMS WERE DEVELOPED IN THE 1970's.

TYPICAL RESULTS:

OBJECTIVE

SUM
BOTTLENECK

IP!?

0-10

.433

.490

x 100 DENSE PROBLEMS.

COST CHOSEN
0-100

2.090
1.229

IN INTERVAL
0-1000

2.351
1.123

0-10000

2.419
1.023

NOTE THAT BOTTLENECK PROBLEMS ARE APPROXIMATELY ONE HALF AS

DIFFICULT AS SUM PROBLEMS.

NOTE MINIMUM COST EFFECT.
SPARSE PROBLEMS CAN BE SOLVED MUCH FASTER.
1000 x 1000 SPARSE PROBLEMS CAN BE SOLVED IN LESS THAN

2 MINUTES.

MUCH BIGGER PROELEMS HAVE BEEN SOLVED
50,000 x 50,000

SLIDE 5



THERE ARE SEVERAL POLYNOMIALLY BOUNDED PRIMAL ALGORITHMS FOR
THE SUM PROBLEM,.

FORD-FULKERSON DUAL METHOD

BALINSKI-GOMORY PRIMAL METHOD

SRINIVASAN-THOHPSON COST OPERATOR METHOD

THE SRINIVASAN-THOMPSON-SZWARZ-HAMMER ALGORITHM CAN BE

SHOWN TO BE POLYNOMIALLY BOUNDED.

THOMPSON HAS A NEW RECURSIVE METHOD FOR BOTH SUM AND

BOTTLENECK PROBLEMS WHICH IS POLYNOMIALLY BOUNDED.

ALSO, IF THE A,'S AND B / S ARE INTEGRAL THEN A BASIC PRIMAL

FEASIBLE INTEGER SOLUTION HILL BE FOUND BY THESE

PRIMAL ALGORITHMS. THIS IS A NATURAL INTEGER PROBLEM.

THE NATURAL INTEGER PROPERTY MAKES THESE HOPELS USEFUL FOR

APPLICATIONS.

SLIDE 6



State version of the manpower model with R = 3 and T = 5. Upward slanting
arrows denote separations, horizontal arrows denote continuation in rank, and
downward slanting arrows denote promotions. The yearly number of new employees
is x~, the yearly number of retirements is and the yearly separations

(sum of flows on all upward slanting arrows) is x ; we require
*R + XS =

SLIDE 7



EXAMPLE 2. WAREHOUSES TO MARKETS

Wl

H2

Ml
cll

C21

CMl

[12
C12

C22

C M 2

• • •

• • •

• • •

• • •

MN

ClN

C 2 N

CMN

Bl B2 B

A l

N

IF WE ADD OTHER CONSTRAINTS V'E USUALLY DESTROY THE NATURAL

INTEGER PROPERTY.

EXAMPLE: SINGLE (SOLE) SOURCE CONSTRAINT

0
B

I.E., ALL THE DEMAND AT A MARKET MUST BE SUPPLIED FROM A
SINGLE WAREHOUSE.

SLIDE 8



SINGLE SOURCE REGRET HEURISTIC

REGRETj = (SECOND SMALLEST ENTRY - SMALLEST ENTRY)J

UPDATE
COSTS

r

*

\A

w

INITIALIZE
i

CHOOSE COLUMN
HAVING LARGEST REGRET

CHOOSE AT RANDOM
AMONG THE SMALLEST COSTS

DEMAND
SSIGHED

^

bl YES
P\SIUP

RUN THIS PROGRAM SEVERAL (SAY 10) TIMES: SAVE BEST
SOLUTION FOUND.

SLIDE 9



BRANCH AND BOUND ALGORITHM

RELAX THE SINGLE SOURCE CONSTRAINT

xu = i T0 xu ̂
0

SOLVE THE RESULTING TRANSPORTATION PROBLEM, ITS VALUE

GIVES A LOWER BOUND ON THE VALUE OF THE SINGLE

SOURCE PROBLEM

FIND A COLUMN WITH A FRACTIONAL VARIABLE, I.E.,

0 < X < B

BRANCH: DEVELOP THE SEARCH TREE

x

(XFJ = Bj)

SOLVE EACH TRANSPORTATION PROBLEM TO GET LOVER BOUNDS (LB).

SLIDE 10



BRANCH AND BOUND (CONT)

WHENEVER LB > UB FATHOM, I.E., DON'T SEARCH

LOWER IN THE TREE.

WHENEVER A FEASIBLE SOLUTION IS FOUND (SATISFYING
SINGLE SOURCE CONDITIONS) VflTHA BETTER BOUND
UPDATE UB

WHEN SEARCH IS COMPLETE HAVE OPTIMAL SOLUTION

OPTIMAL

TYPICAL
SEARCH
TREE

FEASIBLE

SLIDE 11

\

\

X
FATHOM FEASIBLE



LIFO BRANCH AND BOUND ALGORITHM
FOR THE SINGLE SOURCE PROBLEM

88

FIND HEURISTIC SOLUTION
SET IJB = HEURISTIC VALUE.

SOLVE RELAXED PROBLEM.

CHOOSE COLUMN WITH FRACTIONAL
VARIABLE HAVING LARGEST DEMAND

CHOOSE CELL IN THAT COLUMN
HAVING LARGEST FLO';'. Ell
ALL CELL IN (MAKE ALL OTHER
COSTS IN THAT COLUMN - AND
RESOLVE).

/ I S IT >
/A SINGLE \.

7 SOURCE I
[SOLUTION? /

Jii • IUPDATE UE|

/ :
BACKTRACK: FIX
OUT LAST CELL
THAT WAS FIXED IN

YES LAST CELL\
FIXED IN?)

y
NO

STOP. BEST FEASIBLE
SOLUTION FOUND IS OPTIMAL

SLIDE 12



MOVING UP AND DOWN THE SEARCH TREE
IS DONE BY APPLYING COST OPERATORS,
A TYPE OF PARAMETRIC PROGRAMMING.

COMPUTATIONAL RESULTS FOR SINGLE-SOURCE SUM PROBLEMS

M

100
100
100

100
100

X

X

X

X

X

X

N

100
200
300
350
400

HEURISTIC
% ERROR

0
3.3
0
-

0

CPU TIME
2.11
4.38

7.71
9.94
10.78

NUMBER OF
SEARCH
TREES
NODES
505
946
20

6749
3

TOTAL
TIME (SECS)
23.88
4P.07

18.75
7600
23.39

COMPUTATIONAL TIMES FOR SINGLE-SOURCE BOTTLENECK PROBLEMS

M X N

100 x 100
100 x 150
100 x 400
100 x 400

HEURISTIC
GET OPTIMAL?

No
No

YES

No

NUMBER OF
SEARCH TREE
NODES

9263
-

133

TOTAL
TIFE (SECS)

19.1
115.4

12.48

106
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TRAVELLING SALESMAN PROBLEM

GIVEN N CITIES FIND A ROUTE THAT GOES
THROUGH EACH CITY EXACTLY ONCE AMD
MINIMIZES THE TOTAL MILEAGE TRAVELLED
(QL MINIMIZES THE MAXIMUM INTERCITY
DISTANCE.)

HEURISTIC SOLUTION: RUBBER BAND HEURISTIC.

PROBLEM RELAXATIONS: ASSIGNMENT PROBLEM OR
BOTTLENECK ASSIGNMENT PROBLEM

RELAXED PROBLEM HAS SUBTOURS.

BRANCHING RULE. CHOOSE A SMALLEST SUFTOUR AND
BRANCH ON SOME ARC IN IT.
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RANDOMLY GENERATED ASYMMETRIC SUM PROBLEMS COSTS (O-1OO)

(SMITH-SRIMIVASAN-THOMPSOH, 1977)

NO. CITIES
AVE. TIME

TO OPTIMALITY

AVE. TIME
TO FIRST TOUR

50

1.72

.6

100

52.98

5.2

150

65.28

9.0

180

617.12

23.00

TIMES ARE MEASURES ON UMYAC-1108.
FIRST TOURS ARE ALWAYS WITHIN 5% OF OPTIMUM

AND USUALLY MUCH CLOSER

BIVALENT (COSTS 0-1) PROBLEMS WITH 200 CITIES SOLVED
IN LESS THAN 6 SECS.

RANDOMLY GENERATED BOTTLENECK PROBLEMS
(SMITH-THOMPSON, 1975)

NO. CITIES

AVE. TIME
TO OPTIMALITY

AVE. NO. OF
NODES IN
SEARCH TREE

200

2.75

6.6

500

20.08

16.8

1000

33.72

7

1500

206.43

15

2000

313.87

12
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CAPACITATED HAREHOUSE LOCATION

VOTER RED ISTRICTING

PROBLEM

MINIMIZE \ l I x . . c +
LIGI J € j I J I J

J j XIJ AI YI

I X, . B
€l IJ

u ^
0 WAREHOUSE I CLOSED

1 WAREHOUSE I OPENED

PROBLEM RELAXATION

TRANSPORTATION PROBLEM

1

M

1

c l l

N

ClN

CMN

N+l

0

0
B l BN

B N+1
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WAREHOUSE LOCATION PROBLEMS

SUM OBJECTIVE

SIZE

15 x
25 x
15 x

50

50
45

SEARCH
TREE NODES

35
500

1000

TIME (SECS)

3
30 (2 FAILURES)

35

BOTTLENECK OBJECTIVE

SIZE

15 x
30 x

50 x

50
90

150

SEARCH
TREE NODES

102
214

457

TIME

2

17

(SECS)

.3

.0

NO FAILURES
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OTHER APPLICATIONS

1. K-TOUR TRAVELLING SALESMAN

2. OPTIMAL GROWTH PATHS

3. CASH MANAGEMENT MODEL

4. ELECTRICAL POV'ER DISTRIBUTION

5. ELECTRICAL POWER CAPACITY PLANNING

6. TRANSPORTATION WITH STOCHASTIC DEMANDS

7. DECISION CPM

8. CLUSTER ANALYSIS

EXTENSIONS

1. NETWORKS WITH GAINS

2. MULTI-COMMODITY FLOW MODEL
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