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Abstr act

A high capacity communication satellite interconnects scores
of ground stations simultaneously. Under the Satellite-Switched/
Tine Dvision Miltiple Access (SYTOMA) system each channel of the
satellite is allocated to a pair of ground stations for a certain
tinme period, after which the whole set of allocations (called a
switch) is changed simultaneously. The problemwe address is to
mnimze the tine length of the entire sequence of swtches, subject
to alimt on the nunber of switches. W fornulate this as a
3-index bottleneck-sum assi gnment problem and solve it by a heuristic
that obtains consistently better results than earlier nmethods based

on different formulations.




1. Introduction: 3ackground and Historv

Everv day a rapidly increasing volume of long distance TV, radio and
telephone communications is transmitted digitally via satellites. A high
capacity communication satellite interconnects simultaneocusly scores of
transmitting and receiving stations. One of the advanced techniques for
operating such a satellite communication network is the SS/TDMA (satellite-
switched time-division multiple access) system, b#sed on the use of highly
directive spotbeam anteanas [12], [l]. TUnder this scheme, each transponder
on board of the satellite is allocated to a pair of zomes (groups of ground
stations) for a certain amount of time. Such a set of allocations involving
all the transponders is called a switch mode. The allocations that make up
a switch mode are changed simultaneously by an on-board switching facility.
The whole sequence of switch modes that make up the schedule of allocations
for a given time period is called a frame.

A major problem that arises in comnection with SS/TDMA systems is
the efficient scheduling of time slot allocations for a frame. To be more

specific, the demand for a frame can be expressed as an nxn matrix D = (dij)’

the traffic matrix, where dij represents the length of the data burst from

zone i to zone j, i.e., the amount of time for which a transponder needs

to be assigned to the pair of zonmes (i,j). Clearly, dij > 0 for all i,j.
The scheduling task comsists of allocating time slots on the satellite's
transponders to pairs of zones. More specifically, it consists of deccm-

nosing the traffic matrix D into nxn swi:ich matrices (or mode matrices)

s

k ..k . .
D = (d:j), k=1,...,9, subject to certain feasibility conditicns and sz:-
b

isfying some efficiency criterion. The feasibility conditions are as follows,

1
for k=l,...,9, every row or column of D
contains at most one nonzero 2lement,
in other words, in every switch mcde, 2ach transpcnder is assizned =0

2€ most oSne pair of zcmes.




Z D" » D (2)
k-1

i.e., the g switch nodes together neet total demand.

It is easy to see that for q < n the problemis infeasible whenever
D has at least one row or colum whose entries are all positive. On the
other hand, for q * n the prbbl emanounts to 1-factorizing the conplete
bipartite graph Kn,n (i.e., finding in Kn,n n pairw se edge-disjoint per-
feet matchings), a problemwhose feasibility is an inmmediate consequence
of the Koni g-Hal | theoremon perfect matchings [7]. Thus for q 2 n the
problemis always feasible.

As to the efficiency criterion, a first objective is to satisfy

total demand in a mnimumamount of time. Since the tine needed to trans-

mt one switch node is given ‘by the largest entry of the switch matrix Dk,
total transmssion tine for a given solution (D1 ..... D') is
q
T- Z mx d (>
k=l {,§ U

Thus one approach is to address

Problem1 [91. Find a schedule (D' ...,D% that satisfies (1), (2)
and mnimzes (3).

The value of an obtimal solution to this problemcan be found out
by inspection. First, it is not hard to see that any row sumor colum sum
of Dis a lower bound on the value of T; hence the sane is true of the rnaxi--
mum of these row and colum sums, i.e., T >T* where

n
T « mxfmax Zd. .; max |
I




Second, it has been shown [9, 3] that (i) run T * T*, (ii) there
I a ?

exists an optimal solution (D¢;;., DO with g <_Q‘ - 2n "N 2; and (iii) this
is the snallest bound on the value of g for which the existence of a schedul e
with T * T* can be guarant eed.

Wiile (iii) holds for an arbitrary traffic matrix D, in the not in-

frequent case when D con'tains some entries equal to Oy the bound on g can

—— 2
be strengthened to g <n - 2n+ 2 - z, where z is the nunber of elenents
of D equal to O.

Pol ynom al tine procedures for finding an optimal solution to
Problem1 are givenin [9, 8].

A second criterion one may want to consider has to do with the size
of g, the nunber of switch nodes into which the traffic matrix is decom

posed. Theoretical considerations as well as practical experience indi-

cate that for an optimal solution to Problem1, i.e. for a schedul e
(Dl,...,DQ) with Te T, the value of q is typically equal to or close
to its upper bound, n2 - 2n+ 2 - z. This is inconvenient for the

followi ng reason. A schedule involving q swtches requires as nany
switch reconfigurations. Further, if q >a, sonme data bursts nust be
split, i.e., only partially transmtted during a switch node, with the
rest transmtted in another switch node. Switch reconfigurations and
burst splittings entail che addition of preanbles and guard nmargins, not
to mention other inconveniences. Therefore it is essential to keep q as
smal |l as possible, and the second relevant problemin this context can be

formul ated as

Problem?2 [2]. Find a schedul e (Dl,...,W) chat satisfies (1), (2

and g = n, and nmninzes T.




The practical inportance of Problem 2 conmes fromthe fact that it
avoids burst splittings. However, its relevance depends on how close its
optimumis to T*. la this context, the (transmssion) efficiency of a
schedule with total transmssion tine T is defined as the ratio T*/T.
.OJrrentIy no bound is known on the efficiency of an optimal solution to
Pr obl em 2. Furthernore, as discussed below, Problem2 is NP-conplete and
for realistic matrix sizes too large to be solved to optimality. Thus one
has to look for approximate solution nethods. MNaturally, if no bound is
known on the efficiency of an optinal solution, even less is known theo-
retically about the efficiency of approximte solutions. However, sone
enpirical evidence exists in this respect, Canerini, Mffioli and Ta_rtara
[2] (in the followi ng CMI) have devel oped and :[ested a heuristic for Prob-
lem 2, that consists of n successive applications of the following iterative

step (which starts with k = 1):

Let N= (l¢...,a}, and
2 n . n . o
X - fx eK |jZ_lx.1J. - 1, i€N; i_lel.J. - 1, JsN; Xiz' cfO.1}, i,j€EN} (5)
Iterative Step. Solve the nxn assignment problem
n n
(AP)- »ax Z Zd--x-:
* xX 1-1j-1 1Y
k k
and, if x* is the optimal solution found, let d. r3*d. #3if x*43=1, d.13 :« 0
if x*. =0, i,jeN. Set d,. :»-¢ if x¥x. » 1, d,, :%y if x*. =0, for i,jsN
LJ [J LJ J 1J | 1
Then if k <n, set k:=k + 1 and repeat the step. Otherwise (D, ...,D"

is the desired schedule.




LY.}

The assignnent problemis solved at each iteration by the Hungarian
nethod [10] (for a nore recent treatnent, see [3] or [11]), whose tine
conplexity is O(n3). Thus the time conplexity of the whol e procedure is
O(n4). As to its transnission efficiency, on a set of 100 test problens
with n « 20 and the entries of D integers drawn randomy froma uniform
distribution over the interval [0, 100], it was found to be on the average
about 89-90% w th a m ni num of 83%and a nmaxi mum of 96%

In a way, Problens 1 and 2 above represent two extremes, in which
one of the two criteria of interest is driven to its mninumval ue with-
out regard to what this entails in terns of the other. In order to exan ne
sone internmediate situations, OMI [2] have al so addressed the follow ng class,,

Problem3. For h =1,2,..., find a schedul e (Dl,...,lja) that satis-
fies (1), (2) and g « hn, and mnimzes T.

Finally, there is a substantial difference between burst splittings
that do and do not separate bursts into nonadjacent tine slots, the forner
(called proper burst splittings) being nmore costly than the latter. In
order to reflect this differentiation, OMI [2] have formil ated

Problem4. For h =1,2,..., find a schedule that satisfies (1), (2)
and g = hn without proper burst splittings, and mnimzes T.

CMI' have nodi fied their heuristic to obtain procedures of the sane
conplexity (0O(n4)) for finding approxinate solutions to Problens 3 and 4.
3w on the sane test problens, these procedures tended to produce sol utions

of inproved efficiency as h was increased.

2. A New Heuristic for Problem 2

The OMIN heuristic is based on the idea that for any k, maxim zing

k k
the sun of elements of D¥ will force inco D as rnany of the larger eleser.cs




of D as possible, thus reducing the value of the largest element left in
Dk'_1 . In order to gain sone insight into what mght be a better heuristic,
it is useful to look at some alternative fornulations of Problem 3. The

first formulation is a 3-index bottleneck-sum assignment problemwth 3n2

3 k
constraints and n variables, inwich d.. is represented as d..x.., , wth
X. .. =0or L
ik
n
mn | mx d..Xq50%
X ke« i)™ .
n
o ega ® 1 i,k =1,...,2
j=1 1jk
n
, =1 j,)<=1,...,n P2. 1
= j (P2.1)
n
1‘§1x.M«l i, =1, , N
Xijk€Ao>1} ilJ'))k: !'...»»

The second formulation is a set partitioning problemwth n  equations

and n! variables, one variable associated with every nXn pernmutation matrix:

mn cy
Ay = e (P2.2)
e[0,1}, j 51,....n '
y;el0. 1}, ]
- T r?
Here e = (!,...,!) has components, and every col um a.J of A

represents an nXn pernutation matrix in vector fora, i.e., a':_'3£/\0' 1},

I =1,...,n~ wth




a

Ea = =

r= (F-Lo¥s,j L, s=1,...,2
Q

sEla(r-l)u+S,j =l t=1l,..,0

and all the columns of A are distinct. Further,

c, = max a -
] l1<r,s<n (r-1)n+s,j rs

Both (P2.1) and (P2.2) are NP-complete problems which one cannot hope

to be able to solve to optimality except for small values of a. But they

both offer some insights ianto the kind of heuristics that might be expected

to work. 1In particular (P2.1l) suggests that instead of solving a sequence

of maximizing assignment problems (AP)k. one might do better by solving
a sequence of bottleneck, or min-max assignment problems. This leads to

the following:

Min-max Procedure.

Let ¥ be given by (5). Set k = 1 and go to the

Iterative Sten.

Solve the nxn bottleneck assignment problem

(BAP)k min max d, .x, .

1
and if x* is the optimal solution found, define dfj :=d,, if x*, =1, d..
i ij i3 ij
{f g% = [ feN. c= = 4 - .= . + =n ¢
i tij 0, i,jeN Set dij = if xfj 1, dij dij if xij 7, for all

P .. 1
1,jeN. Then if X < n, set k:=k + 1 and repeat the stap. CQOtherwise (D~,

is the desired schedule.

.,D7)




O the other hand, the set partitioning formulation (P2.2) suggests
the use of the greedy algorithmfor set covering problems [4], nodified to
handl e equations instead of inequalities. S nce the colum sum JaJJ is
the sane for every colum of A and a cover can only contain pairw se ortho-
gonal colums, the greedy choice rule is equivalent in this case to mni-

m zi ng c;1 Thus the greedy al gorithmadapted to (P2.2) anounts to sequen-
tially choosing col ums a.J of A in order of increasing cJ whil e deleting
after each choice all col ums a, such that a.Kaj > 1, until a set of n col-
ums has been chosen. But in view of the definition of the aj and % this
is precisely the Mn-max Procedure stated above. Thus both probl em formil a-
tions suggest the sane heuristic approach.

The Iterative Step of the Mn-max Procedure can be solved by the
"thres.hold met hod" of 0. Qoss [6] (see also [5] and [11]). In the nXn
array associated with the (bottleneck) assignment problem call a row or

colum a line. Call a set S of cells (elements of the array) independent,

if no tw cells of Sare in the same line. An independent set of cardinal-
ity nis an assignment. The "threshold nethod" starts with sone initial

assignnent S, defines the threshold
8 o max{di| (i,])€Se}

and decl ares adm ssible those cells (i,j) such that d.l.J < 5. It then uses
a | abeling brocedure to find a nmaxi mal independent set S of admssible cells.
If |s|] <n, then Sc defines an optinmal solution x° to (3A?), wth x°i.J =1
if (i,j)eSO, x}?}. =0 otherwise. |If js| = n, the threshold can be | owered:

one sets SO::S, redefines ?, and repeats the procedure.




V¢ have slightly aodified this basic procedure in order to use the
fact that we are solving a sequence of interrelated bottl eneck assi gnment
problens rather than just one. The main change is that, rather than |owering
the threshold each tinme to the value of the next largest element of D we
calculate an upper and a |ower bound on the objective function val ue and
< hoose the threshold via bisection of the interval defined by these bounds.
This has speeded up the procedure considerably.

To generate a starting assignnent, we use a "stingy" heuristic that
chooses admissible cells in order of increasing d':.'j If we have to stop
short of choosing n cells, we conplete the assignnment via the |abeling
procedure. The details follow.

A line of the assignnent array will be called free if it has no
cell in the current assignment. At the start Dis the traffic matrix, sub-
sequently D is updated at the end of each iteration. Set k := 0 and go to
t he

[terative Step

1. (Construct Initial Assignnent)
If k=0, set 9:*0 and go to 1.2. (Qherwise let D™ be the |ast
switch matrix produced; set 3:*max d.., declare adnmissible all cells (i,j)

J' 1J

if
such that d'Lj <8, and go to 1.1.

1.1. Scan the rows and put into S the first admssible cell in a free
colum encountered in each row If |§ * ngo to 2, else continue.

1.2. Find d'z ..«adrxd.ji and j are free}. If d. . <a, »4¢c (i ,j )
0’0 L Vo ° ©°
into S and go to 1.2; else continue.

1.3. If |s| »n, goto 2; else declare all cells adm ssible and conpl ete

the assignnment by the |abeling procedure: set 5(?3 =0 and go to 3.
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2. (Sec New Threshol d)

Set S*.=S, store the candidate assignnment S*, and define
e max{d, .| (1,])es},

A9 :* max{9, mnd .},
i,j

and

s(ay:a¢r 1P 3-321
a ot her wi se.
Then set

3= :._;'(_é + 3.,

declare admssible all cells (i,j) such that d':.j <3, and go to 3.
3. (Find a Maximal |ndependent Set of Adm ssible Cells)
Start with all lines unlabeled, unscanned.

3.1-3.3. (Labeling)

3.1. Label all free rows with -1 and go to 3.2.

3.2. Choose a |abeled unscanned row i and scan it for adm ssible
cells. For each such cell (i,j), if columj is unl abel ed, label it with
i. Thenif colum | is free, let jo ;=) and go to 3.4, else continue.

Repeat 3.2 until all |abeled rows have been scanned. [f no new
col um has been labeled, go to 3.5, else go to 3.3.

3.3. Choose a labeled unscanned col um j and scan it for some (i,j)sS
If such (i,j) is found, label rowi wth j.

Repeat 3.3 until all |abeled colums have been scanned. [f no new

row has been |abeled, go to 3.5, else go to 3.2.




1n

3.4. (Augnentation) |If the label of colurmjois i, put (i,j c,) into S
If the label of rowi is j * -1, make all l|ines unlabel ed, unscanned, and
go to 3.1. If the label of rowi isj ~ -1, put (i,j) into S set jo *
and go to 3.4. )
3.5. S is a maximal independent set of adm ssible cells.
If js| * nand 5(3) * 0, the threshold can be |lowered: go to 2.
If |s|] «nand 5(3) * 1, Sis a mn-nmax assignment: set S 1« S
and go to 4.
If |s|] <n, no assignnent exists that satisfies the current threshold.
Therefore S, the candidate stored in step 2, is a mn-nmax assignnent: go
to 4.

4., (Construct New Switch Matrix)
Define D**! * (djgl), wher e

k+l | _|d (i,j)eS
1y ¢ ij

0 (1,3) 5%,

d

and set di.J » »if (i¢])eS, dt.J :*<*;:F otherwise. |If k + 1 a, stop:

([},...,D‘) is the desired schedule. Cherwise set k:*k + 1 and go to 1.
A few comments are in order. Ve wll call an application of the

Iterative Step a cycle. A the beginning of each cycle, the construction

of an initial assignnent starts by putting into S only cells that are

adm ssible with respect to the threshold value of the previous iteration
(Step 1.1). Step 1.2 continues the construction by including additional
cells according to the "stingy™ rule of choosing themin order of increasing
d':.)' Wien no conpl ete assignment can be obtained in this way, the labeling

procedure of Step 3 is used to finish the job, with no restriction on

adm ssibility.
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Step 2 is entered with a conplete assignment S. Cearly, maxfd., 'J.j] (i,]) eS}
constitutes an upper bound on the value of the bottleneck objective function
for the switch matrix under construction, and aiaxf$, m:n d.lJ.}, where 3 is
the threshold value of the previous iteration, constitlljt\gs a | ower bound.

To see this latter point, note that if a switch matrix with an objective
function value lower than 3 existed, it would have been found at the previous
iteration. A new threshold 3 is then defined by bisecting the interval be-
tween the above upper and | ower bounds. The role of the paraneter 5(3) is
to carry to Step 4 the instruction of either continuing the bisection
procedure, or termnating it.

Step 3 is the well-known |abeling procedure of Ford and Ful kerson
for finding a maxi mal independent set of admissible cells. Steps 2 and 3
are iterated as long as feasible assignnents can be found for successively
| ower thresholds. This process stops when lowering the threshold is no
| onger possible. At that point the current assignnent S* is used to con-
struct the next switch matrix Dk+1, the traffic matrix D is updated, and
a new cycle is started. After a total of n cycles, the procedure ends
with a feasible schedule (D, ...,D%, q = n.

Next we address the conputational conplexity of the algorithm

During every cycle, Step 1 is used exactly once, and its time conplexity
3 ? 2

is O(n). Step 2 is 0(n~). The labeling procedure of Step 3 is 0(n ),
each augnentation is 0(n), and the nunber of augmentations (and hence «
| abel i ngs) during one application of Step 3 ius 0(n). Hence one application

of Step 3 has a total time conplexity of O(n ). Finally, Steps 2 and 3 can
15 '
be iterated during a cycle at aost |og-»" times, where j. = :nx d - mn d_
n i "o »J "id
Thus the time conplexity of a cycle is O(n log,” A), and since therg are
n cycles, the tine complexity of the whole M n-nax procedure is 0O(n log" 1).

1
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Law er [11] gives a version of the bottleneck assignment algorithm
whose tine conplexity is O(n3); so when that algorithmis substituted for
Steps 2-3 above, the resulting procedure is of 0O n4). Ve have inpl enent ed
and extensively tested both procedures. In spite of its better worst case
bound, the version using Law er's al gorithmwas on the average about 30%
slower than the Mn-max Procedure using the Ford-Ful kerson nethod conbi ned

wi th bisection.

3. Conputational Results

Both the OMI method [2] and the Mn-max Procedure were inplenented
and extensively tested on a VAX conputer, on randomy generated test problens
with the el enehts of Ddrawn froma uniformdistribution of the integers
over [1,100]. A total of 12 classes of problens were solved, wth 1000
problens in each of the first 6 classes (for n « 5, 10, 15, 20, 30 and 40),
and 20 problens in each of the next 6 classes (for n* 50, 60, 70, 80, 90

and 100). Table 1 sumarizes the results.

Table 1. Conputational Results on a VAX 811

(1000 problens in each of the first 6 classes,
20 problens in each of the last 6 classes)

a Average efficiency (%
QUT | M n-nax
5 91. 46 93. 58
10 88. 57 92.73
15 37.62 92.71
20 90. 78 95. 12
30 88. 63 94. 81
40 89.57 | 96.07
50 91. 22 97. 39
60 90. 37 97. 69
70 90. 27 97. 53
80 90. 39 97. 44 ;
| %0 91.21 | 98.23

100 | 01.43 | 98 25




The performance of the Min-max Procedure in terms of transmission
efficiency is uniformly better than that of the earlier CMT heuristic,
and increasingly so for large problems. While the efficiency of the CMT
method Iluctuates around 89-91% for small as well as for large problems, the
efficiency of the Min-max Procedure is around 93% in the range 5 < a < 15,
around 95% for 20 < a < 40, around 97.5% for 50 < n < 80, and above 98% for
90 < n < 100. '

As to the computational effort, we have found that while the time
used by the CMT method is 0(n4), i.e., close to its upper bound, the time
required by the Min-max Procedure only slightly exceeds O(n3), in spite

of the somewhat weaker worst case bound.

With transmission efficieacies so close to 1, it seems that re-
stricting the number of switch matrices to n is not such a debilitating
constraint as it had been thought to be. In the light of this computational
experience, Problem 2 of Section 1, first formulated by CMT (2], appears
to be the right problem to address, and the Min-max Procedure recommends

itself as the method of choice.

The Min-max Procedure, just like the CYT method, can be modified
to solve Problems 3 and 4 stated in Section 1. We have tasted such

modified versions of our procedure and obtained Zor Problem 3 average

transmission efficiencies of 97.86% for q = 2n, 98.38% Ior ¢ = 3n and

20. These are better %:han the

99.12% for q = 5n, on 100 problems with n

ce s s - X . - - . P
95.12% efficiency obtained for Problem 2 (i.e., Zor g n), but we £ind

S .oz . - he die-
it doubtful whether this further improvement can compensate Ior tae ais

advantage of havinag burst splitcings.
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| a the case when proper burst splittings are forbidden (Problem4),
we managed to obtain only a very slight inprovenent over the efficiency
registered for Problem2 (95.14%for q -2n; 95.39%for q » 3n, and
95.83%for g » 5n), which seens to rule out Problem4 as a promsing
formul ati on.

Finally, returning to Problem2, we have also tested a procedure
that conbines the Mn-max heuristic with a linmted amount of inplicit
enuneration in order to find better solutions at increased conputational
cost. To be nore precise, this procedure generates the n alternative sol u-
tions obtainabl e by banning from D1 (the first switch matrix generated by

the Mn-nmax heuristic) one of its n positive entries, and then applying the

procedure as usual. At the cost of an n-fold increase in conputing tine,
the average inprovenent in efficiency was 0.21% 0.23% 0.22% and 0. 18%
for the 50 problens with n « 5, 10, 15 and 20 respectively. These meager
i nprovenents strongly suggest that the solutions to Problem 2 obtained by

the M n-nmax Procedure are very close to the optimm
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