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A STUDY OF THE BOTTLENECK SINGLE SOURCE

TRANSPORTATION PROBLEM

by

Robert V. Nagelhout and Gerald L. Thompson

ABSTRACT

Given a set of users with known demands, a set of suppliers with known

supplies, and known costs of shipping between suppliers and users, the Bottle-

neck Single Source Transportation is that of assigning the users to the suppliers

so that the following conditions are satisfied: (i) the demand of each user is

satisfied by a single supplier; (ii) the amount supplied by each supplier does

not exceed its capacity; (iii) the maximum cost of supplying any user by its

unique supplier is minimal*

Applications of this problem include: voter redistrieting, shipping per-

ishable goods, assignment of city blocks to emergency facilities, and others.

We first discuss a heuristic method which tries to find a feasible solu-

tion by assigning the users in order of decreasing demand to the suppliers

according to certain orders. In our experience on randomly generated problems,

the heuristic was able to find a good, and frequently an optimal feasible solu-

tion, most of the time.

If the heuristic fails to find a solution, or finds a solution which is

not known to be optimal, then a branch and bound algorithm, using ordinary bottle-

neck transportation problems as relaxations, is employed to find the optimum

single source solution.

Computational experience on soma randomly generated problems up to 100 x 400

is presented which indicates that these problems can be solved in less than



2 minutes. Also several small problems with real data were solved; in all but

one of these problems the heuristic succeeded in finding an optimal solution.
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1. Problem Formulation and Applications

Given a sep of users, J - {l,...,n}, with known demands, d., and a

set of suppliers, I - {l,...,m}, with known supplies, s., let c be the

cost of having the demand of user j satisfied by supplier i. Then the

Bottleneck Single Source Transportation Problem (BSSTP) is that of assign-

ing the users to the suppliers so that (i) the demand at each user point is

satisfied entirely by a single supplier, (ii) the amount supplied by each

supplier does not exceed its capacity, and (ill) the nmyfimiiq cost of supplying

a user by its unique supplier is minimized. Letting x.. denote the

quantity shipped from supplier 1 to user j, we can formulate the BSSTP as:

/Minimize Max (c..> (1)

v°
Subject to

2 x,4 < *4 i e I (2)

BSSTP jeJ ia *

2 x > d j e J (3)
iel X3 3

x±i - 0 or dj i e I, j e J (4)

In this mathematical formulation constraints (3) and (4) ensure ad-

herence to criterion (i), constraints (2) to criterion (ii), and constraint

(1) to criterion (iii). The constraints (2) - (4) are those of a Single

Source Transportation Problem (SSTP) [12], [15], and they are a special case

of the constraints which comprise the Generalized Assignment Problem (GAP)

[9], [10], [13], [14]. The objective function in the SSTP and the GAP is

that of minimizing total cost whereas the objective in the BSSTP is to minimize

the bottleneck cost. In many cases the bottleneck objective is the more rele-

vant criterion. For example consider a voter redistricting proolem where I
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represents a set of voting locations, J is a set of geographic areas or

blocks; s. equals the number of voters who* can be accommodated in one day by

voting place i; b. equals the expected number of voters in block j; and

c.. equals the time required for a voter in block j to travel to location

i. Then the problem is to assign the voting blocks to the locations so that

the fl"»^«"» time for any voter to travel to his (her) voting place is minimized«

The requirement that each user's demand be satisfied from a single

source point is also very common in physical distribution problems. For ex-

ample in the shipment of perishable commodities such as poultry, milk, and

other dairy products from distribution centers to local demand centers it is

often required that the entire shipment to a local center be made from a single

distribution center, and due to costs, such as spoilage, theft, and insurance,

it is desirable to minimize the longest time required for shipment of the goods«

Ross and Soland [14] and Klastorin [9] have demonstrated that many

location problems can also be viewed as a GAP or a SSTP. Similarly we can

formalate bottleneck location problems in the framework of a BSSTP.

For example9 consider the voter redistricting problem mentioned pre-

viously. Suppose that there is a restriction on the number of voter locations

which may be opened; for instance suppose that at most k locations can be

opened. Let S be the ™*"Hm«m number of voters which can be handled by any

location in one day. Then the voter redistricting location problem would be

to choose at most: k voter locations out of the set, I, of potential sites,

and to assign the groups of voters to these k locations so that the

time required for a voter to travel to his (her) voting site is minimized.

Figure 1 shows how this location problem can be modelled as a BSSTP. There

are m potential voting sites and n groups of voters, where each group lives

on a given residential block, which must be assigned to the voting sites which
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are opened. When l<j£n, the entries in column j of the matrix give the

travel times, c^., from residential block j to voting site i, for

l<,j<Ti; the entry d. gives the expected voter turnout from block j. When

iH-l<j<n4iaf there are exactly two zero entries in column j, c. • 0 and
i,n+l

c - ^ • 0* All other entries in column j are set equal to infinity, so

that they will not be used in any optimal solution. The entries in column

nH-a+1 are all 0vs, corresponding to the cost of unused capacity at the voter

sites*

Consider now a single source solution to the problem shown in Figure 1.

In column tri-i, where l<i<m, there are only two possibilities:

or

Vl.aH-0

It is easy to see that a solution satisfying (5) means that voting site i is

open, while a solution satisfying (6) means that voting site i is closed.

In Section 2 we describe a heuristic method which provides an upper

bound on the value of an optimal solution to the BSSTP. In Section 3 we

describe an algorithm for solving the BSSTP which is utilized whenever the

heuristic fails to find an optimal solution. A small example is provided.

In Section 4 we discuss our computational experience on some randomly generated

problems, and with some problems derived from data taken from the literature.

Finally, Section 5 contains some concluding remarks.

2. A Heuristic for BSSTP.

In this section we present a heuristic method for finding a feasible

solution to the BSSTP. The heuristic is used to generate a low cost feasible
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solution to the BSSTP. In particular, in Section 3, we show how to apply

the heuristic so that if a feasible solution to the BSSTP is found, it is

guaranteed to be optimal.

For notational convenience we define

v * an upper bound on the cost of any positive variable, and

where V. is the set of all indices of sources whose cost in column j is

less than or equal to v. For expositional simplicity we also assume that the

demands, d , are in nonascending order.

The heuristic begins by randomly assigning the first user demand, d.,

to one of the supply points in V . Certain sources with indices in V can

be given higher priority over others if this is desirable. For example one may

wish to assign d- to a source ieV having the largest supply, s , or

having the smallest cost c ... A random choice among the possible supply

points is preferred here, however, over a strict rule which always chooses a

unique source, since with a random choice rule the heuristic can be repeated

several times, generating several feasible solutions, from which the best can

be chosen. A "good" choice for v depends upon the problem data (i.e.,

s., d , c ) and we will discuss this choice in more detail later. Once d-

has been assigned to a randomly chosen source, say k of V , then we replace

s by s, - d. which is the amount of supply remaining at source k. Also,

for all d., j>2, such that d.>a we set c, » • signifying that source

k can no longer service user j. The assignment of user demands to sources

continues sequentially in the same fashion with do, V.,...,d ,V , until
z z n n

either, (i) every user demand has been assigned to a source, or (ii) a

column, say £, is reached where v « $. In case (i) we have a feasible solu-

tion to the BSSTP which yields an upper bound, ZU, on the value of any
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optimal solution to the BSSTP. In case (11) the heuristic failed to find a

feasible solution and we set the upper bound Zu * «. In either* case we rerun

the heuristic several times In the hope that the random element in the choice

of sources will succeed in generating a solution having a small upper bound.

Note that it is possible after several runs, for the heuristic to fall

to find any feasible solution to the BSSTP. This is not surprising since the

problem of finding a feasible solution to a BSSTP is equivalent to finding a

partition, S-,..., S , of a set of integers {d-,...,d } (the demands)
x m x n

such that the sum of the elements In each S. is less than or equal to s

(the supply), for i - l,...,m. The latter problem, which is called the bin

packing problem when all the ŝ 's are equal, is known to be NP complete [4].

Thus it is unlikely that a polynomially bounded algorithm can be found which

will be guaranteed to find a feasible solution to the BSSTP. However, in

spite of these worst case observations, for the problems which we have tested

(See Section 4) we found that a few runs of the heuristic is usually sufficient

to generate a low cost feasible solution to a BSSTP.

The only parameter which must be specified to use the heuristic is v.

Clearly there is a tradeoff involved in choosing v. If v is too small,

then the heuristic may fail to find a feasible solution whereas if v is too

large, then the solution value obtained by the heuristic may be so large that

it Is of no help in reducing the size of the search tree (to be described in

Section 3)• For the problems which we considered in Section 4 we describe a

few of the different parameter settings which we tested. With one of the

settings the heuristic either gneerates an optimal solution or it generates no

solution at all. We will discuss how and why this is done in Section 3, where

an algorithm for solving the BSSTP is given.

Now we formally state the heuristic.
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Heuristic 2.1

Step 1. (Initialize). Order the demands so that i>...>d . Let h • 1.

Let x » 0 iel, jeJ.

Step 2. (Random Assignment) Given v calculate V^. If V, » $ go to (3).

Otherwise randomly choose keV, . Let x̂ , * &u* Replace s« by

s - d,. For all j>h if d >s, then let c, » ». If h » n go

to (4). Otherwise replace h by h+1 and go to (2).

Step 3. The heuristic failed to find a feasible solution. Let Zu » «.

Step 4, Let ZU - max{c..}. Then Zu is a valid upper bound for the BSSTP.

Example 1: Let v. denote the value of the kth smallest cost in column j

In the example we set v * max{v~,}; that is v equals the nmyttmint̂  over all
jeJ ^

columns, of the second smallest cost in each column. The steps of the

heuristic on the example in Figure 2 are shown below. The elements of V.

are marked with an ** The chosen variables are circled.

Step Computation

1

2

2

2

2

2

2

4 p

In practice the heuristic would be repeated several times in hopes

of generating many different feasible solutions. Also, the value of the

Order demands

v - 8, Vx

v - 8, V2

v - 8, V3

v » 8, V4

v - 8, V5

v - 8, V6

Stop. Zu

» {2,4}.

- {1,4}.

• {4} .

- {3} .

- U,4}.

- {3} .

- 6.

Choose

Choose

Choose

Choose

Choose

Choose

X21

*12

X43

*34

X45

X36

- 19;

- 17;

- 17;

- 15

» 10

- 8
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parameter, v, need not remain constant throughout the iterations of Step 2.

For example we could set v » yy at iteration h of Step 2. The value of v

at iteration h determines the size of V..
n

In the previous example we would get the following sequence of para-

meter values and source sets,

Value of h

1 v - 4 ^ - {2,4}

2 v - 7 V2 » {1,4}

3 v - 9 V3 •' {3,4}

4 v - 09 V. - {3}
4

5 v - 8 V5 » {1,4}
6 v - 10 Vg - {1,3} .

The different parameter setting alters V. and V. and thus with a
J o

different random choice of sources it is possible to generate a completely

different solution. In the next section we describe an algorithm for solving

the BSSTP which is used whenever heuristic 2.1 fails to find an optimal

solution.

3. An Algorithm for the BSSTP.

Suppose we relax the constraints (4) in the BSSTP to

0 £x ±. £ d iei, jeJ (7)

Then the constraints (1) - (3), (7) are those of a Bottleneck Transportation

Problem (BTP)• Several algorithms have been proposed and tested for solving

a BTP [3], [5], [6], [7], [2], [16], [17]. Let Z- and zj denote the value

of an optimal solution to the BSSTP and the BTP respectively. From our
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computatlonal experience we found that for the overwhelming majority of the

BSSTP problems we tested Z • Z . That is there was usually no gap between

the optimal value of the BSSTP and its relaxation, BTP. This is especially

true as the problem size increases. Given this phenomenon, the only heuristic

solutions which proved to be of value were those for which Z - Z was
15

"very small,ff where Zu is the lowest value obtained by the heuristic. For

this reason we tested several different parameter settings for the heuristic

2.1 (see Section 2) in order to generate a low cost solution to the BSSTP.

In one of these settings we generate either an optimal solution through the

heuristic, or we generate no solution at all. This is done by setting

v • Z . Any solution obtained by the heuristic with this parameter setting

is guaranteed to be optimal since v is an upper bound on the value of every

heuristic solution and Z is a lower bound on the value of an optimal solu-

tion to the BSSTP.

The drawback to setting v • Z is that in case Z_> Z_, the

heuristic is guaranteed not to find a feasible solution to the BSSTP. How-

ever, as we mentioned previously, this occurs so infrequently that it is not

of major concern. Also, even when ZJ > Z^ it is possible to find a solution

to the BSSTP through the heuristic by periodically increasing the value of v.

For example we could start with v • 2^ and then if after several runs the

heuristic fails to find a feasible solution, we could increase v by one

and continue in this fashion until a solution is ultimately found.

Remark: In the case where d. • 1 for all jej an optimal basic solution

to the BTP will also be an optimal solution to the BSSTP. This is a consequence

of the fact that any basis matrix for the BTP is unimodular. That is, if the

supplies and the demands in the BTP are integer, the solution will also be

integer.
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In this particular case the only possible integer solution values are

x^j » 0 or 1 for all lei, jeJ, and thus any basic solution to the BTP

will satisfy (4).

The algorithm for solving the BSSTP begins by applying the algorithm in

[16] to solve the BTP, which provides the absolute lower bound, Z*. If all

of the variables in the optimal solution to the BTP satisfy (4), then we are

done, since the optimal solution to the BTP is also an optimal solution to

the BSSTP. Otherwise we run the heuristic 2.1 which provides an upper bound,

Zu, on Z_. If Zu • Z. then we stop because the heuristic solution is

optimal. Otherwise, using the Variable Selection Rule (to be described later)

we choose a variable, say x.., which violates the single source constraints

(4) (i.e., 0<x..<d.) and we solve the current restricted BTP, BTP , which

results when we force x,, » d.. This is done by setting c, . * • for all

k # 1 and then reoptimlzing the BTP. After having found an optimal solution,

+ c
X , to the current problem BTP.,, and its optimal value Z , we then apply
c AJ

the Fathoming Test by testing if (i) X violates (4) and(il) Zc < Zu. If

both (i) and (ii) hold true then we use the Variable Selection rule to choose

a variable which violates (4) and proceed as previously described. Otherwise

if only (11) holds true we save the new solution, and in any event we fathom

the current solution and backtrack. Backtracking is performed by choosing

the last variable which was fixed into the basis (i.e. we use a LIFO search

rule [12]), say x.., and fixing it but of the basis. In this case we solve

the restricted BTP, BTP* , which results when we set x . • 0. This is done

by setting c.. m • and reoptimizing the latest restricted problem. We then

apply the Fathoming Test and proceed as previously described. The process

terminates when either (i) the list of cells which have been fixed in and out
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1s exhausted or (11) the optimal values of BTP and BSSTP are shown to be equal.

Case (il) occurs quite often as will be shown In Section 4.

We should also point out that in finding an optimal solution to BTP

or BTP" we do not resolve the restricted BTP from scratch. In the BTP

algorithm of Srlnlvasan and Thompson [15] there are no dual variables associated

with the "primal" problem. Thus altering some of the costs in the primal

problem by setting them equal to « as previously described does not re-

quire a reduced cost adjustment, since there are no reduced costs. An

optimal solution to a restricted BTP can be obtained simply by reoptimlzing

the problem from which it was derived. This normally requires only a few

pivots* Therefore only the original BTP is solved completely from scratch

and each subsequent restricted BTP requires only a few additional pivots to

resolve.

Now we describe the previously mentioned Variable Selection Rule which

is used to choose a variable for branching purposes in the branch and bound

algorithm. Let j denote the smallest column index among all columns jsT

which violate the single source criterion In the current solution. That is,

column j contains at least two variables which violate (4). Now let i
c c

be the row index of any variable satisfying,

1 1
cJc kel

Then x. . is selected for branching to the BTP . for which x . * d .

Since some variable in column j must be equal to d. in an optimal solution
c Jc

to the BSSTP, we choose in (8) a variable in column j whose value in the

current solution to the restricted BTP is closest to d . This Variable

Selection Rule is easy to implement and in practice works as well as any of

the other selection rules that we tested.
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Now we formally state the algorithm for solving the BSSTP. First

some notation::

I * level of the search tree

LIST(Jl) • contains the variable which is fixed in or out of the

basis of the restricted BTP on level I.

Z(£) * the optimal objective function value of the restricted

BTP on level fc.

Q(l) * a list of variables whose costs have been set to • on

level I.

A * a set of columns containing a variable which has been

fixed into the basis.

X • solution to the current restricted BTP.
c

Zc » optimal objective function value of the current restricted

BTP.

Algorithm 3.1 for solving the BSSTP

Step 1. (Initialize) Let £ » 1; A - <fr. Solve the BTP. If X satisfies
c

equation (4) go to step 7. Otherwise go to step 2.

Step 2. (Heuristic) Run heuristic 2.1 to get Zu. If Zu - Zc then go

to step 7. Otherwise let Z(1) • ZC; replace I by I + 1 and

go to step 3.

Step 3. (Branching) Use the Variable Selection Rule (3) to* choose x . .
c c

Let c. . - • for all k ̂  i . Replace A by A U { j }. Let
~kjc c c

Q(Z) be the set of all ĵ A such that d >s. - Z d.. Let
J xc jeA 3

c « « for all jeQ(*). Let LISTU) - (ic,Jc)
+.

c
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Step 4. (Fathoming) Reoptimize the current restricted BTP. If ZC >^ Zu

then go to step 5. Otherwise if X satisfies (4) then save X ;

let Zu » ZC and go to step 5. Otherwise let ZU) » ZC;

replace I by I + 1, and go to step 3.

Step 5. (Backtracking) If LIST(Jl) » (i ,j )+ go to step 5a; otherwise go

to step 5b.

5a. For all k f i set c, . back to its original value.
c K3c

For all j e Q(£) set c, . back to its original value.
c

Replace I by I - 1; replace A by A - {j }; and go to

step 6.

5b. Set c, , back to its original value. Replace I by £ - 1.
cJc

If I » 1 and LIST(fc) - (^3 )"" 8° to steP 7* Otherwise go to

step 6.

Step 6. If LISTU+1) - (i ,j )~ then let (i ,j ) » LIST(£) and go to
c c c c

step 5b. Otherwise if Z(£) * Zu then go to step 5. Otherwise let

LISTa+1) - ̂ V V " 5 let Ci 1 " * ; rePlace l by * + 1; go
cJc

to step 4.

Step 7. Stop. The current saved solution is optimal with value Zu.

Example 2: Refer to Figures 3(a) - (e) for an illustration of the example.

The steps of the algorithm are given below:

1* I m 1, A » $• The solution to the BTP is given in Figure 3(a).

ZC - 4. X violates (4).
c

2. Assume for exposition purposes that the heuristic could not find a

feasible solution (i.e., Zu » «). Let Z(l) - 4; I * 2.
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3. Select x± - x ; A - {1}; Q(2) - {2,3,4,5} LIST(2) - (4,1)+.
c c

4. See Figure 3(b) for the solution to BTpt. Zc - 8. X satisfies (4).

Save X , let Zu « 8.
c

5. LIST(2) - (4,1)+.

5a. Restore costs. Let I » 1. Let A - <J>.

6. Let LIST(2) - (4,1)"; c41 » «; I - 2.

4. See Figure 3(c) for the solution to BTP~ . Zc « 6. Let Z(2) - 6;

I - 3.

3. Select x - Xi?- A - {2}, Q(3) - {1,3,4}
cJc

LIST(3) - (1,2)+.

4. See Figure 3(d) for the solution to BTP* . X° • 6. X satisfies (4).
1« C

Save X and let Zu * 6.
c

5. LIST(3) - (1,2)*.

5a. Restore costs. Let Z- 2. Let A - <J>.

6. Z(2) - Zu » 6.

5. LIST(2) - (4,1)~.

5b. Restore c._. Let I » 1.
41

7. Stop. The solution in Figure 3(d) is optimal with value 6.

Figure 3(e) gives a description of the search tree. At node 1 the BTP

is solved and has a value of 4. Since the solution to the BTP is not single

source (see Figure 3(a)), we use the Variable Selection Rule to choose x,.,.

We then solve BTP at node 2 and find the solution to be single source,

with a value of 8. (see Figure 3(b)). Next we solve BTP" at node 3 and

get a non-single source solution with a value of 6 (see Figure 3(c)). We then

use the Variable Selection Rule to choose x-~ â d solve BTP--. This yields
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a single source solution with a value of 6 (see Figure 3(d)). There is

no need to generate BTP" since Zu » Z * 6 at node 3.

In this example 6 » Z > Z » 4. For all the problems which we
D D

report in Section 4, Z_ » Z_. Note that in moving from node 3 to node 4,

the value of the restricted BTP remained at 6. The solutions at node 3 and

4 are alternate optimal solutions to BTPT-. The solution at node 4 satisfies

(4), while the solution at node 3 does not. For a given BTP there are

usually an enormous number of alternate optimal solutions. This is probably

the reason why Z « Z in most of the problems we tested. That is, among

the enormous set of alternate optimal solutions to the BTP there is usually

at least one which satisfies (4)• In the next section we present an extensive

computational study of heuristic 2.1 and the branch and bound algorithm for

the BSSTP.

4. Computational Results

In this section we discuss our computational experience on a set of

randomly generated problems ranging in size from 10 x 10 to 100 x 400, and

on a set of problems which were constructed using data from Kuehn and Hamburger

[11]. The CPU times in Tables 1 - 3 are subject to some measurement error

due to variable loads on the time sharing system.

The random problems were generated in the following manner. We use

a uniform probability distribution to generate random integer demands, d jeJ,

between 20 and 200; similarly we generate random integer costs, c.. iel jeJ,

between 1 and 100. Then letting j1 be the index of a smallest cost entry

in column j we set

X j i - dj and x±j » 0 for i ^ J r j e J. (9)
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i

We then calculate the largest supply,

so that if S± - S for all isl, then the solution in (9; will be feasible

Then for each iel we let s. » aS(a<l), and d ̂  * moS - Z d where d

is a "dummy" or "slack" demand center.

To have d^^ > 0 is a necessary but not sufficient condition for the

existence of a feasible solution to the constraints (2) - (4). In general,

the smaller the value of d^j* the more difficult it is to find a feasible

solution to a BSSTP. The size of d - can be controlled by choosing an

appropriate value for a. When a • 1 it is easy to see that the solution

contained in (9) is optimal. For a < 1 the solution in (9) is no longer

feasible, and thus the problem is likely to be nontrivial. For the randomly

generated problems in Tables 1 - 3 we set a small enough to make the problems

as difficult as possible to solve, without making them infeasible. For these

problems a varied between .35 and .65.

Table 1 contains the computational results for heuristic 2.1 (see

Section 2) on 18 problems ranging In size from 10 * 10 to 100 x 400.

Three different parameter settings for the heuristic were tested. We first

ran the heuristic 40 times setting v • Z (the optimal value for the BTP).

If the heuristic failed to generate an optimal solution then we increased v

by ten percent and ran the heuristic over, 40 times. Finally if the second

parameter setting failed to generate an optimal solution, the we increased v

by ten percent and again ran the heuristic 40 times.

Table 1 gives the iteration out of 40 at which the best heuristic solu-

tion is generated, along with the ratio of the heuristic value, Zu, to the

optimal value for the BSSTP, Z .
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We also calculated for each problem, the number of "fractional11

variables in the optimal solution to the BTP. A fractional variable is one

which violates (4)• We have found that for most single source transportation

problems, the computational burden is directly proportional to the number of

fractional variables (See [12]). In fact we can easily calculate the upper

bound on the number of fractional variables in the following manner. Given

an m x n problem we add one slack column, n+1, which has no single source

restriction. The total number of basic cells is nrf(nrfl) - 1 » uH-n. Each

of the xH-1 columns must contain one basic cell, which leaves m-1 basic

cells to distribute among n+1 columns,. The «̂ rfimnii number of fractional

cells occurs when a-1 of the first n columns contains exactly two frac-

tional cells. In this case there are 2(m-1) fractional cells. Note that

this upper bound on the number of fractional cells is independent of n.

Thus we can increase the number of columns arbitrarily without changing the

upper bound on the number of fractional cells.

Table 1 shows that the heuristic 2.1 generated an optimal solution in

eleven out of eighteen problems. The heuristic failed to find any feasible

solution in five of the problems (7, 10, 11, 14, 15). In problems 7, 10, 11

and 15 the number of fractional variables is greater than that of its counter-

part problem of the same dimensions. For example in problem 16, 49 out of a

possible 2(100-1) - 198 variables are fractional whereas for problem 15, 100

out of 198 are fractional. Notice also that although the upper bound on the

number of fractional variables does not increase with n, in practice the actual

number of fractional variables does increase with n.

Table 2 contains data for those problems in Table 1 which were not solved

to optimal!ty by heuristic 2.1. We report the number of nodes, the number of

pivots, the number of feasible solutions obtained in the process of locating
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the optimal, and the additional CPU times required over heuristic 2.1.

Again problems 7, 10, and 15, which have a large number of fractional

variables, were the most difficult problems to solve. However, none of

the problems required an excessive amount of CPU time.

For all of the problems 1-18, Z - Z , that is there was no differ-

ence between the optimal values for the BTP and the BSSTP. We generated

problems with different cost and demand ranges than 1-18 and also found

that Z_ • Z for these problems. We found the algorithm to be insensitive

to these changes in the data, with the one exception that problems for which

d - was relatively snail tended to be more difficult. Of course it is easy

to contrive problems for which Z_> Z_. For example consider any BSSTP in

which there are m x n different values for c.., isl jeJ. Then as long as

the solution to the BTP is not identical to the solution to the BSSTP we will

have Z > Z .

We believe that an intuitive explanation for the Z m Z phenomenon

Is that the BTP has a large number of alternate optimal solutions, among which

at least one satisfies (4). It is well known that the BTP tends to have many

more alternate optimal solutions than its total cost counterpart, the ordinary

transportation problem.

Table 3 contains the results for some problems which were derived from

the 24 x 50 Kuehn and Hamburger data contained in [11]. The c values

are actual distances from 24 potential warehouse sites to 50 demand centers

across the United States. The d. values represent the population at demand

center j. The source values s., i el were randomly generated as in (9)

and (10) using a - .7. The demands range from 32 to 12,912 and the costs

range from 0 to 3,244. Again for all of the problems in Table 3, Z » Z .
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The heuristic generated an optimal solution in nine out of the ten problems

and the one problem for which the heuristic failed to find the optimal required

only eleven nodes to solve.

5. Concluding

In this paper we presented a heuristic and a branch and bound algorithm

for solving the Bottleneck Single Source Transportation Problem (BSSTP)• We

showed how location problems can be modelled in the framework of the BSSTP.

Next we showed how to specify a parameter in the heruristic so that it either

generates an optimal solution to the BSSTP, or it generates no solution at all.

Using this method we were able to solve 17 out of the 28 problems in Section 4

without resorting to a branch and bound algorithm.

We found that a good indicator of the difficulty of a BSSTP is the

number of fractional variables in an optimal solution to its relaxation, the

Bottleneck Transportation Problem (BTP). The larger the number of fractional

variables in an optimal solution to the BTP, the more difficult the BSSTP

tended to be. We provided an upper bound on the number of fractional vari-

ables and showed that although the upper bound is independent of n, the number

of columns, the actual number of fractional variables tends to increase when

n is increased.

Finally we showed that in those problems for which the heuristic

failed to find an optimal solution, the algorithm had little difficulty in

locating an optimal solution. The BSSTP algorithm exhibited very little

variance in its performance and was capable of solving problems with up to

40,000 integer variables.
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V

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Problem
Size

10x10

10x10

10x100

10x100

10x200

10x200

50x75

50x75

50x125

50x125

50x200

50x200

100x100

100x100

100x150

100x150

100x400

100x400

No.of
Frac.Var.

2

2

12

15

12

10

55

21

36

54

64

56

57

53

100

49

108

106

Heuristic 2.1

No.of
Iter.

3

4

40

16

22

40

40

7

21

40

40

1

40

40

40

40

12

40

Zu

h
1

1

OO

1

1
oo

00

1

1

00

00

1
00

00

00

oo

1
oo

No.of
Iter.

-

-

2

-

-

18

40

-

-

40

40

-

1

40

40

40

-

40

Zu

h
-
-
49
46

-
41
39
00

-

-

oo

00

-

1

00

00

oo

-

ao

No.of
Iter.

-

-

40

-

-

33

40

--

-

40

40

-

-

40

40

24

-

17

zu

h
-
-
-
-
-
1

OO

-

-

oo

oo

-

-

00

00

1

-
7
6

* •
CPU

Dec-20 •
Seconds

.08

.08

5.1

.85

3.7

15.5

7.8

.50

2.4

11.5

27.7

.6

6.8

17.9

28.9

21.0

12.48

101.7

Coded in Fortran IV

Table 1
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No.

3

7

10

11

14

15

18

Problem
Size

10x100

50x75

50x125

50x200

100x100

100x150

100x400

No. of
Frac.Var.

12

55

36

64

53

100

106

No. of
Nodes

119

1405

6321

186

46

9263

133

No. of
Pivots

380

5150

18161

988

325

24879

609

No. of
Feasible
Solution

2

17

16

5

5

12

1

DEC-20*
CPU Time

.7

10.5

43.6

4.0

1.2

86.5

4.3

* Coded in Fortran IV

Table 2

V

Problem
Size

24x50

24x50

24x50

24x50

24x50

24x50

24x50

24x50

24x50

24x50

No. of
Iterations

7

2

3

8

1

7

20

4

1

7

Zu

h

1

1

1

1

1

1

00

1

1

1

No. of Z^
Iterations Z_

-

-

-

-

-

-

14

1

-

-

•

-

-

-

•
667
656

-

-

No. of
Nodes

-

-

-

-

-

-

11

-

-

-

*
Total CPU
Time

DEC-20 Sec.

.28

.19

.19

.24

.13

.30

1.50

.18

.15

.26

* Coded in Fortran IV

Table 3
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