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ABSTRACT

This report describes research aimed to develop a general analytical and numerical

tool for designing the near optimal trajectories of lumped-parameter dynamical systems.

The approach is based on a method which approximates each generalized coordinate of a

dynamical system by the sum of a fifth-order polynomial and a finite term Fourier-type

series. Optimality is achieved by adjusting the free boundary conditions and the coefficients

of the Fourier-type series such that a performance index is minimized. The adjusted

variables can be used to determine the near optimal trajectories of the generalized

coordinates and the control variables.

Reported herein is a specialization of this approach for linear structural systems,

represented by simultaneous second-order differential equations. In contrast to standard

linear optimal control approaches which typically require the solution of differential Riccati

equations, the method presented is a near optimal approach in which the necessary and

sufficient condition of optimality is represented by simultaneous linear algebraic equations,

which can be solved directly. Simulation results show that the approach is computationally

efficient, numerically robust, and capable of solving for the optimal control of linear systems

of high order andlor of linear systems with fixed (or highly penalized) terminal configuration

variables.

Future work is planned to continue investigating this innovative idea of Fourier-based

optimal control. In particular, it is proposed to (i) utilize quadratic programming techniques

to extend the approach to problems with linear constraints on configuration andlor control

variables, (ii) develop sensitivity functions to determine the influence of system parameters

on the near optimal control, (Hi) generalize the approach to apply to general linear systems,

represented by simultaneous first order differential equations (state equations), and (iv)

solve for the near optimal trajectories of nonlinear dynamical systems via sequential

linearization. The results of this project will lead to a powerful methodology for solving

optimal control problems, applicable to high order and nonlinear problems, which have

previously been difficult, if not impossible, to solve.



1 INTRODUCTION

The optimal control of general dynamical systems (i.e., linear and nonlinear systems) is

an important topic of modern control. Substantial theory for the optimal control of

dynamical systems has been developed [Schultz and Melsa, 1967; Rosenbrock, 1970;

Takahashi, etal., 1970; Kwakernaak and Sivan, 1972; Owens, 1981; Patel and Munro, 1982;

Friedland, 1986].

Problems of optimal control are typically solved using the classical results of the

calculus of variations. Essentially, the variational formulation transforms the optimal control

problem into a two-point boundary value problem (2PBVP) described by differential

equations. The solution of these differential equations is typically complicated since the

boundary conditions are most often specified at different ends (i.e., state variables are known

at the initial conditions and co-state variables are known at the terminal conditions). In

general, 2PBVPs are extremely difficult to solve.

Various computational algorithms have been proposed to solve such 2PBVPs (e.g., see

[Keller, 1975; Pereyra, 1984] and the extensive bibliography in Appendix A of [Lee and

Markus, 1986]). These algorithms include gradient-based methods such as steepest-descent

and variation of extremal (Newton-type) techniques. For these methods, a termination

criterion is usually found by trial-and-error and convergence very often depends on the initial

guess. A more serious drawback of gradient methods is their sensitivity to computational

errors, which often leads to their failure in solving high order optimal control problems.

Dynamic programming represents another class of methods. From a computational

perspective, it is not well suited for solving optimal control problems since it is necessary to

quantize the admissible state and control values into a finite number of levels. The optimal

solution is then obtained by trying all combinations of admissible state and control values.

The problem is that the storage requirements typically grow very fast, and can be

prohibitively large, for large order systems (i.e., where the order of the state and control is

large). Bellman [1957], the father of dynamic programming, called this problem the "curse

of dimensionality.11 In addition, dynamic programming is not effective in handling problems

with free terminal time.

In contrast to variational methods and dynamic programming, mathematical

programming techniques represent a distinct approach toward the solution of (linear and

nonlinear) optimal control problems. In general, these techniques convert an optimal control

problem into an algebraic optimization problem. A survey of work done prior to 1970 can be

found in [Tabak, 1970]. A more recent survey can be found in [Kraft, 1980]. Theoretical



aspects of determining the optimal control via mathematical programming are also covered

in [Canon, et al, 1970; Tabak and Kuo, 1971].

A direct application of mathematical programming is to discretize the state equations

using a finite difference method. A linear or nonlinear programming algorithm can then be

used to determine the values of state and control variables at every time interval such that a

performance index is minimized. A difficulty with this approach is that the finite difference

approximation leads to a system of algebraic equations which is typically of very large order.

As a result, the optimization is computationally intensive and can pose serious problems in

obtaining a realistic solution.

Modified approaches involving mathematical programming have been proposed. In

[Hicks and Ray, 1971] and [Sirisena and Tan, 1974] the control variables are represented by

the sum of known basis functions. Mathematical programming algorithms are then used to

determine the optimal values of the coefficients of the basis functions that minimize the

performance index. To evaluate the performance index, such control parameterization

methods require the integration of the state equations which is usually time consuming and

sensitive to numerical errors. Furthermore, constraints on terminal states {e.g., fixed terminal

conditions) are not easily satisfied.

Mathematical programming approaches based on state parameterization have been

described [Johnson 1969; Nair, 1969; Yen and Nagurka, 1987a]. Here, state trajectory

parameters of dynamical systems are adjusted by mathematical programming. For example,

Yen and Nagurka [1987a] represent the time history of each generalized coordinate by an

auxiliary polynomial and a finite-term Fourier-type series. The free variables, such as the

(free) coefficients of the polynomial and the Fourier-type series, are adjusted by a nonlinear

programming method such that the performance index is minimized. The effectiveness of

this technique has been demonstrated by simulation studies [Nagurka, et al., 1987; Yen and

Nagurka, 1987a]. A challenge of state parameterization relates to the problem of trajectory

inadmissibility, i.e., due to constraints on the control structure an arbitrary representation of

the state trajectory may not be achievable.

Finally, state and control parameterization approaches have been suggested. In

[Vlassenbroeck and Van Doreen, 1988] the state and control variables are both expanded in

Chebyshev series and an algorithm is provided for approximating the system dynamics,

boundary conditions and performance index. Here the Chebyshev coefficients are the free

variables of the algebraic optimization problem. One distinct advantage of this approach is

that it can handle linear as well as nonlinear problems. Also, the authors report promising



numerical experiences with the method. The drawback of this approach is the tedious

analytical formulation required for different optimal control problems (including

unconstrained problems). The development of a general computational tool based on this

method is formidable.

Of the different mathematical programming approaches, state parameterization offers

two major advantages. First, boundary condition requirements on state variables can be

handled directly. Second, if the trajectory inadmissibility problem can be overcome, the state

equations can be used as algebraic equations and the performance index can be evaluated

efficiently. As a result, state parameterization promises significant computational advantages

relative to other approaches.

In summary, the application of algorithms based on varational methods and/or dynamic

programming is practical for few real systems (e.g., low order and/or linear systems).

Mathematical programming methods represent an alternative and promising strategy for

determining the near optimal (or suboptimal) solution for general dynamical systems.

However, in many cases the solution of optimal control problems involving high order,

nonlinear systems remains a serious research challenge.

Significant attention has focused on methods for solving the "simpler" problem of linear

optimal control (most probably a result of the difficulty in solving the nonlinear problem).

Linear optimal control represents the basis for many important applications including optimal

control of structures. For the special case of a linear dynamical system with a quadratic

performance index the optimal control is generally found by the Hamilton-Jacobi approach.

Mathematically, this approach is a variational method which generally requires the solution

of a matrix differential Riccati equation with a terminal condition. Various algorithms have

been proposed to solve this type of equation; an impressive reference list has been prepared

by [Ramesh, et aL, 1987]. These algorithms usually suffer from computational "bottlenecks"

which arise in solving for the optimal control of high order systems.

1.1 Scope

The research reported in this technical report specializes the Fourier-based state

parameterization approach of [Yen and Nagurka, 1987a] to linear, time-invariant, structural

systems with quadratic performance indices. The method exploits the linearity of the system

model and the quadratic nature of the performance index to guarantee identification of a

global minimum, while being computationally very efficient. The problem of trajectory

inadmissibility is solved by the introduction of "artificial" control variables. The



effectiveness of the approach is demonstrated via computer simulation studies. In these

studies, the results of the Fourier-based approach achieve impressive accuracy in matching

Riccati-based solutions with significantly less computational effort.

This report is organized as follows. The methodology of the Fourier-based optimal

control approach is described in Section 2. In particular, Section 2.1 presents the application

of the approach to actively controlled structural systems with quadratic performance indices,

and represents a review of the methodology presented in [Yen and Nagurka, 1987b]; Section

2.2 generalizes the algorithm described in Section 2.1 to structural systems where the number

of control variables is less than the number of degrees-of-freedom. Simulation results are

presented at the end of both Sections 2.1 and 2.2. Section 3 discusses some important

characteristics of the Fourier-based approach. Section 4 outlines the directions of future

research, and conclusions are given in Section 5.

2 METHODOLOGY

The dynamical system considered here is a linear structure, whose behavior is governed

by the system of differential equations:

Mx(t) + Cx(t) + Kx(t) = Bu(t) (1)

with known initial conditions x(0) = *Q, X(0) = i^, where x is an N x 1 configuration

vector (i.e., a column vector of N configuration variables), u is an L x 1 control vector, M is

an N x N positive definite mass matrix, C is an N x N positive semidefinite structural

damping matrix, K is an N x N positive semidefinite stiffness matrix, and 5 is an N x L

control influence matrix.

In this report, it is assumed that L<N, i.e., the number of control variables is less than or

equal to the number of configuration variables. The derivation in Section 2.1 considers the

case L = N9 i.e., the configuration and control vectors have the same dimension, and 5 is

nonsingular. For this case, the structure is actively controlled. Section 2.2 addresses the case

L<N.

The design goal is to find the optimal control u(t) in the time interval [0, tf] such that

the quadratic performance index



J = H

~xUf)

iitf)

(2)

is minimized. Here, Qv £>2, Qv and // are real, positive, semidefinite matrices and R is a

positive definite matrix. In addition, // and R are symmetric. (T denotes transpose.) It is

assumed that the configuration and control vectors are not bounded, the terminal

configuration x(tf) and its rates x(tf) and x(tf) are free, and the terminal time tf is fixed.

Problems with constrained boundary conditions are addressed in Section 3.1.

2.1 Actively Controlled Structural Systems

For actively controlled systems the number of control variables is equal to the number

of degrees-of-freedom of the structure. In this case, the control influence matrix, 5, is a

nonsingular square matrix.

2.1.1 Development

The basic idea of the Fourier-based optimal control approach is to approximate each

configuration variable by the sum of an auxiliary polynomial and a finite term Fourier-type

series, i.e., for / = i , . . . , N9

XiU) = d^t) + 2jaikcos + Z,biksln (3)

where K is the number of terms included in the Fourier-type series and dt is a fifth-order

polynomial in time

= di
i0

dnt + di2t
2 di4t

4 + di5t
5 (4)

The six coefficients of this auxiliary polynomial can be written in terms of (i) six boundary

conditions, i.e., initial conditions xt{0) , xJO) , and xJO) , and terminal conditions x^) ,

x/tj) , and x/tj) , and (ii) coefficients of the Fourier-type series. (Note that of the six

boundary conditions only xJO) and xt{0) are assumed known.) Explicit expressions for

these coefficients are given in Appendix 1.

Equation (3) can be rearranged and presented in the form



K K
+ 9zxif + 9zxif + P4xif + Xa*a i* +

* = 1 J f c = l

where xl0 = x{ (0), xif = x, (tf), and similarly for the corresponding time derivatives, and
where

Pi = Xi0 + Xi0t + I

+ SxgotMt/t/ + [-6xi0 - 3xiOtMtltf)
5 (6)

pj = ^ [ ( f / r / - 3(t/tfF + 3(f/r/ - (t/tf)
5] (7)

p2 = [100/r / - 15(r/r/ + 6(f/r/] (8)

p3 = r/[-4(r/r/)
3 + l(t/tfY - 3(t/tf)

5] (9)

p4 = lff[{tltfy - 2(t/tf)
4 + (t/tf)

5] (10)

a = —1 + Akh&Ht/t)2 — 2(t/t)3 + (t/t)4] + cos (11)

S. = 2kn[-it/tf) + lO(t/tf)
3 - 15(t/tf)

4 + 6(t/tf)
5] + ^ m — (12)

*• J J J J f

v

By differentiating equation (5), the configuration variable rates can be expressed as:
K K

xff) = qt + aJn + c2xif + a3i /7 + a4xif + Yykaik + Y3kbik (13)
and

^ A:

xft) = r. + ^^ + $2xif + ^ i ^ + 4>4j?y +

where

<7t = Pi , rt = p \

a , = p ! ,<!>, = p !

«y2 = P2 ' ^ 2 = P*2

a3 = p3 , 03 = p3

o 4 = P 4 . 4>4 = P*4



yk = ak , ek = ak (20a,b)

8* = P* . C* = P*

The parameters defined in equations (7)-(12) and (16)-(21) are configuration

independent and are functions of time only, since the terminal time tf is assumed known.

Furthermore, since the initial conditions xi0 and xi0 are given, p., qi, and ri are known

functions of time.

From equation (5), the configuration variable xt{t) can be written in compact form as

xff) = Pi + 2Tli (22)

where

2 r = [ Pi P2 Ps P4
 a i • • • % Pi • • • P* ] (23)

and

li = [ **> ^ *if *if ai\ • • • * * *ii • • • biK F (24)

are vectors of dimension m = 4 + 2 AT. Similarly,

*,• = Qi + ^rZ- (25)

*f = ^ + ^ / (26)

where

oT = [ ax a 2 a3 a 4 Y2 . . . yK 8X . . . 5^ ] (27)

$ 7 = [ 4>i <1>2 <1>3 ^4 ^ . . . % Ci • • • C^ 1 (28)

The configuration variables for the iV degrees of freedom can be written in terms of a

configuration vector x(t), i.e.,

x(t) = £(r) + 2*«Z (29)

where

= [xx(t) x2(t) . . . xN(t)]T (30)

= [^(0 P2(f) . . . p ^ r ) F (3D
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l l

(32)

and

2 r 0 . . . 0

0 pT . . . 0

0

(33)

Note that % is a column vector of dimension Nm and that £* is a matrix of dimension N x

Nm. Similarly, configuration rate vectors,

x(t) = qif) + o*(t)Y (34)

and

x(t) = r(t) (35)

can be introduced, where q_(t) and r(t) are defined analogously to equation (31) and o* and <J)*

are defined analogously to equation (33).

Since x(t), x(t) , and 'x(t) are known functions of y_, the control vector u(t) can be

expressed from equation (1) as a function of y_. Ultimately, the interest is to express the

performance index as a function of y_. Toward this end, the performance index of equation

(2) is decomposed into two parts:

= Jx J2 (36)

where Jx is the cost associated with the terminal configuration and its rate and J2 is the cost

associated with the trajectory. The terminal configuration and its rate can be written as a

linear transformation of y_, i.e.,
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*('/)
• •

where Z is a 2N x mN matrix with elements 1 and 0, specified according to

1 , y= ( / - l )m+2 for i=l,...,N
j=(i-N-l)m+3 for i=N+l,...,2N

0 , otherwise

(37)

(38)

From equation (37), the cost Jx is

r

x(tf)
H

'x(tf)

x(tf)
= fZJEZ.1 (39)

From equation (1) (for the control vector) and equations (29), (34), and (35) (for the
configuration vector and its rates), the cost J2 is

uTRu\dt

where

F = d) lF,r •

(40)

(41)

(43)

5 = LTE \L

Fj, ... , Fg are constant matrices that depend on structural parameters and the performance
index. If, for notational convenience, 5iBV=5~1,then

£1 = MF&£B*,M. (46)

= g&RB^C + Q2 (47)
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(48)

£5 = £ r 2L<*+* r )* t o £ + £3 = IQT^R^K + & (51)

Since 2 is independent of time, equation (41) can be written as

'2 = / A * Z + /r + Q*rl + r (52)

where

A* = f'Adt (53)

(54)

n* = J W (55)

(56)

Since J = JX+J2 is quadratic in terms of £, the necessary and sufficient condition for
global minimum /, determined from

ii -°- •
is

[A* + A*T + l^HZ]^ = -r - (58)

Equation (58) represents a system of linear algebraic equations with the number of

equations equal to the number of unknown variables, i.e., the elements of %. It can be solved

using any of a variety of linear equation solvers, such as Gaussian elimination routines. In

solving this equation for £, the integrals of equations (53) - (55) must be evaluated. This can

be done numerically or analytically. The integrals have been evaluated in closed-form. (See

Appendix 2 for integral tables.) The fact that the integrals have been evaluated analytically

makes the Fourier-based approach an integration-free method. As a result, the computational
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cost is independent of the length of time of the trajectory, making the approach substantially

more efficient than standard approaches (except possibly for the case of exceedingly small

time intervals.)

An important feature of equation (58) is that the coefficient matrix of £ is independent

of initial conditions. The integrals A* are independent of initial conditions (whereas the

integrals F* and Q* are functions of initial conditions, terminal time, and system parameters.)

Thus, for the same optimal control problem with different initial conditions, the coefficient

matrix remains the same; only the right-hand side constant vector needs to be recomputed.

As a result, numerical algorithms such as LQ decomposition (and linear algebraic equation

solvers based on matrix inversion) are particularly efficient for recalculation of y_ for different

initial conditions.

2.1.2 Summary of Algorithm

The following methodology applies for the system of equation (1) (with £ as an N x N

nonsingular matrix) and the performance index of equation (2).

Step 1: Select K9 the number of terms to be included in the Fourier-type series. From

equations (29), (34), and (35), set up the relationships between the configuration vector and

its rates, x(t), x(t), and x(t), and the unknown vector, % (consisting of the unknown

boundary conditions and the coefficients of the Fourier-type series).

Step 2: Establish the necessary and sufficient condition for minimum /, as shown by

equation (58). This involves evaluating the integrals of equations (53), (54), and (55). (The

integral of equation (56) is only needed for the evaluation of the performance index.)

Step 3: Solve equation (58) for y_ using a linear equation solver. Determine x(t), x(t), and

x(t) from equations (29), (34), and (35), respectively, and u(t) from equation (1).

2.1.3 Examples

Example 1:

Problem Statement: Consider the linear, two degree-of-freedom, mechanical system

shown in Figure 1. The displacements xx and x2 are measured with respect to the

equilibrium positions of the masses. For this system, the equation of motion can be written

in matrix form as:
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Figure 1. Two Degree-of-Freedom Mechanical System.
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" l

0

o"
2

x +

m

1

1

r

i-H

X +
' 2

- 1

- 1

3
X = U (59)

with initial conditions x(0) = [ 1 l ] r and x(0) = [ 1 l ] r , where x = [ xx x2] r. (It is

assumed that the units for displacement x , velocity x , acceleration x , and control u are m,

ml sec, ml sec1, andiV, respectively.)

The problem is to design the optimal control trajectory u = [ ux

performance index:

such that the

/ =

id)

H

is minimized, where

H =

id)
Jo

100 0 0 0

0 100 0 0

0 0 100 0

0 0 0 100

X + uJRu ]dt (60)

(61)

and

= <23 =
1

1

1

1
, B. =

l

0

0

l
(62)

Riccati Solution: This problem can be solved by standard linear optimal control

methods employing the Hamilton-Jacobi approach. A standard solution method is based on

the Riccati equation for which a vector (X) of state variables (x and i) is introduced. The

equation of motion can be rewritten as:

X =
0 /

-M~lK -M~lC
X +

0
u = AX + Eu , X = (63)
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and the performance index can be rewritten as:

— / / J o — -

where

(64)

Q. =

Qa

(65)

The Riccati equation is a differential equation in terms of the N x N matrix S_(t)

Sit) = " S(t)A - ATS(t) - Q + S(t)ERrlE?S(t) (66)

= K (67)

which is a system of AN2 first order differential equations. After solving for S_(t), the
optimal control can be found from

uit) = -RrxETS{t)Ut) (68)

Actually, it can be shown that S(t) is symmetric; hence, N(2N+l), and not 4N2, first order
differential equations must be solved.

Fourier-Based Solution: Alternatively, the problem can be solved using the proposed
Fourier-based approach. The following steps of the algorithm are outlined.

Step 1: Set K = 1, i.e., employ the crudest approximation involving a one-term Fourier-type
series. Thus, the vector of free parameters

= [x
w xv xlf xv

xv an bn x20 x2f
a2l b2xf (69)

contains twelve unknowns. Evaluate the known functions of time, i.e.,

R = [ Pi P2 V

and

"pi P2 Pa P4 a i Pi ° ° ° ° ° °

0 0 0 0 0 0 p, p2 p3 p4 a, p,

(70)

2' = (71)
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where pv pv pv p2, p3, p4, av and $x are determined from equations (6) - (12) with tf =
1 sec and K- 1.

Step 2: In equation (58) H is given in equation (61). To evaluate A*, F\ and ft* , the
constant matrices Fl9 ... , F^ of equations (46) - (51) are first calculated, and then integral
tables are used. (See Appendix 2.) In this example, A* is

A* =

0.0648

-0.0756

-0.0515

0.0289

-23119

0.4465

0.0107

0.5108

-03516

0.0344

-13558

-0.1797

-0.7185

193649

-1.7968

0.1256

14.4565

-6.7604

-0.7035

9.9329

03050

-03441

30.0831

-1.40*6

0.2783

-11.7253

6.3472

-0.1735

-33007

3.6200

0.2924

•6.7665

33400

0.1484

•11.1680

1.2212

-0.0008

0.7685

-0.4366

0.0848

-13286

-0.6863

-0.0240

0.6702

-0.3718

0.0107

03788

4.2S94

-13286

•163086

11.1558

-23119

1413065

10.1163

03788

-28.7150

172050

-1J558

21.3476

19.9299

0.6863

•6.7604

3.0831

-0.4465

•10.1163

15.8826

02894

-1.4086

02256

0.1797

-19.9299

urn

0.0075

02727

-0.1901

0.0189

-0.7749

-0.0844

03298

-0.9403

0.1625

0.0806

-8.7126

1.9t57

-0.4178

8.0758

0.4240

-0.3060

172106

-0.9889

-22022

623238

-153000

1.0319

283620

-25.7965

0.1500

-4.0284

2.0828

0.0552

-53057

0.8082

0.8169

•38.8952

22.0508

-0.8587

-13557

133696

-0.0117

03845

-02119

0.0075

02298

-0.1624

0.0214

22938

-13829

03298

-6.7566

-2.4618

0.2298

-15.8425

9.5107

-0.7749

15.0259

103180

-6.7566

-323242

27.1773

-8.7126

547.6921

20.1317

0.1624

-0.9889

02190

0.0844

-103180

0.9013

2.4618

-25.7965

123218

-1.9857

-20.1317

i23728

(72)

and the sum (F* + Q*) is

(T+Q*) =

1.4082
-68.6030
28.9642
-1.5542
5.9907
24.0617
6.2483
-192.5749
87.6462
-3.8273
-52.7877
80.7157

(73)

From equation (38),



18

Z =

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

(74)

>: The system of linear algebraic equations (58) is solved for

-8.850858
1.798765X10-1

-7.128376xl0-2

7.458418
-5.219254x10-*

1 = -4.694757xl(H (75)
-7.384817
4.287209X10"1

-1.881872X10"1

4.281012
3.608875xl0"5

2.970233xl(H

From £, the configuration vector, its rates, and the control vector can be determined.

Comparison: For this example, the Riccati equations were solved using a fourth-order
Runge-Kutta method with a time step of 0.01 sec. Running in Turbo Pascal (Version 3.02A)
on an IBM PC/XT with an 8087 co-processor, the computational time was 76 sec. (The
symmetry mentioned above was not exploited.) In comparison, the Fourier-based approach
required less than 3 sec to establish and solve the linear algebraic equations for the vector of
free variables, y_, using a Gauss-Jordan routine.

The time responses of the control variables, ux and M2, and the displacements, xx and
x2, are shown in Figures 2 and 3, respectively. The results show that the Fourier-based
optimal trajectories determined using only a one-term Fourier-type series agree quite well
with the optimal trajectories from the Riccati solution.
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Example 2:

This example considers the same problem as that of Example 1 except that matrix f£ in

equation (61) has only one nonzero element, i.e., Hn. The goal here is to examine the

numerical robustness of the Riccati and Fourier-based methods when high penality exists on

the terminal configuration. In particular, by specifying Hn as a very large positive constant,

the terminal configuration ATJCI) is heavily penalized and should be driven to zero.

Simulation studies based on the Riccati and Fourier-based approaches show that the

terminal configuration xx(l) becomes small as Hn becomes large. The results are

summarized in Table 1, along with the resulting value of the performance index for each

weighting.

It is found that for an Hn of 103 and 104 the results are in agreement when (i) solving

the Riccati equation by fourth-order Runge-Kutta integration with 100 time steps, and (ii)

using the Fourier-based approach (with a two-term Fourier-type series, i.e., K = 2). For an

Hn of 105, the number of integration time steps in solving the Riccati equation must be

increased to 200 to achieve comparable accuracy. This phenomenon is again demonstrated

when Hn = 106, i.e., the number of time steps must be further increased to achieve similar

accuracy with the Fourier-based result. In fact, 100 time steps is insufficient to achieve a

numerically stable integration for this high value of weighting. In contrast, the Fourier-based

approach provides accurate results for each weighting, and does not require additional

computation.

The robustness of the Fourier-based approach was tested further using extremely large

values of Hn. At an Hn of 1030, the Fourier-based approach succeeded in predicting a very

small terminal configuration, i.e., an xx(tj) of 1O~29 (and a performance index of 13.81355).

In summary, the results indicate that the Fourier-based approach can be applied to systems

with highly penalized terminal states without sacrificing the method's computational

simplicity.

2.2 General Structural Systems

The Fourier-based approach is based on the parameterization of the trajectories of the

generalized coordinates. The parameters, i.e., the elements of y_, include the free boundary

conditions and the coefficients of the Fourier-type series. The optimal control is found by

solving for the values of these parameters that minimize a performance index. (The

parameterization of the trajectory is an important feature of the Fourier-based method, as

described later in Section 3.)
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Table 1: Results of Riccati and Fourier-Based Simulations

for Different Weighting Constants for Example 2

Weighting

103

104

105

10*

Steps'

100

100

200

100

200

100

140

200

300

Riccati

8.205xl0"3

8.309xl0-«

8.275xl(H

1.220x10-*

8^43xlO-s

Unstable

2.879x10-*

3.746xlO-J

1.367xlO-J

Fourier

8.205xl0"3

8.273xl(H

8.280xl0-s

8280xl0-«

/

Riccati

13.74561

13.80668

13.80670

13.82585

13.81290

Unstable

30.30681

13.98985

13.81685

Fourier

13.74561

13.8067

13.81287

13.81349

Steps = Number of Time Steps Used in Fourth-Order Runge-Kutta Integration of

Riccati Equation
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The resulting "optimal" trajectories must be admissible, which may not be achievable

for some passive dynamical systems (because of limitations on the control.) For instance,

consider an arbitrary trajectory of x, i, and x. From equation (1) the corresponding control w,

based on an inverse dynamic approach, can be determined only if the control influence

matrix, /?, is invertible. This implies that the structure must be actively controlled, i.e., the

number of degrees-of-freedom of the structure must be equal to (or greater than) the number

of control variables, and the control influence matrix must be invertible. As a result, the

approach presented in the previous section is only feasible for actively controlled structural

systems.

This section generalizes the Fourier-based approach to the more common case of non-

actively controlled structural systems which have a greater number of degrees-of-freedom

than the number of control variables.

2.2.1 Development

The dynamical system of interest is again the linear structure described by equation (1).

In this case, the control influence matrix, £, is an N x L matrix where the number of

configuration variables, N, is greater than the number of control variables, L.

Equation (1) can be written as

Mx(t) + Cx(t) + Kx(t) = 5V (76)

where

and

u' = u(Nxl) =

1

1

*

M(L,1 ,

(77)

(78)

where I - N - L and the subscripts in the parentheses represent the dimensions of the

matrices. By introducing the artificial control vector, w* , the new control influence matrix,

5 ' , can be inverted enabling the calculation of the control, u', for any given trajectory, i.e.,

premultiplying equation (76) by (ZT)"1 gives
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M'x(t) + C'x(t) + K'x(t) = u'(t)

where

Af =

a =

(79)

(80)

(81)

(82)

The new constant coefficient matrices can be partitioned, as follows.

M' =

C =

K' =

M.{IxN)

Q(IxN)

Q(LxN)

£L{L

(83)

(84)

(85)

From equation (79) the artificial control vector u* can thus be written as

M*x{t) + Cx{t) + r*(r) = u*(t)

In actuality, the artificial control does not exist, and thus it is required that

C*x(t) + l?x(t) = 0

(86)

(87)

This indicates that only trajectories satisfying equation (87) are admissible for dynamical
systems described by equation (1). In other words, the N degree-of-freedom system
possesses L "active" degrees-of-freedom. Given trajectories of any L of the N generalized
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coordinates, the trajectories of the remaining degrees-of-freedom can be determined uniquely

from equation (87), with all trajectories being admissible.

Equation (87) can be viewed as describing linear coupling between degrees-of-freedom.

The trajectories of / of the N generalized coordinates can always be planned such that the

artificial control variables can be made to vanish, regardless of the trajectories of the

remaining generalized coordinates. Consequently, the admissibility of the trajectories is

guaranteed.

In the Fourier-based method, the generalized coordinate trajectory is approximated by a

finite-term series. As a result, equation (87) will not, in general, be satisfied exactly.

However, by minimizing, in a least squares sense, the contribution of the artificial control

variables, an equation similar to equation (87) describing linear coupling can be derived, as

developed below. Thus, there are two simultaneous objectives. One objective is to generate

the near optimal trajectories; the second objective is to minimize, in the least squares sense,

the contribution of the artificial control variables.

A performance index, /*, is proposed to represent the contribution of the artificial

control variables.

£ ( »i )2dt (88)

There are N vectors representing the free Fourier-based variables, %v }>2, ... 9yN. I of

these N vectors, i.e., zl9 &,. . . , %, are adjusted in such a way that J* is minimized. Setting the

first derivative of the performance index equal to zero

= 0 for i = 1,2,...,/ (89)

gives a set of Im equations in the Nm unknowns (j^, %2 ,..., Y^ where each % has m elements,
since J* is a function of }\)

Equation (89) can be written as

YA = Q-IYB + Q.2 (90)

where ^A anc* Is are partitioned vectors of y_ according to
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1 =
1A

1B

(91)

with

li
12

1A = (92)

and

Is = (93)

Equation (90) represents the coupling between the generalized coordinates that minimizes the

effect of the artificial control variables on the trajectories.

The performance index, J = Jl+ J2, can be written in terms of ̂  according to equations
(39) and (52). In view of equation (91),

= /(v.) =

which, from equation (90), can be written as

(94)

(95)

(96)

which represents Lm algebraic equations that can be solved to determine ^ . The remaining

Fourier-based variables, v^ , can then be computed from equation (90).

The necessary and sufficient condition of optimality can then be expressed as

<" = 0 ,
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2.2.2 Summary of Algorithms

Two algorithms are described below. Both algorithms apply for the system represented

by equation (1) with 5 as an N x L matrix with N > L.

Algorithm 1

The first algorithm is used to derive the linear coupling between the Fourier-based

variables, yJt9k= 1 ,2 , ... ,N 9 i.e., the algorithm is designed to derive equation (90) which

is needed to minimize the influence of the artificial control variables.

Step 1: Rewrite the governing differential equation as equation (76) by introducing an / x 1

artificial control vector, w*.

Step 2: Define a performance index /*, as shown in equation (88), representing the

contribution of the artificial control variables. This performance index can be obtained from

equation (2) by making //, Qv £2 , and Q3 null matrices and making the only nonzero

elements of R the first / diagonal elements with these elements equal to 1.

Step 3: Carry out Steps 1 and 2 of the algorithm in Section 2.1.2 to establish the necessary

condition for minimum J*. Here, in contrast to equation (58), the necessary condition can be

written as:

= L* (97)

where

A* =
A*A (Imxlm) A*B (ImxLm)

±-*A (Fmxl)

(98)

(99)

and £ is given by equation (91). (The dots in the matrices of equations (98) and (99)
represent elements which are not used for this derivation.)

Step 4: Since only the first Im equations are used (from equation (89)), equation (97) is
equivalent to
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= T M (100)

which can be expressed in the form of equation (90) with

Dx = -K\ KB (101)

£2 = + A M I M (102)

Equation (90) guarantees the minimization of the influence of the artificial control variables

on the trajectory, for any given Ys •

Algorithm 2

The second algorithm is used to find the (near) optimal trajectory for the optimal control

problem defined by equation (1) with performance index (2).

Step 1: Carry out Step 1 of the previous algorithm.

Step 2: Carry out Step 1 of the algorithm presented in Section 2.1.2.

Step 3: Express the performance index as the sum of equations (39) and (52) such that

/ = Jx + J2 = /(A* + ZTHZ)Y + fT + Q*T2 + 5*

Step 4: From equations (90) and (91), equation (103) can be written (see Appendix 3) as

J = :£A"2* + ajr* + r* (104)

where
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A" =

A[2 E2

(105)

(106)

(107)

where the partitioned matrices are defined from

A* +

r +

ZjHZ

Q* = E =

A,,

>

Ex

m

(Imxlm] A1 2

(Lmxlm) ^22

Umxl)

(Lmxl)

(ImxLtn)

(LmxLm)

(108)

(109)

Step 5: Vector^ can be computed from

+ r* = 0 (110)

to minimize the given performance index. Vector ^ can then be computed from equation

(90), using the previous algorithm.

2.2.3 Example

Example 3:

The equation of motion of this example problem is

1

0

a

0

2
x +

1

1
•

1

1
x +

m

2

- 1

-1

3
X =

0

I
» •

It (111)

The parameters are identical to those of the system described in Example 1 by equation (59).

The initial conditions and performance index are also the same. Here, however, there is only

one control variable. The problem is to "design" the trajectory u such that the performance

index is minimized.
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To apply the Fourier-based approach, the equations of motion are modified by

introducing an artificial control variable, u*, such that

(112)

•
1

0

0

2
•

x +
1
•

1
•

m

1

1
X +

m

2

- 1

- 1

3
x =

1

0

0

1

Y
u

Optimal trajectories were generated using the algorithms presented at the end of the

previous section. The time history of the artificial control variable, u*, is plotted in Figure 4.

Its magnitude is small, and always remains less than 2 x 10"4 N. The time history of the

control variable, u , is shown in Figure 5. The curves, representing the solution from

integrating the Riccati equation and from using the Fourier-based approach, are essentially

indistinguishable. The corresponding time histories of the configuration variables are shown

in Figure 6. Again, the Riccati-based and Fourier-based solutions appear identical.

3 DISCUSSION

The approach described in this report applies to unconstrained linear optimal control

problems with quadratic performance indices. It is applicable to high order systems and to

systems with highly penalized terminal configuration variables (and rates). Unlike

variational approaches, the approach does not require integration of differential equations.

The near optimal solution is obtained by solving a system of linear algebraic equations for

free, time-independent parameters. As a result, the approach is integration-free, and thus is

computationally very efficient. Ultimately, it is hoped that such an approach can be used for

real (or near real) time optimal control of dynamical systems.

3.1 Treatment of Boundary Conditions

By modifying equations (22), (25), and (26), it is possible to apply the method to

systems with fixed terminal conditions. For example, if the terminal configuration variable

xif is given, then the term p^cif is known, and equation (22) can be written as:

Xff) = [A- + P2*jf] + tPl P3 P4 <*1 • • • % Pi • • • Ptf]

[Jc,0 xif xif aiX . . . aiK biX . . . bx7 (113)

Note that p2 and xif have been removed from equations (23) and (24), respectively, since

xif is no longer a free variable.
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In the same fashion, problems with fixed terminal configuration variable rates (i.e., xif

and/or xif known) and problems with fixed initial configuration variable "accelerations" (i.e.,

xiQ) can be handled. In practice, once the fixed boundary conditions are identified, the

corresponding rows and columns can be extracted from the coefficient matrix of Y in

equation (58) and the contributions of the extracted columns can be subtracted from the

corresponding elements of the right-hand side column vector. Using this technique, the same

computer routines can be used to handle problems with both fixed and free boundary

conditions, eliminating any additional analytical work. Furthermore, problems with linear

equality constraints on the boundary conditions (e.g., xl(tf)+x2(tf) = l) can be handled in the

same manner.

3.2 Fourier-Based Approach and Optimization

The Fourier-based approach converts the original performance index, which is a

quadratic functional, to a quadratic function, as shown in equations (39) and (52). This

conversion eliminates the dependence of the performance index on time, a continuous

variable, leaving the performance index as a function of a finite number of scalar variables.

By using the Fourier-based approach, optimal control problems can be cast as algebraic

optimization problems, with an associated rich software-base for their solution. Future

research, as described below, is planned to exploit this unique feature of the Fourier-based

approach.

33 Admissibility of Traj ectories

The Fourier-based approach does not guarantee the admissibility of the parameterized

trajectories. Consequently, trajectories suggested by the Fourier-based approach may not be

realizable. In Section 2.2.2 optimization algorithms were proposed to remedy this problem

of inadmissibility of trajectories. These algorithms generate the near-optimal trajectories that

simultaneously minimize the performance index and the influence of the artificial control

variables. It should be noted that the near-optimal trajectories, thus generated, are not

necessarily admissible in the strict mathematical sense, since the artificial control variables

cannot be driven to zero exactly. Nonetheless, the control variable trajectories generated by

the Fourier-based approach are very close to the true optimal solution and thus present no

problem in implementation.
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4 FUTURE RESEARCH

4.1 Work Statement

The ultimate objective of the research described in this report is to develop a general

analytical and computational tool for solving optimal control problems, and hence designing

optimal trajectories of dynamical systems. Toward this end, the use of a Fourier-based

approximation is suggested since it converts the optimal control problem into an optimization

problem which can readily be solved for near optimal solutions. An important finding, as

highlighted in Section 2, is that for linear systems the optimization is "integration-free" and

thus the near optimal solution can be determined by solving simultaneous linear algebraic

equations!

Future work will concentrate on four principal tasks. The first task will involve the

application of the linear near optimal control approach to problems with linear constraints on

state and/or control variables by utilizing quadratic programming. In the second task,

sensitivity functions will be developed to determine the influence of system paramaters on

the near optimal control. The third task will involve the extension of the approach to general

linear dynamical systems, represented by systems of first order differential equations (such as

in state space form). In the fourth task the approach will be generalized to apply to nonlinear

dynamical systems where sequential linearization will be employed. By addressing each of

these tasks the Fourier-based methodology can be developed as a general tool for optimal

system design, and ultimately implemented in a refined, user-oriented computer software

package.

4.1.1 Quadratic Programming

In physical systems, constraints on state and control variables commonly occur. For

example, state constraints often arise due to safety and/or configurational restrictions. In

addition, due to finite-power actuators, control variables generally have magnitude

limitations.

In solving for the optimal control of constrained systems, it is typical to formulate the

necessary conditions of optimality using Pontryagin's minimum principle. The solution of

such constrained optimal control problems, however, is often hindered by numerical

difficulties associated with these necessary conditions. Consequently, solutions of

constrained optimal control problems of high-order systems are often extremely difficult, if

not impossible, to obtain.
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State and control constraints have not been addressed explicitly in the formulation of

the Fourier-based approach. However, an important advantage of the Fourier-based

approach is its potential for solving optimal control problems with linear constraints on state

and control variables. These problems can be cast as quadratic programming problems

which can be solved by utilizing quadratic programming algorithms [Frank and Wolfe, 1956;

Wolfe, 1959; Van De Pann and Whinston, 1964], as described below.

A quadratic programming problem is an optimization problem involving (i) a quadratic

objective function, and (ii) linear constraints on the free variables. Mathematically, the

problem in general form is to minimize an objective function JQP

Q = fGa + G2l (114)

subject to linear constraints

2 > 0 (115)

Qsi = g (116)

where G{, G2 , and G3 are matrices and & and 2 are vectors.

To utilize quadratic programming for solving optimal control problems, it is necessary

to modify the constraints on state and control variables such that they are not explicit

functions of time. In particular, it is possible to eliminate the dependency of the state and

control variables on time by discretizing the trajectory into a finite number of equally-spaced

time intervals. The satisfaction of the constraints can then be checked at the discrete time

intervals.

For example, consider a problem in which the ith generalized coordinate x/t) is always

positive, i.e.,

JC£(O > 0 for 0 < t < tf (117)

By using equation (22), this constraint can be written as

Pi + fiT(OXi ^ ° for 0 < t < tf (118)

without losing linearity. To remove time dependency, the constraint can be approximated by
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Pi + £ r ( ? A O z ^ 0 where <?=1,2,.. . ,£ (119)

with Ar = tfl Q . This equation consists of a system of Q linear constraints, and can be put in

the form of equation (115).

The accuracy of this approach can be improved by increasing the number of

discretization intervals, although the computational effort grows accordingly. Despite this

potential computational cost, the Fourier-based approach represents a systematic approach

for handling linearly constrained optimal control problems. Future work will investigate the

use of the Fourier-based approach with quadratic programming for solving linearly

constrained optimal control problems.

4.1.2 Sensitivity Study

The performance of an optimal control system depends on the trajectories as well as on

the values of the system parameters. Systems with identical mathematical models (i.e,

equations of motion) and identical expressions for their performance indices but different

parameter values will generally have different optimal trajectories and different optimal

values for their performance indices. Hence, the appropriate selection of the system

parameters has the potential to further improve the performance of an optimal control

system. The sensitivity of the system parameters on the performance of the system is an

important issue to study.

Previously, in optimal control problems sensitivity studies were mathematically difficult

to carry out due to the fact that the performance index was a functional involving the

continuous variable, time. The Fourier-based approach eliminates the dependence of time on

the performance index, making it only a function of system parameters and trajectory

variables. A sensitivity analysis is possible since the mathematical complexity has been

greatly reduced. A goal of future work will be to develop sensitivity functions relating the

system parameters and the performance index.

4.1.3 General Linear Systems

Structural systems differ from general linear systems which can be represented by state

equations, i.e., sets of simultaneous first-order ordinary differential equations. In structural

system models, the first and second time derivatives of the configuration variables appear

explicitly in the equations of motion. It is necessary to ensure the convergence of the near

optimal displacement, velocity, and acceleration trajectories. This requirement was the basis
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for the use of a fifth-order auxiliary polynomial (equation (4)) in the derivation. In linear

systems represented by state equations only the first derivative of the state variable appears.

Consequently, there is no need to guarantee the convergence of the second derivative of the

trajectory. The boundary conditions at the ends of the "acceleration" profile are not required

to parameterize the trajectory. It is therefore possible to employ a third-order auxiliary

polynomial, in place of the fifth-order polynomial as required for structural systems.

This reduction in the order of the auxiliary polynomial will lead to a change in the

relation between the generalized coordinate variables and the variables of the Fourier-based

approach. In future work, the necessary and sufficient condition of optimality for the

Fourier-based approach will be rederived for this case of general linear systems.

Furthermore, the integral tables required to evaluate the performance index will be rederived.

This new formulation will include artificial control variables, which are introduced to

overcome the problem of inadmissibility of the trajectories, when the order of the system is

greater than the number of control variables.

4.1.4 Nonlinear Systems

As indicated in Section 1, Yen and Nagurka [1987a] developed a Fourier-based

approach and applied it to generate near-optimal trajectories of general dynamical systems,

including nonlinear systems. In this approach, necessary conditions of optimality are not

used to solve for the trajectories; rather, a nonlinear programming algorithm is employed to

adjust free variables of the parameterized trajectories to minimize a performance index. This

method is numerically robust and quite effective in identifying the optimal solution.

However, the process of adjusting the free variables, carried out by a nonlinear programming

algorithm, is in general a computationally intensive, iterative process. In this process, the

performance index must be evaluated at each iteration by a numerical integration routine.

The number of iterations required to reach the optimal solution usually becomes significant

as the number of free variables increases. As a result, this method may require significant

computational effort in finding the optimal trajectories of high-order systems.

In contrast to the method described by Yen and Nagurka [1987a], it is proposed to

develop a computationally efficient approach to solve unconstrained nonlinear optimal

control problems with quadratic performance indices. To handle these problems it is

proposed to generalize algorithms developed for unconstrained linear systems with quadratic

performance indices.

For nonlinear optimal control problems the necessary conditions for optimality can be
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derived by variational calculus and lead to a nonlinear two-point boundary-value problem

(2PBVP). As mentioned in the Introduction, initial conditions are generally known for the

state variables and terminal conditions are specified for the co-state variables. In addition,

for many physical systems (including robotic manipulators) the terminal conditions are

specified for the state and control variables. If these are given, the nonlinear system can be

linearized about the terminal state. The optimal trajectories of the linearized system can then

be determined by the Fourier-based approach for linear systems described in this report.

Future work will explore the efficacy of solving the nonlinear optimal control problem

via backward sequential linearization, i.e., it is proposed to "discretize" the continuous

variable (time) to set up a series of linear optimal control problems which can readily be

solved by the non-iterative Fourier-based approach for linear systems. The corresponding

solution would apply for each corresponding time interval.
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5 CONCLUSIONS

The approach presented in this report represents a computationally efficient alternative

to standard approaches for the design of optimal trajectories of linear and nonlinear

dynamical systems. The approach employs a Fourier-based approximation that

parameterizes the generalized coordinate trajectories of a dynamic system. The approach

avoids solving a 2PBVP, which is typically required in the standard formulation based on the

calculus of variations. In addition, the approach is distinct from dynamic programming since

it involves significantly fewer free variables. It thereby reduces the large computer storage

requirement, a problem that has traditionally hindered the application of dynamic

programming to high order systems.

In this report the basic methodology of the Fourier-based near optimal control approach

is developed. In particular, the approach is specialized to determine the optimal control of

structural systems with quadratic performance indices. The algorithm turns out to be

integration-free and in general offers significant computational advantages in comparison to

standard approaches (that typically require the integration of differential Riccati equations.)

The computational efficiency is due to the fact that the near optimal solution can be found

from a system of linear algebraic equations. A further advantage of the approach is that it

can handle both free and fixed boundary conditions on the generalized coordinates.

One of the most important features of the Fourier-based approach is that, by

parameterizing the trajectories, an optimal control problem is converted into an optimization

problem. By using optimization algorithms, such as linear and quadratic programming,

values of the trajectory parameters can be found that minimize a performance index. The

rich supply of optimization algorithms and software gives the Fourier-based approach

significant potential for handling general types of optimal control problems.

Future work is planned to continue investigating the design of Fourier-based optimal

trajectories. By further refining the Fourier-based approach and investigating different

optimization algorithms, it is hoped that a general tool for optimal trajectory design can be

developed that could be used to solve many previously unsolvable optimal control problems.
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7 APPENDICES

7.1 Appendix 1: Coefficients of Auxiliary Polynomial

The coefficients of equation (4) are determined from the boundary conditions of xt, i.e.,

x/0) , xt0) , x\(0) , Xi(tf) , x£tf) , and x\(tf) , giving rise to six simultaneous algebraic

equations. These coefficients are:

K

= Xi0 " Y,

271 ^ Kb;> (A 1-2)

= 10(xif-xi0)tf - (6xi0 + 4xif -

,3 ..

7*if -

di5 = 6(xif-xiQ)t? - {?>xi0+?>xif-^Y,kbik)if - UxiQ-xif)tf (41-6)

where JC/0 = JC- (0), xif = jcf- fr̂ ), and similarly for the corresponding time derivatives.
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7.2 Appendix 2: Integral Evaluations

This appendix describes the approach to obtain the closed-form solution of A*, F*

Q* and S* of equations (53), (54), (55), and (56), respectively, each of which can be

represented as the summation of the integrals of six terms, according to equations (42), (43),

(44), and (45). Due to the sparseness of £* > H* > and <|>* , the evaluation of these integrals

can be simplified, as demonstrated below.

Consider the first integral of A*, i.e.,

The i-j th element of this matrix can be written as

f= 01 f CFu/<t>/> . U J = h...,mN (A2-2)1 f
N N

where Flkl is known from equation (46). Due to the sparseness of <j)*,

%dt (A2-4)

where k = mod(z, m) (i.e., integer remainder of / divided by m, when integer remainder

does not equal zero; if remainder equals zero, then k = m), / = mod(/, m), m is the dimension

of y_i a nd

[9, e2 . . . ej = #" (A2-5)

from equation (28). Closed-form expressions for the integral of equation (A2-4) are

provided in Table A2-1.

In a similar manner, the other five integrals of A*, the six integrals of F*, the six

integrals of £T and the six integrals of 2* can be evaluated. These are presented in the

accompanying tables (where vk = 2nk ). Note that the first three integrals of F* and Q*

are identical.
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TABLE A2-1: First Integral of A*

(vk=2nk)

Integral Table for I ±'TFt6dt
Jo

(V

M .

*'

/>-

I1 '
-f<;'

4
35

70

120 f .3
~7~h

60 .a

• T t r

0

O20 72C
V 7 V* v 4

1 9 2 - i
35 '

i CO

l i
ti $->£>

i

i

-i |
/ j

i

}-;

A -3

r

j

e(et t-fc

w . «.*

| t « t . t - *

fit.

-

( o 0
V 7

L
Jo

f1'

(re-J-

[ 7 ' *

11
35

i \
: + 1 2 i t" 2

1440*V*lrs
1 4 4 ° * 2 J '

0
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TABLE A2-2: Second Integral of A*

(vk=2nk)

r'r
Integral Table for I q_'TEil' dt

Jo

UD

oxo2

0 \° 4

ol

o2o3

o2aA

o2y^

rtf

u) dt
Jo

t3,
630

-tf

84

t2,
210

t3,
1260 |

j

(Vl-6\ 1V420 v\f'
j

I 84 v. vlf'
j

7 ^

3
"14

i

h
84

0

ff3<74

1

O 3 « t
i

i

! oAyk

cr46 t

6t6k t-k

y<<5*

GL> dt
Jo
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3 2 . 12
140 * vf

3 360
- 1 4 V * * vj

fafdt

I o^tdt
Jo

rh

p3 a 1440V..
l l 4 V * v \ } t r

0
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TABLE A2-3: Third Integral of A*

(yk=2nk)

Integral Table for 1 p'T£3£*
Jo

dt

p?

P1P2

P1P3

P1P4

Pi<**

P\Pk

P\

P2P3
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11088
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! "1? v 1 .^V
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f 8 1 720>
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18480 r
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Jo
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\̂ 2 30 ' 2520 vl) '
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TABLE A2-4: Fourth Integral of A*

Integral Table for I 6mTF_4o
9dt

Jo

a>

^. 0.
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9 \ 0 A
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TABLE A2-5: Fifth Integral of A*

Integral Table for dt

(V

* l p l

* l P 2
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TABLE A2-6: Sixth Integral of A*

(vk=2nk)

Integral Table for I a*1

Jo ""
dt

(V
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TABLE A2-7: First Integral of V and QT

(vk=2nk)

Integral Table for I £'TEiLdt

Jo
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TABLE A2-8: Second Integral of V and Q*

(vk=2nk)

Integral Table for I a'TF_2g_dt
Jo

105 112 126 ; '
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TABLE A2-9: Third Integral of P and Q*

(yk=2nk)

Integral Table for I £*T£
Jo

UJ

PtPi

ou dt

Pto + £JL+ Pl2 + P" + JEjL-\3
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TABLE A2-10: Fourth Integral of P

(yk=2Kk)

/"t

Integral Table for I £'TF_Ag_dt
Jo

U) r
Jo

(vdt

6 5
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r + +

^60 35 28 J '
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TABLE A2-11: Fifth Integral of V

(vk=2nk)

Integral Table for
Jo



56

TABLE A2-12: Sixth Integral of V

(vk=2nk)

r't

Integral Table for I o'TF6£_dt
Jo
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TABLE A2-13: Fourth Integral of Q*

(vk=2nk)

Integral Table for I r1"£4a'dt
Jo
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co dt
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TABLE A2-14: Fifth Integral of Q*

(vk=2%k)

r'r
Integral Table for rT£s£*

Jo

dt
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cu dt
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TABLE A2-15: Sixth Integral of Q*

r'T

Integral Table for I q7F_6£*
Jo
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VJ dt
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TABLE A2-16: Integrals of Z*
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7.3 Appendix 3: Coupling in Performance Index

This appendix shows how the coupling between yA and yB is used to obtain an

expression of the performance index, J, which is solely a function of yB.

From equation (103), the performance index can be written as:

/ = iT(A* + zTHZ)y_ + fr + n*Tz + r (A3-i)

Substituting from equations (91), (108), and (109), the performance index can written as:

J = i j A l l Z 4 + i j A ^ + ^(A2!+A[2)Z4 + *I l i + &E2 + ?* (A3-2)

The first term of equation (A3-2) can be rewritten using equation (90) as

2 (A3-3)

The third term of equation (A3-2) can be rewritten using equation (90) as

)D 2 (A3-4)

The fifth term of equation (A3-2) can be rewritten using equation (90) as

li + e j l , (A3-5)

Substituting equations (A3-3), (A3-4), and (A3-5) into equation (A3-2) gives equation (104),

i.e.,

J = iL^lB + ijr* + ?** (A3-6)

where
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A** = (A3-7)

A[2

(A3-9)


