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Abstract

A high capacity communication satellite interconnects scores

of ground stations simultaneously. Under the Satellite-Switched/

Time Division Multiple Access (SS/TDMA.) system, each channel of the

satellite is allocated to a pair of ground stations for a certain

time period, after which the whole set of allocations (called a

switch) is changed simultaneously. The problem we address is to

minimize the time length of the entire sequence of switches, subject

to a limit on the number of switches. We formulate this as a

3-index bottleneck-sum assignment problem, and solve it by a heuristic

that obtains consistently better results than earlier methods based

on different formulations.



1. Introduction: Background and Historv

Every day a rapidly increasing volume of long distance TV, radio and

telephone communications is transmitted digitally via satellites. A high

capacity communication satellite interconnects simultaneously scores of

transmitting and receiving stations. One of the advanced techniques for

operating such a satellite communication network is the SS/TEMA (satellite-

switched time-division multiple access) system, based on the use of highly

directive spotbeam antennas [12], [1]. Under this scheme, each transponder

on board of the satellite is allocated to a pair of zones (groups of ground

stations) for a certain amount of time. Such a set of allocations involving

all the transponders is called a switch mode. The allocations that make up

a switch mode are changed simultaneously by an on-board switching facility.

The whole sequence of switch modes that make up the schedule of allocations

for a given time period is called a frame.

A major problem that arises in connection with SS/TDMA systems is

the efficient scheduling of time slot allocations for a frame. To be more

specific, the demand for a frame can be expressed as an nxn matrix D = (d. . ) ,

the traffic matrix, where d.. represents the length of the data burst from

zone i to zone j, i.e., the amount of time for which a transponder needs

to be assigned to the pair of zones (i,j). Clearly, d > 0 for all i,j.

The scheduling task consists of allocating time slots on the satellite's

transponders to pairs of zones. More specifically, it consists of deccm-

posing the traffic matrix D into nxn switch matrices (or mode matrices)

k k
D = (d..), k * l,...,q, subject to certain feasibility conditions and szi-

isfying some efficiency criterion. The feasibility conditions are as follows.

For k=l,.#.,q, every row or column of D^
(1)

contains at most one nonzero element.

in other words, in every switch mode, each transponder is assigned to

st ?.os: one pair of zones.



Z D* » D, (2)
k-1

i.e., the q switch modes together meet total demand.

It is easy to see that for q < n the problem is infeasible whenever

D has at least one row or column whose entries are all positive. On the

other hand, for q * n the problem amounts to 1-factorizing the complete

bipartite graph K (i.e., finding in K n pairwise edge-disjoint per-n,n n,n

feet matchings), a problem whose feasibility is an immediate consequence

of the Konig-Hall theorem on perfect matchings [7]. Thus for q > n the

problem is always feasible.

As to the efficiency criterion, a first objective is to satisfy

total demand in a minimum amount of time. Since the time needed to trans-

kmit one switch mode is given by the largest entry of the switch matrix D ,

total transmission time for a given solution (D ,...,D') is

T - Z max dk. (3>
1J

Thus one approach is to address

Problem 1 [91. Find a schedule (D1,...,Dq) that satisfies (1), (2)

and minimizes (3).

The value of an optimal solution to this problem can be found out

by inspection. First, it is not hard to see that any row sum or column sum

of D is a lower bound on the value of T; hence the same is true of the rnaxi-

mum of these row and column sums, i.e., T > T*, where

n n
T* « max f max Z d. .; max I d. . } .

i j-1 LJ j i-1 ^



Second, it has been shown [9, 3] that (i) ruin T * T*, (ii) there

l a ?

exists an optimal solution (D fli.,D0 with q < Q" - 2n ̂  2; and (iii) this

is the smallest bound on the value of q for which the existence of a schedule

with T * T* can be guaranteed.

While (iii) holds for an arbitrary traffic matrix D, in the not in-

frequent case when D con'tains some entries equal to 09 the bound on q can
2

be strengthened to q < n - 2n + 2 - z, where z is the number of elements
of D equal to 0.

Polynomial time procedures for finding an optimal solution to

Problem 1 are given in [9, 8].

A second criterion one may want to consider has to do with the size

of q, the number of switch modes into which the traffic matrix is decom-

posed. Theoretical considerations as well as practical experience indi-

cate that for an optimal solution to Problem 1, i.e. for a schedule

1 Q
(D ,...,D ) with T • T*, the value of q is typically equal to or close

to its upper bound, n - 2n + 2 - z. This is inconvenient for the

following reason. A schedule involving q switches requires as many

switch reconfigurations. Further, if q > a, some data bursts must be

split, i.e., only partially transmitted during a switch mode, with the

rest transmitted in another switch mode. Switch reconfigurations and

burst splittings entail che addition of preambles and guard margins, not

to mention other inconveniences. Therefore it is essential to keep q as

small as possible, and the second relevant problem in this context can be

formulated as

Problem 2 [2]. Find a schedule (D ,...,Dq) chat satisfies (1), (2)

and q = n, and minimizes T.



The practical importance of Problem 2 comes from the fact that it

avoids burst splittings. However, its relevance depends on how close its

optimum is to T*. la this context, the (transmission) efficiency of a

schedule with total transmission time T is defined as the ratio T*/T.

Currently no bound is known on the efficiency of an optimal solution to

Problem 2. Furthermore, as discussed below, Problem 2 is NP-complete and

for realistic matrix sizes too large to be solved to optimality. Thus one

has to look for approximate solution methods. Naturally, if no bound is

known on the efficiency of an optimal solution, even less is known theo-

retically about the efficiency of approximate solutions. However, some

empirical evidence exists in this respect, Camerini, Maffioli and Tartara

[2] (in the following CMT) have developed and tested a heuristic for Prob-

lem 2, that consists of n successive applications of the following iterative

step (which starts with k = 1):

L e t N - ( l f . . . , a } , and

2 n n
X - fx e K n | Z x. . - 1 , i € N ; Z x. . - 1 , j s N ; x c f O . l } , i , j € N } ( 5 )

j - 1 1 J i - 1 I J 2

Iterative Step. Solve the nxn assignment problem

n n
(AP) »aX Z Z d x

* x«X 1-1 j - l 1 J 1 J

k k
and, if x* is the optimal solution found, let d. . :*d. . if x*. = 1, d". . :« 0

if x*. = 0 , i,jeN. Set d,. :»-• if x*. » 1, d , , : a d 1 ( if x*. = 0 , for i,jsN.
LJ IJ LJ IJ IJ lj

Then if k < n, set k : = k + 1 and repeat the step. Otherwise (D , ...,Dn)

is the desired schedule.



The assignment problem is solved at each iteration by the Hungarian

method [10] (for a more recent treatment, see [3] or [11]), whose time

complexity is 0(n ). Thus the time complexity of the whole procedure is

4
0(n ). As to its transmission efficiency, on a set of 100 test problems

with n « 20 and the entries of D integers drawn randomly from a uniform

distribution over the interval [0, 100], it was found to be on the average

about 89-90%, with a minimum of 83% and a maximum of 96%.

In a way, Problems 1 and 2 above represent two extremes, in which

one of the two criteria of interest is driven to its minimum value with-

out regard to what this entails in terms of the other. In order to examine

some intermediate situations, CMT [2] have also addressed the following class,

1 a
Problem 3. For h = 1,2,..., find a schedule (D ,...,DM) that satis-

fies (1), (2) and q « hn, and minimizes T.

Finally, there is a substantial difference between burst splittings

that do and do not separate bursts into nonadjacent time slots, the former

(called proper burst splittings) being more costly than the latter. In

order to reflect this differentiation, CMT [2] have formulated

Problem 4. For h = 1,2,..., find a schedule that satisfies (1), (2)

and q = hn without proper burst splittings, and minimizes T.

CMT have modified their heuristic to obtain procedures of the same

complexity (0(n4)) for finding approximate solutions to Problems 3 and 4.

3.un on the same test problems, these procedures tended to produce solutions

of improved efficiency as h was increased.

2. A New Heuristic for Problem 2

The CMT heuristic is based on the idea that for any k, maximizing

k k
the sun of elements of D* will force inco D* as rnany of the larger eleser.cs



of D as possible, thus reducing the value of the largest element left in

k—1D" ' . In order to gain some insight into what might be a better heuristic,

it is useful to look at some alternative formulations of Problem 3. The

first formulation is a 3-index bottleneck-sum assignment problem with 3n~

3 k
constraints and n variables, in which d.. is represented as d..x.., , with

x. .. = 0 or 1:
ijk

n
min I max d..x
x k«l i,j x^

n

n
Ex, =1 j,'< = l,...,n (P2.1)

1JK

n
S x. M « 1 i,j = l,...,n

xijk €^°> 1} i ' J » k = !.•••»»

2
The second formulation is a set partitioning problem with n equations

and n! variables, one variable associated with every nXn permutation matrix:

min cy

Ay = e (P2.2)

y.e[0,l}, j S l,...,n!

T 2
Here e = (!,...,!) has n components, and every column a. of A

represents an nXn permutation matrix in vector fora, i.e., a..£^0,1},

i = 1,...,n~, with



n
Z «
r-1

a

and all the columns of A are distinct. Further,

. » max a, d .
J l<r,s<n ( ' D + s J

Both (P2.1) and (P2.2) are NP-complete problems which one cannot hope

to be able to solve to optimality except for small values of a. But they

both offer some insights into the kind of heuristics that might be expected

to work. In particular (P2.1) suggests that instead of solving a sequence

of maximizing assignment problems (AP)fef oae might do better by solving

a sequence of bottleneck, or min-max assignment problems. This leads to

the following:

Min-max Procedure.

Let X be given by (5). Set k = 1 and go Co the

Iterative Step. Solve the nxn bottleneck assignment problem

(BAP) min max d. .x. .
XoA l,j

and if x* is the optimal solution found, define d. . := d. . if x* = 1, d :- 0
iJ iJ ij ij

if x*^ = 0, if jcN. Set d :» = if x*. - 1, d. . := d. . if xf. = 0, for all

i,j£N. Then if 1c < n, set k:*k -i- 1 and repeat the step. Otherwise (D ,...,Dn)

is the desired schedule.



On the other hand, the set partitioning formulation (P2.2) suggests

the use of the greedy algorithm for set covering problems [4], modified to

handle equations instead of inequalities. Since the column sum Ja.J is

the same for every column of A, and a cover can only contain pairwise ortho-

gonal columns, the greedy choice rule is equivalent in this case to mini-

mizing c. Thus the greedy algorithm adapted to (P2.2) amounts to sequen-

tially choosing columns a. of A in order of increasing c, while deleting

after each choice all columns a, such that a. a. > 1, until a set of n col-

umns has been chosen. But in view of the definition of the a. and c, this

is precisely the Min-max Procedure stated above. Thus both problem formula-

tions suggest the same heuristic approach.

The Iterative Step of the Min-max Procedure can be solved by the

"threshold method11 of 0. Gross [6] (see also [5] and [11]). In the nXn

array associated with the (bottleneck) assignment problem, call a row or

column a line. Call a set S of cells (elements of the array) independent,

if no two cells of S are in the same line. An independent set of cardinal-

ity n is an assignment. The "threshold method" starts with some initial

assignment SQ, defines the threshold

8 :* max{dij|(i,j)€So}

and declares admissible those cells (i,j) such that d.. < 5. It then uses

a labeling procedure to find a maximal independent set S of admissible cells.

If |s| < n, then S defines an optimal solution x° to (3A?), with x°. = 1

if (i,j)eS , x?. =0 otherwise. If js| = n, the threshold can be lowered:

one sets S :=S, redefines ?, and repeats the procedure.
o



We have slightly aodified this basic procedure in order to use the

fact that we are solving a sequence of interrelated bottleneck assignment

problems rather than just one. The main change is that, rather than lowering

the threshold each time to the value of the next largest element of D, we

calculate an upper and a lower bound on the objective function value and

:hoose the threshold via bisection of the interval defined by these bounds.

This has speeded up the procedure considerably.

To generate a starting assignment, we use a "stingy" heuristic that

chooses admissible cells in order of increasing d... If we have to stop

short of choosing n cells, we complete the assignment via the labeling

procedure. The details follow.

A line of the assignment array will be called free if it has no

cell in the current assignment. At the start D is the traffic matrix, sub-

sequently D is updated at the end of each iteration. Set k :- 0 and go to

the

Iterative Step

1. (Construct Initial Assignment)

If k = 0, set 9:*0 and go to 1.2. Otherwise let D be the last

switch matrix produced; set 3:*max d.., declare admissible all cells (i,j)
if j 1 J

such that d. . < 8, and go to 1.1.

1.1. Scan the rows and put into S the first admissible cell in a free

column encountered in each row. If |S| * n go to 2, else continue.

1.2. Find d. :« ad.rx[d..ji and j are free}. If d. . < a, ? u c (i ,j )

oJo LJ Vo ° °
into S and go to 1.2; else continue.

1.3. If |s| » n, go to 2; else declare all cells admissible and complete

the assignment by the labeling procedure: set 5(?) := 0 and go to 3.



10

2. (Sec New Threshold)

Set S* :=S, store the candidate assignment S*, and define

^9 :* max{9, min d. .},

and

If 3 - 3 < 1

otherwise.

S :-S \[(ifj)cS|d > 9},

declare admissible all cells (i,j) such that d. . < 3, and go to 3.

3. (Find a Maximal Independent Set of Admissible Cells)

Start with all lines unlabeled, unscanned.

3.1-3.3. (Labeling)

3.1. Label all free rows with -1 and go to 3.2.

3.2. Choose a labeled unscanned row i and scan it for admissible

cells. For each such cell (i,j), if column j is unlabeled, label it with

i. Then if column j is free, let j :=j and go to 3.4, else continue.

Repeat 3.2 until all labeled rows have been scanned. If no new

column has been labeled, go to 3.5; else go to 3.3.

3.3. Choose a labeled unscanned column j and scan it for some (i,j)sS.

If such (i,j) is found, label row i with j.

Repeat 3.3 until all labeled columns have been scanned. If no new

row has been labeled, go to 3.5; else go to 3.2.



11

3.4. (Augmentation) If the label of column j is i, put (i,j ) into S.

If the label of row i is j * -1, make all lines unlabeled, unscanned, and

go to 3.1. If the label of row i is j ^ -1, put (i,j) into S, set j :* j

and go to 3.4.

3.5. S is a maximal independent set of admissible cells.

If js| * n and 5(3) * 0, the threshold can be lowered: go to 2.

If |s| « n and 5(3) * 1, S is a min-max assignment: set S* :« S

and go to 4.

If |s| < n, no assignment exists that satisfies the current threshold.

Therefore S*, the candidate stored in step 2, is a min-max assignment: go

to 4.

4. (Construct New Switch Matrix)

Define D k + 1 * (djt1), where

(i,j)eS*

and set d±. :» » if (ifj)eS*, dt. :*<*_ otherwise. If k + 1 • a, stop:

(D ,...,Dn) is the desired schedule. Otherwise set k :s k + 1 and go to 1.

A few comments are in order. We will call an application of the

Iterative Step a cycle. At the beginning of each cycle, the construction

of an initial assignment starts by putting into S only cells that are

admissible with respect to the threshold value of the previous iteration

(Step 1.1). Step 1.2 continues the construction by including additional

cells according to the "stingy11 rule of choosing them in order of increasing

d... When no complete assignment can be obtained in this way, the labeling

procedure of Step 3 is used to finish the job, with no restriction on

admissibilitv.
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Step 2 is entered with a complete assignment S. Clearly, maxfd. . J (i, j) eS}

constitutes an upper bound on the value of the bottleneck objective function

for the switch matrix under construction, and aiaxfS, min d. .}, where 3 is

i.J 1J
the threshold value of the previous iteration, constitutes a lower bound.

To see this latter point, note that if a switch matrix with an objective

function value lower than 3 existed, it would have been found at the previous

iteration. A new threshold 3 is then defined by bisecting the interval be-

tween the above upper and lower bounds. The role of the parameter 5(3) is

to carry to Step 4 the instruction of either continuing the bisection

procedure, or terminating it.

Step 3 is the well-known labeling procedure of Ford and Fulkerson

for finding a maximal independent set of admissible cells. Steps 2 and 3

are iterated as long as feasible assignments can be found for successively

lower thresholds. This process stops when lowering the threshold is no

longer possible. At that point the current assignment S* is used to con-

k+1
struct the next switch matrix D , the traffic matrix D is updated, and

a new cycle is started. After a total of n cycles, the procedure ends

with a feasible schedule (D1,...,Dq), q = n.

Next we address the computational complexity of the algorithm.

During every cycle, Step 1 is used exactly once, and its time complexity

3 ? 2

is 0(n ). Step 2 is 0(n~). The labeling procedure of Step 3 is 0(n ),

each augmentation is 0(n), and the number of augmentations (and hence «

labelings) during one application of Step 3 is 0(n). Hence one application

of Step 3 has a total time complexity of 0(n ). Finally, Steps 2 and 3 can

be iterated during a cycle at aost log?^ times, where j. = :nax d - min d_ .
^ "• » J " i J

Thus the time complexity of a cycle is 0(n log,, A), and since there are
n cycles, the time complexity of the whole Min-max procedure is 0(n log^ 1).
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Lawler [11] gives a version of the bottleneck assignment algorithm

whose time complexity is 0(n ); so when that algorithm is substituted for

4
Steps 2-3 above, the resulting procedure is of 0(n ). we have implemented

and extensively tested both procedures. In spite of its better worst case

bound, the version using Lawlerfs algorithm was on the average about 30%

slower than the Min-max Procedure using the Ford-Fulkerson method combined

with bisection.

3. Computational Results

Both the CMT method [2] and the Min-max Procedure were implemented

and extensively tested on a VAX computer, on randomly generated test problems

with the elements of D drawn from a uniform distribution of the integers

over [1,100]. A total of 12 classes of problems were solved, with 1000

problems in each of the first 6 classes (for n « 5, 10, 15, 20, 30 and 40),

and 20 problems in each of the next 6 classes (for n * 50, 60, 70, 80, 90

and 100). Table 1 summarizes the results.

Table 1. Computational Results on a VAX 811

(1000 problems in each of the first 6 classes,
20 problems in each of the last 6 classes)

a

5

10

15

20

30

40

50

60

70

80

90

100

Average efficiency (%)

CUT

91.46

88.57

37.62

90.78

88.63

Min-max

93.58

92.73

92.71

95.12

94.81

89.57 ! 96.07

91.22

90.37

90.27

90.39

97.39

97.69

97.53

97.44

91.21 j 98.23 :

91.43 98.25
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The performance of the Min-max Procedure in terms of transmission

efficiency is uniformly better than that of the earlier CMT heuristic,

and increasingly so for large problems. While the efficiency of the CMT

method fluctuates around 89-91% for small as well as for large problems, the

efficiency of the Min-max Procedure is around 93% in the range 5 < n < 15,

around 95% for 20 < n < 40, around 97.57, for 50 < n < 30, and above 98% for

90 < n < 100.

As to the computational effort, we have found that while the time

4
used by the CMT method is 0(n ), i.e., close to its upper bound, the time

required by the Min-max Procedure only slightly exceeds 0(n ), in spite

of the somewhat weaker worst case bound.

With transmission efficiencies so close to 1, it seems that re-

stricting the number of switch matrices to n is not such a debilitating

constraint as it had been thought to be. In the light of this computational

experience, Problem 2 of Section 1, first formulated by CMT [2] , appears

to be the right problem to address, and the Min-max Procedure recommends

itself as the method of choice.

The Min-max Procedure, just like the CMT method, can be modified

to solve Problems 3 and 4 stated in Section 1. We have tested such

modified versions of our procedure and obtained for Problem 3 average

transmission efficiencies of 97.36% for q = 2n, 98.53% for q = 3n and

99.12% for q » 5n, on 100 problems with n = 20. These are better than the

95.12% efficiency obtained for Problem 2 (i.e., for q = n), but we find

it doubtful whether this further improvement can compensate for the dis-

advantage of having burst splittings.



15

la the case when proper burst splittings are forbidden (Problem 4),

we managed to obtain only a very slight improvement over the efficiency

registered for Problem 2 (95.14% for q -2nf 95.39% for q » 3n, and

95.83% for q » 5n), which seems to rule out Problem 4 as a promising

formulation.

Finally, returning to Problem 2, we have also tested a procedure

that combines the Min-max heuristic with a limited amount of implicit

enumeration in order to find better solutions at increased computational

cost. To be more precise, this procedure generates the n alternative solu-

tions obtainable by banning from D (the first switch matrix generated by

the Min-max heuristic) one of its n positive entries, and then applying the

procedure as usual. At the cost of an n-fold increase in computing time,

the average improvement in efficiency was 0.21%, 0.23%, 0.22% and 0.18%

for the 50 problems with n « 5, 10, 15 and 20 respectively. These meager

improvements strongly suggest that the solutions to Problem 2 obtained by

the Min-max Procedure are very close to the optimum.
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