
NOTICE WARNING CONCERNING C O P Y R I G H T RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

PARALLELISM IN AI PROBLEM SOLVING:
A CASE STUDY OF HEARSAY II

R. D. Fennell and V. R. Lesser
Department of Computer Science^

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

October, 1975

ABSTRACT

The Hearsay II speech-understanding system (HSII) (Lesser , et a/., 1974;

Fennel l , 1975; Erman and Lesser, 1975) is an implementation of a knowledge -based

mult iprocessing A I problem-solving organization. HSII is intended to rep resent a

p rob lem-so lv ing organization which is applicable for implementation in a multiprocessing

env i ronment , and is, in particular, currently being implemented on the C.mmp

mult iprocessor system (Bell, et a l , 1971) at Carnegie-Mellon Univers i ty . The ob ject of

this paper is to explore several of the ramifications of such a p rob lem-so lv ing

organizat ion b y examining the mechanisms and policies underlying HSII which are

necessary for support ing its organization as a multiprocessing problem-solv ing sys tem.

F i rs t , an abstract description of a class of problem-solving systems is g iven using the

Product ion System model of Newell (1973). Then, the HSII problem-solv ing organizat ion

is desc r ibed in terms of this model. The various decisions made during the course of

design necessitated the introduction of various multiprocessing mechanisms (e.g.,

mechanisms for maintaining data localization and data integrity) , and these mechanisms

are discussed. Finally, a simulation study is presented which details the effects of

actually implementing such a problem-solving organization for use in a part icular

appl ication area, that of speech understanding.

This research was supported in part by the Defense Advanced Research Pro jects
A g e n c y of the Office of the Secretary of Defense (Contract F 4 4 6 2 0 - 7 3 - C - 0 0 7 4) and
monitored by the Air Force Office of Scientific Research.

INTRODUCTION

Many A I problem-solving tasks require large amounts of processing p o w e r in

o r d e r to achieve solution in any given computer implementation of a p rob lem-so lv ing

s t ra tegy . The amount of processing power required is directly related to the s ize of

the search space which is examined during the course of problem solution. Exhaust ive

search of the state space associated with almost any problem of interest is p rec luded

due to the sheer size of the state space.* In most problem-solving attempts, heurist ics

are employed which prune the search space to a more manageable size. H o w e v e r ,

searching even the reduced state space often requires large amounts of process ing

p o w e r . The demand for sufficient computing power becomes critical in tasks requi r ing

rea l - t ime solution, as is the case in the speech-understanding task with which this paper

is pr imari ly concerned. . For example, a speech-understanding system capable of re l iab ly

understanding connected speech involving a large vocabulary and spoken b y multiple

speakers is likely to require from 10 to 100 million instructions per second of computing

p o w e r , if the recognition is to performed in real t ime. 2 Recent trends in techno logy

suggest that this computing power can be economically obtained through a c l o s e l y -

coupled network of asynchronous "simple" processors (involving perhaps 10 to 100 of

these processors) , (Bell, et a/., 1973, and Heart, et aLt 1973). The major problem (f rom

the problem-so lv ing point of v iew) with this network multiprocessor approach for

generat ing computing power is in devising the various problem-solving algorithms in

such a w a y as to exhibit a structure appropriate for exploiting the parallelism available

in the multiprocessor network, for it is only by taking advantage of this process ing

parallelism that the desired effective computing power will be achieved.

The Hearsay I I speech-understanding system (HSII) (Lesser, et aL 1974;

Fennel l , 1975; and Erman and Lesser, 1975) currently under development at C a r n e g i e -

Mellon Un ivers i t y represents a problem-solving organization that can ef fect ive ly exp lo i t

a mult iprocessor system. HSII has been designed as an A I system organization suitable

for express ing knowledge-based problem-solving strategies in which appropr ia te l y

A As an example, consider the chess-playing task. In an end game situation, there are
t yp ica l l y 20 legal moves at each ply (half-move); so for a search depth of 6 plies, the
search space will have 64 million branches.

2 The Hearsay I (Reddy, et o i , 1973a,b,c and Erman, 1974) and Dragon (Baker, 1975)
speech understanding systems require approximately 10 to 20 mips of computing
p o w e r for real -t ime recognition when handling small vocabularies.

2

organ i zed subject -matter knowledge may be represented as knowledge sources capable

of contr ibut ing their knowledge in a parallel data-directed fashion. A knowledge source

may be descr ibed as an agent that embodies the knowledge of a particular aspect of a

problem domain and is useful in solving a problem from that domain b y per forming

actions based upon its knowledge so as to further the progress of the overal l solut ion.

It is felt that the knowledge source is an appropriate unit for use in the decomposit ion

of a knowledge- intens ive task domain. Knowledge sources, being suitably o rgan i zed

capsules of subject -matter knowledge, may be independently formulated as var ious

pieces of the knowledge relevant to a task domain become crystal l ized. The HSI I

sys tem organizat ion allows these various independent and diverse sources of knowledge

to be specif ied and their interactions coordinated so they might cooperate wi th one

another (perhaps asynchronously and in parallel) to effect a problem solution. As an

example of the decomposition of a task domain into knowledge sources, in the speech

task domain there might be distinct knowledge sources to deal with acoustic, phonet ic ,

lexical , syntact ic , and semantic information. While the speech task is the f irst test of the

mult iprocessing problem-solving organization of HSII, it is bel ieved that the sys tem

organizat ion prov ided by HSII is capable of expressing other knowledge -based A I

p rob lem-so lv ing strategies, as might be found in vision, robotics, chess, natural language

understanding, and protocol analysis. In fact, proposals are under w a y which will

fu r ther test the applicability of HSII by implementing a system for the analysis of

natural scenes using the HSII problem-solving organization (Ohlander, 1975).

The rest of this paper will explore several of the ramifications of such a

p rob lem-so lv ing organization by examining the mechanisms and policies under ly ing HSI I

wh ich are necessary for supporting its organization as a multiprocessing p r o b l e m -

solv ing system. First, an abstract description of a class of problem-solv ing systems is

g i v e n using the Production System model of Newell (1973). Then, the HSII p r o b l e m -

solv ing organizat ion is described in terms of this model. The various decisions made

dur ing the course of design necessitated the introduction of various mult iprocessing

mechanisms (e.g., mechanisms for maintaining data localization and data integr i ty) , and

these mechanisms are discussed. Finally, a simulation study is presented which details

the effects of actually implementing such a problem-solving organizat ion in a

mult iprocessor environment.

3

THE MODEL

An Abstract Model for Problem Solving

In the abstract, the problem-solving organization underlying HSII may be

modeled in terms of a "production system," (Newell, 1973). A production system is a

scheme for specifying an information processing system in which the control s t ruc tu re

of the system is defined by operations on a set of productions of the form *P -» A*,

w h i c h operate from and on a collection of data structures. ^P1 represents a logical

antecedent , called a precondition, which may or may not be satisfied by the information

encoded within the dynamically current set of data structures. If 'P ' is found to be

satisf ied b y some data structure, then the associated action 'A* may be executed, wh ich

presumably will have some altering effect upon the data base such that some other (o r

the same) precondit ion becomes satisfied. This paradigm for sequencing of the actions

can be thought of as a data-directed control structure, since the satisfaction of the

precondi t ion is dependent upon the dynamic state of the data structure. Product ions

are executed as long as their antecedent preconditions are satisfied, and the process

halts e i ther when no precondition is found to be satisfied or when an action executes a

s top operat ion (thereby signalling problem solution or failure, in the case of p r o b l e m -

solv ing systems).

The HSII Problem-Solving Organization: A Production System Approach

The HSII system organization, which can be characterized as a "paral le l "

p roduct ion system, has a centralized data base which represents the dynamic prob lem

solut ion state. This data base, which is known as the blackboard, is a multidimensional

data s t ructure which is readable and writable by any precondition or knowledge -source

process (where a knowledge-source process is the embodiment of a product ion

action).* Preconditions are procedurally oriented and may specify arbi t rar i ly complex

tests to be performed on the data structure in order to decide precondition satisfaction.

As an example, the dimensions of the HSII speech-understanding system data base
are informational level (e.g., acoustic level, phonetic level, and w o r d level) , ut terance
time (speech time measured from the beginning of the input utterance), and data
alternat ives (where multiple hypotheses are permitted to exist simultaneously at the
same level and utterance time). For additional details, see Appendix A.

4

Precondit ions are themselves data-directed in that they are tested for satisfaction

w h e n e v e r relevant changes occur in the data base;* and simultaneous precondi t ion

satisfact ion is permitted. Testing for precondition satisfaction is not presumed to be an

instantaneous or even an indivisible operation, and several such precondit ion tests may

p r o c e e d concurrent ly .

The knowledge-source processes representing the production actions are also

p rocedura l l y or iented and may specify arbitrari ly complex sequences of operat ions to

be per fo rmed upon the data structure. The overall effect of any g iven k n o w l e d g e -

source process is usually either to hypothesize new data which is to be added to the

data base or to v e r i f y (and perhaps modify) data previously placed in the data base.

This fol lows the general hypothe$lze-and-te$t problem-solving paradigm w h e r e i n

h y p o t h e s e s represent ing partial problem solutions are generated and then tested for

va l id i ty ; this cycle continues until the verification phase certifies the completion of

process ing (and e i ther ' the problem is solved or failure is indicated). The execut ion of a

k n o w l e d g e - s o u r c e process is usually temporally disjoint from the satisfaction of its

p recondi t ion ; the execution of any given knowledge-source process is not presumed to

be indiv is ible; and the concurrent execution of multiple knowledge-source processes is

permit ted. In addition, a precondition process may invoke multiple instantiations of a

knowledge source to work on the different parts of the blackboard which independent ly

sat is fy the precondition's pattern. Thus, the independent data-d i rected nature of

precondi t ion evaluation and knowledge-source execution can potentially generate a

signif icant amount of parallel activity through the concurrent execution of d i f fe rent

precondi t ions , different knowledge sources, and multiple instantiations of a s ingle

knowledge source.

* In ef fect , preconditions themselves have preconditions, call them "p re -p recond i t ions . "
In HS1I, knowledge-source preconditions (which correspond to action precondit ions in
the product ion system model) may be arbitrari ly complex. In order to avoid execut ing
these precondit ion tests unnecessarily often, they in turn have p re -p recond i t ions
wh ich are essentially monitors on relevant primitive data base events (e.g., monitoring
for a change to a g iven field of a given node in the data base, or a g iven field of any
node in the data base). Whenever any of these primitive events occurs , those
precondit ions monitoring such events are awakened and allowed to test for full
precondi t ion satisfaction. These data events are used by the precondit ion process as
pointers to the specific parts of the data base which may now satisfy the pat tern the
precondi t ion is monitoring for. During the period between when the precondi t ion
process has been first awakened and the time it is executed, the monitoring for
re levant data base events continues. Thus, a precondition process, w h e n f inal ly
executed , may check more than one part of the data base for satisfaction.

5

The basic structure and components of the HSII organization may be depic ted

as s h o w n in the message transaction diagram of Figure 1. The diagram indicates the

paths of active information flow between the various components of the p r o b l e m -

solv ing system as solid arrows; paths indicating control activity are shown as b roken

a r r o w s . The major components of the diagram include a passive global data s t ruc tu re

(the blackboard) which contains the current state of the problem solution. Access to the

blackboard is conceptually centralized in the blackboard handler module, * w h o s e

p r imary function is to accept and honor requests from the active processing elements to

r e a d and wr i te parts of the blackboard. The active processing elements which pose

these data access requests consist of knowledge-source processes and their associated

preconditions. Preconditions are activated by a blackboard monitoring mechanism

which monitors the various write-actions of the blackboard handler; whenever an e v e n t

occurs which is of interest to a particular precondition process, that precondit ion is

act ivated. If upon further examination of the blackboard, the precondit ion finds itself

"sat isf ied," the precondition may then request a process instantiation of its associated

knowledge source to be established, passing the details of how the precondit ion was

satisf ied as parameters to this instantiation of the knowledge source. Once instantiated,

the knowledge -source process can respond to the blackboard data condition which was

detected b y its precondit ion, possibly requesting further modifications be made to the

b lackboard, perhaps thereby triggering further preconditions to respond to the latest

modifications. This particular characterization of the HSII organization, whi le cer ta in ly

o v e r l y simplified, shows the data-dr iven nature of the knowledge source activations and

interact ions.

The following sections of this paper will attempt to refine this diagram of the

HSI I organizat ion by pointing out the difficulties that arise from this overs impl i f ied

representat ion of the organization and by supplementing the various components of this

simple diagram to resolve these problems and result in a more complete organizat ion for

A I prob lem-so lv ing in multiprocessing environments. A more complete message

t ransact ion diagram for HSII will be presented in a subsequent section.

T h e blackboard handler module could be implemented either as a procedure which is
called as a subroutine from precondition and knowledge source processes, or as a
process which contains a queue of requests for blackboard access and modification
sent b y precondit ion and knowledge source processes. In the implementation
d iscussed in this paper, the blackboard handler module is implemented as a
subrout ine .

6

Figure 1. Simplified HSII System Organization

HEARSAY II MULTIPROCESSING MECHANISMS

Given the decision that multiple preconditions may be simultaneously sat isf ied

and that multiple Knowledge-source processes may execute concurrent ly , var ious

mechanisms must be provided to accommodate such a multiprocessing env i ronment .

Mechanisms must be provided to support the individual localized executions of the

var ious active and ready processes and to keep the processes from interfer ing wi th one

another , either direct ly or indirectly. On the other hand, mechanisms must also be

p r o v i d e d so that the various active processes may communicate with one another so as

to achieve the desired process cooperation. Since the various constituent knowledge

sources are assumed to be independently developed and are not to presume the expl ic i t

ex is tence of other knowledge sources, communication among these knowledge sources

must necessar i ly be indirect. The desire for a modular knowledge source s t ruc tu re

arises from the fact that usually many different people are invo lved in the

implementation of the set of knowledge sources, and, for purposes of exper imentat ion

and knowledge source performance analysis, the system should be able to be easi ly

reconf igured with alternative subsets of knowledge sources. This communication takes

t w o pr imary forms: data base monitoring for collecting pertinent data event information

for future use (Local contexts and precondition activation), and data base monitoring for

the occur rence of data events which violate prior data assumptions (tags and messages).

T h e fol lowing paragraphs will discuss these forms of data base monitoring and their

re lat ionship to the data access synchronization mechanisms required in a mult iprocess

sys tem organizat ion.

Local Contexts

Interprocess communication (and interference) among knowledge sources and

their associated preconditions occurs mainly via the global data base, as a result of the

design decisions involved in trying to maintain process independence. It is t h e r e f o r e

not surpr is ing that the mechanisms necessary to bring about the desi red process

cooperat ion and independence are based on global data base considerations. The global

data base (the blackboard) is intended to contain only dynamically current information.

Since precondit ions (being data-directed) are to be tested for satisfaction upon the

occur rence of relevant data base changes (which are historical data events), and since

nei ther precondit ion testing nor action execution (nor the sequential combination of the

8

t w o) is assumed to be an indivisible operation, localized data bases must be p r o v i d e d

for each process unit (precondition or action) which needs to remember re levant

historical data events. These localized databases, called local contexts in HSII , w h i c h

r e c o r d the changes to the blackboard since the precondition process was last e x e c u t e d

or the knowledge source process was created provide personal ized operat ing

env i ronments for the various precondition and knowledge-source processes. A local

contex t p r e s e r v e s only those data events* and state changes relevant to its o w n e r .

T h e creat ion time of the local context (i.e., the time from which it begins collecting data

e v e n t s) is also dependent upon the context owner. Any given local context is built up

incremental ly : when a modification occurs to the global data base, the result ing data

e v e n t is distr ibuted to the various local contexts interested in such events . The var ious

pr imit ive data modification routines (or node creation routines) are responsible for the

d is t r ibut ion of the data events which result from the modification, just as these

modification routines ere also responsible for sending warning messages to those

p rocesses which want to be notified when specific characteristics of a particular node

are a l t e r e d . 2 Thus, the various local contexts retain a history of re levant data e v e n t s ,

whi le the global data base contains only the most current information.

Data Integrity

Since precondition and knowledge-source processes are not guaranteed to be

execu ted uninterruptedly , these processes often need to assure the integr i ty of va r ious

assumptions they are making about the contents of the data base; for should these

assumptions become violated due to the actions of an intervening process, the f u r t h e r

computation of the assuming process may have to be altered (or terminated). One w a y

to approach the problem of data integrity is to guarantee the val idity of data

assumptions b y disallowing intervening processes the ability to modify (or perhaps e v e n

to examine) critical data. In order to guarantee the integrity of data th rough the

mechanism of exclusive access, the HSII system provides two forms of locking pr imit ives,

node- and region-locking. Node-locking guarantees exclusive access to an exp l ic i t l y

1 T h e information which defines a data event consists of the locus of the event (i.e., a
data node name and a field name within that node) and the old value of the f ield (the
new value being stored in the global data base).

2 T h e use of these warning messages as way of preserving data integr i ty will be
discussed in the next section.

9

speci f ied node in the blackboard, whereas region-locking guarantees exclusive access to

a col lect ion of nodes that are specified implicitly based on a set of node character ist ics .

In the cur rent implementation of HSII, the region characteristics are specif ied b y a

part icular information level and time period of a node. If the blackboard is cons idered

as a two-dimensional structure with coordinates of information-level and time, then

reg ion - lock ing permits the locking of an arbitrary rectangular area in the b lackboard.

Region- locking has the additional property of preventing the creation of any new node

that wou ld be placed in the blackboard area specified by the region b y other than the

process which had requested the region-lock. Additional locking flexibil ity is in t roduced

b y allowing processes to request read-only access to data fields; this reduces possible

content ion b y permitting multiple readers of a given field to coexist, while excluding any

w r i t e r s of that field until all readers are finished. The system also prov ides a "super

lock," which allows an arbitrary group of nodes and regions to be locked at the same

time. A predef ined linear ordering strategy for non-preemptive data access allocation

(Coffman, et a/., 1971) is applied by the "super lock" primitive to the desired n o d e - and

reg ion - locks so as to avoid the possibility of data base deadlock.

However , this technique of guaranteeing data integrity through exc lus ive

access is only applicable if all the nodes and regions to be accessed and modified are

known ahead of time. The sequential acquisition of exclusive access to nodes and

reg ion , without intervening unlocks, can result in the possibility of deadlock. In the HSI I

b lackboard, nodes are interconnected to form a directed graph structure; because it is

poss ib le to establish an arbitrari ly complex interconnection structure, it is of ten v e r y

diff icult for a knowledge-source process to anticipate the sequence of nodes it wil l

des i re to access or modify. Thus, the mechanisms of exclusive access cannot a lways be

used to guarantee data integrity in a system with a complex data structure and a set of

unknown processes. Further, even if the knowledge source can anticipate the area in

the blackboard within which it will work and thereby request exclusive access to this

area, the area may be v e r y large, thus leading to a significant decrease in potential

parallel act iv ity caused by other processes waiting for this locked area to become

available.

An alternative approach to guaranteeing data integrity is to prov ide a means

b y which a process (precondition or knowledge source) may place data assumptions

about the particular state of a node or group of nodes in the data base (the action of

putt ing these assumptions in the blackboard is called tagging). If these assumptions are

10

inval idated b y a subsequent blackboard modification operation of another process , then

a message indicating this violation is sent to the process making the assumption. In the

meantime, the assuming process can proceed without obstructing other processes , until

such time as it intends to modify the data base (since data base modification is the o n l y

w a y one process can affect the execution of another). The process must then acquire

exc lus ive access to the parts of the data base involved in its prior assumptions (wh ich

parts will have been previously tagged in the data base to define a critical data set)^

and check to see whether the assumptions have been violated (in which case, messages

indicating those violations would have been sent to the process). If a violat ion has

o c c u r r e d , the assuming process may wish to take alternative action; o therwise , the

intended data base modifications may be made as if the process had had exc lus i ve

access throughout its computation. This tagging mechanism can also be used to signal

the knowledge -source process that the initial conditions in the blackboard (i.e., the

precondi t ion pattern) that caused the precondition to invoke it have been modified; this

is accomplished by having the precondition tag these initial conditions on behalf of the

knowledge -source process prior to the instantiation of the knowledge source.

In summary, the HSIt organization provides mechanisms to accomplish both of

these forms of data integrity assurance: the various data base locking mechanisms

desc r ibed prev ious ly provide several forms of exclusive or read -on ly data access; and

the data tagging facility allows data assumptions to be placed in the data base wi thout

in ter fer ing with any process' ability to access or modify that area of the data base (w i t h

data invalidation warning messages being sent by data base monitors w h e n e v e r the

assumptions are violated).

To prov ide a basis for the discussion in the subsequent sections of this paper ,

F igure 2, depicting the various components of the HSII organizational s t ruc tu re , is

o f f e r e d . The diagram is a more detailed version of the message transaction model

p r e s e n t e d prev ious ly . The new components of this diagram are primarily a result of

addressing multiprocessing considerations.

As in the earl ier, more simplified organizational diagram, the dynamical ly

c u r r e n t state of the problem solution is contained in a centralized, shared data base,

called the blackboard. The blackboard not only contains data nodes, but it also r e c o r d s

A Actual ly , the requirement is that no other process be able to wr i te to these parts of
the data base.

11

s c h e d u l e r
q u e u e s

< - a c t i v a t e - P R E r e q u e s t
a c t i v a t e / t e r m i n a t e

Figure 2. HSII System Organization

data monitoring information (tags) and data access synchronization information (locks).

Access to the blackboard is conceptually centralized in three modules. As be fo re , the

blackboard handler module accepts and honors read and wri te data-access requests

f rom the active processing elements (the knowledge-source processes and their

precondition processes). A lock handler coordinates data-access synchron izat ion

requests from the knowledge-source processes and preconditions, with the abil ity to

block the progress of the requesting process until the synchronization request may be

satisf ied. A monitoring meclzanism is responsible for accepting data tagging requests

f rom the knowledge-source processes and preconditions, and for sending messages to

the tagging processes whenever a tagged data field is modified. It is also the

respons ib i l i t y of the monitoring mechanism to distribute data events to the var ious local

contexts of the knowledge-source processes and preconditions, as well as to act ivate

precondi t ion processes whenever sufficient data events of interest to those

precondit ions have occurred in the blackboard.

Associated with each active processing element is a local data base, the local

context, which records data events that have occurred in the blackboard and are of

interest to that particular process. The local contexts may be read b y their associated

p rocesses in order to find out which data nodes have been modified recent ly and what

the p rev ious values of particular data fields were. The local contexts are automatically

maintained b y the blackboard monitoring mechanism.

Upon being activated and satisfied, precondition processes may instantiate a

knowledge source (thereby creating a knowledge-source process), passing along the

reasons for this instantiation as parameters to the new knowledge-source process and

at the same time establishing the appropriate data monitoring connections necessary fo r

the new process. The goal-directed scheduler retains the actual control o v e r allocating

hardware processing capability to those knowledge-source processes and precondi t ion

p rocesses which can best serve to promote the progress of the problem solution.*

One w a y a scheduler might help in reducing (or eliminating) global data base access
in ter fe rence is to schedule to run concurrently only processes whose global data
demands are disjoint. Such a scheduling policy could even be used to supplant an
expl ic i t locking scheme, since the global data base locking would be e f fec t i ve l y
handled b y the scheduler (albeit probably on a fairly gross level). Of course , o t h e r
factors may rule out such an approach to data access synchronizat ion, such as an
inabil i ty to make maximal use of the available processing resources if on l y d a t a -
disjoint processes are permitted to run concurrently, or the inability to know in

13

EXPERIMENTS WITH AN IMPLEMENTATION

The preceding sections of this paper have presented var ious of the

mechanisms necessary in implementing a knowledge-based problem-solv ing system such

as HSI I in a multiprocessing environment. The present sections will discuss the var ious

exper iments that have been performed in an attempt to characterize the mult iprocessing

per formance of the HSII organization in the speech-understanding task.

HSII Multiprocess Performance Analysis through Simulation

In order to gain insight into the various efficiency issues involv ing

mult iprocess problem-solv ing organizations, a simulation model was incorporated wi th in

the uniprocessor vers ion of the HSII speech-understanding system. The HSII p r o b l e m -

solv ing organizat ion was not itself modeled and simulated, but rather the actual HSI I

implementation (which is a multiprocessing organization even when execut ing o n a

un ip rocessor) was modified to permit the simulation of a hardware mult iprocessor

env i ronment .

There were four primary objectives of the simulation exper iments: a) to

measure the software overheads involved in the design and execution of a complicated,

da ta -d i rec ted multiprocess(or) control structure, b) to determine whether there rea l ly

ex is ts a significant amount of parallel activity in the speech-understanding task, c) to

unders tand how the various forms of interprocess communication and in ter fe rence ,

especia l ly that from data access synchronization in the blackboard, affect the amount of

e f fec t i ve parallelism realized, and d) to gain insight into the design of an appropr ia te

schedul ing algorithm for a multiprocess problem-solving structure. Cer ta in ly , any

resul ts presented will reflect the detailed efficiencies and inefficiencies of the part icular

sys tem implementation being measured, but hopefully the organization of HSI I is

suf f ic ient ly general that the various statements will have a wider quant i tat ive

appl icabi l i ty for those considering similar multiprocess control structures.

By way of summary, the primary characteristics of the HSII organizat ion

advance the precise blackboard demands of each knowledge-source instantiation.
Nonetheless, the information relating to the locality of knowledge-source data
re fe rences is useful in scheduling processes so as to avoid excessive data access
in ter ference (thereby improving the effective parallelism of the system).

14

include: a) multiple, d iverse, independent and asynchronously executing knowledge

sources , b) cooperating (in terms of control) via a generalized form of the h y p o t h e s i z e -

and - tes t paradigm involving the data-directed invocation of k n o w l e d g e - s o u r c e

p rocesses , and c) communicating (in terms of data) via a shared blackboard- l ike data

base in which the current data state is held in a homogeneous, multidimensional,

d i r e c t e d - g r a p h data structure.

The HSU Speech Understanding System: The Simulation Configuration

The configuration of the HSH speech-understanding system, upon which the

fo l lowing simulation results were based, consists of eight separate generic knowledge

sources (each of which may be realized by several active instantiations at any g i v e n

moment dur ing the problem solution), each of which represents some body of knowledge

re levant to the speech-understanding task. Due to the excessive cost of the simulation

e f fo r t (and due to the limited stages of development of some available knowledge

sources) , on ly a subset of the available knowledge sources was actually used in the

simulation experiments. Appendix A (which was extracted from (Lesser , et al., 1974))

contains a more detailed description of the blackboard and the var ious knowledge

sources for the more complete HSH speech-understanding system. The knowledge

sources used in the simulation were : the Segment Classifier, the Phone Synthesizer

(consist ing of two knowledge sources), the Phoneme Hypothesizer, the Phone-Phoneme

Synchronizer (consisting of three knowledge sources), and the Rating Policy Module.

T h e s e knowledge sources are activated by half a dozen precondition processes (wh ich

are permanently instantiated in the system), which are continuously monitoring the

b lackboard data base for events and data patterns relevant to their associated

knowledge sources. Both knowledge sources and preconditions may f ree ly access the

cent ra l i zed blackboard data base, which consists of nine lexicon levels.* The part icular

levels used w e r e chosen so as to facilitate the information exchange b e t w e e n the

var ious component knowledge sources.

This set of knowledge sources and preconditions and the associated operat ing

sys tem facilities prov ided by the HSH organization were first implemented to execute on

1 While there are eight conceptual information levels within the HSH s p e e c h -
understanding system (see Appendix A), the blackboard is abstract ly segmented
according to lexicons, rather than information levels, since lexicons allow a f iner
abstract decomposition of the blackboard.

15

a uniprocessor DECsystem-10 computer. The particular implementation r e p r e s e n t e d

he re was programmed in the Algol-l ike language, SAIL (Swinehart and Sproul l , 1971),

using SAIL 's multiprocessing facilities (Feldman, et aL, 1972) and making ex tens ive use

of its LEAP associative data storage facility (Feldman and Rovner, 1969). Thus , whi le

the hardware environment of this version of the HSH speech-understanding system is

that of a single processor , the software environment is the multiprocessing s t ruc tu re

desc r ibed throughout this paper. The simulation experiments were then run using this

HSH configurat ion, simulating the hardware environment of a c l o s e l y - c o u p l e d

mult iprocessor where processors can directly communicate with each other t h r o u g h

shared memory. The size of the HSH configuration used in the simulations was about

180K, 3 6 - b i t words ; 70K of this total was the HSH operating system plus the SA IL

runtime routines, 73K was precondition and knowledge source code plus var iables , and

the remainder (which varied from 20K to 4 5 « depending on the number of p rocessors

being simulated and the number of processes being instantiated) rep resented the

b lackboard data base plus process activation records and other SAIL working space.

T h e simulations were carried out to determine the efficiencies of the var ious HSH

mult iprocessing mechanisms discussed previously, as well as to gain some insight into

any problems that might arise in the ensuing implementation of a HSH s p e e c h -

understanding system for the Carnegie-Mellon C.mmp multiprocessor.* The fo l lowing

sect ions will discuss the results of the various experiments which have been pe r fo rmed

using the multiprocessor-simulation version of the HSH speech-understanding system.

Simulation Mechanisms and Simulation Experiments

The various multiprocessor simulation results were obtained b y modifying the

f low of control through the usual HSII multiprocessing organization to allow simulation

schedul ing points e v e r y time a running process could interact in any w a y w i th some

other concur rent ly executing process. Such points included blackboard data base

accesses and data base access synchronization points (including attempts to acquire

data base resources, both at the system and user levels, and any resulting points of

T h e implementation of the C.mmp version of the HSII speech-understanding sys tem
thus far has been, in fact, essentially a direct mapping of the D E C s y s t e m - 1 0
implementation, with additional design being done as necessary to solve the part icular
problems of running in the C.mmp environment (such as having to reso lve the small
address space problem, wherein any given process may have at any one moment o n l y
a 3 2 K - w o r d window into the centrally located main memory).

16

process suspension due to the unavailability of the requested resource, as wel l as the

subsequent points of process wake-up for retrying the access request) . Simulation

scheduling points were also inserted whenever a data modification warning message

(t r i g g e r e d b y modifying a tagged data field) was to be sent, as well as w h e n e v e r a

p rocess attempted to receive such a message. The scheduling mechanism itself was also

modified to allow for the simulated scheduling of multiple processing units, wh i le

maintaining the state information associated with each processor being simulated (such

as the processor clock time of that simulated processor and the state of the part icular

p rocess being run on that processor). The simulation runs were performed so as to

keep the processor clock-times of each processor being simulated in s tep w i th one

another (the simulation being event-driven, rather than sampled), the reby allowing for

the accurate measurement and comparison of concurrent events across processors . B y

select ing the number of processors to be simulated and choosing the usual schedul ing

parameters and precondit ion and knowledge-source parameters, a chronological t race of

the act iv i ty of each process and processor could be obtained. By accumulating statistics

dur ing the trace period and by performing various post -processing operations upon this

act iv i ty t race record , the simulation results presented in the following sections w e r e

obtained.

Most of the results presented here were achieved by using a single set of

knowledge sources (as described above), with a single speech-data input ut terance ,

keeping the data base locking structure and scheduling algorithms essential ly f i x e d ,

whi le v a r y i n g the number of simulated (identical) processors. Several runs w e r e also

pe r fo rmed to test the effects of altering the knowledge-source set, altering the locking

s t r u c t u r e , and altering the mode of data input (the normal input mode being a u t t e r a n c e -

t i m e - o r d e r e d introduction of input data which simulates real-time speech input).

Measures of Multiprocessing Overhead: Primitive Operation Timings

Time measurements of various primitive operations were made using a 1 0 -

microsecond hardware interval timer. Some of the timed primitive operat ions (such as

those involv ing simple data base access and modification) were not especial ly subject to

the fact that the problem-solving organization involved multiple parallel p rocesses ,

w h e r e a s others (such as those involving process instantiation and p rocess

synchron izat ion) w e r e direct ly related to the multiprocess aspects of the organizat ion

17

(and might even be taken in part as overhead when compared to alternative s i n g l e -

p rocess system organizations). The times for the various system operat ions, as s h o w n

in Tab le 1, should be read as relative values, comparing the mult iprocess -or iented

operat ions with the data accessing operations to get a relative feel for the ove rheads

invo l ved in support ing and maintaining the multiprocess organization of HSIL Keep in

mind that such time measurements are highly dependent on the part icular

implementation and can change fairly radically when implemented dif ferent ly . In fact, a

p r imary use of such timings is in determining operating system bottlenecks so that such

code sections can be rewri t ten in a more optimal way. As a result, some pr imit ive

operat ions reflect execution times which are a result of extensive optimization attempts,

whi le other operations (in particular, the "super lock" operations, lock! and unlock!)

have not y e t been subjected to this optimization.

Table 1 gives timing statistics relating to the costs involved in maintaining the

shared , central ized blackboard data base. Two sets of statistics are g iven , one set

showing the operation times without the influence of data access synchron izat ion

(b lackboard locking) and one set with the locking structures in effect. These t w o sets

of times g ive a quantitative feeling for the cost of data access synchron izat ion

mechanisms in this particular implementation of HSIL The figures g iven include the

average runtime cost per operation, the number of calls (in this particular timing run) to

each operat ion (thereby showing the relative frequencies of operation usage), and the

percentage of the overall runtime consumed by each operation. With respect to the

individual entr ies, crcate.node is a composite operation (involving many f ie ld -wr i tes and

var ious local context updates) for creating blackboard nodes. The read.node.field and

write.node.field operations are used in accessing the individual fields of a node. Note

that included in any given f ield-read or -wr i te operation is the cost of perhaps tagging

(or untagging) that particular field (or its node). The various functions of the

b lackboard monitoring mechanism are contained within the f ie ld -wr i te operations. T h u s ,

also included in the f ie ld -wr i te operation is the cost of distributing the data e v e n t

result ing from the wri te operation to all relevant precondition and knowledge -source

p rocess local contexts, as well as the cost of sending tag messages to all p rocesses

wh ich may have tagged the field being modified; these additional costs are also

accounted for independently in the send.tnsgs.and.events and notify.sset table ent r ies .

F i e l d - w r i t e operations are also responsible for evaluating any p re -p recond i t ions

associated with the field being modified and activating any precondition whose p r e -

18

7o total runtime mean time (ms) number of calls
w/o w/ w/o w/ w/o w /
lock lock locK lock lock lock

Blackboard Accessing: -

create .node 6.96 . 4.15 35.81 50.77 287 287
read.node.f ie ld 5.06 15.68 0.31 2.03 23577 25279
wr i te .node. f ie ld 14.13 7.75 13.96 18.44 1493 1476

Blackboard Associative Retrieval:

r e t r i e v e 2.72 4.98 25.07 109.45 160 160
get.time.adja'cent 9.31 15.33 23.44 92.00 586 586
get .struct .adjacent 3.99 6.31 43.35 163.20 136 136
get .nodes. in . rgn 2.05 0.87 2.98 3.00 1015 1015

Process Handling:. •

invoke.ks 5.29 2.30 22.64 23.64 345 342
create .ks .prcs 0.75 0.31 3.21 3.22 345 342
ks.cleanup. 8.20 5.24 35.06 53.94 345 342
invoke .p re 0.10 1.04 10.44 10.59 14 14
c reate .p re .p rcs 0.42 0.40 ' 8.53 19.57 72 72'

Local Context Maintenance:
•

f

t ransfer . tags 7.12 2.99 9.12 9.17 ' 1152 1149
delete.all .tags 0.52 0.22 2.01 2.03 383 380

not i fy .sset 6.52 3.01 2.63 2.92 3665 3626

send.msgs.and.events 4.04 2.12 3.68 4.68 1021 1594
receive.msg 0.36 0.15 1.00 1.01 531 530

read.cset .or .sset 0.11 0.05 0.84 0.84 • 192 192

Data Access Synchronization:

l o c k ! (o v e r h e a d) — 7.78 — 57.47 — 476

unlock! (overhead) — 3.22 — 23.78 — 476

lock.node — . 2.32 — 2.94 — 2770

exam.node — 9.34 — 2.40 — 13675

lock. rgn — 0.11 — 1.77 — 227

wri te .access.chk — 0.41 — 0.98 1470

read.access.chk — 14.45 — 1.60 — 31761

Table 1. Primitive Operation Times

19

precondi t ion is satisfied. Included in the cost of reading a data field (e.g.,

read.node.field) is the cost of verify ing the access right of the calling process to the

node being read (which could involve a temporary-locking operation,* the cost of wh ich

is also g i ven independently in the Loclunode table entry) ; this access-r ight checking cost

is also separate ly accounted for by the recud.access.chk operation. It should be noted

that because most of the mechanisms required to implement a data-d i rected cont ro l

s t ruc tu re are embedded in the blackboard write operations, the time to execute a w r i t e

operat ion is significantly more expensive than a read operation. However , the actual

cost in terms of total run time of implementing a data-directed control s t ructure is

comparat ive ly small in the HSII speech-understanding system, because the f requency of

read operat ions is much higher than that of write operations. If this relat ive f r e q u e n c y

for read and wr i te operations holds for other task domains (e.g., v ision, robot ics) , then a

da ta -d i rec ted control structure (which is a v e r y general and modular t ype of sequencing

paradigm) seems to be a v e r y reasonable framework within which to implement such

tasks.

Additional blackboard operation costs are described in the Associat ive

Retr ieval section of Table 1. Associative retrieval is based on specifying partial node

descr ipt ions (called matching prototypes) which serve as a means of ret r iev ing the set

of b lackboard nodes fitting that partial description. Retrieve represents the var ious

re t r ieva l operations possible using these matching prototypes. Retrieval from the

b lackboard may also be done by requesting the nodes which are t ime-adjacent

(according to the utterance-time dimension of the speech-understanding blackboard) or

s t ructura l l y adjacent (according to the blackboard graph structure) to a g iven node (or

set of nodes); get.time .adjacent and get.str act.adjacent perform these operat ions .

Fur thermore , retr ieval may be done by requesting the set of nodes contained within a

cer ta in region of the blackboard (by get.nodes.in.rgn).

Table 1 also relates the costs of process handling within HSII. Process

invocat ion and process creation are separated (the former being a request from a

precondi t ion or knowledge-source process to the scheduler to perform the latter) , and

the costs are accounted separately, as in inuoke.ks and create.fe5.prc5. Ks.cleanup is the

If a process has not previously locked the node to which it desires access and the
process does not have any other node locked, then the system will temporar i ly lock
the node for the duration of the single read or write operation, without the process
having expl icit ly to request access to the node.

20

http://get.nodes.in.rgn
http://create.fe5.prc5

cost of terminating a knowledge-source process; preconditions never get terminated.

T h e cost of initializing and terminating a knowledge-source process (i.e., im/oke.ks and

ks.cteanup) is due to the overheads involved in maintaining local contexts , locking

s t ruc tu res , and data base monitoring (tagging), all of which are necessitated b y the

mult iprocess nature of the HS1I organization. However, in a relative sense, this is not

e x p e n s i v e , since the total overhead associated with process handling amounts to o n l y

about 9Z of the overal l execution time.

Additionally, local context maintenance costs are given in Table 1, since t h e y

are also a cost of having asynchronous parallel processes. While individual tag c reat ion

and delet ion is handled by the primitive f ield-read and -wr i te operations, tags may be

t r a n s f e r r e d from a precondition to the knowledge source it has invoked via transfer.tags

and d e s t r o y e d at termination of a process via delete.alLtags. As noted above, notify.sset

and send.msg.cLtid.events are sub-operations of the f ie ld-wri te operations and r e p r e s e n t

the cost of distributing data event notifications to all relevant local contexts .

Recelve.msg is the operation used by precondition or knowledge-source processes to

rece i ve a tagging message (or perhaps wait for one, if one does not y e t ex ist) ; and

read.cset.or.sset is the operation for retrieving the information from a local context .

Finally, Table 1 gives the costs associated with the data access

synchron izat ion mechanism. Lock! and unlock! represent the overhead costs of locking

and unlocking a group of nodes specified by the process requesting access r ights .

T h e s e t w o operations are among the most complex routines in the HSII operat ing

sys tem, the complexity arising from having to coordinate the allocation of data base

resources b y two independent access allocation schemes (node-locking and r e g i o n -

locking). This coordination is necessary in order to avoid any possibil ity of data base

deadlock b y maintaining a homogeneous linear ordering among all data resources (nodes

and regions) . The costs of lock! and unlock! do not include the time spent in per forming

the actual primitive locking operations. The primitive lock costs are g iven b y lock.node

(lock a node for exclusive access), exam.node (lock a node for read -on l y access), and

lockxgn (lock a region for exclusive access). The access-checking operat ions

(write.access.chk and read.access.chk) are used by the blackboard accessing rout ines

d iscussed above.

These timing statistics can be used to determine the amount of sys tem

o v e r h e a d incurred in running precondition and knowledge-source processes under the

21

HSH operat ing system. The following summary statistics are o f fe red , g i ven as

percentages of the total execution time, the percentages being calculated so as to avoid

over lapp ing between categories (as, for example, factoring blackboard reading costs out

of b lackboard access synchronization):

Blackboard reading 167,
Blackboard writing 47
Associative retrieval 7%
Internal computations of processes 277

Local context maintenance 107
Blackboard access synchronization 277
Process handling 97

Another w a y of viewing these figures is that approximately half of the execut ion time

invo lves multiprocessor overheads (i.e., local context maintenance, blackboard access

synchron i za t ion , and process handling). Based on the assumption that this mult iprocess

o v e r h e a d is independent of the parallelism factor achieved,* then a parallelism factor of

2 or g reate r is required in order to recover the multiprocess overhead.

Effective Parallelism and Processor Utilization

The problem-solving organization underlying HSH was designed to take

maximum advantage of any separability of the processing or data components available

wi th in that organization. Knowledge sources were intended to be largely independent

and capable of asynchronous execution in the form of knowledge-source processes .

Overa l l system control was to be distributed and primarily data-directed, being based on

events occurr ing in a globally shared blackboard data base. The intercommunication

(and interdependence) of the various knowledge-source processes was to be minimized

b y making the blackboard data base the primary means of communication, t h e r e b y

exhibi t ing an indirection with respect to communication similar to the indirect d a t a -

d i rec ted form of process control. Such a problem-solving organization was be l ieved to

be part icular ly amenable to implementation »n the hardware environment of a ne twork

of c lose ly - coup led asynchronous processors which share a common memory. G i ven

This assumption, based on timing statistics from a series of runs wi th d i f ferent
numbers of processors, seems valid except for the cost of context swapping and
process suspension, which depends upon the amount of data base inter ference and
the number of processors.

22

suff ic ient ly many completely non-interfering processes (i.e., processes which do not

in te r fe re in any v/ay with the execution progress of one another), one would expect the

ach ieved parallelism (speed-up) of that set of processes executing on n identical

p rocessors to be a factor of n, as compared to the same set of processes execut ing on

a single processor (assuming the same scheduling and multiprocessing overheads) .

While the HS1I organization attempted to allow the various knowledge sources to be as

independent as possible, the various processes were to cooperate with one another

(pr imar i ly via the blackboard data base) in the effort to effect the problem so lu t ion . 1

This necessary cooperation (and the various forms of execution interference result ing

from it) was expected to result in the achieved parallelism in a mult iprocessor

env i ronment being somewhat less than the potential parallelism without inter ference.

Several experiments were run to measure the parallelism achieved in this

part icular implementation of the HSII problem-solving organization using v a r y i n g

numbers of ident ical ' processors. Each of these experiments was run wi th the

k n o w l e d g e - s o u r c e set described previously, using the same input data (int roduced into

the data base so as to simulate real-time speech input), the same blackboard locking

s t r u c t u r e , and the same scheduling algorithm, while vary ing the number of (identical)

p rocessors . An example of the graphical output produced by the simulation, for the

case of eight processors , is displayed in Figure 3. To comment on these act iv i ty p lots ,

the *'* runnable processes" plot gives the number of processes either running or r e a d y

to run at each simulation scheduling point; the "n running processes" plot g ives the

number of actively executing processes at each scheduling point; the "# r e a d y

p r o c e s s e s " plot shows the number of processes awaiting assignment to a p rocessor at

each scheduling point; and the "* suspended processes" plot gives the number of

p rocesses blocked from executing because of data access interference or because t h e y

are waiting on the receipt of a tagging message.

Referr ing to Figure 3c, notice the spiked nature of the r e a d y - p r o c e s s e s plot .

This is a result of delaying the execution of a precondition (due to the limited

process ing power available) beyond the point in time at which its p r e - p r e c o n d i t i o n is

A Note that the size of the HSII blackboard is expected to grow to on ly severa l
thousand nodes (hypotheses and links), at, say, 25 field entries apiece, depending, of
course , on the task domain. Thus, it is assumed (for the purposes of the c u r r e n t
invest igations, at least) that the blackboard is entirely resident in pr imary memory;
thus, input/output operations are not an issue here, the system being essent ia l ly
compute -bound .

23

tf r e a d y

p r o c e s s e s

10
as

30

2S

20

I S

18

5 F-

8 s u s p e n d e d

p r o c e s s e s

Ml I 1 T I ' 1

SO 108 I S O COO 250 300 398 100

t i m e (s e c)

10

as

30

2S

20

10 f-

s

0

50 100 150 200 250 300 350 100

t i m e (s e c)

Figure 3a-d . 8 Processors

24

f i rst sat isf ied: the longer a precondition is delayed, the more data events it is l ikely to

accumulate in the meantime, and the more knowledge-source processes it is l ikely to

instantiate once it does get executed; hence the spiked nature of the resultant r e a d y -

p rocesses plots for configurations of few processors. As parallel processing p o w e r

increases, precondit ions can more often be run as soon as their p re -p recond i t ions are

init ial ly satisfied, and the spiking phenomenon subsides.

As an example of how these activity plots have been used in upgrading the

per formance of the implementation, compare Figure 4 to Figure 3c. Figure 4 depicts the

process activ ity under the control of a scheduler which did not attempt to per form load

balancing wi th respect to ready preconditions; and as a result of not increasing the

re lat ive scheduling pr ior i ty of preconditions as they received more and more data

e v e n t s , the activity spike phenomenon referred to above became predominant, to the

ex tent of reducing process activity to a synchronous system while the long-t ime wait ing

precondi t ion instantiates a great many knowledge-source processes all at once.* F igure

3c shows the activity on the same number of processors, but using a somewhat more

intel l igent scheduling algorithm, with a resulting reduction in the o b s e r v e d spiking

phenomena. This improved scheduling strategy is the one used for all plots p r e s e n t e d

here in .

In addition to the plots described above, various other measures w e r e made

to allow an explicit determination of processor utilization and effect ive parallelism for

v a r y i n g numbers of processors. Referring to Table 2, one can get a feeling for the

act iv i ty generated by employing increasing numbers of processors. All simulations

r e p r e s e n t e d in Table 2 were run for equivalent amounts of processing e f for t w i t h

respect to the results created in the blackboard data base by the knowledge source

act iv i ty . The final clock time of the multiprocessor configuration being simulated is

g i v e n in simulated real-time seconds, and the accumulated processor idle and lost times

are also g iven. Idle time is attributed to a processor when it has no process assigned

to it and there are no ready processes to be run; lost time is attr ibuted w h e n the

process on a processor is suspended for any reason and there are no ready p rocesses

This can be inferred from Figure 4 by noting that the sample points (vert ical tick
marks) are taken at each simulation scheduling point, and the lack of samples b e t w e e n
times 220 and 380 indicates that the process that started running at 220 had no
concur rent l y running processes competing with it until time 380, when there w e r e
suddenly 25 new processes contending for computing resources.

25

se

45

10

r e a d y p r o c e s s e s

30

25

20

15

¿00 300 -100 506 600 700 BOO 3 0 0 1000

t i m e (s e c)

Figure 4. 8 Processors-old scheduling strategy

26

number of p rc rs
(all times in sees)

1

CM
 4 8 16 32

(special*)

KS instantiations 355 401 423 421 415 434
PRE activations 82 126 173 213 200 229

mult iprcr clock time 1076 634 389 350 351 43
total idle time 9 15 37 380 2608 867
total lost time 0 5 34 900 1546 0
avg cx t swaps 0 309 942 368 9 0

avg p r c r uti l ization 997 987 957 547 267 377.
e f f e c t i v e # p rc rs 0.99 1.96 3.80 4.32 4.16 11.84
ut i l izat ion s p e e d - u p 1.00 1.98 3.84 4.36 4.20 11.96

* T h e 3 2 - p r o c e s s o r column represents an experiment which
was run under special conditions, to be explained below,
and should not be compared directly to the other columns
of the table.

Table 2. Processor Utilization

wh ich could be swapped in to replace the suspended process. Processor ut i l ization

(calculated using the final clock time and processor idle and lost times) is g iven in Tab le

2; F igure 5 shows the corresponding effective parallelism (speed-up) , based on the

p rocessor util ization factors of Table 2.

The s p e e d - u p for this particular selection of knowledge sources is

appreciable up to four processors, but drops off substantially as one approaches

s ix teen processors . In fact, a rather distressing feature of this effective parallelism plot

is that the s p e e d - u p actually decreases slightly in going from eight processors to a

s i x t e e n - p r o c e s s o r configuration (from a speed-up of 4.36 over the uniprocessor case,

d o w n to 4.20). This may be explained by noting that both the e igh t - and s i x t e e n -

p rocessor runs had approximately equal final clock times; but in the s i x t e e n - p r o c e s s o r

27

case, the number of runnable processes never exceeded sixteen processes, so any

r e a d y process could always be accommodated immediately. As a result , the number of

k n o w l e d g e - s o u r c e instantiations and precondition activations fell off a bit f rom the

e i g h t - p r o c e s s o r case, because the preconditions were more likely to be ful ly sat isf ied

the f i rst time they were activated (since all ready -processes , k n o w l e d g e - s o u r c e

p rocesses in particular, could be executed immediately and complete their intended

actions sooner , so that when a precondition came to be activated, it would more l ikely

f ind its full data pattern to be satisfied); thus, preconditions would not often be abor ted ,

having to be re - tes ted upon receiving a subsequent data event. However , running

f e w e r precondit ions resulted in much more idle time for the s i x t e e n - p r o c e s s o r

conf igurat ion (the increase in lost time indicated in Table 2 is an artifact of having too

many processors available, since suspended processes would tend to remain on

o t h e r w i s e idle processors rather than being swapped off the processor — note the

rather dramatic decrease in context swaps indicated b y Table 2 for the s i x t e e n -

p rocesso r case). The result is a lower proportionate utilization of the p r o c e s s o r

conf igurat ion, and hence a decrease in the effective parallelism from the e i g h t -

p rocessor configuration to the sixteen-processor configuration.

Due to the limited state of development of the total set of knowledge sources ,

the set of knowledge sources used in the simulation was necessarily limited; so the fact

that these plots indicate that not more than about four to eight processors are being

e f fec t i ve l y uti l ized is not to say that the full HSH speech-understanding system needs

o n l y eight processors . One might ask that if only 4,16 processors of the s i x t e e n -

p rocessor configuration are being totally utilized (see Table 2), what is the maximum

potential ef fect ive parallelism, given this set of knowledge sources? To answer this

quest ion , an experiment was performed in which effectively infinite processing p o w e r

was p r o v i d e d to this knowledge-source set and all data access inter ference was

eliminated (b y removing the locking structure overheads and blocking actions); the

scheduling algorithm was kept unchanged, as was the input data, although the input data

stream was entered so as to be instantaneously available in its ent i re ty (rather than

being introduced in a simulated real-time, " le f t - to - r ight" manner). The results of this

exper iment are summarized by the 32-processor column of Table 2 (32 processors was

an e f fec t i ve infinite computing resource in this case, since eight of the processors w e r e

n e v e r used during the simulation). Notice that no lost time was attr ibuted to the r u n ,

due to the lack of locking interference; and the resultant processor util ization was 37%

29

of 32 processors , or 11.84 totally utilized processors. Thus, data base in ter fe rence

caused b y particular data base accessing patterns and associated locking s t ructures of

the knowledge source set used in the experiment significantly affected p rocessor

ut i l izat ion; if the use of the locking structures could be accomplished in a more n o n -

inter fer ing manner, the speed-up indicated by the e ight - or s i x t e e n - p r o c e s s o r

conf igurat ions could be increased substantially. The next section will analyze in detail

the exact causes for this data base inteference, and propose changes to the k n o w l e d g e -

source locking structure so as to reduce potential inteference.

Table 3 presents some other system configurations to show ef fect i ve

p rocessor utilizations under varying conditions. The first row repeats the statistics of

the s i x teen -p rocessor case of Table 2; the second row is a summary of the 3 2 -

p rocessor case of Table 2, as described above. Three further data points are o f f e r e d

to indicate the effects of increasing the size of the knowledge-source set. The last

th ree r o w s of Table 3 involve experiments using an expanded knowledge -source set

consist ing of the knowledge sources of all the previous runs plus the Syntactic Word

Hypothesizer (see Appendix A) and its precondition. Using this expanded k n o w l e d g e -

source set , simulations were performed to evaluate the effects of this knowledge -source

set on a s ix teen -processor configuration with the locking structure in effect , present ing

the input data in the usual " lef t - to - r ight" manner, as well as in the instantaneous

manner used in the infinite-processor test. Comparing the results (in Table 3) to the

original s i x teen -processor run, the " lef t - to - r ight" input scheme achieved a p rocessor

uti l ization of 33/f, up 77 from the smaller knowledge-source set case; and by present ing

all input data simultaneously, the utilization rose to 35%. The fifth row of Table 3

r e p r e s e n t s the results of providing effectively infinite computing power (only 25

p rocesso rs w e r e ever used during the run) to the expanded knowledge-source set and

eliminating all data access interference, in the same manner as for the experiment of the

second row . In this "optimal" situation for the expanded knowledge -source set ,

p rocessor utilization was measured at 467,, or 14.72 totally utilized processors . Again , it

may be noted that a more effective (less interfering) use of the locking s t ructures can

resul t in substantial increases in processor utilization and effective parallelism.

The addition of the Syntactic Word Hypothesizer was able to achieve the

increases in utilization noted in Table 3 because it operates on lexicons that are used

b y on l y one other knowledge source (the Phoneme Hypothesizer) in the basic

k n o w l e d g e - s o u r c e set; hence, the process interference introduced by adding this

30

exper iment multiprcr total total 7 util ef fect ive
desc r ip t ion clock idle lost * prcrs

8 K S ' s > 6 P R E ' s 351 2608 1546 267. 4.16
16 p r c r s , w/ lock
l - t o - r input

8 K S ' s , 6PRE's 43 867 0 377. 11.84
3 2 p r c r s , w/o lock
instantaneous input

9 KS's, 7 PRE's 148
16 p r c r s , w/ lock
l - t o - r input

9 KS's, 7 PRE's 155
16 p r c r s , w/ lock
instantaneous input

9 KS's, 7 PRE's 13
32 p r c r s , w/o lock
instantaneous input

854 726 33% 5.28

839 784 35% 5.60

226 0 467 14.72

Table 3. System Configuration Variations

knowledge source was minimal. Unfortunately, the development of knowledge sources

at lexicon levels which more directly conflict with those of existing knowledge sources

has been limited, so direct experimentation on the interfering effects of such knowledge

sources could not be performed; but based on the observations comparing the 3 2 -

p rocessor without - lock experiments to the original s ix teen-processor w i th - lock runs ,

substantial interference due to ineffective use of the locking st ructure would be

e x p e c t e d in such cases of adding "competing" knowledge sources. One mitigating

circumstance which could alleviate such interference was noted in the " instantaneous"

input case of the expanded knowledge-source set case, as compared to the " l e f t - t o -

31

r i gh t " input case: if process activity can be spread across the utterance-t ime dimension

of the blackboard, process interference would decrease — but interference due to data

access synchronizat ion interference can easily overwhelm this improvement. F u r t h e r

exper iments along these lines will be attempted as the appropriate knowledge sources

become available for use.

Execution Interference Measurements

In addition to the primitive operation timings and achieved parallelism

measurements g iven above, various other measurements were made to determine the

var ious aspects of system performance as related to multiprocessing. As has a l ready

been mentioned, a major concern in a multiprocess environment in which the var ious

p rocesses are not ent irely independent is that of execution interference. Execut ion

in te r fe rence may arise whenever any given process enters a critical section wi th in

wh ich it requires the integrity of a given data structure be maintained (t h e r e b y

necessitat ing a means by which to disallow access to others until the critical sect ion is

ex i ted) . Execution interference may also arise whenever processes must s y n c h r o n i z e

their activities and perhaps cause themselves to wait on an event based on an action

wh ich is to be performed by some external process. Thus execution inter ference may

ar ise due to causes external to the process being delayed (as in the case of t r y ing to

access a data structure which is currently held for exclusive access b y another

p rocess) , or the interference may arise due to causes internal to the process being

d e l a y e d (as when a process delays itself by waiting for the occurrence of an ex te rna l l y

caused event) . As a result of the HSII design philosophy, which states that the var ious

knowledge -source processes should be as independent as possible in specif ication and

execut ion , most of the execution interference experienced in HSII is of the ex terna l

v a r i e t y , where in a process is delayed due to external causes unknown to itself (and the

de lay itself is transparent to the process being delayed).

As prev ious ly described, there are two methods in the HSII system for

p r e s e r v i n g data integr i ty : a) guaranteeing exclusive access through the use of n o d e -

and region- locking primitives, and b) placing data assumptions in the b lackboard,

th roug h tagging primitives, which when violated cause a signal to be sent to the process

making the assumption. There is an interesting balance in terms of execut ion o v e r h e a d

and execut ion interference between these two techniques. The reg ion - lock ing

32

technique is least costly in terms of execution overhead and is the easiest to embed in a

p rogram but causes the most execution interference. This is in contrast to the use of

tagging which is the most costly in terms of execution overhead and is the most diff icult

to embed in a program but causes the least execution interference. Both these methods

w e r e used for guaranteeing data integrity in the precondition and knowledge -source set

that was used in the simulation experiments.

In structur ing each knowledge source so as to p reserve its data in tegr i ty , no

a priori assumptions were made about the non-modifiability of any blackboard data that

knowledge source used in its processing (i.e., it was assumed that any b lackboard

information that the knowledge source read could perhaps be modified b y some o ther

concur rent knowledge-source) . This self-contained approach to the design of a

knowledge source's locking and tagging structure is required if the modularity of the

sys tem, wi th respect to deletion or addition of knowledge sources, is to be p r e s e r v e d .

The knowledge sources that were used in the simulation exper iments w e r e

not or iginal ly designed so that they could be interrupted at arb i t rary points in their

p rocess ing , and consequently they lacked the appropriate locking and tagging s t ruc tu re

to guarantee data integrity in a multiprocess(or) environment. The addition, as an

af ter thought , of the appropriate locking and tagging structure to these knowledge

sources was sometimes quite difficult. This was an especially serious problem w h e n an

attempt was made to put tagging primitives into knowledge sources which had internal

backtracking control structures for searching the node graph s t ructure in the

b lackboard. This diff iculty arises because previously made data assumptions (tags in the

b lackboard) associated with a partial path (sequence of nodes in the blackboard) must

be removed upon discovering that the path cannot be successfully completed. T h u s ,

most of the knowledge sources in the experiment did not use tagging as a method of

guaranteeing integr i ty , but rather used a combination of node - and reg ion - lock ing .

H o w e v e r , precondit ions, which have a much simpler structure and general ly do not w r i t e

in the blackboard, were modified to use the tagging mechanism. In addition, to f u r t h e r

s impli fy knowledge-source locking structures, region-locking was used w h e r e v e r

possib le . This excessive use of region-locking was mainly responsible for the signif icant

amount of interference among processes which caused the effect ive p rocesso r

ut i l ization to go from an optimal 12 to a realized 4 (see Table 2).

F igure 6 shows an interesting case demonstrating that the indiscriminate use

33

of reg ion- locking can obstruct the execution progress of many processes and t h e r e b y

temporar i l y reduce the effective parallelism of the system. It represents a snapshot of

the blackboard locking structure taken during the execution of the simulation. The g r i d

s t ruc tu re represents the two-dimensional abstract data structure, the dimensions being

lex icon level and region element number (corresponding to the ut terance- t ime

dimension). At the point of each shapshot, the outstanding node and region locks are

indicated, as well as the areas requested (but not yet obtained) by suspended

processes . The various (non- interfering) tags placed throughout the data base are also

indicated. The key indicates the sets of active and suspended processes (the names

r e f e r r i n g to the precondition and knowledge source names, and the numbers in the

names indicating a process instantiation index unique to that particular process) . This

part icular snapshot was taken from the sixteen-processor simulation run wi th the

smaller knowledge-source set. Notice that PSYN263 has locked regions at the PHON,

MXN, and PSEG lexicon levels for its exclusive access; the nodes locked b y PSYN263

(h y p o t h e s e s being indicated by resequence number>, and links by L<sequence number>)

wi th in these regions are those being created by PSYN263, hence the reason for the

reg ion locks. Unfortunately, this locking action resulted in the suspension of six o ther

p rocesses awaiting access to parts of the PHON and PSEG lexicon levels which o v e r l a p

PSYN263's region- locks. Each of these suspended processes is waiting to acquire

access - r ights to a node in these locked regions; in fact, PRE!PSYN!PSYN and CSEG259

are both waiting on the same node (H141). The diagram also shows the var ious (n o n -

in ter fer ing) tags which were placed on the various nodes at the PHON and PSEG lex icon

levels b y three of the processes at some previous time. Figure 7, which is another

snapshot of locking structure, shows a case where execution interference was not so

signif icant.

The reason the locking structure plots are localized in the lower l e f t -hand

c o r n e r of the blackboard structure is that the construction of the data base in the

speech -p rocess ing task is initially lef t - to - r ight due to the time-sequential nature of the

s p e e c h input. Also, the particular set of knowledge sources chosen for use in the

simulation experiments happened to be an effectively bottom-up speech recogni t ion

sys tem (some of the top -down knowledge sources having not yet been deve loped to a

stable enough state to have been used in the simulations); hence, activity starts in the

lower le f t -hand corner of the blackboard. Further simulations are planned which will

w o r k in a combined top -down and bottom-up fashion, thereby increasing the potential

34

S H D S E N T

SHDWORD

WORD

W R D S U R N

S U R N

PHON

M X N

P S E G

SEG

1 5
Reg ion Locks

10
Node Locks

A : H150.H151.H152
L101.L102

15
Region Waits

20
Node Waits

25
lags

30

Running P r o c e s s e s

A / 1 : ÎPSYM263

S u s p e n d e d Processes

B/2 PRElPSCiPSC
C/3 PREÎUTTBOUNDARIES' .PSC
D/4 : PRE!RP0L!RP0L
E/5: PRE!PSYN!PSYN
F/6: ÎCSEG259
G/7 : 'PSYN262

b: H146 1
c: H142 4
d : L100 7
e: H141
f; H 1 4 Ì g: H69

H72,H75,H75,H77
H149
H69,H70,H70,
H72.H141

Figure 6. 16 Processors - blackboard lock map at time 155.1

S H D S E N T

SHDWORD

co
o

WORD

W R D S U R N

S U R N

PHON

M X N

P S E G

S E G

1 5 10
Region Locks Node Locks

E F: H123.H155.L106
G: L107

15
Region Waits

20
Node Waits

i: H143
j : H I 54

25
T a g s

30

Running Processer ,

A/1
B/2
C/3
D/A

E/5
F/6:
G/7
H/8

PRE!PSC!PSC
PRE!RP0L!RP0L
PRE!PSYN!PSYN
ISEARCH279
1T1ME2S0
!UV282
ÎUV283
ÎUV284

S u s p e n d e d Processes

1/9: PREIUTTBOUNDARIES' .PSC
J / 1 0 : ÎTIME281

3 : H88,H92,H92,H92,
H94,H94,H94,H94,
H98,H98,H98,H98,
H106.H112

4: H27,H27,H38

7. 16 Processors - blackboard lock map at time 183.1

parallelism (since the top -down knowledge sources will presumably not in ter fere w i t h

the execut ion of the bottom-up knowledge sources as much as additional competing

b o t t o m - u p knowledge sources would). The expanded knowledge-source set exper iments

p r e s e n t e d above were a first step in introducing such t o p - d o w n knowledge; as more

knowledge sources become available, their various interference effects wil l be

invest igated. Also, other tasks which could use the HSH organization might not

necessar i ly have the le f t - to - r ight input characteristics of speech, so future simulations

wil l also test a more distributed input pattern, thereby also increasing the potent ial

parallelism b y spreading the process activity across the breadth of the blackboard; the

seve ra l experiments presented above which introduced the input in an " instantaneous"

manner w e r e the initial attempts in this direction.

A more analytic approach to analyzing the data access in te r fe rence

e x p e r i e n c e d b y precondit ion and knowledge source processes, for vary ing numbers of

p r o c e s s o r s , is g iven in Table 4.

number of p rc rs
(all times in sees)

1 2 4 8 16

avg B B accesses/KS 54.4 52.8 54.5 53.9 56.4
avg BB accesses/PRE 96.7 68.7 55.7 48.2 51.1

avg pr im locks/KS 27.9 27.4 28.0 25.7 26.9
avg prim locks/PRE 96.7 68.7 55.7 48.2 51.1

avg dsched/pr im lock(KS) 0 0.020 0.060 0.055 0.053
avg dsched/pr im lock(PRE) 0 0.009 0.026 0.045 0.040

avg dsched duration/KS 0 5.08 5.69 1.75 1.90
avg dsched duration/PRE 0 3.95 1.91 1.35 1.86

avg cx t swaps 0 309 942 368 9
avg cx t swaps/dsched 0 1.03 0.97 0.36 0.01

Table 4. Data Access Characteristics

37

Essentially, Table 4 is an extension of Table 2, which was discussed in the

p r e v i o u s section (i.e., the underlying simulation runs were the same for both tables) .

Execut ion interference was measured by recording the amount of process suspens ion

(also called descheduUng), which results from processes being temporari ly blocked in

their attempts to gain access to some part of the blackboard data base.* As might be

e x p e c t e d , as process activity increases with increasing numbers of p rocessors , the

poss ib i l i ty of execution interference increases (see table entr ies on

"deschedules/primit ive lock"). This phenomenon stops at eight processors because in

these simulation experiments there were rarely more than eight processes execut ing at

any g i ven moment. At the same time, with more and more processing power avai lable,

the l ikelihood of suspended processes being unblocked and becoming available fo r

fu r the r processing increases as the number of processors increases (see table ent r ies

on "descbedule duration"). This phenomenon is also indicated b y the signif icant

decrease in processor context swaps per deschedule (i.e., with more processors , it

becomes less likely that when a process is suspended there will be another p rocess

r e a d y to execute) .

The major point that can be drawn from this table is that the decrease in

p rocessor utilization caused by the locking structure is not due to the high rate of data

access inter ference (i.e., at most only 67 of the primitive locks result in deschedules)

but rather from the long duration over which descheduled processes are blocked. This

deschedule duration, in the optimal case of 16 processors, where processes do not have

to wait for for an available processor, is approximately 2 seconds, which is v e r y c lose

A T h e number of deschedules attributed to a process is related to the inner work ings
of the locking mechanism. Not only is the granularity of the locking s t ruc tu re
important (i.e., how small a piece of the blackboard data base can be requested for
access allocation), but the granularity of the process blocking mechanism is important.
For example, processes could be blocked upon trying to gain access to a node and
then re legated to waiting in a set of processes which are waiting on any node at the
level of the requested node; or the wait set could be divided according to the
individual nodes being waited upon. If, in an attempt to conserve semaphore
s t ruc tures , the former strategy is chosen, it could become quite expens ive to
determine whether , upon receiving an unlock wake-up signal for the wait set , a
part icular member of the wait set is really re-schedulable as a result of that w a k e - u p
signal; hence, it may be cheaper to release all waiting processes in the set, e v e n
though all but one will just become descheduled again. If the s ingle -node wait set is
used, the costs of maintaining separate semaphores for e v e r y possible data ob jec t
may become prohibit ively expensive, although process re-schedul ing would not be
done unnecessari ly in such a scheme.

38

to the average run time of a knowledge source. This long duration occurs because the

k n o w l e d g e - s o u r c e locking structures involve executing region locks at the beginning of

the knowledge source execution. These region-locks define the entire blackboard area

(and perhaps even more) that the knowledge source will either examine or modify

dur ing its ent i re execution.* These locks are then released only at the termination of

the knowledge source execution. Thus, if data access interference (i.e., a primitive lock

deschedule) occur red because of a previously executed region- lock, then the suspended

process would v e r y likely not be unblocked until the knowledge source execut ing the

reg ion - lock had completed its processing.

Finally, it is once again admitted that the results presented here are d e r i v e d

f rom a rather limited selection of knowledge-source processes, the coding s t y le of

wh ich may be affected by the various efficiencies and inefficiencies of the part icular

implementation of the HSH system organization. In particular, since the HSII s p e e c h -

understanding system is under constant development, various code sections invo lv ing

the system operations have been subject to extensive optimization attempts, whi le o the r

sect ions have not yet had the benefit of such optimization. Additionally, the results are

b iased b y the task domain (viz. , speech understanding) and the data st ructure chosen to

r e p r e s e n t the dynamic solution state of the task. However, it is hoped that the sys tem

organizat ion (including the data base design) is of sufficiently general character that

these part icular results at least give a feeling for the results that might be e x p e c t e d

using a di f ferent set of knowledge-source processes to solve the same or d i f fe rent

problems.

SUMMARY AND CONCLUSIONS

This paper has presented a design for the organization of k n o w l e d g e - b a s e d

A I prob lem-so lv ing strategies which is felt to be particularly applicable fo r

implementation on c losely -coupled multiprocessor computer systems. The method of

des ign is a result of formulating the problem-solving organization in terms of the

1 Note that the number of primitive lock operations for preconditions is equal to the
number of blackboard accesses (from the precondition process averages of Table 4) :
precondit ions do not usually need a long-lasting locked environment (since t h e y do
not modify the blackboard except to place tags into it), thus each access is
indiv idual ly protected b y the HSII operating system (via temporary - locking) , ra the r
than having the precondition perform an explicit LOCK! operation before each access.

39

hypothesize-and-test paradigm for heuristic search, where the various hypothes i ze rs

and testers are represented as knowledge sources applicable to the task domain of the

problem being solved. A knowledge source may be described as an agent that embodies

the knowledge of a particular aspect of the problem domain and is useful in solv ing a

problem from that domain by performing actions based on its knowledge so as to

f u r t h e r the progress of the overall problem solution. The h y p o t h e s i z e - a n d - t e s t

paradigm prov ides the conceptual means of coordinating these var ious knowledge

source activities by suggesting that it is the function of some knowledge sources to

c reate hypotheses representing a possible (perhaps partial) solution state for the g i v e n

problem. Hypotheses are created in a global data base and are available for inspect ion

b y all knowledge sources. It is the responsibility of other knowledge sources to

evaluate these hypotheses in light of their own knowledge of the task domain, and

e i ther accept or reject the hypotheses, or propose their own alternative hypotheses

(b y ei ther modifying the existing hypotheses or creating entirely new ones).

The Hearsay I I speech-understanding system (HSN), which has been

d e v e l o p e d at Carnegie-Mel lon University using the techniques for system organizat ion

desc r ibed here , has provided a context for evaluating this system architecture. T h e

HSI I organizat ion provides the facilities necessary for knowledge-source cooperat ion

th rough the hypothes ize -and- test paradigm to be carried out in a highly asynchronous

and data-directed manner, where knowledge sources are specified as independent

process ing entities capable of parallel execution; the activities of any g iven col lection of

such knowledge sources are coordinated by the hypothesize -and-test paradigm th rough

the use of a shared global data base called the blackboard.

In specifying the blackboard as the primary means of in terprocess

communication, particular attention has been paid to resolving the data access

synchronization problems and data integrity issues arising from the asynchronous data

access patterns possible from the various independently executing parallel k n o w l e d g e -

source processes. A non-preemptive data access allocation scheme was dev ised in

wh ich the units of allocation could be linearly ordered and hence allocated according to

that order ing so as to avoid data deadlocks. The particular units of data allocation

(locking) w e r e chosen as being either blackboard nodes (node-locking) or abstract

reg ions in the blackboard (region-locking). Blackboard nodes also represent the units

of data creation within the blackboard. The region-locking mechanism v iews the

potential blackboard as an abstract data space in which access rights to abstract

40

reg ions could be granted without regard to the actual data content of these regions.

Another area of concern relating to the use of a shared blackboard- l ike data

faci l i ty relates to the assumptions made by the various executing knowledge sources

concern ing issues of data integrity and localized data contexts. Since the blackboard is

intended to represent only the most current global status of the problem solution state ,

mechanisms w e r e introduced to allow individual knowledge sources to retain recent

h istor ies of modifications made to the dynamic blackboard structure in the form of local

contexts. Knowledge sources are also permitted to mark (tag) arb i t rary fields (or nodes

or reg ions) of the blackboard itself (without requiring continuing access r ights to the

f ield being tagged) and thereby monitor (in a non-interfering way) those locations fo r

subsequent changes; the knowledge source will then be sent messages should any

modifications be performed upon a tagged field. Local contexts prov ide knowledge

sources wi th the ability to create a local data state which reflects the net ef fects of

data events which haVe occurred in the data base since the time of the knowledge

source 's activation. Combined with the blackboard data tagging capabilit ies, local

contexts also prov ide a means by which knowledge sources can execute quite

independent ly of any other concurrently executing knowledge sources (and wi thout

in ter fer ing wi th the execution progress of any of these processes).

In an attempt to improve the problem-solving efficiency of a mult iprocessor

implementation of the system by increasing the amount of potential parallelism from

knowledge source activity, the logical functions of precondition evaluation and

knowledge source execution are split into separate processing entities (called, of c o u r s e ,

precondition and knowledge-source processes). A precondition process is responsib le fo r

monitoring and accumulating blackboard data events which might be of interest to the

knowledge source associated with the precondition; and when the appropr iate data

condit ions for the activation of the knowledge source exist in the blackboard, the

precondi t ion will instantiate a knowledge-source process based on its associated

knowledge source, giving to the new process the data context in which the precondi t ion

was satisf ied.

The process activity of HSII is intended to be v e r y data-directed in nature ,

basing the decisions as to whether a knowledge source action can be per formed on the

dynamic data state represented in the blackboard data base. It is the responsib i l i ty of a

precondi t ion to test this data state for conditions which would warrant the instantiation

41

of the knowledge source associated with the precondition. The activation of the

precondi t ion itself is also data-directed, being based on monitoring for the more

pr imit ive blackboard modification operations which knowledge-source processes may

invoke to effect the results of their computation. This blackboard monitoring is

implemented by having the various blackboard modification operators be responsib le fo r

the activation of preconditions which are monitoring for data events being caused b y

the modification operation.

In order to indicate the nature of the performance of the HSII organizat ion

w h e n run in a c losely -coupled multiprocessor environment, a simulation system was

embedded into the multiprocess implementation of HSII on the DECsystem-10. While the

results of the simulation are admittedly based on a small (but computationally e x p e n s i v e)

set of sample points, they have generally indicated the applicability of this sys tem

organizat ion to such a hardware architecture. Given the knowledge -based

decomposit ion of a problem-solving organization as prescr ibed by the HSII s t r u c t u r e ,

e f fec t i ve parallelism factors of four to six were realized even with a relat ively small set

of precondit ion and knowledge-source processes, with indications that up to t w e l v e

p rocessors could be totally utilized, given appropriate usage (or structur ing) of the data

access synchronizat ion mechanisms. Experiments thus far have indicated that careful

use of the locking structure is required in order to approach the optimal uti l ization of

any g i ven processor configuration (unless there exist so many ready processes that the

number of suspended processes does not matter much, as is the case in conf igurat ions

of four or fewer processors) . An extended use of non- interfer ing tagging seems to be

indicated, along with a reduction in the use of region-locking (perhaps subst i tut ing

region-examining or node-locking wherever possible). Measurements w e r e also made of

var ious system level primitive operations which are required in order to implement the

data -d i rec ted multiprocess structure of HSII. While all these results are of a

pre l iminary nature (and hence are subject to variation as various components of the

g i ven implementation are improved in their relative efficiencies), they seem to indicate

that the HSII organization is indeed applicable for efficient use in a c lose l y - coup led

mult iprocessor environment.

42

ACKNOWLEDGMENTS

We wish to acknowledge the contributions of the following people: Lee Erman

for his major role in the design and development of HSU, Raj Reddy for many of the

basic ideas which have led to the organization described here, and G r e g o r y Gill for his

unt i r ing ef for ts in systems implementation.

43

Appendix A:
HSII BLACKBOARD AND KS DECOMPOSITION

Conceptual
Phrasal
Lexical
Syllabic ^
Surface-phonemic
Phonetic
Segmental
Parametric

Figure 1. The Levels in Hearsay I I .

F igure 1 shows a schematic of the information levels of Hearsay I I .

Parametric Level - The parametric level holds the most basic representat ion of the
ut terance that the system has; it is the only direct input to the machine about the
acoustic signal. Several different sets of parameters are being used in Hearsay I I
interchangeably : 1/3-octave f i l ter-band energies measured e v e r y 10 msec, L P C -
d e r i v e d vocal - t ract parameters, and wide-band energies and zero -c ross ing counts.

Segmental Level - This level represents the utterance as labeled acoustic segments.
A l though the set of labels may be phonetic-like, the level is not intended to be
phonetic - - the segmentation and labeling reflect acoustic manifestations and do
not, for example, attempt to compensate for the context of the segments or
attempt to combine acoustically dissimilar segments into (phonetic) units. As w i t h
all levels , any particular portion of the utterance may be represented b y more
than one competing hypothesis (i.e., multiple segmentations and labelings may
coexist) .

Phonetic Level - At this level, the utterance is represented by a phonetic descr ipt ion.
This is a broad phonetic description in that the size (duration) of the units is on the
o r d e r of the "s ize" of phonemes; it is a fine phonetic description to the extent that
each element is labeled with a fairly detailed allophonic classification (e.g.,
" s t ressed , nasalized [I]").

Surface-Phonemic Level - This level, named by seemingly contradicting terms,
rep resents the utterance by phoneme-like units, with the addition of modifiers such
as stress and boundary (word , morpheme, syllable) markings.

Syllabic Level - The unit of representation here is the syllable.
Lexical Level - The unit of information at this level is the word.
Phrasal Level - Syntactic elements appear at this level. In fact, since a level may

contain arbitrar i ly many "sub- levels" of elements using the AND and OR links,
tradit ional kinds of syntactic trees can be directly represented here.

Conceptual Level - The units at this level are "concepts." As with the phrasal leve l , it
may be appropriate to use the graph structure of the data base to indicate
relat ionships among different concepts.

44

Levels Knowledge Sources -

C O N C E P T U A L

P H R A S A L

L E X I C A L

S Y L L A B I C

S U R F A C E -
P H O N E M I C

P H O N E T I C — è "

S E G M E N T A L

P A R A M E T R I C

Semantic Word Hypothes izer

— \ — Syntactic Parser

Syntactic Word Hypothes izer

f- Phoneme Hypothes izer

W o r d Candidate Generator

Phonological Rule Appl ier

I Phone—Phoneme Synchron i ze r

S"-Phone Synthes izer

— Segment—Phone Synchron i ze r

Parameter—Segment
Synchron izer

/ Segmenter -Classif ier

F igure 2. A Set of Knowledge Sources for Hearsay l l .

As examples of Knowledge sources, Figure 2 shows the first set implemented
for Hearsay I I . The levels are indicated as horizontal lines in the f igure and are labeled
at the left. The knowledge sources are indicated by arcs connecting levels; the start ing
point (s) of an arc indicates the level(s) of major "input" for the knowledge source , and
the end point indicates the "output" level where the knowledge source's major actions
occur . In general , the action of most of these particular knowledge sources is to c reate
links b e t w e e n hypotheses on its input level(s) and: a) existing hypotheses on its output
leve l , if appropr iate ones are already there, or b) hypotheses that it creates o n its
output leve l .

45

T h e Segmenter-Classifier knowledge source uses the description of the speech signal
to produce a labeled acoustic segmentation. For any portion of the ut terance,
severa l possible alternative segmentations and labels may be produced.

T h e Phone Synthesizer uses labeled acoustic segments to generate elements at the
phonetic level. This procedure is sometimes a fairly direct renaming of an
hypothes is at the segmental level, perhaps using the context of adjacent segments.
In other cases, phone synthesis requires the combining of several segments (e.g.,
the generat ion of [t] from a segment of silence followed by a segment of
aspirat ion) or the insertion of phones not indicated directly by the segmentation
(e.g., hypothesiz ing the existence of an [I] if a vowel seems velar ized and there is
no [I] in the neighborhood). This knowledge source is t r iggered whenever a new
hypothes is is created at the segmental level.

T h e Word Candidate Generator uses phonetic information (primarily just at s t ressed
locations and other areas of high phonetic reliability) to generate w o r d hypotheses .
This is accomplished in a two-stage process, with a stop at the syllabic level , f rom
which lexical retr ieval is more effective.

T h e Semantic Word Hypothesizer uses semantic and pragmatic information about the
task (e.g., news retr ieval or chess) to predict words at the lexical level .

T h e Syntactic Word Hypothesizer uses knowledge at the phrasal level to predict
possible new words at the lexical level which are adjacent (left or r ight) to w o r d s
p r e v i o u s l y generated at the lexical level. This knowledge source is activated at the
beginning of an utterance recognition attempt and, subsequently, whenever a new
w o r d is created at the lexical level.

T h e Phoneme Hypothesizer knowledge source is activated whenever a w o r d
hypothes is is created (at the lexical level) which is not yet suppor ted b y
hypotheses at the surface-phonemic level. Its action is to create one or more
sequences at the surface-phonemic level which represent alternat ive
pronunciat ions of the word . (These pronunciations are current ly p re - spec i f ied as
entr ies in a dictionary.)

T h e Phonological Rale Applier rewrites sequences at the surface-phonemic level .
This knowledge source is used: a) to augment the dictionary lookup of the
Phoneme Hypothesizer , and b) to handle word boundary conditions that can be
pred ic ted by rule.

T h e Phone-Phoneme Synchronizer is tr iggered whenever an hypothesis is c reated at
e i ther the phonetic or the surface-phonemic level. This knowledge source
attempts to link up the new hypothesis with hypotheses at the other level . This
linking may be many - to -one in either direction.

T h e Syntactic Parser uses a syntactic definition of the input language to determine if
a complete sentence may be assembled from words at the lexical level.

46

T h e pr imary duties of the Segment-Phone Synchronizer and the Parameter-Segment

Synchronizer are similar: to recover from mistakes made by the (bo t tom-up)
actions of the Phone Synthesizer and Segmenter-Classifier, respect ive ly , b y
allowing feedback from the higher to the lower level.

In addition to the knowledge source modules described above, all of w h i c h
embody speech knowledge, several policy modules exist. These modules, w h i c h
inter face to the system in a manner identical to the speech modules, execute po l icy
decis ions, e.g., propagation of ratings and calculation of processing-state attr ibutes.

47

SELECTED REFERENCES

Baker , J . (1974). "The DRAGON System — An Overv iew," in Proc. IEEE Symp. Speech
Recognition, Carnegie-Mellon Univ., Pittsburgh, Pa., Apri l 1974, pp. 22 -26 ; also
appeared in IEEE Trans, on Acoustics, Speech, and Signal Processing, A S S P - 2 3 , 1,
pp. 24 -29 (Feb. 1975).

Bell , C. G., W. Broadley, W. Wulf, A. Newell, et al. (1971), "C.mmp: The C M U Mul t i -min i -
processor Computer," Tech. Rep., Comp. Sei. Dept., Carnegie -Mel lon Univ. ,
P i t tsburgh, Pa.

Bel l , C. G., R. C. Chen, S. H. Fuller, J . Grason, S. Rege, and D. P. Siewiorek (1973). " The
Archi tecture and Application of Computer Modules: A Set of Components fo r
Digital Systems Design," COMPCON 73, San Francisco, Calif.

Coffman, E. G., M. J . Elphick and A. Shoshani (1971). "System Deadlocks," Computing
Surveys 3, 2, pp. 67-78.

Erman, L. D., and V. R. Lesser (1975). "A Multi -Level Organization for Problem Solving
Using Many, Diverse, Cooperating Sources of Knowledge," 4th International Joint
Conference on Artificial Intelligience, Tiblesi, Russia.

Feldman, J . A., and P. D. Rovner (1969). "An Algol -based Associative Language," Comm.
A C M 12, 8, pp. 439-449.

Feldman, J . A., et al. (1972). "Recent Developments in Sail — An A lgo l -based Language
for Artif icial Intelligence," Proc. FJCC.

Fennel l , R. D. (1975). "Multiprocess Software Architecture for A.L Problem Solv ing,"
Tech . Rep. (Ph.D. Thesis), Comp. Sei. Dept., Carnegie-Mellon Univ., P i t tsburgh, Pa.

Heart , F. E., S. M. Ornstein, W. R. Crowler and W. B. Barker (1973). "A New
Minicomputer/Multiprocessor for the ARPA Network," Proc. A F I P S , NDD42,
pp. 529-537.

Lesser , V. R., R. D. Fennell, L D. Erman and D. R. Reddy (1974). "Organization of the
Hearsay I I Speech Understanding System," in Proc. IEEE Symp. Speech
Recognition, Carnegie-Mellon Univ., Pittsburgh, Pa., April 1974; also appeared in
IEEE Trans, on Acoustics, Speech, and Signal Processing, ASSP-23 , 1, pp. 11 -23
(Feb. 1975).

Newel l , A. (1973). "Production Systems: Models of Control Structures," in W. C. Chase
(ed.) Visual Information Processing, Academic Press, pp. 463-526.

Ohlander , R. B. (1975). "Analysis of Natural Scenes," Tech. Rep. (Ph.D. Thesis) , C a r n e g i e -
Mellon Univ., Pittsburgh, Pa.

48

Reddy , D. R. (1973a). "Eyes and Ears for Computers," Tech. Rep., Comp. Sei. Dept. ,
Carnegie -Mel lon Univ., Pittsburgh, Pa. Keynote speech presented at Conf . on
Cognit ive Processes and Artificial Intelligence, Hamburg, Apr i l , 1973.

Reddy , D. R., L D. Er man and R. B. Neely (1973b). "A Model and a System for Machine
Recognition of Speech," IEEE Trans. Audio and Electroacoust., A U - 2 1 , 3, pp . 2 2 9 -
238.

Reddy , D. R., L. D. Erman, R. D. Fennell and R. B. Neely (1973c). "The HEARSAY Speech
Understanding System: An Example of the Recognition Process," Proc. 3 rd Inter .
Joint Conf. on Artificial Intel., Stanford, Calif., pp. 185-193.

Swinehar t , D. and R. Sproull (1971). SAIL. Stanford A I Proj . Operating Note 57.2,
Stanford Univ., Stanford, Calif.

49

