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A STWDY CF THE BOTTLENECK S NALE SOURCE
TRANSPCRTATI CN  PRCBLEM
by
Robert V. Nagel hout and Gerald L. Thonpson

ABSTRACT

Gven a set of users with known demands, a set of suppliers wth known
supplies, and known costs of shipping between suppliers and users, the Bottle-
neck Single Source Transportation is that of assigning the users to the suppliers
so that the following conditions are satisfied: (i) the denand of each use{ is
satisfied by a single supplier; (ii) the amount suppl i ed by each supplier does
not exceed its capacity; (iii) the naxinum cost of supplying any user by its
uni que supplier is mninal*

Applications of this probleminclude: voter redistrieting, shipping per-

i shabl e goods, assignment of city blocks to emergency facilities, and others.

W first discuss a heuristic nethod which tries to find a feasible sol u-
tion by assigning the users in order of decreasing demand to the suppliers
according to certain orders. In our experience on randomy generated problens,
the heuristic was able to find a good, and frequently an optimal feasible sol u-
tion, nost of the tine.

If the heuristic fails to find a solution, or finds a solution which is
not known to be optimal, then a branch and bound al gorithm using ordinary bottle-
neck transportation problens as relaxations, is enployed to find the optimum
singl e source sol ution

Conput ati onal experience on soma randomy generated problens up to 100 x 400

is presented which indicates that these problens can be solved in less than




2 mnutes. Al so several

snal |

probl ens with real

data were solved; in all but

one of these problens the heuristic succeeded in finding an optinal sol ution.

Key Vrds

Bot t | eneck. singl e source
Bottl eneck transportation
| nt eger progranmm ng

University Libraries
Carnegie Mdlon University
Pittsburgh, Pennsylvania 15213




1. ProblemFormulation and Applications

Gven a sep of users, J- {l,...,n}, with known denands, dJ., and a
set of suppliers, | - {I,...,m, wth known supplies, S | et cij be the
cost of having the demand of user | satisfied by supplier i. Then the

Bottleneck Single Source Transportation Problem (BSSTP) is that of assign-

ing the users to the suppliers so that (i) the demand at each user point is
satisfied entirely by a single supplier, (ii) the amount supplied by each
suppl i er does not exceed its capacity, and (ill) the nmyfimiq cost of supplying

a user by its unique supplier is mnimzed. Letting X'z.j denote the

quantity shipped fromsupplier 1 to user j, we can fornulate the BSSTP as:
IMninmze xh}xo (C'13> (1)
Subj ect to

2 X,4 < *4 i e | (2)

BSSTP jed o
2 X..>d. j ed (3)

- |eI X3 3
X - 0 or d iel, j el (4)

In this mathematical. fornulation constraints (3) and (4) ensure ad-
herence to criterion (i), constraints (2) to criterion (ii), and constraint
(1) tocriterion (iii). The constraints (2) - (4) are those of a Single
Source Transportation Problem (SSTP) [12], [15], and they are a special case
of the constraints which conmprise the General.i.zed Assignnent Probl em (GAP)
[9], [10], [13], [14]. The objective functionin the SSTP and the GAP is
that of mnimzing total cost whereas the objective in the BSSTP is to mnim ze
the bottleneck cost. In many cases the bottleneck objective is the nore rele-

vant criterion. For exanple consider a voter redistricting proolemwhere |
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represents a set of voting locations, J is a set of geographic areas or

bl ocks; Si equal s the nunber of voters who* can be accommodated in one day by
voting place i; b;1 equal s the expected nunber of voters in block j; and

C:'Lj equals the time required for a voter in block j to travel to location

i. Then the problemis to assign the voting blocks to the |ocations so that

the floxi(>tine for any voter to travel to his (her) voting place is nmnimzed«

The requirement that each user's demand be satisfied froma single
source point is also very common in physical distribution problens. For ex-
anpl e in the shipment of perishable comrodities such as poultry, mlk; and
ot her dairy products frbmdi stribution centers to local demand centers it is
often required that the entire shipnment to a | ocal center be made froma single
distribution center, and due to costs, such as spoilage, theft, and insurance,
it is desirable to minimze the longest tine required for shipnent of the goods,

Ross and Soland [14] and Kl astorin [9] have demnétrat ed that many
| ocation problens can also be viewed as a GAP or a SSTP. S mlarly we can
fornal ate bottléneck. | ocation problens in the framework of a BSSTP.

For exanpl e; consider the voter redistricting probl emnentioned pre-
viously. Suppose that there is a restriction on the nunber of voter |ocations
whi ch nay be opened; for instance suppose that at nost k |ocations can be
opened. Let S be the IM_bamnunber of voters which can be handl ed by any
location in one day. Then the voter redistricting |ocation probl emwoul d be
to choose at nost: k voter locations out of the set, I, of potential sites,
and to assign the groups of voters to these k locations so that the maxiwtmm
time required for a voter to travel to his (her) voting site is mnimzed.
Figure 1 shows how this |ocation probl emcan be nodell ed as a BSSTP. There
are m potential voting sites and n groups of voters, where each group |ives

on a given residential block, which nust be assigned to the voting sites which
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are opened. When 1<j<n, the entries in column j of the matrix give the

travel times, ¢ from residential block j to voting site 1, for

ij?
1<j<n; the entry dj gives the expected voter turnout from block j. When

o+l<j<mim, there are exactly two zero entries in columm j, = (0 and

1,041
%n+l,n+l = 0. All other entries in column j are set equal to infinity, so
that they will not be used in any optimal solution. The entries in columm
min+l are all 0's, corresponding to the cost of unused capacity at the voter
sites.

Consider now a single source solution to the problem shown in Figure 1.

In column wo+i, where 1<i<m, there are only two possibilities:

ok -0 amd X ™S (5
or
xi,n+i = S and xm+1,n+i = Q . 6)

It is easy to see that a solution satisfying (5) means that voting site i is
open, while a solution satisfying (6) means that voting site i is closed.

In Section 2 we describe a heuristic method which provides an upper
bound on the value of an optimal solution to the BSSTP. In Section 3 we
describe an algorithm for'solving the BSSTP which is utilized whenever the
heuristic fails to find an optimal solution. A small example is provided.

In Section 4 we discuss our computational experience on some randomly generated
problems, and with some problems derived from data taken from the literature.

Finally, Section 5 contains some concluding remarks.

2. A Heuristic for BSSTP.

In this section we present a heuristic method for finding a feasible

solution to the BSSTP. The heuristic is used to gemerate a low cost feasible
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solution to the BSSTP. In particular, in Section 3, we show how to apply
the heuristic so that if a feasible solution to the BSSTP is found, it is
guaranteed to be optinal .

For notational convenience we define

v * an upper bound on the cost of any positive variable, and

3 ny ,_j < u}

wher e V'.‘.I is the set of all indices of sources whose cost in colum j is

less than or equal to v. For expositional sinplicity we also assune that the

denmands, dj’ are i n nonascendi ng order.
The heuristic begins by randomy assigning the first user denand, dl’
to one of the supply points in Vl' Certai.n sources with indices in Vl can

be given higher priority over others if this is desirable. For exanpl e one may

wish to assign d}_ to a source ieVl having the largest supply, s g O

havi ng the snal | est cost cﬂ. A random choi ce anong t he possi bl e supply

points is preferred here, however, over a strict rule which always chooses a

uni que source, since with a randomchoice rule the heuristic can be repeated

several times, generating several feasible solutions, fromwhich the best can
be chosen. A "good" choice for v depends upon the problemdata (i.e.,

Si’ dj’ Cij) and we will discuss this choice in nore detail later. QOnce d—l

has been assigned to a randomy chosen source, say k of Vl’ then we repl ace

Sk by Sig dl which is the amount of supply remaining at source k. Al so,

for all d.,‘ j >2, such that d.> we set ¢, » e signifying that source
3 12 3 ak - gnityrng

k can no longer service user j. The assignment of user demands to sources

continues sequentially in the same fashionwith do, V.,...,d ,V, until
z z n n

either, (i) every user demand has been assigned to a source, or (ii) a
colum, say £, is reached where v” «$. In case (i) we have a feasibl e sol u-

tion to the BSSTP which yields an upper bound, ZY on the value of any
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optimal solution to the BSSTP. 1In case (11) the heuristic failed to find a
feasi ble solution and we set the upper bound Z'* «. In either* case we rerun
the heuristic several times In the hope that the randomel ement in the choice
of sources will succeed in generating a solution having a smal |l upper bound.
Note that it is possible after several runs, for the heuristic to fall
to find any feasible solution to the BSSTP. This is not surprising since the
problemof finding a feasible solution to a BSSTP is equivalent to finding a

partition, S;( Sm, of a set of integers {d)—(,...,dn} (the demands)

such that the sumof the elenents In each S; is less than or equal to sy
(the supply), for i -1,...,m The | atter problem which is called the bin
packi ng probl emwhen all the s*s are equal, is known to be NP conplete -[4].
Thus it is unli kély that a pol ynom ally bounded al gorithm can be found whi ch
will be guaranteed to find a feasible solution to the BSSTP. However, in
spite of these worst case observations, for the probl ens which we have tested
(See Section 4) we found that a fewruns of the heuristic is usually sufficient
to generate a | ow cost feaéi ble solution to a BSSTP.

The only paraneter which nust be specified to use the heuristic is v.
Qearly there is a tradeoff involved in choosing v. If v is too small,
then the heuristic may fail to find a feasible solution whereas if v is too
large, then the sol ution value obtained by the heuristic nmay be so large that
it Is of no help in reducing the size of the search tree (to be described in
Section 3) e« For the probl ens which we considered in Section 4 we describe a
fewof the different parameter settings which we tested. Wth one of the
settings the heuristic either gneerates an optinal solution or it generates no
solution at all. W Wwill discuss howand why this is done in Section 3, where
an algorithmfor solving the BSSTP is given.

Nowwe formally state the heuristic.




Heuristic 2.1

Sep 1. (Initialize). Cder the demands so that iL>_._. ._>dn. Let h e 1.

Let Xi.j » 0 iel, jed.

Sep 2. (RandomAssignment) dven v calculate V. If V,n»$ go to (3).

Q herwi se randomy choose ke\/,n. Let x*,

* * S
“a &H Repl ace < by

S For all j>hif d>s,K then let ¢ »» |If h»ngo

k dh' j k4
to (4). Qherwise replace h by h+l and go to (2).

Sep 3. The heuristic failed to find a feasible solution. Let Z'» «.

Step 4, Let ZY- max{c..}. Then Z" is avalid upper bound for the BSSTP.

xij>0

Exanple 1. Let Vied denote the value of the kth snal.lest cost in colum j.
In the exanple we set v * max{v~,}; that is v equals the ot over all

i N
col ums, of the second srTaI.Jl.i\;t cost in each colum. The steps of the
heuristic on the exanple in Figure 2 are shown bel ow. The elenents of Vj

are nmarked with an ** The chosen vari ables are circl ed.

Sep Conput at i on

1 QO der denmands

2 v - 8 Vy» {2,4}. Choose Xo1 - 19;
2 v -8 V,- {1,4. Choose x10 - 17;
2 v -8 Vz;e {4} . Choose X43 - 17,
2 v»8 V,- {3 . Choose x3q - 15
2 v-38 Vs- U 4}. Choose Xq5 10
2 V-8 Ve- {3 . Choose X3 = 8
4 Stop. Z'- 6.

In practice the heuristic woul d be repeated several tines in hopes

of generating many different feasible solutions. A so, the value of the
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paranmeter, Vv, need not renain constant throughout the iterations of Step 2.
For exanple we could set v » YYor, at iteration h of Sep 2. The value of v

at iteration h determnes the size of V..
n

In the previous exanple we woul d get the follow ng sequence of para-

nmet er val ues and source sets,

Value of h
1 v - 4 No-{2,4}
2 VvV - 7 VZ » {114}
3 v-9 Vs o' {3, 4}
4 v-0® V. - {3}
_ 4
5 v - 8 Vs » {1, 4}
6 v- 10 Vy- {13}

The different paraneter setting alters V. and V. and thus with a
J 0

different random choi ce of sources it is possible to generate a conpletely
different solution. In the next section we describe an algorithmfor solving
t he BSSTP whi ch is used whenever heuristic 2.1 fails to find an opti nal

sol uti on.

3. Anh Algorithmfor the BSSTP.

Suppose we relax the constraints (4) in the BSSTP to

0£xi._1 £dj iei, jeld (7)

Then the constraints (1) - (3), (7) are those of a Bottleneck Transportation
Problem (BTP)s Several al gorithnms have been proposed and tested for solving
aBTP [3], [5], [6], [7], [2], [16], [17]. Let Z- and zj denote the val ue

of an optimal solution to the BSSTP and the BTP respectively. Fromour
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conput at | onal experience we found that for the overwhelmng nmajority of the
1
B
the optimal value of the BSSTP and its relaxation, BTP. This is especially

BSSTP probl ens we tested ZB e Z That is there was usually no gap between
true as the problemsize increases. @dven this phenomenon, the only heuristic

sol utions which proved to be of value were those for which - i was
15

"very small,'" where Z' is the lowest val ue obt ai ned by the heuristic. For
this reason we tested several different paraneter settings for the heuristic
2.1 (see Section 2) in order to generate a | ow cost solution to the BSSTP.
In one of these settings we generate either an optimal solution through the
heur i iti C, or we generate no solution at all. This is done by setting
v . 7B Any sol ution obtained by the heuristic with this parameter setting
is guaranteed to be opti rrfl since v is an upper bound on the val ue of every
heuristic solution and zZB is a lower bound on the val ue of an optimal sol u-
tion to the BSSTP. 1 1

The drawback to setting v+ ZB is that in case B> zZB the
heuristic is guaranteed not to find a feasible solution to the BSSTP. How
ever, as we nentioned previously, this occgrs so infrequently that it is not
of major concern. Al so, even when Z; > Z" it is possible to find a solution
to the BSSTP through the heuristic by Peri odi cal | y increasing the value of v.
For exanple we could start with v ¢ 2% and then if after several runs the

heuristic fails to find a feasible solution, we could increase v by one

and continue in this fashion until a solution is ultimtely found.

Remark: In the case where d.J 1 for all jej an optinal basic solution

‘to the BTPw || also be an optinal solution to the BSSTP. This is a consequence
of the fact that any basis matrix for the BTP is uninmodular. That is, if the
supplies and the dermands in the BIP are integer, the solution will also be

i nt eger.
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In this particular case the only possible integer solution values are

X » 0 or 1 for all lei, jeJ, and thus any basic solution to the BTP

will satisfy (4).

The algorithmfor solving the BSSTP begi ns by applying the algorithmin
[16] to solve the BTP, which provides the absol ute | ower bound, Z; If all
of the variables in the optimal solution to the BIP satisfy (4), then we are
done, since the optimal solution to the BTP is also an optimal solution to

the BSSTP. Qherw se we run the heuristic 2.1 which provides an upper bound,

1

Z", on Zn' If Z"e Z.B then we stop because the heuristic solution is

optimal. Qherw se,. using the Variable Selection Rule (to be described | ater)

we choose a vari abl e, say x.lj, whi ch violates the single source constraints

4

Pij,

results when we force x,,. » d.. This is done by setting c, . * « for all
1l J LS

(4) (i.e., O<xi]. <%.) and we solve the current restricted BTP, BT whi ch

k # 1 and then reoptimzing the BTP. After having found an optinal sol ution,

+ c
Xc’ to the current probl em BTP.K;, and its optimal value Z , we then apply

the Fathomng Test by testing if (i) X& violates (4) and(il) Z*< zZ". |If
both (i) and (ii) hold true then we use the Variable Selection rule to choose
a variabl e which violates (4) and proceed as previously described. Cherw se
if only (11) holds true we save the new solution, and in any event we fathom
the current solution and backtrack. Backtracking is performed by choosing
the last variable which was fixed into the basis (i.e. we use a LIFO search
rule [12]), say x*3J, and fixing it but of the basis. In this case we solve
the restricted BTP, BTPEj, which results when we set x13 « 0. This is done
by setting cx3 Me and reoptimzing the latest restricted problem V¢ then
apply the Fathonming Test and proceed as previously described. The process

termnates when either (i) the list of cells which have been fixed in and out
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1s exhausted or (11) the optinal. val ues of BTP and BSSTP are shown to be equal .

Case (il) occurs quite often as will be shown In Section 4.

V¢ should also point out that in finding an optinal solution to BTPL
or BTP;_j we do not resolve the restricted BTP fromscratch. In the BIP
algorithmof Srinlvasan and Thonpson [15] there are no dual variabl es associ at ed
with the "primal" problem Thus altering some of the costs in the prinal
problemby setting themequal to « as previously described does not re-
quire a reduced cost adjustment, since there are no reduced costs. An
optimal solution to a restricted BTP can be obtained sinply by reoptinizing
the problemfromwhich it was derived. This nornally requires only a few
pi vots*  Ther ef ore only the original BTP is sol ved conpletely from scratch
and each subsequent restricted BTP requires only a few additional pivots to
resol ve.

Now we describe the previously nentioned Variable Selection Rule which
is used to choose a variable for branchi ng purposes in the branch and bound
algorithm Let jc denote the small est colum index among all colums jsT
which violate the single source criterion In the current sol ution. That is,
colum | c contains at least two variables which violate (4). Now let iC

be the row i ndex of any variable satisfying,

x = pax{x .} . @)
lc]“‘c kel xk'jc:
Then Xy .is selected for branching to the BTPI. for which Xq *d
ch ch cjc jc
Since sone variable in colum | nust be equal to d. in an optinal solution
C Je
to the BSSTP, we choose in (8) a variable in colum jc whose value in the

current sol ution to the restricted BIP is closest to dde. This Variable
Selection Rule is easy to inplenent and in practice works as well as any of

the other selection rules that we tested.
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.
Nowwe formally state the algorithmfor sol vi ng the BSSTP. First

sone notation::

I * level of the search tree
LIST(JI) « contains the variable which is fixed in or out of the
basis of the restricted BTP on |evel I.
Z(E) * the optimal objective function value of the restricted
BTP on |evel fc.
Q1) * alist of variables whose costs have been set to  on
level 1I. |
A * a set of colums containing a variabl e which has been
fixed into the basis.

XC e solution to the current restricted BTP.

Z° » optinmal objective function value of the current restricted

BTP.

Algorithm3.1 for solving the BSSTP

Sep 1. (Initialize) Let £» 1, A- 4. Solve the BTP. If X satisfies
c

equation (4) go to step 7. Cherwise go to step 2.

Step 2. (Heuristic) Run heuristic 2.1 to get Zz'. If Z'- Z° then go

to step 7. Qherwise let Z(1) « Z% replace | by | +1 and
go to step 3.

Step 3. (Branching) Use the Variable Selection Rule (3) to* choose xi 3
Let Cohj. ™ for all k~i_. Replace A by AU j o L(ce:tC
Q2 be the set of all j~A such that dJ. >s. - Z d.. Let

¢ jeA 3

C « « for all jeQ*). Let LISTU) - (i¢, Jeo)". .

i Cj




Step 4.

Step 5.

Step 6.

Sep 7.
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(Fathoming) Reoptimze the current restricted BTP. |If Z€ >h 7
then go to step 5. Cherwise if Xc satisfies (4) then save Xc;
let Z'» Z° and go to step 5. Qherwise let ZU) » Z5
replace | by | +1, and go to step 3.

(Backtracking) If LISI(Jl) » (i‘:,jc)+ go to step 5a; otherw se go

to step 5b.
5a. For all kf i set c, . back to its original val ue.
c K3,
For all |j e Q£) set Cp P back to its original val ue.
c
"Replace | by | - 1; replace A by A- {j g; and go to
step 6.
5b.  Set Cy back to its origi.nal. value. Replace | by £ - 1.
clc :

If I »1 and LISI(fc) - ("3 Q"" 8°'2°'°P™ (Cherwise go to
step 6.

[f LI STU+1) - (i ,j )~ thenlet (i ,j ) » LIST(£) and go to
cC C cC C
step 5b.. Qherwise if Z(£) * Z' then go to step 5. Qherwise let

LI STa+l) - Avy"® let G 1 »«ireplace i py * 4+ 1. go

clc
to step 4.

Stop. The current saved solution is optimal with value 2Z".

Exanple 2: Refer to Figures 3(a) - (e) for anillustration of the exanple.

The steps of the algorithmare given bel ow

1*

I ™1, A» $ The solution to the BTP is given in Figure 3(a).
Z° - 4. X, violates (4).
Assure for exposition purposes that the heuristic could not find a

feasible solution (i.e., Z'»«). Let Z(lI) - 4; 1| * 2.
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3. Select x , =x,; A={l}; Q@ =12,3,4,5} LIST(2) = (4,1)%.
c’c
4. See Figure 3(b) for the solution to BTPZI. z¢ = 3. Xc satisfies (4).

Save Xc, let z" = 8.
5. LIST(2) = (4,1)7.
5a. Restore costs. Let 2 = 1. Let A = ¢.

6. Let LIST(2) = (4,1) ;

= o; =2,

41
c

4. See Figure 3(c) for the solution to BTPZI' 2° = 6. Let Z(2) = 6;
2 - 3.
3. Select x, , =x,. A = {2}, Q(3) = {1,3,4}
cle

LIST(3) = (1,2)%.

4, See Figure 3(d) for the solutiomn to BTP.

12° x° = 6. Xc satisfies (4).

Save X, and let 2" = 6.
5. LIST(3) = (1,2)".

S5a. Restore costs. Let %= 2, Let A = ¢.
6. z(2) = z% = 6.
5. LIST(2) = (4,1) .

5b. Restore c¢,,. Let ¢ = 1,

41
7. Stop. The solution in Figure 3(d) is optimal with value 6.

Figure 3(e) gives a description of the search tree. At node 1 the BTP
is solved and has a value of 4. Since the solution to the BTP is not single
sou:c; (see Figure 3(a)), we use the Variable Selection Rule to choose X,1°
We then solve BTPZi at node 2 and find the solution to be single source,
with a value of 8. (see Figure 3(b)). Next we solve BTPZl at node 3 and
get a non-single source solution with a value of 6 (see Figure 3(c)). We then

use the Variable Selection Rule to choose X, and solve BTPIé. This yields
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a single source solutionwith a value of 6 (see Figure 3(d)). Thereis
no need to generate BTPi2 since Z' » Zc * 6 at node 3.

Inthis example 6 » Z, > Z:.E » 4. For all the probl ens which we
1 P D
report in Section 4, zZ8 » ZB. Note that in noving fromnode 3 to node 4,

the value of the restricted BTP renained at 6. The solutions at node 3 and

4 are alternate optinal solutions to BTPf. The solution at node 4 satisfies
(4), while the solution at node 3 does not. For a given BTP there are

usual I y an enor nous nLinber of alternate optimal solutions. This is probably
the reason why 7B « zB in nost of the problens we tested. That is, anmong

the enornmous set of alternate optinal solutions to the BTP there is usually

at least one which satisfies (4)s In the next section we present an extensive
conputational study of heuristic 2.1 and the branch and bound al gorithm for

t he BSSTP.

4. Conputational Results

In this section we discuss our conputational experience on a set of
randomy generated problenms ranging in size from10 x 10 to 100 x 400, and
on a set of problens which were constructed using data from Kuehn and Hanbur ger
[11]. The CPUtimes in Tables 1- 3 are subject to sone nmeasuremnent error
due to variable loads on the tine sharing system

The random probl ens were generated in the fol | owi ng manner. & use
a uniformprobability distribution to generate randomi nteger demnands, dj jed,
between 20 and 200; sinilarly we generate randomi nteger costs, C':l.'] iel jeJ,

between 1 and 100. Then letting j, be the index of a snallest cost entry

incolum j we set

xj i - d and Xx. »0 for i "J, j e J (9
-1
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V& then calculate the |argest supply,

so that if S - S for all isl, then the solutionin (9; will be feasible,

Then for each iel we let s. » aS(a<l), and d”* * oS- Z d, where d
- - jex -

n+l
is a "dumy" or "slack" demand center.

To have d~” > 0 is a necessary but not sufficient condition for the
exi stence of a feasible solutionto the constraints (2) - (4). In general
the snaller the value of d”j* the nore difficult it is to find a feasible
solution to a BSSTP. The size of d .- can be controlled by choosing an
appropriate value for a. Wena « 1 it is easy to see that the solution
contained in (9) is optinmal. For a <1 the solutionin (9 is no |onger
feasible, and thus the problemis likely to be nontrivial. For the randomy
generated problens in Tables 1 - 3 we set a small enough to nake the probl ens
as difficult as possible to solve, wthout rmaki ng theminfeasible. For these
problens a varied between .35 and . 65.

Table 1 contains the conputational results for heuristic 2.1 (see
Section 2) on 18 problens ranging In size from 10 * 10 to 100 x 400.
Three different parameter settings for the heuristic were tested. Ve first
ran the heuristic 40 times setting v o Z; (the optinal value for the BTP).
If the heuristic failed to generate an optinmal solution then we increased v
by ten percent and ran the heuristic over, 40 times. Finally if the second
paraneter setting failed to generate an optinal solution, the we increased v
by ten percent and again ran the heuristic 40 timnes.

Table 1 gives the iteration out of 40 at which the best heuristic solu-

tion is generated, along with the ratio of the heuristic value, Z", to the

optinal value for the BSSTP, ZB'
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Ve also calculated for each problem the nunber of "fractional 1

variables in the optinmal solution to the BTP. A fractional. variable is one
which violates (4) W have found that for nmost single source transportation
probl ens, the conputational burden is directly proportional to the nunber of
fractional, variables (See [12]). |In fact we can easily cal cul ate the upper
bound on the nunber of fractional.variables in the follow ng manner. @ ven
an mx n problemwe add one slack colum, n+1, which has no single source
restriction. The total nunber of basic cells is nf(nrfl) - 1 » uHn.  Each

of the xH1 colums nust contain one basic cell, which [eaves m1 basic
cells io distribute anong n+l1 colums,. The «rfiomj nunber of fractiona
cells occurs when a-1 of the first n colums contains exactly two frac-
tional cells. Inthis case there are 2(m1) fractional cells. Note that
this upper bound on the nunber of fractional cells is independent of n.

Thus we can inerease the nunber of colums arbitrarily without changing the

upper bound on the nunber of fractional cells.

Table 1 shows that the heuristic 2.1 generated an optimal solution in
el even out of eighteen problens. The heuristic failed to find any feasible
solutioninfive of the problens (7, 10, 11, 14, 15). In problens 7, 10, 11
and 15 the nunber of fractional variables is greater than that of its counter-
part problemof the sane dimensions. For exanple in problem16, 49 out of a
possi bl e 2(100-1) - 198 variables are fractional whereas for probl em 15, 100
out of 198 are fractional. Notice also that although the upper bound on the
nunber of fractional variables does not increase with n, in practice the actua
nunber of fractional variables does increase with n

Table 2 contains data for those problens in Tabl e 1 which were not sol ved
to optinal!'ty by heuristic 2.1. W report the nunber of nodes, the nunber of

pi vots, the nunber of feasible solutions obtained in the process of |ocating
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the optinal, and the additional CPUtimes required over heuristic 2. 1.
Again problens 7, 10, and 15, which have a | arge nunber of fractional
variables, were the nmost difficult problens to solve. However, none of
the problens required an excessive anount of CPU ti ne.

For all of the problens 1- 18, Z;- Zy that is there was no differ-
ence between the optimal values for the BTP and the BSSTP. VW& generated
problens with different cost and denand ranges than 1- 18 and al so found
t hat Zf . Z;' for these problens. Ve found the algorithmto be insensitive
to these changes in the data, with the one exception that problens for which
dn-!-l was relatively snail tended to be nmore difficult. C course it is easy
to contrive problens for which ZB_> Z_;'. For exgnple consi der any BSSTP in

which there are mx n different values for C'::J’ isl jeJ. Then as long as

the solution to the BTP is not identical to the solution to the BSSTP we w | |
1
o
W believe that an intuitive explanation for the ZB mz

have ZB > Z

1
B

Is that the BTP has a | arge nunber of alternate optimal solutions, anong which

phenomenon

at least one satisfies (4). It is well known t.hat the BTP tends to have nany
nore alternate optinmal solutions than its total cost counterpart, the ordinary
transportati on probl em i
Table 3 contains the results for some probl ens whi ch were derived from
the 24 x 50 Kuehn and Hanburger data contained in [11]. The Cij val ues
are actual distances from?24 potential warehouse sites to 50 demand centers
across the Wnited States. The d."l val ues represent the popul ati on at denmand
center j. The source val ues Sy i el were randomy generated as in (9)
and (10) using a - .7. The demands range from 32 to 12,912 and the costs

) 1
range fromO to 3,244. Again for all of the problens in Table 3, Zg» Zg.
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The heuristic generated an optinmal solution in nine out of the ten probl ens
and the one problemfor which the heuristic failed to find the optinal required

only el even nodes to sol ve.

5. OGoncluding Remarks

In this paper we presented a heuristic and a branch and bound al gorithm
for solving the Bottleneck Single Source Transportation Problem (BSSTP)s V¢
showed how | ocation problens can be nodelled in the framework of the BSSTP
Next we showed how to specify a paraneter in the heruristic so that it either
generates an optimal solution to the BSSTP, or it generates no solution at all.
Using this nmethod we were able to solve 17 out of the 28 problens in Section 4
without resorting to a branch and bound al gorithm

W found that a good indicator of the difficulty of a BSSTP is the
nunber of fractional variables in an optimal solution to its relaxation, the
Bottl eneck Transportation Problem (BTP). The larger the nunber of fractional
variables in an optinal solution to the BTP, the nore difficult the BSSTP
tended to be. W provided an upper bound on the nunber of fractional vari-
abl es and showed that although the upper bound is independent of n, the nunber
of colums, the actual nunber of fractional. variables tends to increase when
n is increased.

Finally we showed that in those problens for which the heuristic
failed to find an optinmal solution, the algorithmhad little difficulty in
locating an optimal solution. The BSSTP algorithmexhibited very little
variance in its perfornance and was capabl e of solving problens with up to

40, 000 integer vari abl es.
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Heuristic 2.1

v z; z§+.1z§ z%+.2z% gﬁ:
Problem No.of No.of | z% | No.of [ 2" | No.of z" | Dec-20-
No. Size Frac.Var. Iter. ZB Iter. ZB Iter. ZB Seconds
1 10x10 2 3 1 - - - - .08
2 10x10 2 4 1 - - - - .08
3 10x100 12 40 - 2 2] w - 5.1
4 10%100 15 16 1 - - - - .85
5 10%200 12 22 1 - - - - 3.7
6 10x200 10 40 - | 18 '%% 33 1 15.5
7 50%75 55 40 - | 40 - | 40 - 7.8
8 5075 21 7 1 - - | -- - .50
9 50x125 36 21 1 - - - - 2.4
10 50x125 54 40 - | 40 = | 40 - 11.5
11 50%200 64 40 - | 40 ® | 40 - 27.7
12 50%200 56 1 1 - - - - .6
13 |100x100 57 40 - 1 1 - - 6.8
1% |100x100 53 40 - | 40 - | 40 - 17.9
15 |1o0x1s0 | 100 40 - | 40 - | 40 - 28.9
16  |100x150 49 40 - | 40 - | 24 1 21.0
17 |100x400 | 108 12 1 - - - - 12.48
18 |100x400 | 106 40 - | 40 - | 17 I w17

* Coded in Fortram IV

Table 1
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Pr obl em No. of No. of | No. of FZ'Q'si g]; e | DEC 20
No. S ze Frac. Var. Nodes Pivots Sol uti on CPU Ti ne
3 10x100 12 119 380 2 T
7 50x75 55 1405 5150 17 10.5
10 50x125 36 6321 18161 16 43.6
11 50x200 64 186 088 5 4.0
14 100x100 53 46 325 5 1.2
15 100x150 100 9263 24879 12 86.5
18 100x400 106 133 609 1 4.3
* Coded in Fortran IV
Tabl e 2
v 2 2y + 12,
.- . Tot al CPU*
[Pr obl em No. of . No. of N No. of } Tine
S ze Iterations 'ﬁ Iterations Z1i Nodes DEG 20 Sec.
24x50 7 1 - ¢ - .28
24x50 2 1 - - - .19
24x50 3 1 - - - .19
24x50 8 1 - - - .24
24x50 1 1 - - - .13
24x50 7 1 - o - .30
24x50 20 00 14 %g— 11 1.50
24x50 4 1 1 - - .18
24x50 1 1 - - - .15
24x50 7 1 - - - . 26

* Coded in Fortran IV

Tabl e 3
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