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ABSTRACT

The Hearsay Il speech-understanding system (HSI[) (Lesser, et ol, 1974;
Fennell, 1975; Erman and Lesser, 1975) is an implementation of a knowledge-based
multiprocessing Al problem-solving organization. HSIl is intended to represent a
problem-solving organization which is applicable for implementation in a multiprocessing
environment, and is, in particular, currently being implemented on the C.mmp
multiprocessor system (Bell, et al., 1971} at Carnegie-Mellon University., The object of
this paper is to explore several of the ramifications of such a problem-solving
organization by examining the mechanisms and policies underlying HSII which are
necessary for supporting its organization as a multiprocessing problem-solving system,
First, an abstract description of a class of problem-solving systems is given using the
Production System mode! of Newel (1973). Then, the HSII problem-solving organization
is described in terms of this model. The various decisions made during the course of
design necessitated the introduction of various multiprocessing mechanisms (e.g.,
mechanisms for maintaining data localization and data integrity}), and these mechanisms
are discussed. Finally, a simufation study is presented which details the effects of
actually implementing such a problem-solving organization for use in a particular
application area, that of speech understanding.

1 This research was supported in part by the Defense Advanced Research Projects
Agency of the Office of the Secretary of Defense {Contract F44620-73-C-0074) and
monitored by the Air Force Office of Scientific Research.



INTRODUCTION

Many Al problem-solving tasks require large amounts of processing power in
order to achieve solution in any given computer implementation of a problem-solving
strategy. The amount of processing power required is directly related to the size of
the search space which is examined during the course of problem solution. Exhaustive
search of the state space associated with almost any problem of interest is precluded
due to the sheer size of the state space.1 In most problem-solving attempts, heuristics
are employed which prune the search space to a more manageable size. However,
searching even the reduced state space often requires large amounts of processing
power. The demand for sufficient computing power becomes critical in tasks requiring
real-time solution, as is the case in the speech-understanding task with which this paper
is primarily concerned.. For example, a speech-understanding system capable of reliably
understanding connected speech involving a large vocabulary and spoken by muitiple
speakers is likely to require from 10 to 100 million instructions per second of computing
power, if the recognition is to performed in real time.2 Recent trends in technology
suggest that this computing power can be economically obtained through a closely-
coupled network of asynchronous "simple” processors (involving perhaps 10 to 100 of
these processors), (Bell, et al, 1973, and Heart, et al., 1973). The major problem (from
the probiem-solving point of view) with this network multiprocessor approach for
generating computing power is in devising the various problem-solving algorithms in
such a way as to exhibit a structure appropriate for exploiting the parallelism available
in the multiprocessor networhk, for it is only by taking advantage of this processing

paralielism that the desired effective computing power will be achieved.

The Hearsay Il speech-understanding system (HSII} (Lesser, et ol 1974;
Fennell, 1875; and Erman and Lesser, 1975) currently under development at Carnegie-
Mellon University represents a problem-solving organization that can effectively exploit
a multiprocessor system, HSII has been designed as an Al system organization suitable
for expressing knowledge-based problem-solving strategies in which appropriately

I as an example, consider the chess-playing task. In an end game situation, there are
typically 20 lega! moves at each ply (half-move); so for a search depth of & plies, the
search space will have 64 million branches.
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The Hearsay | (Reddy, et al., 1973ab,c and Erman, 1974) and Dragon {Baker, 1975)
speech understanding systems require approximately 10 to 20 mips of computing
power for real-time recognition when handling small vocabularies.



organized subject-matter knowledge may be represented as knowledge sources capable
of contributing their knowledge in a parallel data-directed fashion. A knowledge source
may be described as an agent that embodies the knowledge of a particular aspect of a
problem domain and is useful in solving a problem from that domain by performing
actions based upon its knowledge so as to further the progress of the overall solution.
It is felt that the knowledge source is an appropriate unit for use in the decomposition
of a knowledge-intensive task domain. Knowledge sources, being suitably organized
capsutes of subject-malter knowledge, may be independently formulated as various
pieces of the knowledge relevant to a task domain become crystallized. The HSII
system organization allows these various independent and diverse sources of knowledge
to be specified and their interactions coordinated so they might cooperate with one
another {(perhaps asynchronously and in parallel) to effect a problem solution. As an
example of the decomposition of a task domain into knowledge sources, in the speech
task domain there might be distinct knowledge sources to deal with acoustic, phonetic,
lexical, syntactic, and semantic information, While the speech task is the first test of the
multiprocessing problem-sofving organization of HSH, it is believed that the system
organization provided by HSIi is capable of expressing other knowledge-based Al
problem-solving strategies, as might be found in vision, robotics, chess, natural language
understanding, and protoco! analysis. In fact, proposals are under way which will
further test the applicability of HSII by implementing a system for the analysis of
natural scenes using the HS1I problem-solving organization (Ohlander, 1975).

The rest of this paper will explore several of the ramifications of such a
problem-solving organization by examining the mechanisms and policies underlying HSII
which are necessary for supporting its organization as a multiprocessing problem-
solving system, First, an abstract description of a class of problem-solving systems is
given using the Production System model of Newell (1973). Then, the HSII problem-
solving organization is described in terms of this mode!l. The various decisions made
during the course of design necessitated the introduction of various muitiprocessing
mechanisms (e.g., mechanisms for maintaining data localization and data integrity), and
these mechanisms are discussed. Finally, a simulation study is presented which details
the effects of actually implementing such a problem-solving organization in a

multiprocessor environment,



THE MGDEL

An Abstract Model for Problem Solving

In the abstract, the problem-solving organization underlying HSII may be
modeled in terms of a "production system,” (Newell, 1973). A production system is a
scheme for specifying an information processing system in which the contro! structure
of the system is defined by operations on a set of productions of the form ‘P - A’ .
which operate from and on a collection of data structures. ‘P’ represents a logical
antecedent, called a precondition, which may or may not be satisfied by the information
encoded within the dynamically current set of data structures. If ‘P’ is found to be
satisfied by some data structure, then the associated action ‘A* may be executed, which
presumably will have some alfering effect upon the data base such that some other (or
the same) precondition becomes satisfied. This paradigm for sequencing of the actions
can be thought of as a data-directed control structure, since the satisfaction of the
precondition is dependent upon the dynamic state of the data structure. Productions
are executed as long as their antecedent preconditions are satisfied, and the process
hatts either when no precondition is found to be satisfied or when an action executes a
stop operation (thereby signalling problem sofution or failure, in the case of problem-

solving systems),

The HSII Problem-Solving Organization: A Production System Approach

The HSII system organization, which can be characterized as a “parallel"
production system, has a centralized data base which represents the dynamic problem
solution state. This data base, which is known as the blackboard, is a multidimensional
data structure which is readable and writable by any precondition or knowledge-source
process (where a knowledge-source process is the embodiment of a production
ar:ti()n).l Preconditions are procedurally oriented and may specify arbitrarily complex
tests to be performed on the data structure in order to decide precondition satisfaction.

L As an example, the dimensions of the HSII speech-understanding system data base
are informational level (e.g., acoustic level, phonetic level, and word level), utterance
time (speech time measured from the beginning of the input utterance), and data
alternatives (where muitiple hypotheses are permitted to exist simultaneously at the
same level and utterance time). For additional details, see Appendix A.



Preconditions are themselves data-directed in that they are tested for satisfaction
whenever relevant changes occur in the data base;l and simultaneous precondition
satisfaction is permitted. Testing for precondition satisfaction is not presumed to be an
instantaneous or even an indivisible operation, and severa! such precondition tests may
proceed concurrently,

The knowledge-source processes representing the production actions are also
‘procedurally oriented and may specify arbitrarily complex sequences of operations to
be performed upon the data structure. The overall effect of any given knowledge-
source process is usually either to hypothesize new data which is to be added to the
data base or to verify (ar{d perhaps modify) data previously placed in the data base.
This follows the general hypothesize-and-test problem-solving paradigm wherein
hypotheses representing partial problem solutions are generated and then tested for
validity; this cycle continues until the verification phase certifies the completion of
processing (and either ‘the problem is solved or failure is indicated). The execution of a
knowledge-source process is usually temporally disjoint from the satisfaction of its
precondition; the execution of any given knowledge-source process is not presumed to
be indivisible; and the concurrent execution of multiple knowledge-source processes is
permitted. In addition, a precondition process may invoke multiple instantiations of a
knowledge source to work on the different parts of the blackboard which independently
satisfy the precondition’s pattern. Thus, the independent data-directed nature of
precondition evaluation and knowledge-source execution can potentially generate a
significant amount of parallel activity through the concurrent execution of different
preconditions, different knowledge sources, and multiple instantiations of a single

knowledge source,

17 In effect, preconditions themselves have preconditions, call them "pre-preconditions.”
In HSII, knowledge-source preconditions (which correspond to action preconditions in
the production system model) may be arbitrarily complex. In order to avoid executing
these precondition tests unnecessarily often, they in turn have pre-preconditions
which are essentially monitors on relevant primitive data base events (e.g., monitoring
for a change to a given field of a given node in the data base, or a given field of any
node in the data base). Whenever any of these primitive events occurs, those
preconditions monitoring such events are awakened and ailowed to test for full
precondition satisfaction. These data events are used by the precondition process as
pointers to the specific parts of the data base which may now satisty the pattern the
precondition is monitoring for. During the period between when the precondition
process has been first awakened and the time it is executed, the monitoring for
relevant data base events continues. Thus, a precondition process, when finally
executed, may check more than one part of the data base for satisfaction.



The basic structure and components ot the HSIl organization may be depicted
as shown in the message transaction diagram of Figure 1. The diagram indicates the
paths of active information flow between the various components of the problem-
solving system as solid arrows; paths indicating control activity are shown as broken
arrows. The major components of the diagram include a passive global data structure
(the blackboard) which contains the current state of the problem solution. Access to the

1 whose

blackboard is conceptually centralized in the blackboard handier module,
primary function is to accept and honor requests from the active processing elements to
read and write parts of the blackboard. The active processing elements which pose
these data access requests consist of knowledge-source processes and their associated
preconditions. Preconditions are activated by a blackboard monitoring mechanism
which monitors the various write-actions of the blackboard handler; whenever an event
occurs which is of interest to a particular precondition process, that precondition is
activated. If upon further examination of the blackboard, the precondition finds itself
"satisfied,” the precondition may then request a process instantiation of its associated
knowledge source to be established, passing the details of how the precondition was
satisfied as parameters to this instantiation of the knowledge source. Once instantiated,
the knowledge-source process can respond to the blackboard data condition which was
detected by its precondition, possibly requesting further modifications be made to the
blackboard, perhaps thereby triggering further preconditions to respond to the latest
modifications, This particular characterization of the HSII corganization, while certainly
overly simplified, shows the data-driven nature of the knowledge source activations and

interactions.

The foltowing sections of this paper will attempt to refine this diagram of the
HSIT organization by pointing out the difficulties that arise from this oversimplified
representation of the organization and by supplementing the various components of this
simple diagram to resolve these problems and result in a more complete organization for
Al problem-solving in multiprocessing environments. A more complete message

transaction diagram for HSII will be presented in a subsequent section.

L' The blackboard handler module could be implemented either as a procedure which is
called as a subroutine from precondition and knowledge source processes, or as a
process which contains a queue of requests for blackboard access and modification
sent by precondition and knowledge source processes. In the implementation
discussed in this paper, the blackboard handler module is implemented as a
subroutine.
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HEARSAY II MULTIPROCESSING MECHANISMS

Given the decision that multiple preconditions may be simultaneously satisfied
and that multiple knowledge-source processes may execute concurrently, various
mechanisms must be provided to accommodate such a multiprocessing environment.
Mechanisms must be provided to support the individual localized executions of the
various active and ready processes and to keep the processes from interfering with one
another, either directly or indirectly. On the other hand, mechanisms must also be
provided so that the various active processes may communicate with one another so as
to achieve the desired process cooperation. Since the various constituent knowledge
sources are assumed to be independently developed and are not to presume the explicit
existence of other knowledge sources, communication among these knowledge sources
must necessarily be indirect. The desire for a modular knowledge source structure
arises from the fact that usually many different people are involved in the
implementation of the set of knowledge sources, and, for purposes of experimentation
and knowledge source performance analysis, the system should be able to be easily
reconfigured with alternative subsets of knowledge sources. This communication takes
two primary forms: data base monitoring for collecting pertinent data event information
for future use {local contexts and precondition activation), and data base monitoring for
the occurrence of data events which violate prior data assumptions {tegs and messages).
The following paragraphs will discuss these forms of data base monitoring and their
relationship to the data access synchronization mechanisms required in a multiprocess

system organization.

Local Contexts

Interprocess communication (and interference) among knowledge sources and
their associated preconditions occurs mainly via the global data base, as a result of the
desigh decisions involved in trying to maintain process independence. It is therefore
not surprising that the mechanisms necessary to bring about the desired process
cooperation and independence are based on global data base considerations. The global
data base (the blackboard) is intended to contain only dynamically current information.
Since preconditions (being data-directed) are to be tested for satisfaction upon the
occurrence of relevant data base changes (which are historical data events), and since

neither precondition testing nor action execution (nor the sequential combination of the



two) is assumed to be an indivisible operation, localized data bases must be provided
for each process unit (precondition or action}) which needs to remember relevant
historical data events. These localized databases, called local contexts in HSIH, which
record the changes to the blackboard since the precondition process was last executed
or the knowledge source process was created provide personalized operating
environments for the various precondition and knowledge-source processes. A local
context preserves only those data events! and state changes relevant to its owner.
The creation time of the local context (i.e., the time from which it begins collecting data
events) is also dependent upon the context owner. Any given local context is built up
incrementally: when a modification occurs to the global data base, the resulting data
event is distributed to the various local contexts interested in such events. The various
primitive data modification routines {(or node creation routines} are responsible for the
distribution of the data events which resuit from the modification, just as these
modification routines are also responsible for sending warning messages to those
processes which want to be notified when specific characteristics of a particular node
are altered.? Thus, the various local contexts retain a history of relevant data events,

while the global data base contains only the most current information.

Data Integrity

Since precondition and knowledge-source processes are not guaranteed to be
executed uninterruptediy, these processes often need to assure the integrity of various
assumptions they are making about the contents of the data base; for should these
assumplions become violated due to the actions of an intervening process, the further
computation of the assuming process may have to be altered (or terminated). One way
to approach the problem of data integrity is to guarantee the validity of data
assumptions by disallowing intervening processes the ability to modify (or perhaps even
to examine) critical data. In order to guarantee the integrity of data through the
mechanism of exclusive access, the HSII system provides two forms of locking primitives,

node- and region-locking. Node-locking guarantees exclusive access to an explicitly

I The information which defines a data event consists of the locus of the event (ie, a
data node name and a field name within that node) and the old value of the fieid (the
new value being stored in the global data base).

2 The use of these warning messages as way of preserving data integrity will be
discussed in the next section,



specified node in the blackboard, whereas region-locking guarantees exclusive access to
a collection of nodes that are specified implicitly based on a set of node characteristics.
In the current implementation of HSIH, the region characteristics are specifiéd by a
particular information leve! and time period of a node. If the blackboard is considered
as a two-dimensional structure with coordinates of information-tevel and time, then
region-locking permits the locking of an arbitrary rectangular area in the blackboard.
Region-locking has the additional property of preventing the creation of any new node
that would be placed in the blackboard area specified by the region by other than the
process which had requested the region-lock. Additional locking flexibility is introduced
by allowing processes to request read-only access to data fields; this reduces possibie
contention by permitting multiple readers of a given field to coexist, while excluding any
writers of that field until all readers are finished. The system also provides a “super
lock," which allows an arbitrary group of nodes and regions to be locked at the same
time. A predetined linear ordering strategy for non-preemptive data access allocation
(Coffman, et al,, 1971) is applied by the "super lock" primitive to the desired node- and
region-locks so as to avoid the possibility of data base deadlock.

However, this technique of guaranteeing data integrity through exclusive
access is only applicable if all the nodes and regions to be accessed and modified are
khown ahead of time. The sequential acquisition of exclusive access to nodes and
region, without intervening unlocks, can result in the possibility of deadlock. .In the HSII
blackboard, nodes are interconnected to form a directed graph structure; because it is
possible to establish an arbitrarily complex interconnection structure, it is often very
difficult for a knowledge-source process to anticipate the sequence of nodes it will
desire to access or modify, Thus, the mechanisms of exclusive access cannot always be
used to guarantee data integrity in a system with a complex data structure and a set of
unknown processes. Further, even if the knowledge source can anticipate the area in
the blackboard within which it will work and thereby request exclusive access to this
area, the area may be very large, thus leading to a significant decrease in potential
paratel activity caused by other processes waiting for this locked area to become
available.

An allernative approach to guaranteeing data integrity is to provide a means
by which a process (precondition or knowledge source) may place data assumptions
about the particular state of a node or group of nodes in the data base (the action of

putting these assumplions in the blackboard is called tegging). If these assumptions are
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invalidated by a subsequent blackboard modification operation of another process, then
a message indicating this violation is sent to the process making the assumption. In the
meantime, the assuming process can proceed without obstructing other processes, until
such time as it intends to modify lthe data base (since data base modification is the only
way one process can affect the execution of another). The process must then acquire
exclusive access to the parts of the data base involved in its prior assumptions (which
parts will have been previously tagged in the data base to define a critical data mt)1
and check to see whether the assumptions have been violated (in which case, messages
indicating those violations would have been sent to the process). If a violation has
occurred, the assuming process may wish to take alternative action; otherwise, the
intended data base modifications may be made as if the process had had exclusive
access throughout its computation. This tagging mechanism can also be used to signal
the knowledge-source process that the initial conditions in the blackboard (i.e., the
precondition pattern) that caused the precondition to invoke it have been modified; this
is accomplished by having the precondition tag these initial conditions on behalf of the
knowledge-source process prior to the instantiation of the knowledge source.

In summary, the HSII organization provides machanisms to accomplish both of
these forms of data integrity assurance: the various data base locking mechanisms
described previously provide several forms of exclusive or read-only data access; and
the data tagging facility allows data assumptions to be placed in the data base without
interfering with any process’ ability to access or modify that area of the data base (with
data invalidation warning messages being sent by data base monitors whenever the

assumptions are violated).

To provide a basis for the discussion in the subsequent sections of this paper,
Figure 2, depicting the various components of the HSII organizational structure, is
offered. The diagram is a more detailed version of the message transaction model
presented previously. The new components of this diagram are primarity a result of

addressing mulfiprocessing considerations.

As in the earlier, more simplified organizational diagram, the dynamically
current state of the problem solution is contained in a centralized, shared data base,
called the blackboard. The blackboard not only contains data nodes, but it also records

1 Actually, the reguirement is that no other process be able to write to these parts of
the data base.
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data monitoring information (tegs) and data access synchronization information (locks).
Access to the blackboard is conceptually centralized in three modules. As before, the
blackboard handler module accepis and honors read and write data-access requests
from the active processing elements (the knowledge-source processes and their
precondition processes). A lock handler coordinates data-access synchronization
requests from the knowledge-source processes and preconditions, with the ability to
block the progress of the requesting process until the synchronization request may be
satisfied, A monitoring mechanism is responsible for accepting data tagging requests
from the knowledge-source processes and preconditions, and for sending messages to
the tagging processes whenever a tagged data field is modified. It is also the
responsibility of the monitoring mechanism to distribute data events to the various local
contexts of the knowledge-source processes and preconditions, as well as to activate
precondition processes whenever sufficient data events of interest to those
preconditions have occyrred in the blackboard.

Associated with each active processing element is a local data base, the local
context, which records data events that have occurred in the blackboard and are of
interest to that particular process. The local contexts may be read by their associated
processes in order to find out which data nodes have been modified recently and what
the previous values of particular data fields were. The local contexts are automatically

maintained by the blackboard monitoring mechanism.

Upon being activated and satisfied, precondition processes may instantiate a
knowledge source (thereby creating a knowledge-source process), passing along the
reasons for this instantiation as parameters to the new knowledge-source process and
at the same time establishing the appropriate data monitoring connections necessary for
the new process. The goal-directed scheduler retains the actual control over allocating
hardware processing capability to those knowledge-source processes and precondition

processes which can best serve to promote the progress of the problem solution.!

1 One way a scheduler might help in reducing (or eliminating) global data base access
interference is to schedule to run concurrently only processes whose global data
demands are disjoint. Such a scheduling policy could even be used to supplant an
explicit locking scheme, since the global data base locking would be effectively
handled by the scheduler (albeit probably on a fairly gross level). Of course, other
factors may rule out such an approach to data access synchronization, such as an
inability to make maximal use of the available processing resources if only data-
disjoint processes are permitted to run concurrently, or the inability to know in

13



EXPERIMENTS WITH AN IMPLEMENTATION

The preceding sections of this paper have presented various of the
mechanisms necessary in implementing a knowledge-based problem-solving system such
as HSIl in a multiprocessing environment. The present sections will discuss the various
gxperiments that have been performed in an attempt to characterize the multiprocessing

performance of the H5II organization in the speech-understanding task.

HSII Multiprocess Performance Analysis through Simulation

In order to gain insight into the various efficiency issues involving
multiprocess problem-solving organizations, a simulation model was incorporated within
the uniprocessor version ot the HSII speech-understanding system. The HSII problem-
solving organization was not itself modeled and simulated, but rather the actual HSII
implementation (which is a muitiprocessing organization even when executing on a
uniprocessor) was modified to permit the simulation of a hardware multiprocessor

environment.

There were four primary objectives of the simulation experiments: a)to
measure the soffware overheads involved in the design and execution of a complicated,
data-directed multiprocess{or) control structure, b) to determine whether there really
exists a significant amount of parallel activity in the speech-understanding task, c) to
understand how the various forms of interprocess communication and interference,
especially that from data access synchronization in the blackboard, affect the amount of
effective parallelism realized, and d) to gain insight into the design of an appropriate
scheduling algorithm for a multiprocess problem-solving structure. Certainly, any
results presented will reflect the detailed efficiencies and inefficiencies of the particular
system implementation being measured, but hopefully the organization of HSII is
sufficiently general that the various statements will have a wider quantitative

applicability for those considering similar multiprocess control structures.

By way of summary, the primary characteristics of the HSII organization

advance the precise blackboard demands of each knowledge-source instantiation.
Nonetheless, the information relating to the locality of knowledge-source data
references is useful in scheduling processes so as to avoid excessive data access
interference (thereby improving the etfective parallelism of the system).
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include: a) muitiple, diverse, independent and asynchronously executing knowledge
sources, b) cooperating (in terms of control) via a generalized form of the hypothesize-
and-test paradigm involving the data-directed invocation of knowledge-source
processes, and ¢) communicating (in terms of data) via a shared blackboard-like data
base in which the current data state is held in a homogeneous, multidimensional,

directed-graph data structure.

The HSII Speech Understanding System: The Simulation Configuration

The configuration of the HSII speech-understanding system, upon which the
following simulation resuits were based, consists of eight separate generic knowledge
sources (each of which may be realized by several active instantiations at any given
moment during the problem solutibn), each of which represents some body of knowledge
relevant to the speech-understanding task. Due to the excessive cost of the simulation
effort (and due to the limited stages of development of some available knowledge
sources), only a subset of the available knowledge sources was actually used in the
simulation experiments. Appendix A (which was extracted from (Lesser, et al, 1974)
contains a more detailed description of the blackboard and the various knowledge
sources for the more complete HSII speech-understanding system. The knowledge
sources used in the simulation were: the Segment Classifier, the Phone Synthesizer
(consisting of two knowledge sources), the Phoneme Hypothesizer, the Phone-Phoneme
Synchronizer (consisting of three knowledge sources), and the Rating Policy Module.
These knowledge sources are activated by half a dozen precondition processes {which
are permanently instantiated in the system), which are continuously monitoring the
blackboard data base for events and data patterns relevant to their associated
knowledge sources. Both knowledge sources and preconditions may freely access the
centralized blackboard data base, which ¢onsists of nine lexicon levels.l The particular
levels used were chosen so as to facilitate the information exchange between the

various component knowledge sources.

This set of knowledge sources and preconditions and the associated operating

system facilities provided by the HSII organization were first implemented to execute on

I While there are eight conceptual information levels within the HSII speech-
understanding system (see Appendix A), the blackboard is abstractly segmented
according to lewicons, rather than information levels, since lexicons allow a finer
abstract decomposition of the blackboard.
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a uniprocessor DECsystem-10 computer. The particutar implementation represented
here was programmed in the Algol-like language, SAIL (Swinehart and Sproull, 1971},
using SAIL’s multiprocessing facilities (Feldman, et al.,, 1972) and making extensive use
of its LEAP associative data storage facility (Feldman and Rovner, 1969). Thus, while
the hardware environment of this version of the HSIl speech-understanding system is
that of a single processor, the software environment is the multipracessing structure
described throughout this paper. The simulation experiments were then run using this
HSII configuration, simulating the hardware environment of a closely-coupled
multiprocessor where processors can directly communicate with each other through
shared memory. The size of the HSIl configuration used in the simulations was about
180K, 36-bit words; 70K of this total was the HSII operating system plus the SAIL
runtime routines, 73K was precondition and knowledge source code plus variables, and
the remainder {which varied from 20K to 45K depending on the number of processors
being simulated and the number of processes being instantiated) represented the
blackboard data base plus process activation records and other SAIL working space.
The simulations were carried out to determine the efficiencies of the various HSII
'muitiprocessing mechanisms discussed previously, as well as to gain some insight into
any problems that might arise in the ensuing implementation of a HSII speech-
understanding system for the Carnegie-Mellon C.mmp multiprocessor.1 The following
sections will discuss the results of the various experiments which have been performed

using the multiprocessor-simulation version of the HSII speech-understanding system.

Simulation Mechanisms and Simulation Experiments

The various multiprocessor simulation results were obtained by modifying the
tlow of contro! through the usual HSII multiprocessing organization to allow simulation
scheduling points every time a running process could interact in any way with some
other concurrently executing process. Such points included blackboard data base
accesses and data base access synchronization points (including attempts to acquire

data base resources, both at the system and user levels, and any resulting points of

L The implementation of the C.mmp version of the HSII speech-understanding system
thus far has been, in fact, essentially a direct mapping of the DECsystem-10
implementation, wilh addilional design being done as necessary to solve the particular
problems of running in the C.mmp environment (such as having to resolve the small
address space problem, wherein any given process may have at any one moment only
a 32K-word window into the centrally located main memory).
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process suspension due to the unavailability of the requested resource, as well as the
subsequent poinis of process wake-up for retrying the access request). Simulation
scheduling points were also inserted whenever a data modification warning message
(triggered by modifying a tagged data field) was to be sent, as well as whenever a
process attempted to receive such a message. The scheduling mechanism itself was also
modified to allow for the simulated scheduling of multiple processing units, while
maintaining the state information associated with each processor being simulated (such
as the processor clock time of that simulated processor and the state of the particular
process being run on that processor). The simulation runs were performed so as to
keep the processor clock-times of each processor being simulated in step with one
another (the simulation being event-driven, rather than sampled), thereby aliowing for
the accurate measurement and comparison of concurrent events across processors. By
sefecting the number of processors to be simulated and choosing the usual scheduling
parameters and precondition and knowledge-source parameters, a chronological trace of
the activity of each process and processor could be obtained. By accumulating statistics
during the trace period and by performing various post-processing operations upon this
activity trace record, the simulation results presented in the following sections were
obtained

Most of the results presented here were achieved by using a single set of
knowledge sources (as described above), with a single speech-data input ulterance,
keeping the data base locking structure and scheduling algorithms essentially fixed,
while varying the number of simulated (identical) processors. Several runs were also
performed to test the effects of altering the knowledge-source set, altering the locking
structure, and altering the mode of data input (the normat input mode being a utterance-

time-ordered introduction of input data which simulates real-time speech input).

Measures of Multiprocessing Overhead: Primitive Operation Timings

Time measurements of various primitive operations were made using a 10-
microsecond hardware interval timer. Some of the timed primitive aperations {(such as
those involving simple data base access and modification) were not especially subject to
the fact that the problem-solving organization involved muitiple parallel processes,
whereas others (such as those involving process instantiation and process
synchronization) were directly related to the muitiprocess aspects of the organization
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(and might even be taken in part as overhead when compared to alternative single-
process system organizations), The times for the various system operations, as shown
in Table 1, should be read as relative values, comparing the muitiprocess~oriented
operations with the data accessing operations to get a relative feel for the overheads
involved in supporting and maintaining the multiprocess organization of HSIl. Keep in
mind that such time measurements are highly dependent on the particular
impiementation and can change fairly radically when implemented differently. In fact, a
primary use of such timings is in determining operating system bottlenecks so that such
code sections can be rewritten in a more optimal way. As a result, some primitive
operations reflect execution times which are a result of extensive optimization attempts,
while other operations (in particular, the "super loch” operations, lock! and unlock!)

have not yet been subjected to this optimization,

Table 1 gives timing statistics relating to the costs involved in maintaining the
shared, centralized blackboard data base. Two sets of statistics are given, one set
showing the operation times without the influence of data access synchronization
(blackboard locking) and one set with the locking structures in effect. These two sets
of times give a quanlitative feeling for the cost of data access synchronization
mechanisms in this particular implementation of HSIL. The figures given include the
average runtime cost per operation, the number of calls (in this particular timing run) to
each operation (thereby showing the relative frequencies of operation usage), and the
percentage of the overall runtime consumed by each operation. With respect to the
individual entries, create.node is a composite operation (involving many field-writes and
various jocal contex! updates) for creating blackboard nodes. The read.node.field and
write.node.field operations are used in accessing the individual fields of a node. Note
that inctuded in any given field-read or -write operation is the cost of perhaps tagging
(or untagging) that particular field (or its node). The various functions of the
blackboard monitoring mechanism are contained within the field-write operations. Thus,
also inctuded in the field-write operation is the cost of distributing the data event
resulting from the write operation to all relevant precondition and knowledge-source
process local contexts, as well as the cost of sending tag messages to all processes
which may have tagged the field being modified; these additional costs are also
accounted for independently in the send.msgs.and.events and notify.sset table entries.
Field-write operations are also responsible for evaluating any pre-preconditions
associated with the field being modified and activating any precondition whose pre-
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7 total runtime

mean time {ms)

number of calls

w/o w/ w/o w/ w/o w/

lock lock fock lock lock tock
Blackboard Accessing:
create.node 6.96 415 35.81 50.77 287 287
read.node.field 5.06 15.68 0.31 2.03 23577 25279
write.node.field 14.13 7.75 13.96 18.44 1493 1476
Blackboard Associative Retrieval:
retrieve 2.72 498 25.07 109.45 160 160
get.time.adjacent 9.31 15.33 23.44 92.00 586 586
get.struct.adjacent 3.99 6.31 43.35 163.20 136 136
get.nodes.in.rgn 2.05 0.87 2.98 3.00 1015 1015
Process Handling:. .
invoke ks _ 5.29 2.30 22.64 23.64 345 . 342
createks.prcs 0.75 0.31 3.21 3.22 345 342
ks.cleanup. 8.20 5.24 35.06 53.94 345 342
invoke.pre 0.10 1.04 10.44 1059 14 14
create.pre.prcs 0.42 0.40 * 853 1957 72 72'
Local Context Maintenance: '
transfer.tags 7.12 2.99 9.12 - 9.17 1152 1149
delete.all.iags 0.52 0.22 201 2.03 383 380
notify.sset 6.92 3.01 263 2.92 3665 3626
send.msgs.and.events 4.04 212 3.68 4.68 1021 1694
receive.msg 0.36 0.15 1.00 1.01 531 530
read.cset.or.sset 0.11 0.05 0.84 0.84 192 192
Data Access Synchronization:
fock! (overhead) -— 7.78 - 57.47 - 476
untock! (overhead) - 3.22 - 23.78 --- 476
lock.node -—- 2.32 -—- 2.94 --- 2770
exam.node --- 9.34 —— 2.40 - 13675
lock.rgn - 0.11 - 1.77 -— 227
write.access.chk --- 0.41 - 0.98 - 1470
read.access.chk -- 14.45 - 1.60 -— 31761

Tabia 1. Primitive Operation Times
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precondition is satisfied. Included in the cost of reading a data field (eg,
read.node.field) is the cost of verifying the access right of the calling process to the
node being read {which could involve a temporary-locking operation,l the cost of which
is also given independently in the lock.node table entry); this access-right checking cost
is also separately accounted for by the read.access.chk operation. It should be noted
that because most of the mechanisms required to implement a data-directed control
structure are embedded in the blackboard write operations, the time to execute a write
cperation is significantly more expensive than a read operation. However, the actual
cost in terms of total run time of implementing a data-directed control structure is
comparatively small in the HS1l speech-understanding system, because the frequency of
read operations is much higher than that of write operations. If this relative frequency
for read and write operations holds for other task domains (e.g., vision, robotics), then a
data-directed controf structure (which is a very general and modular type of sequencing
paradigm) seems to be a very reasonable framework within which to implement such

tasks,

Additional blackboard operation costs are described in the Associative
Retrieval section of Table 1. Associative retrieval is based on specifying partial node
descriptions (called matching prototypes) which serve as a means of retrieving the set
of blackboard nodes fitling that partial description. Retrieve represents the various
retricval operations possible using these matching prototypes. Retrieval from the
blackboard may also be done by requesting the nodes which are time-adjacent
{according to the utterance-time dimension of the speech-understanding blackboard) or
structurally adjacent (according to the blackboard graph structure) to a given node {or
set of nodes) get.time.adjocent and get.struct.adjocent perform these operations.
Furthermore, retrieval may be done by requesting the set of nodes contained within a
certain region of the blackboard (by get.nodes.in.rgn).

Table 1 also relates the costs of process handling within HSIL Process
invocation and process creation are separated (the former being a request from a
precondition or knowledge-source process to the scheduler to perform the latter), and

the costs are accounted separately, as in invokeks and create.ks.pres. Ks.cleanup is the

LIt a process has not previously locked the node to which it desires access and the
process does not have any other node locked, then the system will temporarily lock
the node for the duration of the single read or write operation, without the process
having explicitly to request access to the node.
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cost of terminating a knowledge-source process; preconditions never get terminated.
The cost of initializing and terminating a knowledge-source process (i.e., invoke.ks and
kscleanup) is due to the overheads involved in maintaining focal contexts, locking
structures, and data base monitoring (tagging), all of which are necessitated by the
multiprocess nature of the HSII organization. However, in a relative sense, this is not
expensive, since the total overhead associated with process handling amounts to only
about 97 of the overall execution time.

Additionally, local context maintenance costs are given in Table 1, since they
are also a cost of having asynchronous parallel processes. While individual tag creation
and deletion is handied by the primitive field-read and -write operations, tags may be
transferred from a precondition to the knowledge source it has invoked via transfer.tags
and desltroyed at termination of a process via delete.alltags. As noted above, notify.sset
and send.msg.and.events are sub-operations of the field-write operations and represent
the cost of distributing data event notifications to ali relevant local contexts.
Receive.msg is the operation used by precondition or knowledge-source processes to
receive a tagging message (or perhaps wait for one, if one does not yet exist); and
read.cset.or.sset is the operation for retrieving the infarmation from a local context.

Finally, Table 1 gives the costs associated with the data access
synchronization mechanism, Lock! and unlock! represent the overhead costs of locking
and unlocking a group of nodes specified by the process requesting access rights.
These two operations are among the most complex routines in the HSH operating
system, the complexity arising from having to coordinate the allocation of data base
resources by two independent access allocation schemes (node-locking and region-
focking). This coordination is necessary in order to avoid any possibility of data base
deadlock by maintaining a homogeneous linear ordering among all data resources (nodes
and regions). The costs of lock! and unlock! do not inctude the time spent in performing
the actual primitive locking operations. The primitive lock costs are given by lock.node
(lock a node for exclusive access), exam.node {lock a node for read-only access), and
lock.rgrn (lock a region for exclusive access). The access-checking operations
(write.access.chk and read.accesschk) are used by the blackboard accessing routines

discussed above,

These timing statistics can be used to determine the amount of system

overhead incurred in running precondition and knowiedge-sourte processes under the
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HSII operating system. The following summary statistics are offered, given as
percentages of the total execution time, the percentages being calculated so as to avoid

overlapping between categories (as, for example, factoring blackboard reading costs out

of blackboard access synchronization):

Biackboard reading 167
Blackboard writing 47
Associative retrieval 77
Internal computations of processes 277
Local context maintenance 107
Blackboard access synchronization 277
Process handling 97

Another way of viewing these figures is that approximately half of the execution time
involves multiprocessor overheads f{i.e, local context maintenance, blackboard access
synchronization, and process handling). Based on the assumption that this multiprocess
overhead is independent of the parallelism factor ::u:hieved,1 then a parallelism factor of

2 or greater is required in order to recover the multiprocess overhead.

Effective Parallelism and Processor Utilization

The problem-solving organization underlying HSIlI was designed to take
maximum advantage of any separability of the processing or data components available
within that organization. Knowledge sources were intended to be largely independent
and capable of asynchronous execution in the form of knowledge-source processes.
Overall system control was to be distributed and primarily data-directed, being based on
events occurring in a globally shared blackboard data base. The intercommunication
(and interdependence) of the various knowledge-source processes was to be minimized
by making the blackboard data base the primary means of communication, thereby
exhibiling an indirection with respect to communication similar to the indirect data-
directed form of process control. Such a problem-solving organization was believed to
be particularly amenable to implementation in the hardware environment of a network

of closely-coupled asynchronous processors which share a common memory. Given

L This assumption, based on timing statistics from a series of runs with different
numbers of processors, seems valid except for the cost of context swapping and
process suspension, which depends upon the amount of data base interference and
the number of processors.
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sufficiently many completely non-interfering processes (i.e, processes which do not
interfere in any way with the execution progress of one another), one would expect the
achieved paraflelism {(speed-up) of that set of processes executing on r identical
processors to be a factor of n, as compared to the same set of processes executing on
a single processor (assuming the same scheduling and multiprocessing overheads).
While the HSH‘organization attempted to allow the various knowledge sources to be as
independent as possible, the various processes were to cooperate with one another
(primarily via the blackboard data base)} in the effort to effect the problem solution.
This necessary cooperation (and the various forms of execution interference resulting
from it} was expected to result in the achieved parallelism in a multiprocessor

environment being somewhat less than the potential parallelism without interference.

Several experiments were run to measure the parallelism achieved in this
particular implementation of the HSIl problem-solving organization using varying
numbers of identical - processors. Each of these experiments was run with the
knowledge-source sel described previously, using the same input data (introduced into
the data base so as to simulate real-time speech input), the same blackboard locking
‘structure, and the same scheduling algorithm, while varying the number of (identical)
processors. An example of the graphical output produced by the simulation, for the
case of eight processors, is displayed in Figure 3. To comment on these activity plots,
the "# runnable processes” plot gives the number of processes either running or ready
to run at each simulation scheduling point; the “s running processes” plot gives the
number of actively executing processes at each scheduting point; the "# ready
processes” plot shows the number of processes awaiting assignment to a processor at
each scheduling point; and the "s suspended processes" plot gives the number of
processes blocked from executing because of data access interference or because they

are waiting on the receipt of a tagging message.

Referring to Figure 3c, notice the spiked nature of the ready-processes plot.
This is a result of delaying the execution of a precondition (due to the limited

processing power available) beyond the point in time at which its pre-precondition is

I Note that the size of the HSIl blackboard is expected to grow to only several
thousand nodes (hypotheses and links), at, say, 25 field entries apiece, depending, of
course, on the task domain. Thus, it is assumed (for the purposes of the current
investigations, at least} that the blackboard is entirely resident in primary memory;
thus, input/output operations are not an issue here, the system being essentialtly
compute-bound.
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first satisfied: the longer a precondition is delayed, the more data events it is likely to
accumulate in the meantime, and the more knowledge-source processes it is likely to
instantiate once it does get executed; hence the spiked nature of the resultant ready-
processes plots for configurations of few processors. As parallel processing power
increases, preconditions can more often be run as soon as their pre-preconditions are

initially satisfied, and the spiking phenomenon subsides.

As an example of how these activity plots have been used in upgrading the
performance of the implementation, compare Figure 4 to Figure 3c. Figure 4 depicts the
process activity under the control of a scheduler which did not attempt to perform load
balancing with respect to ready preconditions; and as a result of not increasing the
relative scheduling priority of preconditions as they received more and more data
events, the activity spike phenomenon referred to above became predominant, to the
extent of reducing process activity to a synchronous system while the long-time waiting
precondition instantiates a great many knowledge-source processes all at cmc:e.1 Figure
3¢ shows the activity on the same number of processors, but using a somewhat more
intelligent scheduling algorithm, with a resulting reduction in the observed spiking
phenomena. This improved scheduling strategy is the one used for all plots presented

herein.

In addition to the plots described above, varipus other measures were made
to allow an explicit determination of processor utilization and effective paralletism for
varying numbers of processors. Referring to Table 2, one can get a feeling for the
activily generated by employing increasing numbers of processors. All simuiations
represented in Table 2 were run for equivalent amounts of processing effort with
respect to the results created in the blackboard data base by the knowledge source
activity. The final clock time of the multiprocessor configuration being simulated is
given in simulated real-time seconds, and the accumulated processor idle and lost times
are also given. [dle fime is attributed to a processor when it has no process assigned
to it and there are no ready processes to be run; lost time is attributed when the

process on a processor is suspended for any reason and there are no ready processes

1 This can be inferred from Figure 4 by noting that the sample points (vertical tick
marks} are taken at each simulation scheduling point, and the lack of samples between
times 220 and 380 indicates that the process that started running at 220 had no
concurrently running processes competing with it until time 380, when there were
suddenly 25 new processes contending for computing resources.
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number of prcrs 1 2 4 8 16 32

(all times in secs) ' {special®)
KS instantiations 355 401 423 421 415 434
PRE activations 82 126 173 213 200 229
multiprer clock time 1076 634 389 350 351 43
total idie time 9 15 37 380 2608 867
total lost time ] 5 34 900 1546 o
avg cxt swaps 0 309 942 368 9 0
avg prer utilization 997 987 957 547 267 377
effective # precrs 0.99 1.6 3.80 432 4.16 11.84
utilization speed-up 1.00 1.98 3.84 4,36 4.20 11.96

* The 32-processor column represents an experiment which
was run under special conditions, to be explained below,
and should not be compared directly to the other columns
of the table.

Table 2. Processor Utilization

which could be swapped in to replace the suspended process. Processor utilization
{calculated using the final clock time and processor idle and lost times) is given in Table
2; Figure 5 shows the corresponding effective parallelism (speed-up), based on the

-processor utilization factors of Table 2.

The speed-up for this particular selection of knowledge sources is
appreciable up to four processors, but drops off substantially as one approaches
sixteen processors. In fact, a rather distressing feature of this etfective parallelism plot
is that the speed-up actually decreases slightly in going from eight processors to a
sixteen-processor configuration (from a speed-up of 4.36 over the uniprocessor case,
down to 4.20). This may be explained by noting that both the eight- and sixteen-
processor runs had approximately equa! final clock times; but in the sixteen-processor
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case, the number of runnable processes never exceeded sixteen processes, so any
ready process could always be accommodated immediately. As a result, the number of
knowledge-source instantiations and precondition activations fell off a bit from the
eight-processor case, because the preconditions were more likely to be tully satisfied
the first time they were activated (since all ready-processes, knowledge-source
processes in particular, could be executed immediately and complete their intended
actions sooner, so that when a precondition came to be activated, it would more likely
find its full data pattern to be satisfied); thus, preconditions would not often be aborted,
having to be re-tested upon receiving a subsequent data event. However, running
fewer preconditions resulted in much more idle time for the sixteen-processor
configuration (the increase in lost time indicated in Table 2 is an artifact of having too
many processors available, since suspended processes would tend to remain on
otherwise idle processors rather than being swapped off the processor -- note the
rather dramatic decrease in coﬁtext swaps indicated by Table 2 for the sixteen-
processor case). The result is a lower proportionate utilization of the processor
configuration, and hence a decrease in the effective paralielism from the eight-

processor configuration to the sixteen-processor configuration.

Due !o the limited state of development of the total set of knowledge sources,
the set of knowledge sources used in the simulation was necessarily limited; so the fact
that these plots indicate that not more than about four to eight processors are being
effectively utilized is not to say that the full HSII speech-understanding system needs
only eight processors. One might ask that if only 4.16 processors of the sixteen-
processor configuration are being totally utilized {see Table 2), what is the maximum
potential effective parallelism, given this set of knowledge sources? To answer this
question, an experiment was performed in which effectively infinite processing power
was provided to this knowledge-source set and all data access interference was
eliminated (by removing the locking structure overheads and blocking actions); the
scheduling algorithm was kept unchanged, as was the input data, although the input data
stream was entered so as to be instantaneously available in its entirety (rather than ‘
being introduced in a simulated real-time, “left-to-right" manner). The results of this
experiment are summarized by the 32-processor coluran of Table 2 (32 processors was
an effective infinite computing resource in this case, since eight of the processors were
never used during the simulation). Notice that no lost time was attributed to the run,

due to the lack of locking interference; and the resultant processor utilization was 377

29



of 32 processors, or 11.84 totally utilized processors, Thus, data base interference
caused by particular data base accessing patterns and associated locking structures of
the knowledge source set used in the experiment significantly affected processor
utitization; if the use of the locking structures could be accomplished in a more non-
interfering manner, the speed-up indicated by the eight- or sixteen-processor
configurations could be increased substantially. The next section will anatyze in detail
the exact causes for this data base inteference, and propose changes to the knowledge-

source locking structure so as to reduce potential inteference.

Table 3 presents some other system configurations to show effective
processor ulilizations under varying conditions. The first row repeats the statistics of
the sixteen-processor case of Table 2; the second row is a summary of the 32-
processor case of Table 2, as described above. Three further data points are offered
fo indicate the effects of increasing the size of the knowledge-source set. The last
three rows of Table 3 involve experiments using an expanded knowledge-source set
consisting of the knowledge sources of all the previous runs plus the Syntactic Word
Hypothesizer {see Appendix A) and its precondition. Using this expanded knowledge-
‘source set, simulations were performed to evaluate the effects of this knowledge-source
set on a sixteen-processor configuration with the locking structure in effect, presenting
the input data in the usual "left-to-right” manner, as well as in the instantaneous
manner used in the infinte-processor test. Comparing the results (in Table 3} to the
original sixteen-processor run, the "left-to-right” input scheme achieved a processor
utilization of 337, up 77 from the smaller knowledge-source set case; and by presenting
all input data simultaneously, the utilization rose to 357. The fifth row of Table 3
represents the results of providing effectively infinite computing power {(only 25
processors were ever used during the run) to the expanded knowledge-source set and
etiminating all data access interference, in the same manner as for the experiment of the
second row. In this "optimal" situation for the expanded knowledge-source set,
processor utilization was measured at 467, or 14.72 totally utilized processors. Again, it
may be noted that a more effective {less interfering) use of the locking structures can

result in substantial increases in processor utilization and effective parallelism.

The addition of the Syntactic Word Hypothesizer was able to achieve the
increases in utilization noted in Table 3 because it operates on lexicons that are used
by only one other knowledge source (the Phoneme Hypothesizer) in the basic

knowledge-source set; hence, the process interference introduced by adding this
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experiment muitiprer totat total 7 util effective

description clock idle lost @ prers
8 KS’s, 6 PRE’s . 351 2608 1546 267 - 4,16
16 prers, w/ lock

-to-~r input

8 KS’s, 6PRE’s 43 867 0 377 11.84

32 prers, w/o lock
instantaneous input

9 KS’, 7 PRE’s 148 854 726 337 5.28
16 precrs, w/ lock '

I~to-r input

9 KS’s, 7 PRE’s 155 839 784 357 5.60

16 prers, w/ lock
instantaneous input

9 KS’s, 7 PRE’s 13 226 0 467 1472

32 prers, w/o lock
instantaneous input

Tablie 3. System Configuration Variations

knowledge source was minimal. Unfortunately, the development of knowledge sources
at lexicon levels which more directly conflict with those of existing knowledge sources
has been limited, so direct experimentation on the interfering effects of such knowledge
sources could not be performed; but based on the observations comparing the 32-
processor without-lock experiments to the original sixteen-processor with-lock runs,
substantial interference due to ineffective use of the locking structure would be
expected in such cases of adding "competing" knowledge sources. One mitigating
circumstance which could alleviate such interference was noted in the “instantaneous”

input case of the expanded knowledge-source set case, as compared to the "left-to-

31



right” input case: if process activity can be spread across the utterance-time dimension
of the blackboard, process interference would decrease -- but interference due to data
access synchronization interference can easily overwhelm this improvement. Further
experiments along these lines will be attempted as the appropriate knowledge sources

become available for use.

Execution Interference Measuraments

In addition to the primitive operation timings and achieved parallelism
measurements given above, various other measurements were made to determine the
various aspects of system performance as related to multiprocessing. As has already
been mentioned, a major concern in a multiprocess environment in which the various
processes are not entirely independent is that of execution interference. Execution
interference may arise whenever any given process enters a critical section within
which it requires the integrity of a given data structure be maintained (thereby
necessitating a means by which to disallow access to others until the critical section is
exited). Execution interference may also arise whenever processes must synchronize
their activities and perhaps cause themselves to wait on an event based on an action
which is to be performed by some external process. Thus execution interference may
arise due to causes external to the process being delayed (as in the case of trying to
access a data structure which is currently held for exclusive access by another
process}), or the interference may arise due to causes internal to the process being
delayed (as when a process delays itself by waiting for the occurrence of an externally
caused event), As a result of the HSIHI design philosophy, which states that the various
knowledge-source processes should be as independent as possible in specification and
execution, most of the execution interference experienced in HSIl is of the external
variety, wherein a process is delayed due {o external causes unknown to itseif {(and the

delay itself is transparent to the process being delayed).

As previously described, there are two methods in the HSII system for
preserving data integrity: a) guaranteeing exclusive access through the use of node-
and region-locking primitives, and b) placing data assumptions in the bfackboard,
through tagging primitives, which when violated cause a signal to be sent to the process
making the assumption. There is an interesting balance in terms of execution overhead

and execution interference between these two techniques. The region-locking
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technique is least costly in terms of execution overhead and is the easiest to embed in a
program but causes the most execution interference. This is in contrast to the use of
tagging which is the most costly in terms of execution overhead and is the most difficult
to embed in a program but causes the least execution interference. Both these methods
were used for guaranteeing data integrity in the precondition and knowledge-source set

that was used in the simulation experiments.

In structuring each knowledge source so as to preserve its data integrity, no
a priori assumptions were made about the non-modifiability of any blackboard data that
knowledge source used in its processing (ie, it was assumed that any blackboard
information that the knowledge source read could perhaps be modified by some other
concurrent knowledge-source). This self-contained approach to the design of a
knowledge source’s locking and tagging structure is required if the modularity of the
system, with respect to deletion or addition of knowledge sources, is to be preserved.

The knowledge sourtes that were used in the simulation experiments were
not originally designed so that they could be interrupted at arbitrary points in their
processing, and consequently they lacked the appropriate locking and tagging structure
to guarantee data integrity in a multiprocess(or) environment. The addition, as an
afterthought, of the appropriate locking and tagging structure to these knowledge
sources was sometimes quite difficult. This was an especially serious problem when an
attempt was made to put tagging primitives into knowledge sources which had internal
backtracking control structures for searching the node graph structure in the
blackboard. This difficulty arises because previously made data assumptions (tags in the
blackboard) associated with a partial path (sequence of nodes in the blackboard) must
be removed upon discovering that the path cannot be successfully completed. Thus,
most of the knowledge sources in the experiment did not use tagging as a method of
guaranteeing integrity, but rather used a combination of node- and region-locking.
However, preconditions, which have a much simpler structure and generally do not write
in the blackboard, were modified 1o use the tagging mechanism. In addition, to further
simplify knowledge-source locking structures, region-locking was used wherever
possible. This excessive use of region-locking was mainly responsible for the significant
amount of interference among processes which caused the effective processor

utilization to go from an optimal 12 to a realized 4 (see Table 2).

Figure 6 shows an interesting case demonstrating that the indiscriminate use
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of region-locking can obstruct the execution progress of many processes and thereby
temporarily reduce the effective parallelism of the system. It represents a snapshot of
the blackboard locking structure taken during the execution of the simulation. The grid
structure represents the two-dimensional abstract data structure, the dimensions being
lexicon level and region element number (corresponding to the utterance-time
dimension). At the point of each shapshot, the outstanding node and region locks are
indicated, as well as the areas requested (but not yet obtained) by suspended
processes. The various {non-interfering) tags placed throughout the data base are also
indicated. The key indicates the sets of active and suspended processes (the names
referring to the precondition and knowledge source names, and the numbers in the
names indicating a process instantiation index unique to that particular process). This
particutar snapshot was taken from the sixteen-processor simulation run with the
smaller knowledge-source set, Notice that PSYN263 has locked regions al the PHON,
MXN, and PSEG lexicon levels for ils exclusive access; the nodes locked by PSYNZ263
{hypotheses being indicated by H<sequence number>, and links by L<sequence number>}
within these regions are those being created by PSYNZ63, hence the reason for the
region locks. Unfortunately, this locking action resulted in the suspension of six other
processes awaiting access to parts of the PHON and PSEG lexicon levels which overlap
PSYNZ63’s region-locks. Each of these suspended processes is waiting to acquire
access-rights to a node in these locked regions; in fact, PRE!IPSYN!PSYN and CSEG259
are both waiting on the same node (H141). The diagram also shows the various (non-
interfering) tags which were placed on the various nodes at the PHON and PSEG lexicon
levels by three of the processes at some previous lime. Figure 7, which is another
snapshot of locking structure, shows a case where execution interference was not so

significant.

The reason the locking structure plots are localized in the lower left-hand
corner of the blackboard structure is that the construction of the data base in the
speech-processing task is initially left-lo-right due to the time-sequential nature of the
speech input. Also, the particular set of knowledge sources chosen for use in the
simulation experiments happened to be an effectively bottom-up speech recognition
system (some of the top-down knowledge sources having not yet been developed to a
stable enough state to have been used in the simulations); hence, activity starts in the
lower left-hand corner of the blackboard. Further simulations are planned which will

work in a combined top-down and bottom-up fashion, thereby increasing the potential
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paralielism (since the top-down knowledge sources will presumably not interfere with
the execution of the bottom-up knowledge sources as much as additional competing
bottom-up knowledge sources would). The expanded knowledge-source set experiments
presented above were a first step in introducing such top-down knowledge; as more
knowledge sources become available, their various interference effects will be
investigated. Also, other tasks which could use the HSH organization might not
necessarily have the left-to-right input characteristics of speech, so future simulations
will also test a more distributed input pattern, thereby also increasing the potential
parallelism by spreading the process activity across the breadth of the blackboard; the
several experiments presented above which introduced the input in an "instantaneous™
manner were the initial attempts in this direction.

A more analylic approach to analyzing the data access interference
experienced by precondition and knowledge source processes, for varying numbers of
processors, is given in Table 4,

number of prcrs 1 2 4 8 16
{all times in secs)

avg BB accesses/KS 54.4 52.8 545 53.9 56.4
avg BB accesses/PRE 96.7 68.7 55.7 48.2 51.1
avg prim locks /KS 27.9 27.4 280 25.7 26.9
avg prim locks /PRE 96.7 68.7 55.7 48.2 51.1
avg dsched/prim lock(KS) 0 0.020 0.060 0.055 0.053
avg dsched/prim lock(PRE} O - 0.009 0.026 0.045 0.040
avg dsched duration/KS 0 5.08 5.69 1.75 1.90
avg dsched duration/PRE 0 3.95 1.91 1.35 1.86
avg cxt swaps 0 309 942 368 9
avg cxt swaps/dsched 0 1.03 0.97 0.36 0.01

Table 4, Data Access Characteristics
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Essentially, Table 4 is an extension of Table 2, which was discussed in the
previous section {i.e., the underlying simulation runs were the same for both tables).
Execution interference was measured by recording the amount of process suspension
(also called descheduling), which results from processes being temporarily blocked in
their attempts to gain access to some parl of the blackboard data base.l As might be
expected, as process activily increases with increasing numbers of processors, the
possibility  of  execution interference increases (see table entries on
"deschedules/primitive lock"). This phenomenon stops at eight processors because in
these simulation experiments there were rarely more than eight processes executing at
any given moment. At the same time, with more and more processing power available,
the likelihood of suspended processes being unblocked and becoming available for
further processing increases as the number of processors increases (see table entries
on "deschedule duration"). This phenomenon is also indicated by the significant
decrease in processor context swaps per deschedule (i.e., with more processors, it
becomes less likely that when a2 process is suspended there will be another process

ready to execute).

The major point that can be drawn from this table is that the decrease in
processor utilization caused by the locking structure is not due to the high rate of data
access interference (i.e, at most only 67 of the primitive locks result in deschedules)
but rather from the long duration over which descheduled processes are blocked. This
deschedule duration, in the optimal case of 16 processors, where processes do not have

to wait for for an available processor, is approximately 2 seconds, which is very close

1 The number of deschedules attributed to a process is related to the inner workings
of the tocking mechanism. Not only is the granularity of the locking structure
important (i.e., how small a piece of the blackboard data base can be requested for .
access allocation), but the granularity of the process blocking mechanism is important.
For example, processes could be blocked upon trying to gain access to a node and
then relegated to waiting in a set of processes which are waiting on any node at the
level of the requested node; or the wait set could be divided according to the
individual nodes being waited upon. If, in an attempt to conserve semaphore
structures, the former strategy is chosen, it could become quite expensive to
determine whether, upon receiving an unlock wake-up signal for the wait set, a
particular member of the wait set is really re-schedulable as a result of that wake-up
signal; hence, it may be cheaper to release all waiting processes in the set, even
though all but one will just become descheduled again. If the single-node wait set is
used, the costs of maintaining separate semaphores for every possible data object
may become prohibitively expensive, aithough process re-scheduling would not be
done unnecessarily in such a scheme.
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to the average run time of a knowledge source. This long duration occurs because the
knowledge-source locking structures involve executing region locks at the beginning of
the knowledge source execution. These region-locks define the entire blackboard area
{and perhaps even more) that the knowledge source will either examine or modify
during its entire execution.] These locks are then released only at the termination of
the knowledge source execution. Thus, if data access interference (i.e., a primitive lock
deschedule) occurred because of a previously executed region-lock, then the suspended
process would very likely not be unblocked until the knowledge source executing the
region-lock had completed its processing.

Finally, it is once again admitted that the results presented here are derived
from a rather limited selection of knowledge-source processes, the coding style of
which may be affected by the various efficiencies and inetficiencies of the particular
implementation of the HSII system organization. In particular, since the HSII speech-
understanding system ‘is under constant development, various code sections involving
the system operations have been subject to extensive optimization attempts, while other
sections have not yet had the benefit of such optimization. Additionally, the results are
biased by the task domain (viz., speech understanding) and the data structure chosen to
represent the dynamic solution state of the task. However, it is hoped that the system
organization (including the data base design) is of sufficiently general character that
these particular results at lcast give a feeling for the results that might be expected
using a different set of knowledge-source processes to solve the same or different

problems,

SUMMARY AND CONCLUSIONS

This paper has presented a design for the organization of knowledge-based
Al problem-solving strategies which is felt to be particularly applicable for
implementation on closely-coupled multiprocessor computer systems. The method of
design is a result of formulating the problem-solving organization in terms of the

1 Note that the number of primitive lock operations for preconditions is equal to the
number of blackboard accesses {from the precondition process averages of Table 4):
preconditions do not usually need a long-lasting locked environment (since they do
not modify the blackboard except to place tags into it), thus each access is
individually protected by the HSIl operating system (via temporary-locking), rather
than having the precondition perform an explicit LOCK! operation before each access.
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hypothesize-and-test paradigm for heuristic search, where the various hypothesizers
and testers are represented as knowledge sources applicable to the task domain of the
problem being solved. A fnowledge source may be described as an agent that embodies
the knowledge of a particular aspect of the problem domain and is usefu! in solving a
problem from that domain by performing actions based on its knowledge so as to
further the progress of the overall problem solution. The hypothesize-and-test
paradigm provides the conceptual means of coordinating these various knowledge
source activities by suggesting that it is the function of some knowledge sources to
create hypotheses representing a possible (perhaps partial) solution state for the given
problem. Hypotheses are created in a global data base and are available for inspection
by all knowledge sources. It is the responsibility of other knowledge sources to
evaluate these hypotheses in light of their own knowledge of the task domain, and
either accept or reject the hypotheses, or propose their own alternative hypotheses

{by either modifying the existing hypotheses or creating entirely new ones).

The Hearsay II speech-understanding system (HSI), which has been
developed at Carnegie-Mellon University using the techniques for system organization
described here, has provided a context for evaluating this system architecture. The
HSII organization provides the facilities necessary for knowledge-source cooperation
through the hypothesize-and-test paradigm to be carried out in a highly asynchronous
and data-directed manner, where knowledge sources are specified as independent
processing entities capable of parallel execution; the activities of any given collection of
such knowledge sources are coordinated by the hypothesize~and-test paradigm through
the use of a shared global data base called the blackboard.

In specifying the blackboard as the primary means of interprocess
communication, particular attention has been paid to resolving the data access
synchronization problems and data integrity issues arising from the asynchronous data
access palterns possible from the various independently executing parallel knowledge-
source processes. A non-preemplive data access allocation scheme was devised in
which the units of allocation could be linearly ordered and hence allocated according to
that ordering so as to avoid data deadlocks. The particular units of data allocation
(locking) were chosen as being either blackboard nodes (node-tockir;g) or abstract
regions in the blackboard (region-locking). Blackboard nodes also represent the units
of data creation within the blackboard. The region-locking mechanism views the

potential blackboard as an abstract data space in which access rights to abstract
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regions could be grarﬂed without regard to the actual data content of these regions.

Another area of concern relating to the use of a shared blackboard-like data
facility relates to the assumptions made by the various executing knowledge sources
concerning issues of data integrity and localized data contexts. Since the blackboard is
intended to represent only the most current global status of the problem solution state,
mechanisms were introduced to allow individual knowledge sources to retain recent
histories of modifications made to the dynamic blackboard structure in the form of local
contexts. Knowledge sources are also permitted to mark (tag) arbitrary fields (or nodes
or regions) of the blackboard itself (without requiring continuing access rights to the
field being tagged) and thereby monitor (in a non-interfering way) those locations for
subsequent changes; the knowledge source will then be sent messages should any
modifications be performed upon a tagged field. Local contexts provide knowledge
sources with the ability to create a local data state which reflects the net effects of
data events which have occurred in the data base since the time of the knowledge
source’s activation. Combined with the blackboard data tagging capabilities, local
contexts also provide a means by which knowledge sources can execute quite
independently of any other concurrently executing knowledge sources (and without
interfering with the execution progress of any of these processes).

In an attempt to improve the problem-solving etficiency of a multiprocessor
implementation of the system by increasing the amount of potential parallelism from
knowledge source activity, the logical functions of precondition evaluation and
knowledge source execution are split into separate processing entities {(called, of course,
precondition and knowledge-source processes). A precondition process is responsible for
monitoring and accumulating blackboard data events which might be of interest to the
knowledge source associated with the precondition; and when the appropriate data
‘conditions for the activation of the knowledge source exist in the blackboard, the
precondition will instantiate a knowledge-source process based on its associated
knowledge source, giving to the new process the data context in which the precondition

was satisfied.

The process activity of HSI is intended to be very data-directed in nature,
basing the decisions as to whether a knowledge source action can be performed on the
dynamic data state represented in the blackboard data base. It is the responsibility of a
precondition to test this data state for conditions which would warrant the instantiation
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of the knowledge source associated with the precondition. The activation of the
precondition itself is also data-directed, being based on monitoring for the more
primitive blackboard modification operations which knowledge-source processes may
invoke to effect the results of their computation. This blackboard monitoring is
implemented by having the various blackboard modification operators be responsible for
the activation of preconditions which are monitoring for data events being caused by

the modification operation.

In order to indicate the nature of the performance of the HSII organization
when run in a closely-coupled mulliprocessor environment, a simulation system was
embedded info the multiprocess implementation of HSII on the DECsystem-10. While the
results of the simulation are admittedly based on a small (but computationally expensive)
set of sample points, they have generally indicated the applicability ot this system
organization to such a hardware architecture. Given the knowledge-based
decomposition of a problem-solving organization as prescribed by the HSI structure,
effective parallelism factors of four to six were realized even with a relatively small set
of precondition and knowledge-source processes, with indications that up to twelve
processors could be totally ulilized, given appropriate usage (or structuring) of the data
access synchronization mechanisms. Experiments thus far have indicated that careful
use of the locking structure is required in order to approach the optimal utilization of
any given processor configuration (unless there exist so many ready processes that the
number of suspended processes does not matter much, as is the case in conﬁguratiOn.s
of four or fewer processors). An extended use of non-interfering tagging seems to be
indicated, along with a reduction in the use of region-locking {(perhaps substituting
region-examining or node-locking wherever possible). Measurements were also made of
various system level primitive operations which are required in order to implement the
data-directed mulliprocess structure of HSIL.  Whife all these results are of a
preliminary nature (and hence are subject to variation as various components of the
given implementation are improved in their relative efficiencies), they seem to indicate
that the HSII organization is indeed applicable for efficient use in a closely-coupled

multiprocessor environment.
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Appendix A:
HSIT BLACKBOARD AND KS DECOMPOSITION

Conceplual
Phrasal

Lexical

Syllabic
Surface-phonentic
Phonetic
Segmental
Parametric

Figure 1. The Levels in Hearsay 11,
Figure 1 shows a schematic of the information levels of Hearsay Il

Parametric Level - The parametric leve! holds the most basic representation of the
utterance that the system has; it is the only direct input to the machine about the
acoustic signal. Several different sets ot parameters are being used in Hearsay II
interchangeably: 1/3-octave filter-band energies measured every 10 msec., LPC-
derived vocal-tract parameters, and wide-band energies and zero-crossing counts.

Segmental Level - This level represents the utterance as labeled acoustic segments.

+ Although the set of labels may be phonetic-like, the level is not intended to be
phonetic -- the segmentation and labeling reflect acoustic manifestations and do
not, for example, attempt to compensate for the context of the segments or
attempt to combine acoustically dissimilar segments into (phonetic) units. As with
all levels, any particular portion of the utterance may be represented by more
than one competing hypothesis (i.e., multiple segmentations and labelings may
coexist).

Phonetic Level - At this level, the utterance is represented by a phonetic description.
This is a broad phonetic description in that the size {(duration) of the units is on the
order of the "size” of phonemes; it is a fine phonetic description to the extent that
each element is labeled with a fairly detailed allophonic classification (eg.
"stressed, nasalized [I]"}.

Surface-Phonemic Level - This level, named by seemingly contradicting terms,
represents the utterance by phoneme-like units, with the addition of modifiers such
as stress and boundary (word, morpheme, syllable) markings.

Syllabic Level - The unit of representation here is the syllable.

Lezical Level - The unit of information at this leve! is the word.

Phrasal Level - Syntactic elements appear at this fevel. In fact, since a level may
contain arbitrarily many "sub-levels" of elements using the AND and OR finks,
traditional kinds of syntactic trees can be directly represented here.

Conceptual Level - The units at this level are "concepts” As with the phrasal level, it
may be appropriale to use the graph structure of the data base to indicate
relationships among different concepts.

44



- Levels - - Knowledge Sources -
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PARAMETRIC = '

Figure 2. A Set of Knowledge Sources for Hearsayll

As examples of knowledge sources, Figure 2 shows the first set implemented
for Hearsay 1l The levels are indicated as horizantal lines in the figure and are labeled
at the left. The knowledge sources are indicated by arcs connecting levels; the starting
point(s) of an arc indicates the level(s) of major “input® for the knowledge source, and
the end point indicates the "output” level where the knowledge source’s major actions
occur. In general, the action of most of these particular knowledge sources is to create
links between hypotheses on its input level(s) and: a) existing hypotheses on its output
level, if appropriate ones are already there, or b) hypotheses that it creates on its
output level.
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The Segmenter-Classifier knowledge source uses the description of the speech signal
to produce a labeled acoustic segmentation. For any portion of the utterance,
several possible alternative segmentations and labels may be produced.

The Phone Synthesizer uses labeled acoustic segments fo generate elements at the
phonetic level. This procedure is sometimes a fairly direct renaming of an
hypothesis at the segmental level, perhaps using the context of adjacent segments.
In other cases, phone synthesis requires the combining of several segments (e.g.,
the generation of [t] from a segment of silence followed by a segment of
aspiration) or the insertion of phones not indicated directly by the segmentation
(e.g., hypothesizing the existence of an [I] if a vowel seems velarized and there is
no [I] in the neighborhood). This knowledge source is triggered whenever a new
hypothesis is created at the segmental level.

The Word Candidate Generator uses phonetic information (primarily just at stressed
locations and other areas of high phonetic reliability) to generate word hypotheses.
This is accomplished in a two-stage process, with a stop at the syllabic level, from
which lexical retrieval is more effective.

The Semantic Word Hy'pothesi.zer uses semantic and pragmatic information about the
task (e.g., news retrieval or chess) to predict words at the lexical level,

The Swyntactic Word Hypothesizer uses knowledge at the phrasal level to predict
possible new words at the lexical leve! which are adjacent (left or right) to words
previousty generated at the lexical level. This knowledge source is activated at the
beginning of an utterance recognition attempt and, subsequently, whenever a new
word is created at the lexical level.

The Phoneme Hypothesizer knowledge source is activated whenever a word
hypothesis is created (at the lexical level) which is not yet supported by
hypotheses at the surface-phonemic level. Its action is to create one or more
sequences al the surface-phonemic level which represent alternative
pronunciations of the word. (These pronunciations are currently pre-specified as
entries in a dictionary.)

The Phonological Rule Applier rewrites sequences at the surface-phonemic level.
This knowledge source is used: a)to augment the dictionary lookup of the
Phoneme Hypothesizer, and b)to handle word boundary conditions that can be
predicted by rule.

The Phone-Phoneme Synchronizer is triggered whenever an hypothesis is created at
either the phonetic or the surface-phonemic level. This knowledge source
attempts to link up the new hypothesis with hypotheses at the other level. This
linking may be many-to-one in either direction.

The Syntactic Parser uses a syntactic definition of the input language to determine if
a complete sentence may be assembled from words at the lexical level.
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The primary duties of the Segment-Phone Synchronizer and the Parameter-Segment
Synchronizer are similar: to recover from mistakes made by the (bottom-up)
actions of the Phone Synthesizer and Segmenter-Classifier, respectively, by
allowing feedback from the higher to the lower level.

In addition to the knowiedge source modules described above, all of which
embody speech knowledge, several policy modules exist. These modules, which
interface to the system in a manner identical to the speech modules, execute policy
decisions, e.g., propagation of ratings and calculation of processing-state attributes.
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