
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

AN EXACT ALGORITHM FOR THE
GENERAL QUADRATIC ASSIGNMENT PROBLEM

by

B.K. Kaku & G.L. Thompson

Decembe.r, 1983

DRC-7O-N5-83

AN EXACT ALGORITHM FOR THE

GENERAL QUADRATIC ASSIGNMENT PROBLEM

by -

Bharat K. Kaku

and

Gerald L. Thompson

March 1983

This report was prepared as part of the activities of the Management Science
Research Group, Carnegie-Mellon University, under Contract No, N00014-82-K-0392
NR 047-048 with the U. S. Office of Naval Research. Reproduction in whole or
in part is permitted for any purpose of the U. S. Government.

Management Science Research Group
Graduate School of Industrial Administration

Carnegie-Mellon University
Pittsburgh, Pa. 15213

AN EXACT ALGORITHM FOR THE GENERAL
QUADRATIC ASSIGNMENT PROBLEM

ABSTRACT

We develop an algorithm that is based on the linearization and
decomposition of a general Quadratic Assignment Problem of size n into n
Linear Assignment Problems of size (n-1). The solutions to these
subproblems are used to calculate a lower bound for the original problem,
and this bound is then used in an exact branch and bound procedure. These
subproblems are similar to the "minors" defined by Lawler[20], but permit
us to calculate tighter bounds. Computational experience is given for
solution to optimality of problems of size up to n = 10.

1. INTRODUCTION

A wide and diverse range of problems can be formulated as quadratic assignment

problems: the location of interdependent plants or facilities, the layout of interacting

departments in an office building, the location of medical facilities in a hospital, the

location of indicators and controls on a control panel or in a control room, the

backboard wiring problem in 'the design of computers and other electronic equipment,

and the production sequencing problem with dependent setup times. These problems

are similar in structure to the classical linear assignment problem (for which very

efficient algorithms exist) of assigning indivisible facilities to discrete locations, but

are more complicated because the objective function contains terms that are

quadratic in the decision variables, which arise due to the interdependence ' of

facilities.

1.1. MATHEMATICAL FORMULATION

Given n cost coefficients c.. , (i, j, p, q = 1, 2, , n), the quadratic assignment

problem (QAP) is:

(1)

(2)

(3)

(4>

Minimize Z-* £* c. x. x
^^^ I .J ^^^p,q ijpq IJ pq

subject to

X .. X.. = 1

/ X.. = 1

x:: 6 {0,1}

Vi

Vj

Vi.

Koopmans and Beckmann[i8] were the first to formulate a quadratic assignment

problem. They looked at the problem of locating plants with interplant flows and

defined the following matrices:

A - | a.. | is the profitability matrix, where a. is the profit expected from

the operation of plant i at location j and is independent of other plant
locations. This profit is gross revenue less costs of primary inputs, but before
subtracting costs of inter-plant transportation.

• = I f.. | is the flow matrix, where f. is the required commodity flow

(in weight units) from plant i to plant j.

I Dd. | is the transportation cost matrix, where d is the cost of
IJ », IJ

transporting a unit flow from location i to location j.

The flow coefficients f are assumed independent of the locations assigned, and

the transportation costs d. are assumed independent of the plant assignments, and

applicable to all amounts and compositions of flows. Finally, the transportation cost

coefficients satisfy triangular inequalities. Given these definitions and assumptions,

total net revenue for the agglomeration of plants is

•J tj — - I . J

The quadratic assignment problem is to maximize this expression by choice of a

suitable permutation matrix 5 - | x . | subject to (2), (3) and

1 if plant i is assigned to location j

(6) Xjj =

0 otherwise

Alternatively, as suggested by Pierce and Crowston[26], the a./s can be considered

as the cost of establishing and operating plant i at location j, plus the cost of

supplying some prespecified customer demand from location j. Again, these costs are

independent of other plant locations. The objective function changes to

. . a.x.. + s .. . / . f. d. x..x

I.J IJ ij IJ p.q ip jq ij pq

For the facilities layout problem we redefine the coefficients as follows:

A = | a. i is the fixed cost matrix, where a. is the fixed linear cost of

installing facility i at location j .

• = i f . | is the intensity matrix, where f . is the cost per unit distance of

transporting the flow from facility i to facility j .

A * I d.. I is the distance matrix, where d. is the distance from location i to

location j .

This definition of the coefficients permits us to take into account different

material handling methods used for transporting different materials, parts and

sub/assembiies. The facilities layout problem can now be written as a QAP with

objective function (7), subject to constraints (2), (3) and

1 if facility i is assigned to location j

(8) x.. •

0 otherwise

If the costs of installing a facility are either independent of locations or identical,

the objective function reduces to

(9) Minimize 2-* 2-* f- d x x

^^^uj P.q *P jq ij pq

Equations (7) and (9) constitute a special case of the QAP, known as the

Koopmans-Beckmann Problem (KBP). Some authors [16, 26] show this correspondence

by defining

« * ,

f jpd jq if i#p or

a.. • f..d.. if i=p and j=q

However, careful consideration reveals the following facts. The product f d. is the

cost of the flow from facility i at location j to facility p at location q. In the first

part of (10) if i#p, constraint (2) implies that j#q, Conversely, if j *q, constraint (3)

implies that i#p. The redundancy in (10) can be avoided by using the condition

i#p and j#q. We show the equivalence between the general quadratic assignment

problem and the Koopmans-Beckmann problem by defining

if î p and j*q

if i=p and j=q

otherwise

elements, (7) can be deduced from (1). We can

1)

With this

c«jpq

definition

s

of

f. d
•p

a.. *
•J

00

the

jq

• f..d..
» JJ

c«jpq

obtain (9) from (1) by removing the a., term from (11). Further, if the distance matrix

is symmetric, we have a symmetric KBP.

If there are no inter-facility f lows (facility locations are independent of each other),

we set f = 0, V i, j, and the problem in (7) reduces to the linear assignment

problem (LAP):

(12) Minimize

subject to (2), (3) and (8)

Finally, if in addition, * is required to be a cyclic permutation matrix, we obtain a

traveling salesman problem.

1.2. REVIEW OF EXISTING ALGORITHMS

Most of the methods proposed in the literature, exact or heuristic, are designed to

solve KBPs. Optimal algorithms for the KBP have been presented by Gilmore[11],

Lawler[20], Land[19] and Gavett and Plyter[10], For a review of exact algorithms,

see Pierce and Crowston[26] and Burkard[7], Various heuristic procedures have been

devised for the KBP and can be grouped under two categories, viz. Constructive

procedures and Iterative-improvement procedures. Some of the better known ones are

those proposed by Gilmore[11], Steinberg[31], Armour and Buffa[1] , Hillier and

Connors[16], Gaschutz and Ahrens[9], Nugent, Vollman and Ruml[25], Burkard and

Oerigs[5], and Graves and Whinston[12]. For a review and experimental comparison

of heuristic techniques, see Nugent et al.[25], Ritzman[27], Liggett[22, 23] and

Burkard and Stratmann[6].

The approaches suggested for the general QAP use linearization techniques to

reduce the QAP to a linear programming problem.

1.2.1. INTEGER PROGRAMMING ALGORITHM

Lawler[20] has shown that the quadratic assignment problem of equations (1H4)

can be represented by an equivalent integer programming problem as follows:

The n2 variables x.. can be linearized by defining n4 variables y.. where

ijpq ij pq

The problem can then be stated as

(13)

(14)

(15)

(16)

(17)

(18)

(19)

Minimize ^ . ^ q c.jpq y. jpq

subject to

X, Xjj - 1

Z U p > q yijpq • n2

x u • x
M - 2yiJP<, * °

x..'e {0.1}

y.. € {0,1}

Vi

Vj

V i.j.p.q

V i,j.Prq-

Vu

V i.j.p.q

Thus, if the original problem has n2 x. variables, the equivalent integer

programming problem has n x. variables plus n4 y.. variables. The number of

constraints increases from 2n to 2n4 • 2n. This approach is evidently impractical for

all but the smallest problems.

Lawler shows that the n4 variables y.. can be rearranged in an n2 x n2 matrix (say

Q) in such a way that the solution matrix(Y) to the LAP represented by Q is a

feasible and hence optimal solution to the QAP if Y is a Kronecker second power of

the implied n x n solution matrix(X) to the QAP. He suggests a way to enforce this

condition by partitioning Q into n2 minors of n2 elements each and solving them as

LAPs. These minors have a form similar to the subproblems defined for the method

presented in this paper but provide comparatively inferior bounds.

1.2.2. MIXED INTEGER PROGRAMMING ALGORITHMS

1. Bazaraa and Sherali[3] suggested a linearization that results in a formulation

with n2 integer variables, n2(n-1)2/2 continuous variables and 2n2 «• 2n constraints.

The authors applied Benders' Decomposition to this formulation but were unable to

solve problems larger than n = 6 optimally within reasonable time.

2. Kaufman and Broeckx[17] have proposed the use of a linearization method

suggested by Glover. To define this method we introduce the following two types of

variables :

(20) w.. = x ^ Z p Z , cjjpq xpq

(21) u.. = max [X p X q c.jpqSjp,' °]

The QAP can then be reduced to the mixed integer problem of equations (22M27).

(22) Min X :] £ , wss

rJ IJ

subject to

(24)

(25)

(26)

(27)

Uij ij ^ ^ p ^

X.. 6 {0,1}

w.. ^ 0
•J

•"q C i jpqXpq W '.. ^ U..
ij ij

(23) 2 j ij

H V j

V i, j

V i. j

V i, j

This formulation adds n2 new continuous variables and n2 new constraints. This

gives a total of n2 {0,1} variables plus n2 continuous variables, and n2 • 2n

constraints. The authors found that for a problem of size n = 8, the core

requirements became too large for the mixed integer code they used and optimality

could not be proved.

Z. A BRANCH AND BOUND ALGORITHM FOR THE GENERAL QAP

In our algorithm, given that certain variables have been fixed equal to one, we

obtain bounds by solving a relaxed problem in which costs are calculated correctly

for ttie interaction between these fixed variables, but costs for the interaction

between fixed and non-fixed variables as well as the interaction between pairs of

free variables are estimated from the solution of LAPs.

We define cost elements of the form c . and c... , for all i and j , as fixed-pair
nlCIJ IJ file :

costs associated with the assignment h-»k where we have fixed or set the variable j

x =1. We make a distinction between fixing and setting a variable equal to one as !
me j

follows. At level i of the branch and bound tree we have a partial assignment

consisting of i variables - these variables are considered as fixed. The n-i unassigned

indices can be assigned to any of the n-i free indices, permitting (n-i)2 pairs, each

corresponding to a free variable. One of these free variables is set equal to one to

define each of the subproblems described below, for the purpose of calculating lower

bounds.

Suppose we want to calculate an initial lower bound, when no variables have been

fixed. We define 11^ to be the subproblem obtained by setting x ^ i and considering

only costs incurred by the pairing of X and other x. variables, for all i and j, but

ignoring costs incurred by pairs of variables not involving the (h,k) pair. This has the

effect of linearizing the problem as well as decomposing it into n2 linear assignment

subproblems. In other words, within any subproblem, we consider only fixed-pair cost

elements c.... and a... associated with x * 1 . We want to minimize the total cost of
We IJ IJnK rHC , •

all assignments. Then subproblem FL is

(28) Min { Z i Zj (om «• cjjhk) Xjj } - C

subject to (2), (3), (4) and

(29) xhk = 1

Proposition f: No co

ever be part of the cost of any solution.

Proposition 7: No cost element of the c... form, q # j, or the c. form, p # i can
IJIQ UPJ

Proof: For c... to be part of the cost of a solution we must have x. = 1 and

x. = 1, which is impossible under constraint (2). Similarly, c. . can be part of the

cost of a solution only if x = 1 and x . = 1, which is ruled out by constraint (3). •

Discarding inadmissible cost elements, II can now be simplified to

(30) Min { Z j # h Z j f t | c (c^.. + cjjhk

Proposition 2: If a cost element c.. is part of the cost of a given solution, then

c must also be part of the cost of that solution.

Proof: For c to be part of the cost of a solution, we must have x.. = x = 1.

This forces c . to be part of the cost. •
pqij .

Thus we can consolidate elements c._ and c^ . into one cost element
ijnk MKIJ

(31) bhk= c.... • c... for i#h, j

8

Ignoring the c.... term, (31) can be written as the subproblem I I *

(32) Min^L j # h j^ #R bj^x..

subject to

(33) X j ? f e k x.. * 1 i#h

(34) ^ i # h x.. = 1

(35) x.. G {0,1}

We use an n = 4 example to illustrate the concept. The subproblems generated for

the example problem would be

b32

b «

"33

b 4 3

b2424

b 4 4

K21 K21 K21
b12 b13 b14

'32 "33 "34

42 43 44

44 .44 .44
b11 b12 b13

K44 K44 K44

b21 b22 b23

44 .44 .44
b31 b32 b33

Consider subproblem 11^ It can be interpreted as stating the following problem.

Given that we have set x 2 1 - 1, the remaining indices (1, 3 and 4) can be assigned to

indices 2. 3 and 4. The rows of the matrix represent the n-1 indices remaining to be

assigned, the columns the n-1 free indices to which they can be assigned and the

elements of the matrix are the costs of the corresponding assignments, ie., b*1 is the

cost incurred when x2 1 is set equal to one and if, in addition, x is assigned equal

to one. We wish to minimize the total cost of a complete assignment. It is obvious

that I I* Represents a linear assignment problem. The cost of the optimal solution r21

can be interpreted as a lower bound on the costs incurred by pairs of variables of

the form (x2 ,x..), ie. costs of the form c21j. and c j 2 1 . In addition, this solution will

imply assignments for indices 1, 3 and 4 relative to the linear assignment

subproblem U*JL Similarly, we obtain implied assignments in the solutions of the other

subproblems. These assignments are obviously not necessarily consistent across

subproblems.

Having shown that the subproblems can be reduced to ordinary (n-1)x(n-1) LAPs, we

show next how the solutions to these subproblems can be used to construct the

master problem whose solution provides a lower bound for the QAP. For the

moment, we continue to ignore the cu... terms. Let r. be the cost of the optimal
menu rue

solution to Tl*& The master probfem is

(36) Min Z , j r. x,,

subject to (2K (3) and (4)

Proposition 3: The cost of the optimal solution to (35), say R*, is equal to twice the

value of the lower bound for the QAP.

Proof: First, the solution to (36) implies assignments for all the indices. The

relaxation obtained here is due to the fact that the assignments implied by the

solutions to the subproblems nj^do not correspond in all cases to the assignments

implied by the solution of the master problem (36). Second, consider a pair of

assignments in the solution of (36), say a->y and fi^r. This means that R* contains

Tay a n d rfirm l f l t U m ' Tay c o n t a i n s t e r m b)J s Zayfi\ * °fi\ay' ' *? ' W h e r e P W a S

assigned to j in the solution of subproblem nib Also r * contains term \s

b£^ = cBraa + caQj3r' ^*Tt where a is assigned to q in the solution of subproblem

Il^Thus the interaction between indices a and J3 has been considered twice, as is

the case for all pairs of indices. We thus have a lower bound whose value is equal

to half R*. •

10

We next show how the same subproblems nj^ can be used after one or more

assignment has been fixed so that these assignments are reflected in a consistent

manner in the solutions of all the subproblems. As we descend a branch of the

decision tree, a new assignment is decided at each level, and the procedure enforces

this assignment in all the subproblems that need be considered. Referring again to

our example problem, let us say that we have decided to fix the variable *23=1 at

level 1. We need consider only the subproblem that corresponds to the setting of

index 2 to index 3 and those corresponding to the setting of indices 1, 3 and 4 to

indices 1, 2 and 4. Subproblem I I* will have the same solution as before since no

other variables have been fixed. However, in the 9 other subproblems that need to be

solved we force * 2 3 =1 . This is done by barring all elements except b'̂ 3 in the

appropriate row and column by putting them equal to a large number and solving I I*

again.

We can now formally state the method for calculating lower bounds. Reintroducing

t h e c...u terms (these are the fixed costs of making assignment h-*k), we define
zhk = CNchk * 1/^2rhk* Suppose we have n indices and at any stage of the procedure
the indices already fixed are included in the set S and the indices to which they are

fixed are in the set T. Further, index i€S is assigned to index js^(i), j€T, ie., variable

x. has been fixed equa

completions as follows :

x. has been fixed equal to one. Then we can get a lower bound (LB) for all

(37) LB - Z € s zijMi) + r

Here the first part provides a lower bound on the costs incurred by variables

already fixed. If S contains more than one index, the variables to be fixed in addition

to xhk
s1 are taken into consideration by forcing the corresponding element in the LAP

matrix of nj^ into the solution. For example, if in addition, x.=1 has been fixed, we

force element b!* into the solution.

The second part, Z*, gives a lower bound on the costs incurred by the free

variables where Z* is the solution of the LAP represented by matrix

(38) Z = { z.. |
Here again any variables that have been fixed are forced into the solution while

solving for each z...

11

We use these bounds in a branch and bound procedure of the depth first type. The

solution of the LAP represented by Z enables us to use a branching rule based on

the regrets or alternate costs of an assignment. This not only provides a decision

rule for choosing the next assignment but also helps in pruning the decision tree.

The calculation of the lower bound is done in two steps. First, we solve the

necessary subproblems to get z..... for i G S and z.. for i p S, j y T. Then we use

the solutions to these subproblems to calculate a lower bound for the master

problem. ^

2.1. BRANCHING RULE

The branching rule uses the concept of alternate costs as suggested by Lenstra[21]

and is essentially the same as that used in Burkard's method. Let us say that we

have solved the LAP in the master problem and found an optimal cost of Z* with

facility i y S assigned to location />(i). We now use the dual variables of the optimal

solution to reduce the matrix* Z, ie. replace z.. by z..-u.-v.. For every {i,/>(i)> element,

which is now zero, we find the next smallest element in that row and column, and

take their sum. This amount is the regret or minimum additional cost if assignment

ii,p{\)} is not made. Also, this regret plus LB gives us the alternate cost of this

assignment. At .the next level of the decision tree we make that assignment which

has the maximum regret, or, equivalently, the maximum alternate cost.

While backtracking, if the alternate cost is greater than the best known solution

(present upper bound), the node can be fathomed and we backtrack to the next higher

level. If not, we develop the next node at that level. Suppose the first assignment

made at this level on the present branch is x = 1. The objective is to cover either

all possible assignments of p -> j, j f- T, or all possible assignments i -» q, i f- S.

This is the most efficient way of fathoming the branch (possibly after improving the

upper bound). This is achieved in two steps. First, the element z in Z is blocked
PQ

out and the LAP is re-solved. The cost of this solution, if greater than the alternate

cost, provides a second possibility of fathoming the node. Otherwise, we compute

the regrets for the two new assignments in the row and column containing the

blocked element and choose the one with the larger regret as the next assignment. If

the next choice is from the row (column), then the third and all subsequent

assignments are chosen from the same row (column), until we can backtrack to a

higher level.

12

2.2. THE BRANCH AND BOUND PROCEDURE

We start the algorithm with an upper bound equal to a very large number.

Proceeding as described above we descend to level (n-2) of the decision tree. At this

stage, only two completions are possible and we compute the exact cost of these

solutions. If the better one of these has a cost lower than the upper bound, the

upper bound is sat to this value and the corresponding assignments are stored in

array MIN. When the tree has been completely fathomed and we return to level 0, all

possible solutions have been enumerated implicitly, and the final upper bound along

with the assignments stored in MIN give us the optimal solution. In case of alternate

optima, the program stores only the first one but can be modified easily to list all

alternate optimal solutions.

The form of the subproblems provides an easy method for tightening bounds while

backtracking. Say we are developing the next node of the search tree at the current

level along any branch. We can block out all cost elements of the form b!* in the

subproblem I I * where the pair i-»j is any assignment that has already been evaluated

at that level, and solve the 'subproblems again. Computational experience with this

rule showed that although the number of nodes evaluated did decrease, the overall

solution time increased. This is due to the fact that the time required to solve the

subproblems is so large that the value of the possibly better bounds it provides is

negated. The final design of the algorithm, therefore, uses the initial solutions to the

subproblems at a particular level along any given branch, and the subproblems are re-

solved only when we branch again.

It is obvious that an assignment tried at level one (say i->j) wil l never again be

tried at any level of the tree. Thus when we return to level 0, we can scan the

matrices of the subproblems and set each element of the form bhkto a large number

before solving the subproblems again. (The subproblem I I * wi l l , of course, not be

considered again.) This modification did prove to be effective and has been

incorporated in the algorithm.

Finally, since the largest part of solution time was the time taken to solve

subproblems, we attempted to reduce the latter. As noted above, when we branch,

we solve the subproblems again but force the new assignment in each solution. By

storing the assignments for each subproblem, and checking whether the new

assignment was already included, we found that it was often unnecessary to solve

some of the subproblems again at the next level. This resulted in a saving of 15 to

20% in CPU time.

13

2.2.1. THE ALGORITHM

Step 0. Initialize: Set up subproblems II... K - 0, UB - oo.

Step 7. Solve the subproblems to obtain the values z... Solve the master problem to

get initial lower bound. Reduce f z.. I and calculate regrets. Choose an assignment

.*with greatest regret, say P to Q. Alternate cost = Z «• regret.

Step 2. Assign xpQ = 1. Replace S by SIMP}. T by TU{Q}, ^(P) = Q, K = K+1.

Calculate the lower bound (LB) as in equation (37). If LB £ UB go to step 5. If K = N-

2, go to step 4.

Step 3. Use dual variables to reduce Z and choose next assignment, say P to Q. If

backtracking, choose next assignment from same row and/or column of Z as previous

assignment. Alternate cost = LB • regret. Go to step 2.

Step 4. Calculate exact cost of two remaining completions. If smaller cost < UB,

update UB and store assignments.

Step 5. If K = 0, STOP - optimal solution found. K * K-1. If alternate cost £ UB,

repeat step 5. If K = 0, set all b..pQ - oo and solve relevant subproblems. Set
ZPQ = °°# Solve Z to get a tighter LB. If LB £ UB, repeat step 5. Otherwise, go to

step 3. xs

3. COMPUTATIONAL EXPERIENCE

Bazaraa and Sherali solved the Nugent, Vollman and Ruml(NVR)[25] 5 facility and 6

facility problems in 6.9 and 154.4 sees, respectively on a CDC Cyber 70, using a

Fortran IV code. The method was unable to prove optimality for larger problems in

the cut off time of 770 sees.

Kaufman and Broeckx also mention computational experience with two of the NVR

problems, using IBM's mixed integer code MPSX on an IBM 370/168. They solved the

6 facility problem in 157.8 sees, and the 8 facility problem in 240 sees, but in the

latter case the solution was not proved to be optimal as the core requirements were

too large for MPSX. The authors also attempted an application of Bender's

Decomposition to their mixed integer programming formulation but report that the

results were disappointing.

14

For the purpose of comparison we solved to optimality the NVR 5, 6, 7 and 8

facility problems after converting the flow and distance data into the general QAP

format. The times required on a DEC-20, using a Fortran program, were respectively

0.32, 1.83, 3.87 and 28.13 sees. The remaining computational testing was done on

randomly generated problems. The elements c were chosen from a uniform

distribution between 0 and and a maximum value called MAX that was varied. AJI

computational results mentioned in this paper were obtained on a DEC-20 using

Fortran, and average results are shown in Table I.

Size(n)

6

7

8

9

10

Values of MAX

10,40.70,100

10,40,70,100

1,2,3,5,10.
15.20,30,40,
60,80,100

30.70

50

Problems
solved

40

40

•

120

20

3

Average solution
< time (sees)

1.28

5.49

31.43

220.91

1305.65

Table I. Computational experience with the code written for
the algorithm in Section 2.2.1. All the problems
were randomly generated as described in section 3.
All problems were solved to optimality.

First, we studied the effect of the range of cost coefficients. With n = 8, we

solved sets of 10 problems each with MAX set at 1, 2, 3, 5, 10, 15, 20, 30, 40, 60,

80 and 100 resp. The average times for the sets varied between 26.24 and 35.12 sees,

with an average for the 120 problems of 31.43 sees. There was no discernible trend

in the solution time as the cost range was varied.

Next, we developed a branch-and-bound procedure based on Lawler's definition of

subproblems, using the same method to approach feasibility and the same branching

rule as described above. We compared the solution times with our method for 10

problems each with n = 6, MAX = 30; n = 7, MAX = 50; and n = 8, MAX = 70. On

15

the average our method required 63, 45 and 36% resp. of the time required by the

code we wrote based on Lawler's method. We observed that the comparative

advantage of the algorithm given in Section 2.2.1 increases with increasing size of

problem.

4. CONCLUSIONS

In this paper an exact branch and bound algorithm for solving general QAPs based

on LAP relaxations has been described and compared to other methods of solving the

general QAP. Computational experience was given that showed that the method was

capable of solving to optimality problems of sizes up to n = 10 in reasonable

computation times. This size of problem is larger than those previously reported in

the literature. Nevertheless, it is still relatively small and further work is needed on

this problem.

t . * . .

16

REFERENCES

1. Armour G.C. and Buffa E.S., "A Heuristic Algorithm and Simulation
Approach to Relative Location of Facilities", Management Science, Vol.9,
No.2, January 1963.

2. Bazaraa M.S. and Elshafei A.N., "An Exact Branch-and-Bound Procedure for
the Quadratic Assignment Problem", Naval Res. Logistics Quart., Vol.26,
1979.

3. Bazaraa M.S. and Sherali H.D., "Benders' Partitioning Scheme Applied to a
New Formulation of the Quadratic Assignment Problem", Naval Res.
Logistics Quart.. Vol.27, 1980.

4. Buffa E.S., Armour G.C. and Vollmann T.E., "Allocating Facilities with
CRAFT", Harvard Business Review. March-April 1964.

5. Burkard R.E. and Derigs U., Assignment and Matching Problems: Solution
Methods with Fortran Programs, Lecture Notes in Economics and
Mathematical Systems, ,VOI.184, Springer-Verlag, Berlin, 1980.

6. Burkard R.E. and Stratmann K.H., "Numerical Investigations on Quadratic
Assignment Problems", Naval Res. Logistics Quart., Vol.25, 1978.

7. Burkard R.E., "Some Recent Advances in Quadratic Assignment Problems",
Presented at the International Congress on Mathematical Programming, Rio
de Janeiro, April 6-8, 1981.

8. Elshafei A.N., "Hospital Layout as a Quadratic Assignment Problem",
Operational Research Quart., Vol.28, 1977.

9. Gaschutz G.K. and Ahrens J.H., "Suboptimal Algorithms for the Quadratic
Assignment Problem", Naval Res. Logistics Quart., Vol.15, 1968.

10. Gavett J.W. and Plyter N.V., "The Optimal Assignment of Facilities to
Locations by Branch and Bound", Operations Research, Vol.14, 1966.

11. Gilmore P.C., "Optimal and Suboptimal Algorithms for the Quadratic
Assignment Problem", Journal of SI AM. Vol.10, 1962.

12. Graves G.W. and Whinston A.B., "An Algorithm for the Quadratic
Assignment Problem", Management Science, Vol.17, No.7, 1970.

13. Hanan M. and Kurtzberg J.M., "A Review of the Placement and Quadratic
Assignment Problems", SI AM Review. Vol.14, No.2, 1972.

14. Heider C.H., "An n-Step, 2-Variable Search Algorithm for the Component
Placement Problem", Naval Res. Logistics Quart.. Vol.20, 1973.

17

15. Hillier F.S., "Quantitative Tools for Plant Layout Analysis", Journal of Ind.
Eng.. Vol.14, 1963.

16. Hillier F.S. and Cpnnors M.M., "Quadratic Assignment Problem Algorithms
and the Location of Indivisible Facilities", Management Science. Vol.13,
No.1, 1966.

17. Kaufman L and Broeckx F., "An Algorithm for the Quadratic Assignment
Problem Using Benders' Decomposition", European Journal of Operational
Research. Vol.2, 1978.

18. Koopmans T.C. and Beckmann M., "Assignment Problems and the Location
of Economic Activities", Econometrica, Vol.25, Jan. 1957.

19. Land A.H., "A Problem of Assignment with Inter-related Costs",
Operational Research Quart., Vol.14, June 1963.

20. Lawler E.L, "The Quadratic Assignment Problem", Management Science.
Vol.9, July 1963.

21. Lenstra, Sequencing by Enumerative Methods. Mathematisch Centrum,
Amsterdam, 1977, Pages 97-100.

22. Liggett R.S., "The Quadratic Assignment Problem: an Analysis of
Applications and Solution Strategies", Environment and Planning, Vol.7,
1980.

23. Liggett R.S., "The Quadratic Assignment Problem: an Experimental
Evaluation of Solution Strategies", Management Science. Vol.27, No.4, 1981.

24. Little J.D.C., Murty K.G., Sweeney D.W., and Karel C, "An Algorithm for
the Traveling Salesman Problem", Operations Research. Vol.11, Nov-Dec
1963.

25. Nugent C.E., Vollmann T.E. and Ruml J., "An Experimental Comparison of
Techniques for the Assignment of Facilities to Locations", Operations
Research, Vol.16, Jan-Feb 1968.

26. Pierce J.F. and Crowston W.B., "Tree Search Algorithms for Quadratic
Assignment Problems", Naval Research Logistics Quart., Vol.18, 1971.

27. Ritzman L.P., "The Efficiency of Computer Algorithms for Plant Layout",
Management Science, Vol.18, No.5, 1972.

28. Sahni S. and Gonzales T., "P-complete Approximation Problems", Journal
of the Assn. for Computing Machinery, Vol.23, No.3, 1976.

29. Scriabin M. and Vergin R.C., "Comparison of Computer Algorithms and
Visual Based Methods for Plant Layout", Management Science, Vol.22, No.2,
1975.

18

30. Smith T.H.C, Unpublished Ph.D. thesis, G.S.I.A., Carnegie-Mellon University,
1976.

31. Steinberg L, "The Backboard Wiring Problem: A Placement Algorithm",
SI AM Review. Vol.3, No.1, 1961.

32. Vollmann T.E. and Buffa E.S., "The Facilities Layout Problem in
Perspective", Management Science. Vol.12, No.10, 1966.

