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Abstract

At a particular time in a batch process, some tanks with a batch of material may

require heating while some other tanks may need cooling. This work addresses the

problem of determining the maximum heat integration between the tanks to reduce

the utility consumption. Depending on the processing requirements, the exchange of

heat can present three distinct temperature profiles in time that are similar to

cocurrent, countercurrent, and combination cocurrent/countercurrent temperature

profiles. For the cocurrent case, a heuristic is given for deciding the processing

order of exchanges when multiple hot and/or cold batches are present. This heuristic

is shown to lead to the optimal answer for certain instances in which the desired

final temperatures of the tanks do not restrict the exchanges; i.e., the matches

proceed until the (AT) requirement is satisfied. For cases in which the desired

final temperatures limit some of the exchanges, a mixed-integer linear programming

formulation is proposed. Examples are presented to illustrate the application of the

two methods.



Introduction

Used in the manufacture of food, Pharmaceuticals, and fine chemicals, batch

processing is an important production scheme. A significant proportion of the

world's chemical production, weighted by its economic value, is manufactured in

batch facilities (Rippin, 1983). Systematic methods for design of these plants mainly

has dealt with selection of capital equipment to minimize investment cost, (See

Loonkar and Robinson (1970), Sparrow et al. (1975), Grossmann and Sargent (1979),

Suhami and Mah (1982), for example.)

However, energy conservation also can be an important goal in the design of such

processes. Knopf et al. (1982) have included correlations for energy consumption in

the design of batch plants. Lundberg and Christenson (1979) have examined waste

heat recovery In the food procesing industry. On the other hand, most of the design

methods for heat integration that have been proposed are for continuous processes

(Nishida, et a I., (1981), Linnhoff, et al., (1983)), although opportunities for heat

integration are present in batch processes. In particular, at any time in a batch

process, some vessels may require heating while others may need cooling. An

interesting question that then arises is: what is the best way to assign the vessels

for heat exchange to minimize the utilities needed?

Previous studies have derived expressions for the temperature profile for heating or

cooling of an agitated, liquid batch. In the 1940's various researchers have examined



the dynamics of various systems:

a) jacketed vessels or vessels with internal heating coils, (Bowman et al., 1940)

b) batch vessels with external countercurrent heat exchangers, (Fisher, 1944)

c) batch vessels without agitation using external heat exchangers, (Kern, 1950)

d) batch vessels with the addition of liquid to the tank.

(Chaddock and Sanders, 1944)

e) same as d) with heat of solution effects and external exchangers,

(Chaddock and Sanders, 1944)

Troupe (1952) and Fernandez-Seco (1953) have analyzed the exchanger area needed to

cool a liquid batch in a given amount of time. A nomograph for heating time and

exchanger area has been produced by Unger (1962). It should be noted that all of the

previous work has studied the behavior of a single tank, ignoring other batch vessels

that may need heating of cooling.

This paper addresses the problem of predicting the maximum heat integration in

batch processes. Three arrangements with receiving tanks will demonstrate different

temperature profiles in time. Cocurrent and combination cocurrent/countercurrent

temperature profiles with respect to time are seen, while countercurrent exchange

with respect to exchanger length also is shown. The equations describing the

cocurrent case are analogous to those for the draining of tanks. This study presents

a heuristic for deciding the pairing of the hot tanks and cold tanks to transfer

maximum heat for this case. This rule provides a fast, good answer to a large

combinatorial problem and is unusual since a series of local decisions provide a

global optimum. However, this heuristic is limited to problems with target

temperatures that do not restrict the heat exchange of each match. For cocurrent

exchange with restrictive target temperatures, a mixed-integer linear program

improves the solution provided by the heuristic. For the combination

cocurrent/countercurrent case, a rule for deciding which fluid should use the receiving

tank is presented. Countercurrent heat exchange, which results when each fluid in a



match flows to a receiving tank, is not examined here since this type of exchange

has been reported extensively in the literature, as cited above.



Theory

Definition of Terms and Assumptions

In this section key terms will be defined and the assumptions used for this analysis

will be explained. The system under study consists of two or more vessels of fluid.

The "hot" tanks contain those liquids which require cooling. Conversely, the "cold"

tanks contain the liquids that need to be heated. Hot tanks can exchange heat with

cold tanks only; heat exchange between two hot tanks or between two cold tanks is

not permitted. Also, a batch must maintain its integrity during an exchange; it

cannot be divided into two or more vessels for the exchange, unless specified by the

processing requirements. The terms cocurrent and combination

cocurrent/countercurrent refer to temperature profiles of the fluids with respect to

time rather than distance. While the two fluids flow in a countercurrent manner

through the exchanger, it is the return of the fluids to the starting tanks or to

receiving tanks that determines the type of temperature profile experienced by the

liquids. This behavior will be demonstrated in this section. Also, the length of time

for a given exchange is not explicitly considered in this work. The time required for

a given exchange depends upon the flow rates of the fluids, the area of the heat

exchanger, and the minimum approach temperature for heat exchange (AT) . . These
roin

values are chosen by the design engineer to reflect the trade-off between time and

the costs of the heat exchangers and the pumps, a cost versus benefit analysis not

addressed in this study. Finally, the minimum approach temperature (AT) is
mm

assumed to be a specified value.

The following simplifications are used in this analysis.

1. The fluid in each tank is well-mixed and its temperature is uniform.

2. The specific heat capacity of each fluid is a constant.

3. No phase changes occur.

4. The rate of flow of each fluid through the heat exchanger is constant.



5. The fluids contact in a countercurrent manner in the heat exchangers.

6. The heat exchanged in a match is determined by heat balances and is
limited only by (AT)

' ' mm

7. Heat losses and leaks are negligible.

Cocurrent Heat Exchange

Cocurrent heat exchange occurs when both the hot and cold fluids return to their

original tanks after passing through the heat exchanger. In this case the processing

requirements specify that the materials must remain in their tanks while being heated

or cooled as shown in Figure 1A. For instances in which the fluids cannot be

pumped easily, for example, food products, heating and cooling media are used to

accomplish the exchange, demonstrated in Figure 1B. The analytical solutions to the

dynamic equations for this system are the following.
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T it) is the temperature of the hot tank at time t
h

T (t) is the temperature of the cold tank at time t

T1 is the initial temperature of the hot tank
h

T1 is the initial temperature of the cold tank

(AT)cxchis the minimum approach temperature of the two fluids
min

in the exchanger. The effects of the heat transfer coefficients

and the exchanger area are lumped into (AT)CXC.
^ r mm

F is the flowrate of a fluid through the heat exchanger

V is the volume of liquid in the tank

<FC Y is the heat content per degree per time for the hot tank
P n

{FC ) is the heat content per degree per time for the cold tank
P c

(VC ) is the heat content per degree for the hot tank
p n

(VC ) is the heat content per degree for the cold tank
p c

Displayed graphically in Figure 1C, these equations demonstrate how this arrangement
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leads to temperature profiles in time that resemble those of cocurrent flow.

Analyzing the initial and final states of the system, the first law of thermodynamics

is the following.

(VC ) ( f - Tf) • (VC ) ( Tj - Tf) = 0 (5)
p h h h p c c c

where T is the final temperature of the hot tank
h

T is the final temperature of the cold tank

If the fluids are pumped through the exchangers until the tank temperatures are

separated by (AT) . , the equations can be rearranged as shown. These results agree
min

with equations 1 to 4 as t -> oo, allowing (AT) . = (AT)cxc.h
° mm mm

(AT) . = Tf - Tf s the difference in the final temperatures of the tanks (6)
mm he

(VC) ( Tj * (AT) )
(7)

(VC ]
D

(VC ]
D

h

h
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This heat exchange configuration can be compared to the draining of one tank into

another. A mass balance around the two tanks of the same liquid can be written as

follows.

p A1 ( h'j - h1 ) «• p A2 ( h'2 - h2 ) = 0 (9)

where p is the density of the liquid

A is the cross-sectional area of tank 1

A2 is the cross-sectional area of tank 2

h' is the initial height of tank 1



h' is the initial height of tank 2

h is the final height of tank 1

h' is the final height of tank 2

Under the force of gravity the liquid would transfer until the levels of the tanks were

equal. •

A1 h', • An h*
hi = ho s — h r T2—2- <10>

1 2 A i + A 2

Equations 8 and 10 have a similar form with the comparisons heat content per degree

of temperature, (VCp), to area, A, and temperature, T, to height, h. The two cases are

identical when (AT) . is zero or when (AT) . is grouped with T1 or with T1. Thus,
mm mm * h c

this analogy provides an alternative representation for this problem.

Countercurrent Case

Countercurrent heat exchange occurs when the processing requirements allow the

fluids to transfer from their original tanks to receiving tanks while being heated or

cooled, as shown in Figure 2A. At steady state the temperature of the supply vessel

remains constant as does the temperature of the final tank. Therefore, this system

behaves as a semi-continuous process and results in a typical countercurrent heat

exchange. Application of the first law of thermodynamics yields the following

equation.

(FC ) < T1' - T* ) • <FC ) ( f - Tf ) « 0 (11)
p n h h pc c c

If (FC ) is greater than (FC ) , then a pinch point will occur at the hot end of the
p n pc

exchanger as shown in Figure 2B. Setting the hot outlet temperature equal to the

cold inlet temperature plus a design margin, (AT) , yields the next equation.
min

T[ = Tj + (AT) . (12)
h c mm
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Tf « Tj • - S f i k ( T' - t - (AT) ) (13)
c c (FC ) h c m i n

PC

If (FC ) is greater (FC ) , then the pinch occurs at the cold end of the exchanger, as

seen in Figure 2C. Using a similar analysis the following results.

Tf = T! - (AT) . (14)
c h mm

(PC )

T' = T* - - L l n i - ( T' - TJ - (AT) ) (15)
h h (FC ) h c mm

ph

If (FC ) is equal to (FC ) , then the pinch occurs throughout the exchanger as
p h pc

demonstrated by Figure 2D, and these two equations are true.

Tf = t - (AT) (16)
c h min

T' = Tj - (AT) . (17)
h c mm

If the flow rates are constant and proportional to the original volume of the tanks,

(VC ) can be substituted for (FC ). Since this configuration of the two batch tanks
p P

and two receiving tanks results in the same countercurrent heat exchanger

temperature profiles as found in continuous processing, this case is not analyzed in

further detail here since many researchers have studied this problem. (See

Nishida et al. (1981), or Linnhoff et al. (1983), for example.)

Cocurrent/Countercurrent Case

Figure 3A shows the scheme that results in temperature profiles that are

intermediate to those of the cocurrent and countercurrent cases. In this case the

processing requirements restrict the cold fluid to return to its original tank, while the

hot fluid is permitted to transfer to a receiving tank. If the cold fluid is restricted

from recirculating, a heat exchange fluid can be used in its place, similar to the case

shown in Figure IB. An energy .balance of the tank with the recirculating liquid,

labeled as the cold tank, yields this ordinary differential equation:

(V (Vc
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An energy balance of the exchanger gives the next equation.

( F C K ( T l - T K > * < F C > {T% - T ° ) = 0 ( 1 9 )
p h h h p c c c

wnere

T* is the temperature of the hot fluid entering the exchanger at time t

T1 is the temperature of the cold fluid entering the exchanger at time t
c

T° is the temperature of the hot fluid exiting the exchanger at time t

T is the temperature of the cold fluid exiting the exchanger at time t

Since the hot fluid passes through the exchanger only once, it should be cooled as

much as possible. If the flowrates are set with (FC ) greater than (FC ), the cold
p c p h

end of the exchanger is the limiting side and the desired cooling can be

accomplished. This situation is demonstrated in Figure 2C.

T° = T1 * (AT) . (20)
h c mm

Substituting Equations 19 and 20 into 18 and integrating from t-0 to t=tf yields the

following integral

, C = \ " ~P'h ~~ (21)
r - c r • (AT) . ] •'o <vc )

h e mm p c

T'(t=t ) = T1 - (AT) . - I T ! - ( T'(t=O) • (AT) ) Jexp < - . Ph. f) (22)
c f h mm L h c mm J r ^ (VC )

P c

Letting the final time tf equal the time to drain the hot tank, the result is given

below.
tf « -JJtL « r . (23)

h

Tj(t =r) = T' - (AT) - [T! - ( T* (t»0) • (AT) , )] exp {- .„ V " } (24)
c f h mm u h c mm J v (VC )
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Time averaging of the temperature of the receiving tank yields the fo l lowing equation

for the final temperature of the hot f luid.

T'(t=0) * (AT) ) ] [ i - exp {- •££&.}] (25)
c min (VC )• - „ (VC ) u h c mm -"- ^ (VC f

* - r ph pc

where \ T ° / i s the temperature of the hot fluid

in the receiving tank at time t

These profiles are displayed in Figure 3B.

These results show that the fluid with the larger (VC ) should transfer to the spare

tank, if this option exists. A difference in total heat transferred of about ten per

cent or less is found for the two arrangements for typical values for batch

processing.

This section shows that countercurrent exchange will provide the maximum heat

transfer between two tanks, if spare tanks are available and if the processing

requirements will allow the fluids to leave their original tanks. If countercurrent

exchange is not possible, then the combination cocurrent/countercurrent configuration

is preferred to the cocurrent arrangement, if feasible. This reasoning shows a trade-

off between the cost of a spare tank and the value of the energy saved.
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Design Procedures for Maximum Heat Integration

The matching of tanks for cocurrent heat exchange is divided into two cases for

analysis. In the first case the contents of each individual tank cannot reach their

desired temperatures without additional heating or cooling using utilities. This

possibility is realistic if the target temperatures are far from their initial

temperatures. For this case, a heuristic that depends on the initial temperatures only

is presented to assign tanks for heat exchange. This heuristic can be proven to lead

to the optimal answer for the one hot tank/n cold tanks problem and for the two hot

tanks/two cold tanks problem. If the target temperatures are limiting, i.e., one or

more tanks can reach its desired temperature without the use of a utility, the

heuristic does not provide the best solution at all times. To obtain a better solution

the tank sequencing problem is formulated as a multi-period, mixed-integer linear

program with each pairing of tanks considered to be one time period.

Cocurrent Heat Exchange With Non-limiting Target Temperatures

In this case, a simple procedure can be developed based on the following heuristic

rule: Match the coldest hot tank with the warmest cold tank that are feasible. The

algorithm for using the heuristic is listed below.

1. Order the hot tanks in order of increasing temperature with hot 1 being
the name of the coldest hot tank, etc.

2. Order the cold tanks in order of decreasing temperature with cold 1 being
the name of the hottest cold tank, etc.

3. In order for heat to flow from the hot tank to the cold tank, the
temperature of the hot tank must be greater than that of the cold tank
plus the specified minimum difference in temperature ((AT) . ). If this
match violates the temperature constraint, check cold 2 to see if it is a
feasible match for hot 1, etc.

4. Once a feasible match is found, calculate the outlet temperatures of the
tanks using the results from the theory section.

f < v c K Tl • (VC ) ( f * (AT) )
T T - p h h pc c. mm

h ' (VC ). * (VC )
p h pc
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f V C I T' - (AT) . • (VC ) T1
 f t , %

T = p h h m«n p_£ £_ or T = T - AT)
c (VC ) * (VC ) c 'h "min

P h p c

5. Update the temperatures of the tanks using T and T above.

6. Continue with the next cold tank and repeat steps 3 to 5 until all of the
cold tanks are examined.

7. Repeat steps 3 to 6 for hot 2, hot 3, etc., until all of the hot tanks are
considered.

This algorithm will work also if in step 3, cold 1 is compared to hot 1, hot 2, etc.,

and if the remaining cold tanks are checked in the same fashion as cold 1.

This heuristic is illustrated for the two hot and two cold tanks shown in the heat

content diagrams of Figure 4. The ordinate is temperature and the abscissa, heat

content per unit of temperature (VC ). Since the temperature of hot 1 is less than

that of hot 2, hot 1 is the first hot tank for matching. Conversely, cold 1 will be

the first cold tank for heat exchange because its temperature is higher than that of

cold 1. The heat exchanged between hot 1 and cold 1 is represented by the area

labeled I. The subsequent matches are shown in the figure by the II, III, and IV. The

desired final temperatures are described as "non-limiting" since they did not

constrain the outlet temperatures of any of the matches, evidenced by the use of

utilities to reach the temperature goals of the tanks.

This heuristic is unusual since a sequence of local decisions provide a global

optimum. Another way to word the heuristic is to match the hot and cold tanks that

are closest in temperature. A qualitative interpretation of this rule is that the

temperature difference between the hot and cold tanks, the driving force for heat

transfer, is conserved. Clearly, the main advantage of this heuristic is that it

provides a very fast procedure to evaluate heat integration in a batch process, since

it avoids the enumeration of all possible match combinations.
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Validity of the Heuristic Procedure

In the appendix, a proof for the heuristic for the case of one hot tank/n cold tanks

(or n hot tanks/one cold tank) is presented. The first part of this proof (Appendix 1)

shows that the optimal total amount of heat exchanged is not transferred if a hot

tank matches with more than one cold tank at the same time (or conversely, if a

cold tank matches with more than one hot tank at the same time). The second part

of the one hot tank/n cold tanks proof (Appendix 2) uses this result to analyze two

sequences of cold tanks that differ by a pair-wise interchange, i.e., the order of two

consecutive cold tanks, cold tank i and cold tank (i+1) are reversed in the two

sequences. If the initial temperature of cold i is higher than that of cold (i+1), then

the sequence that matches the hot tank with cold i before cold (i+1) transfers more

energy than the alternative sequence. Thus, a series of pair-wise interchanges will

produce an exchange sequence of cold tanks ordered from highest initial temperature

to lowest. Using a similar reasoning, this analysis will order a set of hot tanks

from coldest to hottest for a m hot tanks/1 cold tank problem.

Proving the heuristic for the more general problem of m hot tanks and n cold tanks

is a difficult task. If each pair of hot and cold tanks matches just once and if only

one hot tank and only one cold tank can match at the same time, then fourteen

different sequences for heat exchange between two . hot tanks and two cold tanks

exist. (4! or twenty-four are possible, but only fourteen are unique.) The heuristic

for this case can be shown to be optimal by calculating algebraically the total heat

exchanged for all the possible configurations and by comparing the resulting

expressions. These results are shown in Vaselenak (1985). The three hot tanks/two

cold tanks (or two hot tanks/three cold tanks) problem has 192 different sequences

from a possible 6! or 720. Since the problem grows exponentially as more tanks are

added, algebraic comparison of all the possible sequences becomes cumbersome. At

this time, the optimality of the heuristic has not been proved for the three hot

tanks/two cold tanks case and for larger problems.
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(n summary, the proposed heuristic procedure provides a design tool to evaluate

quickly various systems for heat integration without considering every alternative.

Since the number of alternatives increases quite rapidly, the heuristic is a useful

design tool to assess quickly the possibilities for energy conservation in batch

processes.

Example of the Heuristic

The potentials for heat integration are demonstrated in the problem consisting of

ten hot tanks and ten cold tanks shown in Table 1. Eighty-one per cent of the

cooling needs and eighty-eight per cent of the heating requirements can be saved by

sequencing the tanks according to the heuristic. These results are displayed also in

Table 1.
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Cocurrent Heat Exchange With Limiting Target Temperatures

A limiting target temperature is a desired final temperature that can be reached

using the heat integration without a hot or cold utility. In the previous section, a

match proceeds until the outlet temperatures are separated by (AT) . In this

section, desired outlet temoeratures are reached before the (AT) reauirement
mm

becomes active.

For tanks B, C, X, Y, Z shown in Table 2, the estimate provided by the heuristic is

not the optimal value, as demonstrated in Tables 3 and 4. For instances in which a

better answer is desired, the following multi-period, mixed-integer linear program

(MILP) is proposed.

The basic idea of the MILP is as follows. Firstly, we consider that the sequence of

matches takes place in a series of T time periods of operation. Our goal is to

maximize the total energy exchanged between the hot tanks and the cold tanks. This

aim can be expressed as maximizing the heat lost by the hot tanks or as minimizing

the sum of the temperatures of the hot tanks after T time periods, weighted by their

respective (VC ).'s.
p i

Nhot

max X < v c >• <T° - T T > • ( 2 6>

coldNcold
(or max V {VC > (TT - T°) )

where

T1"1 * initial temperature of hot tank i in time period t
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T. = initial temperature of cold tank j in time period t

T.! » final temperature of hot tank i in time period t

Tl = final temperature of cold tank j in time period t

T* = outlet temperature of the hot tank considered at time t

Nhot = the number of hot tanks

Ncold = the number of cold tanks

t = index of the time period, t - 1, 2, ..., T

T = the total number of time periods or the number of matches

For any period t, denoting Q! = heat lost by hot tank i in time period t and Q* = heat

gained by cold tank j in time period t, then the following total heat balance must

hold in each period.

Nhot Ncold

s.t. 2 3 Qt -' ] E Qt = ° t = 1, 2 T (27)
j=1 J

where Q1, Q! £ 0

Heat balances for the processing streams must hold in each time period.

(VCp). T[ - (VCp). Tj"1 * Qf
l = 0, V i . t - 1. 2 T (28)

(VCp). Tj - (VCp). Tj"1 * Qj = 0, V j . t = 1. 2, _. T (29)

Also, the desired target temperatures. T**get for the hot tanks and T t jrget for the

cold tanks, must not be violated.

Tt ^ t̂arget i « 1f 2 Nhot (30)

T| ^ T p e t j . i. 2 Ncold (31)
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In order to restrict only one match between a hot tank and a cold tank per time

period, we define the 0-1 variables that must satisfy these constraints.

Nhot

y l = 1 t « 1. 2 T (32)

Ncold

X V1 s 1 t = 1, 2 T (33)

If y! is 0r then hot tank i does not exchange heat in period t. Therefore, its

corresponding Ql must be zero for that period. On the other hand, if hot tank i is

permitted to match with a cold tank in period t, then y1 for the hot tank is equal to

1 and its Q! can be any value less than its upper limit U . Similarly, a value of 0
i h

for y! indicates the absence of cold tank j from matching in period t, and a value of

1 indicates its presence. Also, the same restrictions for Q* apply as for Q*. These

limitations are shown below.

Q* - U y? £0, V i , t = 1, 2 T (34)
i n i

Qj - Uc yj £0, V j . t - 1. 2 T (35)

where

Uh - upper bound for Q. = max [(VC ). (T° - 1^<rB-t)Jfor all hot tanks i

U = upper bound for Q. = max [(VC ). (T° - T^get)Jfor all cold tanks j
c K H j L

 P j j j J

If T: is the outlet temperature of the hot stream that exchanges heat at period t and

(AT) is the minimum temperature approach, then the feasibility of the selected
min

match is insured by the following constraints.

{VC ). (T1"1 - Tl) - Q l - U y* f U . V i . t - 1. 2 T (36)
p i i i h ' i h
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{}fCJi {JX - (AT>m.n " T\~]) " Q! " Uc y) *' Uc' V j . t - 1. 2 T (37)

If for a given pair (i,j), the corresponding binaries are set to one in a given time

period, these constraints ensure that ihQ heat transferred, u! = Q!, is feasible. That

is, T *~ \ the inlet temperature of hot tank i, must be greater than T ! " \ the inlet

temperature of cold tank j, since all variables are assumed to be positive. For the

hot and cold tanks not selected in the match for that period, these constraints

become redundant.

The problem defined above is a multi-period, mixed-integer linear program. The

efficiency of the branch and bound search procedure can be increased by further

constraining the problem.

Since the heuristic provides an initial estimate for the total energy exchanged, only

sequences of matches that improve this lower bound should be examined, where the

variable C X . . represents the total heat exchanged between the hot tanks and the

cold tanks using the heuristic.

Nhot

heuristic

Next, since each hot tank/cold tank pair can match only once throughout the T time

periods, the following constraints are imposed.

Z\. * y[ • yj - 1 Vu V j . t = 1, 2 T (38)

Zy * 1 Vi , j (39)
t = 1 J
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where

Z.. = a continuous variable (bounded by 1) that is 1 if a match
lj exists between hot tank i and cold tank j in time period t;

0, otherwise

Finally, since redundant sequences may occur when assigning matches in different

time periods (e.g., hot 1/cold 1 in period 1 and hot 2/cold 2 in period 2 is equivalent

to hot 2/cold 2 in period 1 and hot 1/cold 1 in period 2), the ideas suggested by Pho

and Lapidus to eliminate redundant sequences are used to produce these constraints.

For i = 1, 2, ..., (Nhot-1) and for j = 1, 2. .... (Ncold-1),

k = 1, 2 (Nhot-i)

/ = 1, 2 (Ncold-j)

(Our implementation of the ideas of Pho and Lapidus (1973) substitutes hot tanks for

their cold streams and vice versa.) The user can alter easily any of these conditions,

but elimination or relaxation of any of the integer constraints will add more

combinations to the set of feasible sequences, and thus, the solution will require

more CPU-time.

This MILP formulation has been applied to the problem of two hot tanks (B, C)

/three cold tanks (X, Y, Z) given in Table 2, considering a maximum of 6 matches

(time periods). The MILP is composed of 112 continuous variables, 30 integer

variables, 36 equality constraints, and 150 inequality constraints. The objective

function is to minimize the final temperature of the hot tanks, weighted by their

(VC )'s. This example was solved using LINDO, a linear programming package

developed by Schrage (1981), which uses a depth-first, branch and bound search
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technique for the integer variables. This problem required the enumeration of 51

branches and 2081 pivots to locate the optimal solution shown in Table 4 and used

about 2,5 minutes of CPU-time on a DEC-20 computer.

The addition of hot tank A of Table 2 increased significantly the time required for

a solution. For this 3 hot tanks/3 cold tanks problem, 110 continuous variables, 30

integer variables, 35 equality constraints, and 203 inequality constraints are required

in the MILP problem. As found by the heuristic solution displayed in Table 5, only

five matches are specified in this formulation to reduce the branching. Evaluation of

approximately 350 branches with about 16,000 pivots required almost sixteen minutes

of CPU-time to find a solution with a total heat exchanged (Q) greater than 95% of

the maximum possible total heat exchanged (min {CL , Q , }).r * heating cooling

Our CPU-times can be reduced since we did not exploit the structure of the MILP.

Using a method to solve time-staged linear programs, for example, Dantzig (1980), or

using a more efficient enumeration procedure could improve the time required for a

solution, but we did not explore these possibilities. Although this MILP grows

unwieldy for problems larger than three hot and three cold tanks, it is our opinion

that most practical problems will be of this size or smaller. Also, solution of this

MILP may be unnecessary if the heuristic solution is near the known maximum value

of total heat exchanged, min {Cl . , Q . }.
^ heating cooling
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Summary

This paper presents the first work to our knowledge that addresses the problem of

heat integration in batch-type facilities. Because of processing requirements, three

configurations of batch vessels and receiving tanks are shown to result in three

different temperature profiles for the fluids: cocurrent, countercurrent, and

combination cocurrent/countercurrent.

The heuristic, match the hot and cold tanks that are closest in temperature, provides a

very good sequence for the exchanges for the cocurrent case with non-restrictive

target temperatures. For one hot tank/n cold tanks and two hot tanks/two cold tanks

problems without temperature limitations, the heuristic solution can be shown to be

optimal. For problems with restrictive target temperatures, a mixed-integer linear

program is presented to improve the heuristic result. The methods presented in this

paper provide useful tools for* assessing the potentials for energy conservation in

batch processing.
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Appendix 1

Part A

Part A shows that the maximum total heat exchanged does not occur if one tank is

permitted to transfer to more than one tank at the same time for the first match,

while the remaining matches are done one tank at a time. The one hot tank/n cold

tanks arrangement is displayed in Figure 5. The numbering of the cold tanks is

arbitrary; that is, no ordering of the initial temperature of the cold tanks or of the

VC 's of the cold tanks is specified.

First Match

Match hot 1 with all of the cold tanks. Stop when the temperatures of hot 1 and

cold 1 are equal. The final temperatures of the other cold tanks are free variables

but must be less than or equal to the final temperature of the hot tank.

A i

Bi * VVVco.d i • ' 1.-2 "

x = initial temperature of hot 1

y. = initial temperature of cold i, i = 1, 2 n

xJ = temperature of hot 1 after the jth match

xj « common temperature that hot 1 and cold 1 reach

y.1 s temperature of cold i after the first match
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x] - y.1 £0 for all i * 1, 2 n

A1 **? " x i * = h e a t I o s t by h o t 1

8 (x l - y^) = heat gained by cold 1

KB (x1 - y*~) = heat gained by all other cold tanks

- B2 (y* - y°) • B3 <y' - yj) • ... • Bn (y^ - yR° ) (41)

K > 0

where K represents the ratio of the heat gained by all cold tanks but cold 1 to the

heat gained by cold 1

Equation 41 can be solved for y^.

v^ ^ ^ <*; - v^ <v; - V3°> --• - i (y,: - y» > m

The overall heat balance yields the following result.

Ay <x° - x]) * B, U] - y°) * KB, (xj - y°) (43)

, A x° • B y° (1 * K)
X1 = \\ * B\ A * K) {44)

Match hpt 1 with each remaining cold tank individually.

Second Match: Match hot 1 with cold 2 until their final temperatures are the same.

A, (xj - xj) * B2 (x^ - y^) (45)

1 r
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Third Match: Match hot 1 with cold 3 until their final temperatures are the same.

A /v^ _ y3\ _ Q / 3 1iA1 1X1 V B3 U1 V

Nth Match: Match hot 1 with cold n until their final temperatures are the same.

A i <*""' - *"> • Bn K • y j

n A x " " 1 * B y 1

X 1 ' V A + B ) " " ( 5 0 )

1 n

Equations 46, 48, 50, and similar equations represent a system of (n-1) equations in

2(n-1) unknowns: x* x?, .^, x" y^, y,! y1. Elimination of the (n-2) variables x?,

x1# ..., x"~ , can occur by substituting equations 46, 48, and similar ones into

equation 50.

75"T L
i=2

•V- r A1""" B y 1 r

If i ^ , y , y , ..., y J\s chosen as the set of independent variables, x| and y^ can

be expressed in terms of these variables using equations 44 and 42.

n A*""1* ( A ^ «• B y^(l*Lv
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A T
(A1*B2MA1*B3L.(A1*Bn)'''2 B^1- AJ + (UKJB,)

A(n-2) g g g

i w \i r *." — ^ " y^' ~ ••• " — (y y ' j

Next, equation 52 is differentiated with respect to K. After collecting terms, the

following results.

(X
1 1V

(A +(UK)B.r (A^B.MA *BJ...(A+B )
1 i i z i o i n

> 0 (53)

Equation 53 shows that x", the final height of hot 1, is a monotonically non-

decreasing function of K, a parameter that indicates the heat flow to cold 2, cold 3,

... , cold nr based on the heat flow to cold 1. Since minimizing x" wil l yield the

maximum total heat flow from hot 1, the smallest value of K, K=0, should be

selected.

Therefore, Part A shows that the optimal amount of heat is not transferred if one

tank exchanges with more than one tank at a time, while the remaining exchanges are

done one at a time.

Part B

The goal of Part B is to show that the maximum total heat exchanged does not

occur if one tank is permitted to transfer to more than one tank at a time, for any

of the matches.

For the system of one hot tank and n cold tanks shown in Part A, the cold tanks

are assumed to receive energy with cold tank 1 being the first to reach the same
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temperature as hot 1, cold tank 2 being the second, etc., cold tank n being the final.

Once a cold tank attains the same temperature as the hot tank, the cold tank is

eliminated from the analysis since it cannot receive any more heat from the hot tank

(thermodynamically infeasible). Each match represents the heat balances of the

system until at least one cold tank is eliminated (or completed). If more than one

cold tank is eliminated during a match period, then the match periods for the

completed cold tanks are omitted from the analysis. The numbering assignment of

the cold tanks is arbitrary.

step 1: Once the order of cold tanks to be matched to completion is selected, then

the final two cold tanks, cold tank (n-1) and cold tank n, must be matched in an

optimal manner to give an optimal result. From the result of Part A, the optimal

heat exchange occurs if the two cold tanks individually match with hot 1.

step 2: Next, the final three cold tanks to be matched are analyzed. From the result

of Part A, cold tanks (n-1) and n should not receive any heat while cold tank (n-2) is

exchanging heat with the hot tank. After cold tank (n-2) is finished, the final two

tanks individually exchange heat with hot 1 as determined in step 1.

step 3: The final four cold tanks are analyzed using a reasoning similar to that used

in step 2. This process is repeated until all the cold tanks are analyzed.

This application of Bellman's principle of optimality shows that the maximum

energy exchanged occurs when each cold tank individually matches with the hot tank.
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Appendix 2

The purpose of this appendix is to find the optimal order for exchange of n cold

tanks with one hot tank. First, a general expression for x" ( 1 , 2, ..., n / , the final

temperature of hot 1 after n matches with the cold tanks in the arbitrary sequence

\ 1, 2, ..., n/is determined. Each cold tank matches individually with hot 1. as

justified by Appendix 1. Also, the nomenclature of Appendix 1 is used here.

In the following two sequences the order of tanks i and (i+1) is interchanged.

sequence 1 = ( 1, 2 (i-1), i, (i + 1), (i+2), ..., n)

sequence 2 = \ 1 , 2, ..., (i-1), (i + 1), i, (i+2), ..., n)

The final temperature of the hot tank using sequence 1 is found by setting K=0,

y = y;? , y = y , ..., y* = y in the expression for x" in Appendix 1. The result is

displayed below.

/ \ A" X° • A(n-1> B v°
x"(i . 2 i, (i+1), n)= **1\A * . ^1 l\ (54)

If cold i and cold (i+1) are interchanged in the sequence, the following results.

x " ( i . 2 (i-1). (i+1), i. (i+2) n)= . 1 * \ * 1 . . 1 H1. (55)
1 v ' (A +B. )(A. +B,)...(A. +B )

4 ^ f A (n- j ) B y 0 r ¥ i
| tul..A«,u,«j t n <A,

Ai (ifi) y(i-*-i) I I I (A *B
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(A1*B,)(A1+B2UA1+Bn)

>"i> R w° r -W

Subtracting equation 55 from equation 54 yields the following.

Let A = x " ( i . 2, .... i. (i+1) n) - x " \ 1 , 2 (i-1). (i+1), i. (i+2) n)

A tn- ( i+1>1 B B (y° - y ° ) r ff ' 1
A = 1 (A * )(A S 1 ) (A**B ^ ' " ^ 1 ^ - 1 - "° (56)

.1 1 1 2 1 n k=1

Since y°£ y?+1)» A < 0r and the final temperature of the hot tank using sequence

one is colder than that using sequence two. This result shows that sequence one

transfers more energy than sequence two. Also, for a pair-wise interchange in a

sequence, the preferred order is to match the cold tank with a higher inlet

temperature before the alternative cold tank.

This result holds for any two consecutive tanks in the sequence. Thus, by a series

of pair-wise interchanges, the cold tank with the highest inlet temperature will be the

first match, the second warmest cold tank, the second match, etc. Therefore, the

optimal sequence of cold tanks for any 1 hot tank/n cold tank problem is to order

the cold tanks from highest initial temperature to lowest.

(AT) is incorporated easily into this analysis. Replacing yP with yP • (AT) in
mm K K mm



32

the equations for x will account for the minimum difference in approach

temperatures, (k = 1, 2, .... n) Also, x^"^ (y° • (AT) ) for a match between hot
1 K mm

tank 1 and cold tank k to occur. The result, equation 56, remains unchanged by

these additions.
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Table 1: Example of the Heuristic for 10, Hot Tanks and 10 Cold Tanks

Tank

HI
i-i2
H3
H4
H5
H6
H7
H8
H9
H10

VC (kJ/°C)
P

1.8
1.5
2.3
1.5
0.8
1.6
1.3
1.8
1.7
2.0

T (°C)
initial

202
208
215
215
224
228
230
236
245
250

T (°C)
desired

90
80

110
85
75

130
130
150
150
100

i Q
needed

201.6
204.8
241.5
195.0
119.2
156.8
130.0
154.8
161.5
300.0

T
heuristic

94.7
102.1
112.8
120.4
124.6
133.8
141.8
153.3
164.3
177.8

Q
heuristic

193.1
169.5
235.0
142.0
79.5

150.7
114.7
148.9
137.3
146.4

1865.2 1517.1

Tank

C1
C2
C3
C4
C5
C6
C7
C8
C9
CIO

VC (kJ/°C)
P

1.0
2.1
1.8
1.4
0.8
2.2
1.3
1.1
2.0
1.5

T (°C)
initial

138
128
123
116
114
106
102
97
92
80

T (°C)
desired

250
240
230
210
250
210
200
250
200
210

• Q
needed

112.0
235.2
192.6
131.6
108.8
228.8
127.4
168.3
216.0
195.0

T
heuristic

241.8
234.3
227.4
221.5
218.0
206.9
199.8
193.5
181.2
171.8

Q
heuristic

103.8
223.3
187.8
147.7
83.2

221.9
127.1
106.1
178.4
137.7

1715.7 1517.1
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Table 2: Tank Data

Tank

A
B
C

VC (kJ/°C)
P

l.Q

1.4

1.3

initial

400
350
325

desired

150
125
175

(AT) . = 0 °C
mm

needed

250
315
195

X
Y
2

2.0
1.5
1.6

100
90
50

175
200
275

760 =

150
165
360

Q
cooling

675 = heating

Table 3: Hot Tanks B, C / Cold Tanks X, Y, Z Heuristic. Solution

match sequence: C/X; C/Y; B/Y; B/Z

outlet temperatures (°C>:
TB = 150 T = 175
Tj: = 175 T* = 200

T2 = 150

Cl . . = 475 kJ
heuristic

Table 4: Hot Tanks B, C / Cold Tanks X, Y, Z MILP Solution

match sequence: C/Z; B/Z; B/X; B/Y; C/X

outlet temperatures (°Ck
T_ = 125
TC " 1 7 5

167.3
125

251.8

QM,LP = 5 1 0

max
1 9 5 ' 1 5 0 + 1 6 5 * m i n
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Table 5: Hot Tanks A. B, C / Cold Tanks X, Y, Z Solution Data

Heuristic Solution

match sequence: C/X; C/Y; B/Y; B/Z; A/Z

outlet temperatures (°C):
T = 246.2 T = 175
T* =150 T* = 200
T° = 175 T* = 246.2

Q . . = 628.9 kJ
heuristic

MILP Solution with Q „ _ £ 95% of Q
MILP max

match sequence for 5 time periods: A/X; B/Z; C/Y; A/X; B/X

outlet temperatures (°C):

Q
max

95%

T
T A

i
> *"

of

(AT) . •
mm

= 156.1
= 175
= 199.1

min {760, 675J

Q = 641.3
max

= o °c

T^ =
T* =
T =

= 675

175
199.1
261.8
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