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ABSTRACT

It is known in the telecommunications network facility design area that

a transmission system cost function may be decomposed into a fixed charge

part and a linear cost part. The fixed charge part represents the initial

investment cost of installing a transmission system on a link and the

linear cost part represents the cost of installing circuits of the system.

Using the cost function of this type, a mixed integer linear programming

model is developed to minimize the present value of transmission systems

installation costs subject to satisfying circuit requirements for the

telecommunications network in each period of a fixed planning horizon.

To make the problem computationally tractable, simplifications are made

by using a fixed network hierarchy, i.e., high usage links vs. final

links, for routing the required circuits. We present numerical examples

solved by using (1) a branch-and-bound procedure, and (2) a heuristic

methodology.
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1. INTRODUCTION

This paper deals with the facilities design problem in a telecommunications

network over a fixed planning horizon. A telecommunications network is a

collection of points (sources and/or destinations) some or all of which

are joined by direct communication links. A link of a telecommunications

network is a collection of facilities known as "transmission equipment11

and various equipments are employed for various transmission systems. These

equipments wiil be referred to as "circuits.11 In a typical telephone

network a call originating at point A and destined for point B can be

transmitted to point B through a sequence of other links. Furthermore, if

the number of point A to point B calls exceed the capacity of the direct A

to point B link, some of the calls can be transmitted through an alternate

route.

The problem that we approach here is one of determining a minimum cost

(present value) facility installation scheme for the telecommunications

network while satisfying point-to-point circuit requirements for each

period of a fixed planning horizon. We shall assume that alternate trans-

mission systems are available at the beginning of the planning horizon, and

additional new systems may be made available during certain periods of the

planning horizon.



The quantity to be determined is the number of circuits of a specific

transmission system to be installed on each link of the network during each

period of the planning horizon. It is widely known in the telecommunications

networks facility design area that cost functions associated with installing

transmission systems on the links of the network are concave, reflecting

"economies of scalet" and that these functions may be decomposed — approxi-

mately — into a fixed charge part and a linear variable part. The fixed

charge part represents the initial investment cost of installing a specific

transmission system on the link for the first time, and the variable part

represents the cost of installing each circuit of that system on that link.

A static (one period) version of the above problem may be stated as a

fixed-charge multi-commodity flow synthesis problem (see, for instance, [10])

The dynamic (multi-period) version that we consider here is more complicated

because the economies of scale involved must be utilized over the planning

horizon,

Yaged [14] has developed a methodology for solving the dynamic problem.

His method is one of "heuristic" and consists of three iteratively related

tasks. Task I solves the minimum cost static routing problem to satisfy

point-to-point circuit requirements for each time instant, given linearized

costs. The output of Task I is annual demand on each link. Task II, then,

determines the minimum cost-approximate-facility installation scheme for



each link. This is attained by a dynamic programming procedure in which the

only state variable is time. Finally, Task III modifies the cost coefficients

(that were used in the static routing problem of Task I) to take into account

the economies of scale.

In contrast with the other Yaged model, Smith [13] assumes that any economy

of scales effects are dominated by savings resulting from expenditure

deferral and presents a heuristic algorithm for the deferral of expenditures

associated with capacity expansion for a dynamic communication network.

He emphasizes savings due to facility deferral as opposed to economies of

scale. His model deals with minimizing the present worth of expenditures

for expanding the capacity of a communications network in the face of

increasing demand for service, while assuming that any economy of scales

effects are dominated by savings resulting from expenditure deferral.

Kochman and McCallum [8], pn the other hand, present optimum seeking models

for planning for the economic growth of a communications network given a

projection of future circuit requirements for two alternate transmission

systems. Their objective is to find an optimal placement of cables (type,

location and time) and the routing of individual circuits between demand

points such that the total discounted cost over a T-period horizon is minimized,

They present two mathematical models differing in their provision for

network reliability.



Finally, Peiry [12] presents a mathematical programming algorithm for

constructing or updating a minimum cost communication facility layout given

point-to-point demand requirements subject to capacity constraints, for a

two-level communication network. Such a network deals with a "network of

mastergroup sections," the underlying capacity for the construction of a

"network of supergroup sections" and a "network of channel group sections."



2. A NETWORK HIERARCHY FOR ROUTING POINT-TO-POINT CIRCUIT REQUIREMENTS

Given circuit requirements on the links of the telecommunications network

for each period of the planning horizon, we simplify the multi-period

facility design problem described above in the manner Kortanek, Lee and

Polak [9] simplified the problem of determining point-to-point circuit

requirements in the network. A network hierarchy is established by classify-

ing the links into two: (i) final links, and (ii) high-usage links.

The network hierarchy can be described in graph theoretic terms as follows:

Given a graph G s (P,L) with point set P and link set L, find a spanning

2
tree (i.e., a connected subgraph containing all the points of G but not

containing any cycles) of G. Let T » (P,F ) be the spanning tree. . The links

in T are referred to as the final links of the graph. On the other hand, the

chords of T, i.e., those links of G which are not in T, are referred to as

the high-usage links. The rationale behind this is the following: A link

designated as a high-usage link carries only the traffic originating at

one of its endpoints and destined to the other one. If customer demand

over such a link m exceeds its circuit capacity, then it is possible to

switch some of these calls to the link adjacent to m lying on a path joining

Readers not familiar with graph theoretic terms can refer to [7].

Determination of such a spanning tree is discussed in [2].



the end points of m. Thus, calls are transmitted through an alternate

route. The spanning tree contains exactly one such path for each chord.

The final links, on the other hand, can not switch their traffic to any

other route. They carry as much as they can, otherwise calls are lost.

The designation of the links of the network in such a manner that the final

links induce a spanning subgraph is what is termed as the network hierarchy,

and it leads to a simplification of the more general, but almost impossible

to solve (in terms of computational complexity), problem of the facilities

design with no restriction on to which calls can be switched or not. In our

case the final links induce a spanning tree, and hence a unique alternate

route is prescribed to carry the (excessive) traffic of each high-usage

link. Clearly, with no such restriction, an exponential number of alternate

routes must be considered in a general case.

An example of a network hierarchy is depicted in Figure _1. The dashed lines

represent high-usage links and the solid lines represent final links. The

arrows specify the links to which the excess high-usage link customer demand

can be switched.

The Kortanek, Lee and Polak model for determining point-to-point circuit

requirements considers a unique alternate route for each high-usage link

as prescribed by the network hierarchy and assumes that cusomter demand

on any high-usage link can be switched to the unique alternate route joining



FIGURE 1. A Netvork Hierarchy with High-Usage ( )
and Final ( ) Links Where Overflow Froc
a High-Usage Link Onto a Final Link is
Indicated by an Arrow.

(Baybars, Kortanek and Mizuno)



the endpoints of that link. Furthermore, a high-usage link carries only

its own traffic. On the other side, no switching is possible on final

links. In their model, customer demand is stochastic and they consider

various times-of-day. They reduce the optimization problem to a linear

programming problem and present numerical results as well as comparisons

with earlier studies.

The output of the Kortanek, Lee and Polak model is the number of trunks

required on each link. We shall refer to those trunks as circuits and they

will be input to our model. We, thus, assume that point-to-point circuit

requirements on each link of the network are known with certainty. We

shall consider a finite planning horizon and a finite number of alternate

transmission systems.

Same assumption is also made by Yaged [14].



3. A MIXED-INTEGER PROGRAMMING MODEL

Let P and L denote the point and link sets, respectively, of the tele-

communications network. Let p and q denote the cardinalities of the sets

P and L, respectively. We shall denote by F the set of the final links,

and by H the set of the high-usage links. By definitions given earlier,

it is clear that (i) FH H * 0, (ii) F U H = L, and (iii) |F| « p - 1.

The elements of F and H will be denoted by f and h, respectively. For

each final link f we define the following:

Hf * {h|f lies on the unique path connecting the endpoints of h}

Note that, by the definition of the network hierarchy, each high-usage h

belongs to some subset H-, and that H- s 0 is possible for some final

link if q < (p2-p)/2.

We consider a planning horizon of tf periods. Let T * {l,2,...,t,...,t'}.

Furthermore, we assume that there exists sf alternate transmission systems.

Let S * {1,2,...,s,...,sf}. We shall assume, for the moment that, only

one system s unit can be installed in a specific period on a specific link.

We thus designate the following binary variable:

1 if system s is installed on link m in period t

stm ' 0 otherwise
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We also assume at this point that, the supply of transmission systems is

unlimited.

Once the system s is installed on link m in period t, i.e., given that

x— * 1, circuits of that system can be installed on that link in periods
stm

t > t. Hence, let y denote the number of system s circuits installed

on link m in period t. We assume that the circuit capacity of each trans-

mission system is finite, and we denote this number by a .
s

Let cf be the fixed charge of installing system s on any link in the network

and let c" be the linear cost of installing a circuit in system s. Also

let w • (1 + r)~ be a discounting factor for year t with an annual

interest rate r.

Then, the total discounted cost throughout the planning horizon to be

minimized is the objective function below:

Let d_ be the circuit demand on link m in period t. The number of circuitstm

on a final link f in period t must be at least that of the sum of d~- and

those routed from the high-usage links in Hf. This, once again, is prescribed

by the network hierarchy. Circuit requirements of a final link can only be



11

met by circuits installed on that link only. We shall assume that

d(t+l)h — dth* VtcT and vhcH- That is» circuit requirements of high-usage

links are nondecreasing in time. This assumption will be relaxed later

on. Circuit requirements of the final links can be represented as follows:

sf t sf t
Z Z y f 21 d-f + Z (d- - Z E y - ), VteT and Vfef (2a)
s=l t=l str cr hcHf

 tn s-1 t=l Sttl

Since the circuits installed on a high-usage link can only be used for the

traffic of that link we need the following constraint:

s' t
Z I y „. < d-. , VtET and VhEH (2b)
8-1 t-1 Sth ~ th

We note that (2b) would not be valid if we had not assumed earlier that

circuit requirements of high-usage links do not decrease by time. Relation (2b)

guarantees that the summation term in the right-hand-side of (2a) is always

non-negative. Thus, circuits installed on a high-usage link can not be

used to meet — partially or wholly — the circuit requirements of any

other link, whether high-usage or final.

We, next, need constraints on the number of circuits that can be installed

on link m. This number is subject to the type(s) of transmission systems

that have been installed, or are being installed in the current period on

that link. Hence,



12

t t
I y < a E x „ , VseS, VteT, and VmeL (3)
, sttn — s , stm

And finally, we have,

x - 0,1, Ws S, Vt T and Vm L (4)
stm

ystm - 0> VseS' V t e T and

We note here that y fs are not required to assume integer values for they

are, in real-life, sufficiently large and rounding them off does not affect

the model significantly.

We shall refer to (l)-(5) as Program P. Program P has [(sf+l)tfq] structural

constraints and (2sftfq) variables, exactly one-half of which are 0-1

variables. In Section 4_, we shall discuss methodologies for solving

Program P and present numerical examples.

It should also be pointed out that the model presented here assume that

there exists no circuits on any link of the network prior to the first period

of the planning horizon. In reality, of course, this is not the case.

However Program P can easily accommodate this by replacing d_ with
—• tm

(d - number of existing circuits on link m).tm

We shall now relax some of the restrictive assumptions that we made in

constructing Program P. First of all, suppose that circuit requirements of
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high-usage links may decrease by time. We can update the circuit require-

ments of final links — that is, replace (2a) — with the following:

sf t sf t
> d7f + £ (max {°»dr, - £ £ y „,,}) VtcT and VfcF (6)

1 . •% s c i ™~ L i , Tt t ti ., . sLri
t=l heH s*l t=l

Note that the second term of the right-hand-side of (6) is always nonnegative

for

*7v y fcu
 > °» V t e T» v h e H and VseS

tn stn —

Thus, the circuit requirements of a final link can only be met by circuits

installed on that link. The extra circuits on a final link f, then, are

there to cover the circuit requirements of high-usage links whose alternate

routes contain f. Furthermore, since we have

max {0, d-h - j i J^ ysth} (6.1)

in the right-hand-side of (6), the excess circuits on a high-usage link

can not be used to cover the circuit requirements of any other link,

whether high-usage or final. Thus, the circuits on any high-usage link

are used exclusively for the traffic of that link. That is, if in period

t a high-usage link h has a-, circuits but the circuit requirement of h

in period (t+1) is less than a-,, i.e.,
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aih - d(t+l)h *B > °'

those . circuits will be idle in period (t + 1). They can, of course, be

used in period t" > t if d „, > c*r~+*nh# ^ne fundamental assumption (also

made by Yaged [14]) here is that circuits, once installed, can not be

removed and installed on some other link. Otherwise, we should replace

(6.1) with the following:

sf t
max {0, I d- - I I y . } (6.2)

heHf
 th s«l t»l Sth

The above relation would not require a revision of the objective function (1)

because it is reasonable to assume that cost of removing circuits on a

specific link and installing them on some other link does not exceed that of

installing new circuits.

Also note that replacing (2a) with (6) would make (2b) redundant.

Secondly, instead of restricting x 's to assume only 0-1 values, we can

allow

x ^ > 0 and integer, VseS, VteT and VmeL (7)
stm —

Thus, more than one system s (for instance, cable) can be installed in

period t on link m. Furthermore, we can assume that there exists limited
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supplies of transmission systems (for instance, satellites), say a units,

throughout the planning horizon. We would then need the following constraint

t1

Z Z x < a , VscS (8)
meL t-1 Stm " S

Finally, we can add "parity constraints" (see, for instance, [8]) such as

t1 s1 tf

Z y - > k Z Z y _ VseS and VmeL, where 0 < k < 1.
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4. SOLUTION METHODOLOGIES AND NUMERICAL EXAMPLES

We developed and coded (by the third author) a branch-and-bound procedure

for solving Program JP given in Section 3^. At each vertex of the search

tree, i.e., after setting some variable x equal to 1, a subproblem is

solved for each period of the planning horizon. Each one of these subproblems

is a "single commodity flow problem" and is solved using the "flow augmenting

method" (see [4], for instance). We thus obtain network theoretic upper

and lover bounds at each stage. The computations are terminated when either

(i) the optimal solution is found or (ii) time allocated is consumed.

We now present a numerical example. The telecommunications network considered

is depicted in Figure 1, and is taken from the field. The planning horizon

is 10 years and separated into 3 periods. t*= 1 is the base year; t - 2

is the fifth year and t * t? » 3 is the tenth year. The circuit requirements

for the first period are taken from [9]. The requirements for the remaining

two periods are obtained by using appropriate levels of average annual growth

rates. These circuit requirements are given in Table 1. Three alternative

transmission systems are considered. Table 2_ contains the installation cost

of each system, the per unit cost of each system s circuit, and the maximum

circuit capacity of each system. The discount factor is 10%.
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TABLE 1

Circuits Demand for Each Link

Link

(PrP2)

(P2,P5)

(PrP3)

(PrP4)

(P3,P6)

(P3,P7)

(P3.P8)

(PrP5)

(P2,P6)

(P2,P7)

(P3,P5)

(P4,P5)

(P5,P6)

(P5,P7)

(P5,P8)

Link Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

t»l

35

21

92

58

47

47

59

2

17

17

7

18

18

18

18

t*2

60

42

184

99

80

80

100

5

34

39

14

31

31

36

41

t=3

70

63

184

174

188

177

177

8

68

51

21

72

72

54

72
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TABLE 2

Costs and Upper Bounds of Systems

System

1

2

3

Fixed (c1)
Charge

530000

870000

1400000

Linear (c")
Cost

3100

1070

277

Upper Bound (a )
(max. capacity;

30

90

270

The solution, obtained by implementing the branch-and-bound procedure

described above, is presented in Table 2- T&e same solution was obtained

when the discount factor was changed, first, to 5%, and, then to 15%.

Also note that, no systems are installed in the last period.

Given the magnitude of computation time for the above example and other

runs of the same problem for different constants, we have started devising

a "heuristic methodology" for solving Program £. This procedure is not

formally completed yet. However, our initial efforts show that such a

methodology could prove very useful.

The heuristic solution for the above numerical example is shown in Table 4̂ .

Note that total cost is smaller than that of the branch-and-bound procedure.

We are not ready to claim the superiority of either one of the methods as

of now. These will be reported in the near future. Also to be reported in

the near future is a generalization of the model given here.
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TABLE 3

Approximate Optimum Solution
(Branch-and-Bound)

Link
Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

t= l

3

3

3

3

3

3

3

0

0

0

0

0

0

0

0

t=2

1

0

1

0

0

0

0

0

2

2

1

0

2

. 2

2

t=3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

N.B. (1) Numbers in the table are indices of
systems installed

(2) z* * 13,872,230; an approximate optimal
solution.

(3) 2* - the value of the optimum < ^5
2* —
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TABLE 4

Approximate Optimum Solution
(Heuristic)

Link
Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

t - 1

3

3

3

3

3

3

3

0

0

0

0

0

0

0

0

t=2

0

0

2

0

0

0

0

0

0

1

0

0

0

0

0

t=3

0

0

0

0

0

0

0

0

0

0

0

2

2

0

2

(1) Numbers in the table are indices of
systems installed.

(2) 2* - 12,203,954
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