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Abstract

A well-known job shop scheduling problem can be formulated as follows.

Given a graph G with node set N and with directed and undirected arcs, find an

orientation of the undirected arcs that minimizes the length of a longest path

in G. We treat the problem as a disjunctive program, without recourse to

integer variables, and give a partial characterization of the scheduling poly-

hedron P(N), i.e., the convex hull of feasible schedules. In particular, we

derive all the facet inducing inequalities for the scheduling polyhedron

P(K) defined on some clique with node set K, and give a sufficient condition

for such inequalities to also induce facets of P(N). One of our results is that

any inequality that induces a facet of P(H) for some HCK, also induces a facet

of P(K). Another one is a recursive formula for deriving a facet inducing

inequality with p positive coefficients from one with p-1 positive coefficients.

We also address the constraint identification problem, and give a procedure

for finding an inequality that cuts off a given solution to a subset of the

constraints.



Contents

1. Introduction 1

2. Some Properties of the Scheduling Polyhedron 4

3. The Scheduling Polyhedron on a Clique 9

4. Facets of the Clique Polyhedron 22

5. Lifting the Facets of the Clique Polyhedron 38

6. Identifying Violated Inequalities 44

References 49

APPENDIX A.I



1. Introduction

We consider the following machine sequencing problem which is a

special case of resource-constrained scheduling (for background material see

[It 2], [8,...,12]). A number of items have to be processed by performing a

sequence of operations on each of them on specified machines. There are n

operations to be performed, including a fictitious "stop" (operation n), the

objective being to minimize total completion time subject to (i) precedence

constraints between the operations, and (ii) the condition that a machine can

process only one item at a time, and operations cannot be interrupted. The

problem can be stated as

min tn

> 0,

where t. is the starting time of operation i, d. . is the minimum

required time lapse between starting operation i and starting operation

j (for instance, completion time of operation i, plus set-up time for

operation j), A indexes the pairs of operations constrained by prece-

dence relations, E the pairs that use the same machine and therefore cannot

overlap in time, and "V" is the logical "or". It is useful to represent the

problem by a disjunctive graph [1, 2, 10, 12] G » (N°,A°,E), where H° « fcO} U-N

is a set of nodes, one for each operation, plus a source node 0; A * AU[(O,j)!j

is not preceded by an operation} is a set of (conjunctive) directed arcs; E is

a set of undirected arcs, one for every pair of operations to be performed



on the same machine. Solving the problem involves orienting the undirected

arcs, i.e., choosing for each of them one of the two possible directions. it

is therefore convenient to represent each undirected arc by a disjunctive pair

of directed arcs, i.e., a pair of which one member needs to be selected: hence

the name disjunctive graph. We will use this latter representation, and con- •

sider E to consist of pairs of directed arcs (i,j),(j,i), ^ E+ , { ( i, j ) e E | i < fl

•• » Cd.j)«|i > j}, and E - E+UE-. The arcs of E occur in disjoint maximal

cliques (bv a clique we mean a complete digraph), of which there is one for

every machine. Thus if M indexes the set of maximal cliques (machines), and

for VCN°, < v > denotes the subgraph of G induced by V, then for every rtM,

the node set ^ of the rth maximal clique < r > corresponds to the set of '

operations to be performed on the same machine (r).

Every directed arc (i,j)cAUE has a positive length d^, while the arcs

(O,j)«A°\A have length dQJ - 0. For a pair {(i,j), (j,i)}<E, ^ + d t-

not only possible, but typical. We will assume that the arc lengths are

integers satisfying the triable ry djJ + djfe > ^ ¥ ^^J j ^

this assumption involves some loss of generality, it is realistic for the

n-chine sequencing problem. The disjunctive graph G is illustrated in Figure 1

Figure 1



on a problem with 5 items (directed source-sink paths), 4 machines (maximal

cliques, whose arcs are shown in dotted lines), and 14 operations (nodes other

than the source). The numbers on the arcs are the lengths d .

The subgraph obtained from G by deleting the disjunctive arc set

o o
E is the ordinary digraph D s (N ,A ), in which node 0 has indegree

zero and outdegree the number of items, node n has indegree the number

of items and outdegree zero, while all remaining nodes have indegree and

outdegree one. In fact D is the union of as many disjoint (except for

their end nodes) paths from 0 to n, as there are items.

A selection in G consists of exactly one member of each pair of

disjunctive arcs in E. Thus, if a « —[E| , there are 2a possible

selections in G. In the undirected representation of E, a selection

in G corresponds to an orientation of all the undirected arcs of G.

For every selection S in G, D. • (N°, A0 J S) is an ordinary di-

s

graph; and the problem obtained from (P) by replacing the set of dis-

junctive constraints indexed by E with the set of conjunctive con-

straints indexed by S is the dual of a longest path (critical path) prob-

lem in Dg. Thus solving (F) amounts to finding a minimaximal path in the

disjunctive graph G, i.e., finding a selection (orientation) S that minimizes

the length of a critical path in Dg over the set of all possible selections.

Problem (P) stated at the beginning of this section has a variable

t. associated with every node of G except for 0. One can of course

introduce a variable t for node 0, but then the problem does not
o

change if t is constrained by t • 0, which leads to the elimination

of the variable just introduced. We therefore prefer to work with

vectors teR that don't have a component t constrained to be 0.
o



Problem (F) is a disjunctive program. It can also be represented as a

mixed integer program by introducing a binary variable for every disjunctive

constraint, but there are advantages to not doing that and using instead the

disjunctive programming approach (for background see [3, 5]). In this paper

we investigate the properties of the scheduling polyhedron P, the closed con-

vex hull of all vectors tc *a satisfying the constraints of (P). Section 2

introduces the polyhedron P, states some of its basic properties, and discusses

the relationship of P to polyhedra defined by subsets of the constraint set.

Section 3 deals with scheduling polyhedra P(K) defined on a clique with node

set K, and characterizes the vertices of P(K). Section 4 gives a complete

characterization of the facets of P(K). One of the results is that any in-

equality that defines a facet of P(H) for some HCK also defines a facet of

P(K). Another result is a procedure for deriving a facet defining inequality

for P(K) with p nonzero coefficients from a facet defining inequality with

p-1 nonzero coefficients. This section also lists all the facets of P(K),

for K of arbitrary size, having one, two or three nonzero coefficients.

Section 5 gives a sufficient condition for an inequality that defines a facet

of P(K) to also define a facet of P. The condition is verifiable in 0(|E|)

time. Finally, section 6 addresses the constraint identification problem and

gives a procedure for identifying facet defining inequalities that cut off

a given t eH that violates some of the disjunctions of (P). Some of

our results were presented in [4].

2. Some Properties of the Scheduling Polyhedron

Any teX. satisfying the constraints of (P) will be called a

schedule for G. The feasible set of (P), or the set of schedules

for G, can be written as



> d

> 0,

The closed convex hull of T, clconv T, will be called the scheduling

polyhedron, and denoted P(N), or simply P.

T is a disjunctive set, and its convex hull is easiest to describe

when T is in disjunctive normal form [3, 4], i«e*, in the form T » (J T ,
SeQ 5

where Q is the index set of all selections in G, and T is the

(polyhedral) set of schedules for the digraph Dg defined by the

selection S in G:

Ts - < tc*n

t > 0 , ieN

If Dc contains a cycle, Tff*0, So the only selections of interest

are those for which the associated digraph D- has no cycles, i.e.,

those indexed by Q* » £S«Q!D is acyclic}, since T = (J Tc. In the

S SeQ* S

sequel we assume that Q* * t. For any ScQ*, we will denote by L(i,j)s

the length of a longest path from i to j in D . The length of the

(unique) path* from i to j in D will be denoted by L(i,j).

Theorem 2.1. For every SeQ*, T has dimension n#

Proof, We define n + 1 vectors t1eRn, i^D,l,...,n, as follows.

Let t° be defined by t° *L(O,j)s, j»l,...,n; and for i»l,...,n,

let t1 be defined by



2t° + € j -• i

« j A 1,

where 0 < € < 1/2.

Clearly , t°eT . For i * l , . . . , n , t^ > 0, V j , and for (h , j )eAUS, one can
S J

e a s i l y check that t J - t£ > dfe . Thus for i » 0 , 1 , . . . , n , t^cTg. Also, the n+1

points t1elRa are affinely independent, since the n X n matrix whose ith row

is t - 2t , i * 1,...,n, is c times the identity matrix of order n.||

Corollary 2,2. P is full dimensional.

Next we turn to the extreme points of P. First we characterize

the extreme points of Tc for an arbitrary SeQ*.

Theorem 2.3. A schedule t for D is an extreme point of Tg if and only

if

(i) t a-L(0,n) s;

(ii) for jcN\{n}, tj * L(O,j)g or ̂  - L(0,n)g - L(j,n)g (or both);

(iii) if t » L(0fj)g, then t± » L(0,i)s for all i on any longest path

from 0 to j; and if t » L(0,n)g - L(j,n)s> then t± » L(0,n)g - L(ifn)s for

all i on any longest path from j to a.

Proof. Necessity. Let t*cTe be such that t* > L(0fn)e, and let
• ^ • — • ^ n o

\ " U«N|t* > L(O,j)s). Define t 1 and t2 by tl. » t* + e, t̂  - t* - e for

its., and t^ - t2. » t* for jcN\N.. Then t 1 , t2eTe, t 1 + t* # t 2 , and
1 j J j 1 a

1 1 2t* • r-Ct + t ) , i . e . , t* i s not extreme. Thus ( i ) i s necessary.

Now l e t t°eTs sat isfy ( i ) , but violate ( i i ) for jeN*CN\{n}; i . e . , l e t

8* : - {j«N\{n}|L(O,j) s < t° < L(0,n)g - L(J,n) g} . Define t ' and t"by

t ' - t? + «, t."» t? - e, jcN*; and t ' - t * - t? , jcNNll*. Then for suitably

small e, t ' , t * cTe, t ' # t° f t " , and t ° » ^ ( t ' + t * ) . Thus ( i i ) i s necessary.



Finally, condition (iii) is implied by (ii), hence it is also necessary.

Sufficiency. Suppose tcT- is not extreme. Then t is the convex combina-

tion of t cTq, t ^ t, i » l,...,n + 1. If t > L(0,n)c, condition (i) is

3 n o

violated and we are done. So let t » L(0,n)c; then t = L(O,n)e, i » 1,...,
n o n s

n + 1. Furthermore, for every j eN such that c. » L(0,n)c - L(j,n)c, we have
j o b

t * t , i = l,...,n + 1. Let N° be the set of these indices jeN. Then

there exists j^eN\N° such that t < t for some ie{l,...,n + l}, or else
J JJU

i i
t = t for all i. But then L(O,j*)g < t < L(0,n)g - L(j^,n)g (since t €Tg),
hence condition (ii) is violated.||

Corollary 2,4. If t is an extreme point of P, then tQ « L(0,n)g,

and t.»L(O,j)g or t » L(0,n)g - L(j,n)s (or both), VjcN\Cn}, for some ScQ*.

Proof, Every extreme point of P is an extreme point of Tg for some .SeQ*.,!

For every (not necessarily maximal) clique < K >, we define a schedule

for < K > as a vector teT(K), where

T(K) » { teBP

V

where p » \YL\, and L(O,i) is the length of the (unique) path from 0 to

i in D = (N°,A°). The closed convex hull of T(K), clconv T(K), will be called

the scheduling polyhedron on < K >, and denoted P(K).

For any VcN, we denote by S(V) a selection in < V > , i.e., a

set of arcs containing exactly one member of each disjunctive pair of

arcs with both ends in V. For v'cVcN, we say that the selection S(V)

is an extension to < V > of the selection S(7y) (the selection S(V')

is a restriction to < V7 > of the selection S(V)) if the arcs of S(V)

with both ends in V7 are precisely those of S(V7).
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A selection S in G (where S is an abbreviation for S(N)) is

always of the form

(2.1) S - U S(K )
rcM

where each S(K ) is a selection in a maximal clique < Kr >•

For a vector t sH^ and a clique < K > of G, we will denote by t the

IKI

vector in B1 ' whose components are t., j eK.

Theorem 2.5, A schedule t for G is an extreme point of P if

(i) t is an extreme point of Ts for some SeQ*; and

(ii) for every maximal clique < K > of G, t- is an extreme point

of P(K).

Proof. Suppose t is a schedule for G that satisfies (1) and (ii),

and let t be the convex combination of some t eP, 1 » l,...,n + 1. Since

t satisfies (11), tg • tg9 1 « 19...9 n + 19 for every clique < K > of G.

If S is the selection associated with t, this implies that t cTg, 1 = 1,...,

n + 1. Since t also satisfies (i), t * t, 1 « 1,...fn + 1. Thus t is an

extreme point of P.j|

Given a clique < K > in G, we say that a schedule t for G (a

vector teT) is an extension to G of a schedule t' for < K > (an ex-

tension to T of a vector t'cT(K)) if t.-t.', VjeK. We say that a schedule

t' for < K > can be extended to T, if t' has an extension teT. Con-

versely, we say that a schedule t' for < K > is a restriction to < K >

of the schedule t for G, if t is an extension of t '• By the choice of

the lower bounds L(0,i), igK, every schedule for G can be restricted to

any of the cliques of G. Therefore, for every clique < K > of G,
(2.2) P £ P(K) .



The more interesting question, of course, is when can a schedule for some

clique < K > be extended to a schedule for G. This question is intimately re-

lated to the problem of facet lifting, i.e., to the connection between facet

inducing inequalities for P(K) and for P. It will be investigated in section

5, where we will give a sufficient condition for an inequality that defines

a facet of P(K) to also define a facet of P. This condition is always satis-

fied for some of the cliques of G, so at least some of the facet inducing

inequalities for P(K) are always facet inducing for P itself. This provides

the main, though not the only, motivation for focusing in the next 2 sections

on the polyhedra P(K).

3. The Scheduling Polyhedron on a Clique

In this section we study the properties of the scheduling polyhedron

on a clique, or briefly the clique polyhedron P(K) • clconv T(K). If |K| • p

and if we denote 1^ - L(0,i), icK, then

ieK

T(K) - ^telRP

As before, a vector tcT(K) will be called a schedule for < K >.

Apart from its connection with machine sequencing, and more generally

with the resource constrained scheduling problem, the polyhedron T(K) is an

interesting object in its own right. A selection S(K) in < K > is the arc

set of a tournament in < K >. Every tournament is known to have a directed

Hamilton path (i.e., a directed path containing all the vertices), and for

an acyclic tournament this path is unique. In fact, every acyclic tourna-

ment is the transitive closure of its unique directed Hamilton path. A



10

selection S(K) is therefore uniquely determined by the sequence of the nodes

of K in its directed Hamilton path, and conversely, every selection S(K) de-

fines a unique sequence of the nodes of K. Thus the scheduling problem on

a clique, namely the problem of finding

(3-D min max t. ,
teT(K) ieK t

with L± » 0, ieK, is a "dual" formulation of the problem of finding a short-

est Hamilton path in < K >, using node rather than arc variables. The

latter problem in turn is polynomially equivalent to the traveling sales-

man problem (TSP). Indeed, an optimal tour for the TSP yields a shortest

Hamilton path by deletion of the largest arc. Conversely, finding for each

ieK a shortest Hamilton path originating in i (which is problem (3.1)) with"

the extra condition that ^ - 1^ - 0), then adding to each path the unique

arc that closes it, and choosing the shortest of the p resulting tours,

yields an optimal solution to TSP.

The scheduling polyhedron P(K) on a clique < K > is related to the

linear ordering polyhedron Pu on< K > studied recently by Grotschel, Junger

and Reinelt [5]. PLQ is the convex hull of the incidence vectors of acyclic

tournaments in < K >. It is a bounded polytope in * p ( p" l )
f the space spanned

by the arcs of the complete digraph < K >, whereas P(K) is an unbounded poly-
p

hedron in R . When P(K) is specialized to the case where L - 0 , ieK, there

is a one to one correspondence between its vertices and acyclic tournaments

in < K >, as will be shown later in this section. Hence there is a one to

one correspondence between the vertices of P(K) (in the case L. = 0, ieK) and

those of PJ^J. One might therefore expect a similarly close relationship be-

tween facets of P^ and those of P(K). In fact, however, the facets of P(K)

are rather different from, and seemingly unrelated to, those of PTn. A set of
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p vertices that lie on a facet of P may not lie on a facet of P(K), and vice

versa« While the facets of PQ are independent of the arc lengths, the facets

of P(K) strongly depend on the arc lengths d...

Wheneveir possible without risking confusion, the notation S(K) for a

selection in < K > will be abbreviated to S. Every selection S in < K >

defines a polyhedron

T(K) • tc

I
. i ^ i • i e K

which is nonempty if and only if S is acyclic. Let Q(K) be the set of selec-

tions in < K >, and Q(K)* » (ScQ(K)|s is acyclic}. Then the disjunctive

normal form of T(K) becomes

T(K) » ^J T(K)q .
ScQ(K)* *

For every ScQ(K)*, the polyhedron T(K)- is obviously full-dimensional;

hence so is P(K).

For ieK and an acyclic selection S in < K >, we define the rank of i

in S as the position (rank) of i in the sequence associated with S.

Theorem 3,1. Let S be an acyclic selection in < K > with associated

sequence j(l),.•.,j(p). Further, let k. s 1, and for i «2,...,s < p, let

ki be the smallest integer (if it exists) such that

( 3 - 2 ) Lj < v > Lj ociml)
+ <4 dj(k>j <fcfi) •

Then t is a vertex of T(K)g if and only if for i » l,...,s

(3-3) 'jck^ - Ln^y

for k > kg

( 3 # 4 ) Cj(k) " Cj(k-1) + dj(k ;
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and for kc[k ,k ] , k + k , 1 * 1,...fs,

for some «1«(l,...,k1+1-k1-l}t i = l,...,s.

Proof. T(K)S is a special case of a polyhedron T_ whose vertices are

characterized by Theorem 2.3. With the definition of k , i » l,...,s, given

by (3.2), the conditions (i), (ii), (iii) of Theorem 2.1 specialize to (3.3),

(3.4), (3.5) above.||

Note that T(K)g has exactly one vertex t° of the form

Cjd) * Lj(D'
(3.6)

Cj(k) " " " ^ j t k ) ' Cj(k-1) + dj(k-l)j(k)}» k ' 2 - — P -

namely the vertex for which s± » k ^ - ^ - 1 . 1 -l,...,s. This vertex,

which we call the main vertex of T(K)g, will be seen to play a special role

in the structure of P(K).

Theorem 3.2. The extreme direction vectors of T(K)g are w
1, i - 1,...,p,

defined by

(3.7) w^v, -{
otherwise.

Proof. For any t«T(K)g, t + Xw
lgT(K)g for all \ > 0 and i » l,...,p,

aa one can readily see by substituting t + Xw1 for t into the constraints de-

fining T(K)g. Thus every w1 defined by (3.6) is a direction vector of T(K)g.

Further, each w1 satisfies wl » o for j = j (1),.., j (p-i) and w * ^ -

w.,._.» » 0 for k » p-i+2,...,p. Thus each w satisfies with equality
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p-1 iaequalities whose coefficient matrix has full row rank, and therefore

is extreme. II

Our next theorem gives a necessary and sufficient condition for the main

vertex of T(K)g to be its only vertex, i.e., for T(K)S to be a cone.

Theorem 3.3. T(K)C is the displaced polyhedral cone with vertex t° de-

fined by (3.6) and extreme direction vectors w , i - l,...,p, defined by

(3.7) if and only if

( 3 # 8 ) Lj(k1) + dj(kl)j(k) - Lj(k) • k " 2---P-

Proof. If (3.8) holds, then condition (3.2) of Theorem 3.1 is not

satisfied for any integer k , hence s • 1, (3.4) is vacuous, and (3.3), (3.5)

becomes t ^ j - tj(1) » lj(1)> tj(fe) » tj(k-1) +
 d
j(k.1)j(k)« k - 2,...,p,

which is of the form (3.6). Thus the main vertex is the only vertex of

T(K)S« On the other hand, if (3.8) is violated for some ke[2,...,p}, the

definition (3.4), (3.5), (3.6) gives rise to at least two distinct vertices.

Thus T(K)S has exactly one vertex if and only if (3.8) holds. The extreme

direction vectors of T(K)C are given by (3.7), irrespective of the number
o

of vertices.]]

Next we turn to the extreme points and extreme direction vectors of P(K).

Naturally, every extreme point of P(K) is an extreme point of T(K)C for some
o

ScQ(K)*; but the converse will be shown to be true only if P(K) satisfies

a regularity condition. Also, every extreme direction of P(K) is an extreme

direction of T(K)g for some ScQ(K)*, but the converse is never true.

In order to prove some properties of the vertices of P(K) we need a

characterization of the extreme direction vectors of P(K), so we start with

the latter.

Theorem 3«4« The extreme direction vectors of P(K) are precisely the

unit vectors e^ i « l,...,p.
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Proof. For 1 - l,...,n, the unit vector e± is an extreme direction vec-

tor of every T(K)g such that i is the last node of the sequence defined

by S. Hence every *± is a direction vector of P(K), and since • is a unit

vector and T(K) is contained in the positive orthant, each et is extreme for

P(K). Every other extreme direction vector of T(K)S> for every SeQ(K)*, is

the sum of unit vectors; hence none of them is extreme for P(K). Since every

extreme direction of P(K) is an extreme direction of T(K)g for some ScQ(K)*,

it follows that P(K) has no extreme direction vectors other than the p unit

vectors e .||

Theorem 3.5. Let S be an acyclic selection in < K > with associated

sequence j(1) j(p), p - |K|. Then t° is a vertex of P(K) if and only if

t° is the main vertex of T(K)g for some SsQCK)*, and the conditions

(3.9)

and

(3.10) max [L, ̂ ^ , t, ,, ,s + d,,, ,̂ .,. » } + d. ... » . ... > t °J
are satisfied.

Proof. Sufficiency. Suppose t° is not a vertex of P(K). If t° is not

the main vertex of T(K)g for some SeQ(K)*, we are done. Now assume t° is

the main vertex of T(K)g. Since t° is not a vertex of P(K), it is the con-

vex combination of p+1 schedules th
€T(K), h - 1 p+1, such that th # t°,

h » l,..

Since t° is the main vertex of T(K)g, t° < t for all teT(K) and hence

at least one t must have a component t* such that t^ N < t°, v for som
JW j(k) j(r)

k > r. Let r be the smallest integer for which there exists such k.
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If r = 1, then

Lj(k) +dj(k)j(l) ^ Cj(k)

h

i.e., condition (3.9) is violated for i = k.

If rc{2,...,p-l}, then t*(r-1) < tj(fc) < t*j(r), and since t
h is a

schedule,

j() " Cj() ^

Therefore, since tj(r-1) -
 c?/r_j\» (

3-10> i s violated for i » r.

Necessity. Note first that for any schedule t for < K >, if there

exists a schedule t* for < K > such that

(3.11) t* < t and t* < t for some jcK,

then t is not a vertex of P(K), since it can be expressed as the sum of

t* and a positive combination of unit vectors, i.e., direction vectors of

P(K). Thus if t° is a vertex of P(K), then t° is the main vertex of T(K)g

for some ScQ(K)*.

Now suppose t and the associated sequence j(1),...,j(p) are such that

(3.9) is violated for some i * qe{2,...,p}. Let S* be the selection in

< K > defined by the sequence 2(1),...,X(p), where 2(1) » j(q) and

j(h-l) h » 2,...,q

h »

and let t* be the main vertex of T(K)e.. Then rt/-,N • Lw N < t?, x
^* *\L) j(q; j Cq;

since
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t° > t° + T' d
j(q) - jd) h:2 J(h-l)jCh)

-Lj(q) +dKq)Jd)

> CI(1)

where the last two inequalities follow from the assumption that (3.9) is

violated for i • q, and d., v(i\ > ®* ^ o r ** * 2,...,p, we show by induc-

tion that t^~* ^t^fh)* We f i r s t do thls f o r hc(2f...fq}. For h * 2,

1(2)

since (3.9) is violated for q. Suppose t* . < t ^ . for h = 2,...,r-l,

and let h » r < q. Then by the induction hypothesis,

Next we proceed to he{q+l,...,p}. For h = q+1, we have

dj(q-D,j(q+l)
3

o o



17

where we have used the triangle inequality d. ( q - l ) ̂  . (<?+1) < dj(q.1)>j(q)

dm( ) U +1)# If q + 1 * Pf We a" d ° n e ; o t h e r w i s e suPP°se ^(h) - C2(h) f o r

h « q+l,...,r-l, and let h « r > q+2. Then

CX(r)

<max[Lj(r),

We have shown that t* < t°, with t* < t^ for j • j(q) * X(l)# Thus

t* satisfies (3.11) and hence t° is not a vertex of P(K).

Next suppose t° violates (3.10) for some ic[2,...,p-l} and kcfl+1,...,p},

and let (i,k) = (qfk) be the first such pair. Consider the selection S* defined

by the sequence 4(l)9...9X(p)9 where i(q) • j(k) and

j(i-l) i » q+l,...,k,

and let t* be the main vertex of T(K)g^. Then rjjNjv < t° , for i » l,...,q-l.) g ^ . Then rjjNjv < t ,

For i « q,

^ dX(q-l)i(q)

- C

where the last inequality follows from the fact that (3.10) is violated for (i,k)

(q.k). But then from dj(fc)j(q) > 0 and tj ( q ) < t° ( k ) « tj(q). we have ej ( q ) <

tl(q)' F o r iefq+l.•••»?} we show by induction that t* < t° . First let

ie(q+l,...,k}. For i - q+1,
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" 'jCq) * CX(<I+1). < f r o m 3'12>

Now suppose t^N < t ^ . for i • q+l,...,r-l, and let i = r, with q+2 < r < k.

Then

C j ( 1 ) * C

Next let i€[k+l,...,p}. For i = k+1,

d
Jt(k)l(k+l)

}

(by t h e t r i a n« l e

Suppose t*(i) < t^^. for i » k+l,...,r-l, and let i - r > k+2. Then

< t° - -°

Thus t* < t° and t*(q). < tj ( q ) f hence t* satisfies (3.10) and t° is not

a vertex of P(K)»j|
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It is of some interest to characterize the situation when every vertex

of every polyhedron T(K)g, SeQ(K)*, is also a vertex of P(K). From Theorem

3.5, this is the case if and only if for every acyclic selection S in

< K >, T(K)S is a cone and (3.9), (3.10) holds. But these conditions are

not easy to check. Next we give an easy to check necessary and sufficient

condition for the vertices of P(K) to be precisely those of the polyhedra

T(K)C, in tenns of a regularity condition suggested by (but different from)

(3.9), (3.10). We say that a disjunctive set T(K) as well as the polyhedron

P(K) and the clique < K > is regular if

(3.13) Lt + dtj > Lj , ¥ i,jeK, i # j

and

(3.14) difc + dfej > d±j , ¥ i,j,kcKf i * j * k * i .

As we will presently show, regularity is a necessary and sufficient

condition for T(K)g to be a cone and for (3.9) and (3.10) to hold for every

acyclic selection S in < K >. Later we will see that regularity also plays

a crucial role in the facial structure of P(K): certain facets exist if and

only if T(K) is regular.

Theorem 3.6. The vertices of P(K) are precisely the vertices of the

polyhedra T(K)g, ScQ(K)*, if and only if T(K) is regular.

Proof. Sufficiency. Let T(K) be regular. From Theorem 3.3, condition

(3.13) implies that each T(K)g is a cone. We will show that conditions (3.13)

and (3*14) imply (3.9) and (3.10) for every acyclic selection S in < K >. Let

S be any such selection, with associated sequence j(l),...,j(p), and let t° be

the vertex of T(K)g. Then (3.13) clearly implies (3.9), and (3.14) implies
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) + dJ(i-l)J(k) +

for all i - 2,...fp-l, k « i+l,...,p. Further, (3.13) implies

t + d C
hence tj(i-1) +

 dj(i-l)j(i) = Cj(i)» w h l c h together with (3.15) implies (3.10)

Necessity. We show that if any of the conditions (3.13) or (3.14) is

violated, there exists some acyclic selection S in < K > such that (3.9)

or (3.10) is violated. Suppose (3.13) is violated for some i,jeK. Then

(3.9) is violated for every acyclic selection S whose sequence contains

j as first node. Now suppose (3.13) holds, but (3.14) is violated for some

i,j,keK. Consider any selection S whose sequence contains i and j as

two consecutive nodes, say i - j(h-l) and j = j(h), with k - j(k) such

that k > h. Then the violation of (3.14) implies

Since (3.13) holds, we have

L
j ( k)

which together with (3.16) implies

2 eJ(h) •
i.e., (3.10) is violated for i = h.||

While the regularity conditions (3.13), (3.14) are simpler and much

easier to check than the conditions (3.9), (3.10), and while they are necessary

and sufficient for (3.9), (3.10) to hold for everv acyclic selection, note
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that they cannot replace (3.9) and (3.10) when it comes to a particular

acyclic selection: regularity is a sufficient, but not a necessary condi-

tion for some vertex of a particular T(K)_ to be a vertex of P(K).

Example 3.1. Consider the clique K = [1,2,3} shown in Fig. 2, with

Lx - 10, L2 - 8, L3 - 11; d u = 1, d13 = 2, d n = 2, d23 - 4, d31 = 1, d32

Condition (3.13) is violated for the ordered pair {i,j} » (2,1} and

condition (3.14) for the ordered triples {2,1,3} and {3,1,2}. Table 1 lists

Table 1

Sequences
associated
with S

1,2,3

3,1,2

2,3,1

1,3,2

2,1,3

3,2,1

Main

all d as

specified

(10,11,15)

(13, 8,12)

(12,13,11)*

(10,14,12)

(10, 8,12)*

(15,13,11)

Vertex t° of T(K)S

d21 = 3

(10,11,15)*

(13, 8,12)*

• (12,13,11)*

(10,14,12)*

(11, 8,13)*

(16,13,11)

d21 ' 3« d31 = 2

(10,11,15)*

(14, 8,12)*

(13,14,11)*

(10,14,12)*

(11, 8,13)*

(16,13,11)*

^Vertices of P(K).
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the sequences associated with the 3! = 6 acyclic selections SeQ(K)* and

the main vertex of each of the corresponding polyhedron T(K)g. Because the

regularity conditions are violated, only 2 of the 6 main vertices are ver-

tices of P(K): (12,13,11) and (10,8,12). For every other t, there exists

some t' such that t' < t. If we replace d21 = 2 by d21 = 3, condition (3.12)

is satisfied for all i,jcK, i ^ j, and condition (3.13) is violated only for

the triplet {3,1,2}. As a result, all but one of the vertices of the poly-

hedra (now cones) T(K)g become vertices of P(K), the exception being (16,13,11)

(since thetre exists a vertex (12,13,11)). If we also replace d31 * 1 by

d31 * 2, T(K) becomes regular, and as a result all 6 vertices of the cones

T(K)C become vertices of P(K).||o

Next we turn to the facets of P(K).

4. Facets of the Clique Polyhedron

Given a convex polyhedron C CK a, an inequality ax > a is said to

define (or induce) a k-dimensional face of C, if ox > a for every x c C

and ax * a for k + 1 affinely independent points x c C. Thus the inequality
o

ox > a defines a facet of C, if ox > aQ, for all x c C, and ax « aQ for

n affinely independent points x « C.

Let |K| * p. For i - l,...,p!,' let S1 be the it acyclic selection

in < K >, and let j^l),..., j±(p) be the sequence associated with S .

Further, let v be the main vertex of T(K)S£, i.e., let v S l ^ be

the vector whose components are defined recursively by

k =* 1

(4.1) vi

Vjt(k-1)



23

Finally, let V be the p! X p matrix whose 1 row is v , and let

e * (lf...fl)
T **ave P! components.

Theorem 4,1. The inequality at > 1, where a, t e!RP, defines a facet

of P(K) if and only if a is a vertex of the polyhedron

Proof, at > 1 defines a facet of P(K) if and only if (i) at > 1 for

all tcP(K), and (ii)at * 1 for p affinely independent points teP(K).

Condition (i) holds if and only if criF. Indeed, every vertex of P(K)

is present among die row vectors v of V; and the extreme direction vectors

of P(K) are the rows of the identity matrix associated with the constraint

cr > 0. Furthermore, every row v1 that is not a vertex of P(K), is never-

theless contained in P(K). Hence at > 1 is satisfied by all teP(K), if and

only if Va > e and a > 0, i.e., if and only if a€F.

Further, condition (ii) holds if and only if for some integer kc£l,...,p}f

P(K) has k extreme points v ^ , h s 1,...,k, and p-k extreme direction vectors

' h * k + 1» # # #»P» s u c h t h a t v *cr • It h s lf...fk and e. f tva •

" °» h « k + l,...,p. The "if" part of this statement holds since

1 and a j ( h ) * 0 imply (v
i(1) + e.. ( h )) a • 1, h - k+l,...,p, and thev ( }

p points vi(1),...,v1(k), v i ( 1 ) + ej(lc+1)»---»
vl(1) + e

j(p) «e affinely

independent. The "only if" part follows from the fact that any tcT(K) that

is not a vertex of P(K) and satisfies at » 1, can be represented as a posi-

tive linear combination of extreme points v1 of P(K) that satisfy ov1 • 1,

and extreme direction vectors e. of P(K) that satisfy e a • 0, where the

weights of the v sum to 1. Thus (ii) holds if and only if for some
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kc£lf...fp}f a satisfies with equality k of the inequalities v
1^ > 1 and

p-k of the inequalities <* > 0, such that the p inequalities in question

form a system of rank p; i.e., if and only if a is a vertex of F.||

Of course, Theorem 4.1 remains true if all redundant inequalities are

removed from the system defining F. Because of the large number of constraints

that define F, Theorem 4.1 by itself does not seem to offer a practical way

of generating facets of P(K). When combined with the next Theorem however, it

provides an efficient way of obtaining those facet inducing inequalities with

few positive coefficients.

Theorem 4.2. Let < H > and < K > be cliques, with HCK, |H| • I and

|K| • p, 2 < I < p. The inequality ay > 1, where a, y c H , defines a facet

of P(H), if and only if the inequality (a,0)t > 1, where (a,0), tclRp, de-

defines a facet of P(K).

Proof. Necessity. Suppose cry > 1 defines a facet of P(H). Then there

exist I affinely independent points yicP(H), i » l,..,i, such that each y

is a schedule for < H >, and cry1 s lf i
 = 1, ...,*. Each y can be extended

to a schedule t1 for < K > as follows. If S(H) is the selection in < H > de-

fined by y , let S(K) be any acyclic extension of S(H) to < K > such that

the rank in S(K) of any jcH is less than that of any keK\H. Then let tLcKp

be any vector satisfying t* - y* jcH, t* > L , jcK\H, and tl - tj > d^,

* (h,j)«S(K) . Extending each y in this fashion gives I affinely indepen-

dent points t cP(K).

The remaining p-£ schedules are derived from t • Assume w.l.o.g. that

the nodes of K are numbered in the order defined by S(K) , i.e., such that

tl < tl < ...< t1. For i « I + l,...,p, let t1 be defined by t* « t.,
1 2 p J j
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j - l,...fp - i + 2, and tj • tj + lf j - p - i + 2 + l f # #. f P. Then the

(p-l)xp matrix whose rows are the vectors t1 - t1, i » 2,...,p, is of the

form

- - — )
\ ° !M22'

where Mu is of rank 2-1, while M22 = (m ) is the (p-X)x(p-X) matrix

defined by m^ - 0 if i + j < p-X and m,. « 1 if i + j > p-2. Since M22 is

nonsingular, the rank of M is p-1. Thus (a,0)t > 1 defines a facet of P(K).

Sufficiency. If ay > 1 does not define a facet of P(H), then it is the

consequence of some inequalities P y > 1, i * l,...,k < 2, satisfied by

every ycT(H). Then the inequalities (0i,O)t > 1, i » 1,...,k, where (01fO),

teRP, are satisfied by every tcP(K) (since a restriction to < H > of a

schedule for < K > is a schedule for < H > ), and imply the inequality

(a,O)t > 1. Thus (a,0)t > 1 does not define a facet of P(K).||

From Theorem 4.2 it follows that the computational effort required to

generate a facet inducing inequality for P(K), with positive coefficients

restricted to some subset HCK, depends only on the cardinality of H, not

that of K. Thus there are large classes of facets of P(K) that can be gen-

erated at a fixed computational cost, whatever the size of K. More generally,

the work needed to derive a facet inducing inequality for P(K) grows with the

number of positive coefficients of the inequality; and facets defined by in-

equalities with few positive coefficients are easy to generate.

Next we address the question of how one can derive a facet inducing

inequality with p positive coefficients from one with p-1 positive coefficients.

Let < K > be a clique with |K| * p, let HCK with JH| » p-1, say

H » {!,...,p-l}, and let V and W be the matrices whose rows are the vertices
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of P(K) and P(H), respectively. Note that every row w1 of W corresponds to

some row v of V, where v - (w , v k p), and the sequence associated with v
k

assigns rank p to node p. For all the remaining rows of V, the associated

sequence assigns rank p to some node je(l,...,p-l}. Let R(V) and R(W)

denote the row index sets of V and W, where every row of V that corresponds

to a row of W preserves the index of the latter, i.e., the first JR(W)| ele-

ments of R(V) are those of R(W).

For any matrix M, let det(M) denote the determinant of M, let Mg denote

the matrix whose rows are those rows of M indexed by S, and let Mj be the

matrix obtained from M by substituting a column of l's for the j t h column.

Theorem 4.3. Let Wg be a (p-l)x(p-l) submatrix of W such that the in-

equality art > 1, where the components of a are

> 0 , j - l,...,p-lJdet(Ws)

L° . J - P,
induces a facet of P(K). Further, let

(4.3) 4-U ^
SU{k}> i«R(V)\S det<VSU{i})

Then the inequality 9t > 1, where the components of 0 are

(/. A\

also induces a facet of P(K); and if the minimum in (4.3) is positive and

unique, then 3. > 0, j - l,...,n.

Proof. Since the inequality at > 1 induces a facet of P(K), it also

induces a facet of P(H) (Theorem 4.2), hence the vector a • (a. a ,)



27

W - i i

is a vertex of the polyhedron F » la|Wa > e, # > 0} (Theorem 4.1).

We have to show that if (4.3) holds, then 0 defined by (4.4) is a vertex

of F - [BJVP > e, 0 > 0}. Then by Theorem 4.1, the inequality 0t > 1

induces a facet of P(K).

Consider the system of equations

(4.5) v S * 1 , icS

where v1 is the ith row of V. Since SCR(W), each v1 is of the form (w1, vt ).

There are two possible cases.

Case 1. There exists no BeFV satisfying (4.5) with B > 0. Then there

exists some kcR(V)\S such that (4.5) together with vkB * 1 implies Bp - 0

and has the unique solution B * a. Hence the minimum in (4.3) is 0 and B * cr

V
is a vertex of F .

y
Case 2. The minimum in (4.3) is positive, i.e., there exists BcF

satisfying (4.5) with 0 > 0. Then (4.5) defines an edge of F , one of

whose endpoints is B * ct9 whereas the other endpoint is given by the smallest

value of B for which either (i) some inequality B. > 0, jc{l,...,p-l},
P J —

becomes tight; or (ii) some inequality v 0 > 1, icR(V)\S, becomes tight.

1 2
Let B And 0 be the values of B for which (i) and (ii), respectively, occur.

P P P1 2 1 2We claim that B > B • For suppose 3 < 0 , i . e . , there exis ts a vectorp — p P P

B°clRp that sa t i s f i e s (4.5) and 0° » 0 for some j c ( l , . . . , p - l } , and such that

v i 0° > 1, ¥ icR(V)\S. Then (B?, . . . ,B? 1f 0? ^ , . . . , B ° ) is a vertex of
1 J*-l J*+l P

F H O|04
 s 0)» hence we have v g° a 1 for p-l of those inequalities indexed

by icR(V)\S, for which j^ has rank p in the sequence defined by v . But this

1 2
contradicts the assumption that 0 < B •

Now B is the value defined by (4.3), namely the p component of the

solution B, as defined by (4.4), of the system viB • 1, icSU {k}, where
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keR(V)\S is the index of the inequality that becomes tight for 3 • 02. Hence
V P P

8 is a vertex of F , i.e., 0t > 1 induces a facet of P(K).

Further, if the minimum in (4.3) is both positive (as in case 2 above)

and unique, then $ > 0 for all j, since otherwise, as shown above, the mini-

mum in (4.3) is not unique.j|

In the following we will list all facet inducing inequalities for P(K)

with 2 or 3 positive coefficients. But first we examine the trivial facet

inducing inequalities, i.e., those having a single positive coefficient.

Proposition 4.4. For all jcK, the inequality tj > ^ induces a facet

of P(K).

Proof. W.l.o.g, we assume that L > 0 for all j. This can always be

guaranteed by shifting the origin of the coordinate system, which does not

affect the facial structure of P(K). Then the vector cr defined by a - 1/L ,

at » 0, * i * j, is a vertex of F » (a|va > e, a > 0}, where the rows of V

are the vectors vl defined by (4.1). Hence from Theorem 4.1, the inequality

o»t > 1, that is ^ > L , induces a facet of P(K).||

Next we turn to facet defining inequalities with two nonzero coefficients.

Theorem 4.5. Let < K > be a clique. For any i,jeK, i f j,

(4.6) (dtJ + Lt - L j ) t i + (djl + L. - L l ) t j > d i j d j i + L i d j i + L.d^

is a nontrivial facet inducing inequality for P(K) if and only if

(4.7) -dĵ Lj '\<\y

Proof. From Theorem 4.2, (4.6) defines a facet of P(K) if and only

if it defines a facet of P([i,j}). From Theorem 4.1, this is the case if

and only if the point a° - (c£, a?), where
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d1i+VLi

is a vertex of the polyhedron F({i,j}) defined by the inequalities

L^ + maxCLj, L± + d ^ } ^ > 1

(4.8) m a x ^ , L + d ^ } ^ + Ljaj > 1

<*t > °t crj > 0

If (4.7) holds, then the maximum in the first and second inequalities

of (4.8) is attained for L. + d and L. + d , respectively, and a is the

unique solution to the system obtained by requiring these two inequalities

to be tight. Since ct° also satisfies the remaining two inequalities of

(4.8), it is a vertex of F({i,j}) and hence the inequality (4.6) defines

a facet of P(K). Further, if (4.7) holds, then c£ > 0 and a? > 0, i.e.,

the facet is nontrivial.

On the other hand, if L. - L > d or L - L. > d (both inequalities

cannot hold at the same time), then the maximum in the first or second in-

equality of (4.8) is attained for L. or L., respectively, and the solution

to the system of two equations is ^ * 0, a » 1/L in the first case, a * 0,

cr̂  * 1/L in the second; hence in these cases at > 1 coincides with one of

the two trivial facet defining inequalities associated with the indices i,j,

and (4.6) does not induce a facet.||

Note that (4.7) is the regularity condition (3.4) for the clique

< U*j} >• Since |[i,j}| * 2, condition (3.5) does not apply. Thus regu-

larity of the clique < {i,j} > is a necessary and sufficient condition for
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the polyhedron P(K) (where < K > is any clique containing [t,j}) to have a

facet inducing inequality at > 1 with a^ > 0, cr. > 0 and Q^ * 0, ¥ k # i,j.

Next we characterize the facet inducing inequalities with 3 nonzero

coefficients for an arbitrary clique < K > with JK| « p. From Theorem 4.2,

an inequality of the form a. t. + a. t. + a. t. >1 induces a facet of
Jl Jl J2 J2 J3 j3 ~

P(K) if and only if it induces a facet of P(£j-, j 2 > J 3}), the clique poly-

hedron defined on the vertex set (j,, j 2, j-}. From Theorem 4.1, this is
the case if and only if a * (a. , a. , a. ) is a vertex of the polyhedron

Jl J2 J3

where ec

F - (aelR3jV<* > e, a > 0) f

and V is the 6 x 3 matrix whose rows are defined by (4.1) for

p » 3. To simplify the notation, we assume that ( j ^ J2, J3) • [1,2,3}.

Denoting by p. the sequence (permutation) associated with row v of V, we

will assume that the rows of V, indexed by R(V), are ordered so that

p2

p3

(2,3,1)

P4 - d,3,2)

P5 - (2,1,3)

P* * (3,2,1)

Further, we will assume that < {1,2,3} > is regular; which implies

that the matrix V is of the form

L2 +

L3

L2

L3

d23 +

+ d31

h
+ d21

d32 +

d31

d21

L2

L3 +. d31 +

Ll + d13 +

L2

L3 + d32

d12

d32

L2 + d23 \

L3

- Ll + d13

L2 + d21 + d13 /

h J
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As in Theorem 4.3, we let V^ fc ^ denote the 3 X 3 matrix consisting of

rows i,k,4 of V, and let vi . ^ be the matrix obtained from Vr. ^ by

substituing 1 for every entry of column j.

Theorem 4.6. Let K » {l,...,p}, let < (1,2,3} > be regular, and let every

4 x 4 submatrix of (V,e) be nonsingular. Then P(K) has exactly four facets

induced by inequalities at > 1 with cr. > 0 for j - 1,2,3, «. » 0 for

j = 4,5,...,p. In particular the coefficients of the four inequalities

are defined by

(4.9) aj « d.t(v|lfktJ(}yd.e(v{lki}) . j - 1,2,3,

a * 0, j * 4,5,...,p, where the four triplets i,k,XcR(V) are [l,5,r}, [2,6,s},

{3,4,t} and {r,s,t}, with [r,s,t} » [2,3,1} or [4,5,6}.

Proof. From Theorem 4.2, an inequality at > I with a. « 0, j « 4,5,...,p,

induces a facet of P(K), if and only if the inequality cr-t, + cr2t2 + a3t- > 1

induces a facet of P([l,2,3}>. From Theorem 4.1, this is the case if and

only if a is a vertex of the polyhedron F * (aeK |Vcr > e, a > 0}.

According to a classical result of Steinitz, the number of vertices

of a polytope (bounded polyhedron) in K is bounded by 2f - 4, where f is

the number of facets; and this bound is attained when the polytope is simple

(totally nondegenerate), i.e., when each vertex lies on exactly 3 facets,

or, equivalently, on exactly 3 edges (see for instance Grunbaum [5], p. 190).

Now F is never simple, since v-- = V4i» v?2 * V52 atK* V33 * V63* an<* as a

result each of the 3 vertices having a single positive component (namely:

<*2 * a3 * 0; <*2 * 1/^L2f al * ^3 * 0; and

lies on 4 facets, i.e., is degenerate, if it exists at all (i.e., if L. ^ 0).

Furthermore, F is unbounded. We therefore define a polytope (bounded poly-

hedron) F*, obtained from F by



32

(1) assuming L. > 0 , j » 1,2,3 (this guarantees the existence of

the 3 vertices with one positive component);

(ii) replacing L by L + e > Ljf j = 1,2,3, in rows 4,5,6 (this

makes those same 3 vertices nondegenerate); and

(iii) adding the inequality c^ + <*2 + <*3 < M, where M > 1/L., j « 1,2,3

(this makes F* bounded).

Given the regularity of < {1,2,3} > and the assumption that every 4 x 4

submatrix of (V,e) is nonsingular, F* is simple; and listing its vertices

allows us to list those of F.

Since F* has 10 facets (defined by the 6 inequalities v1^ > 1, the 3

inequalities a. > 0, and the inequality introduced in (iii)), it has 2f - 4 - 16

vertices. Of these, 3 lie on the plane &l + <*2 + c*3 * M and are therefore

not vertices of F. Another triplet consists of the 3 vertices with exactly

one positive component; these are also vertices of F. A third triplet of

vertices of F*, also shared with F, are those with exactly two positive

components, that give rise to the facet defining inequalities (4.6) for the

corresponding 2-clique polyhedra. A fourth triplet consists of those ver-

tices of F* having two positive components, whose counterparts in F have a

single positive component (because of the degeneracy caused by v.- « v, ,

V22 * V52* V33 * V63^# Thls is a total of 12 vertices of F* (6 vertices

of F) with one or two positive components (see Table 2, in which the facets

are numbered from 1 to 6 for v a > 1, i - 1,...,6; 7,8,9 for a. > 0,

j » 1,2,3; and 0 for crx + c*2 + c*3 < M) . Thus there are 4 facets left,

each with 3 positive components.
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From Theorem 4.3, there is a vertex with 3 positive components ad-

jacent to every vertex with 2 positive components. Two vertices (of a

3-dimensiooal polytope) are of course adjacent if and only if they share

Vertex
of F*

1

2

3

4

5

6

7

8

9

10

11

12

Positive
compoaents

j

j

j

j

j

j

j

j

j

j

j

j

- 1

» 2

» 3

- 1

- 2

- 3

- 1,2

• 2,3

- 1.3

- 1,2

- 2,3

- 1,3

Table

Lies on
facets

0,8,9

0,7,9

0,7,8

1,8,9

2,7,9

3,7,8

1,5,9

2,6,7

3.4,8

2.5,9

3,6.7

1,4,8

2

Vertex
of F

-

-

-

1

2

3

4

5

6

2

3

1

Positive
components

j -

j -

j »

j -

j »

j -

j »

j -

j '-

j -

1

1

2

3

1,2

2.3

1,3

2

3

1

Lies on
facets

1,4,8,9

1,4,8,9

2,5,7,9

3,6,7,8

1,5,9

2,6,7

3,4,8

2,5,7,9

3,6,7,8

1,4,8,9

two facets. Thus the vertices with 3 positive components adjacent to

{1,5,9}, {2,6,7} and {3,4,8} are of the fora {1,5,r}, {2,6,s} and {3,4,t},

respectively; whereas those adjacent to {2,5,9}, {3,6,7} and {1,4,8} are

of the form {2,5,u}, {3,6,w} and {1,4,2}, respectively. Clearly, at least

3 of these 6 potential vertices are distinct, and we know there exists a

4 vertex with 3 positive components. Finally, every vertex is adjacent

to exactly 3 other vertices. Checking all possible combinations shows

that there are only two ways of satisfying these requirements, namely if
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Fig. 4



36

(r,s,t} - {2,3,1} and {u,w,z} - (1,2,3}, or if {r,s,t} » £4,5,6} and {u,w,z} «

(6,4,5}. In the first case, there exists a vertex {1,2,5}, adjacent to

[1,5,9} and to [2,5,9}; a vertex [2,3,6}, adjacent to [2,6,7} and [3,6,7};

and a vertex [1,3,4}, adjacent to (3,4,8} and to (1,4,8}. The 4C vertex

with 3 positive components is in this case (1,2,3}, adjacent to (1,2,5},

(2,3,6} and (1,3,4}. In the second case, there exists a vertex (1,4,5},

adjacent to (1,5,9} and (1,4,8}; a vertex (2,5,6}, adjacent to (2,6,7} and

{2,5,9}; and a vertex (3,4,6}, adjacent to (3,4,8} and {3,6,7}. The fourth

vertex in this case is {4,5,6}, adjacent to {1,4,5}, {2,5,6} and {3,4,6}.

Thus the only two possible facial structures of F* are those represented

by the graphs G* and G* of Fig. 3.||

Note that the polytope F*, which is bounded and totally nondegenerate

(simple), has 16 vertices and 24 edges. The (unbounded) polyhedron F has

at most (i.e., when the only degenerate vertices are those with 1 positive

component) 10 vertices and 18 edges, as shown in Fig. 4, where G. and G2

are the "graphs" of F (the 3 unbounded edges of F being represented by "half-

edges11 pf Gx and G^.

Thus P(K) has at most 4 facets induced by inequalities at > 1 with

a > 0 for j - 1,2,3. The regularity of < {1,2,3} > is a necessary condi-

tion for the existence of 4 distinct facets of this type, but is not by

itself sufficient. For sufficiency we need, besides regularity, the absence

of any singular 4 x 4 submatrices of (V,e), as assumed in the Theorem.

Example 4.1. Let G be the disjunctive graph shown in Fig. 5.
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Fig. 5.

6 has two disjunctive cliques, induced by the node sets K«. * {1,6}

and K2 - {2,4,7}, respectively. For < 1^ > we have L » L(0,l) * 0,

Lg - L(0f6) - 1, and d16 « 2, dgl * 3. PO^) has 3 facets, defined by the

inequalities t, > 0, t. > 1 (Proposition 4.4), and t- + 4t. > 8 (Theorem 4.5)

For < Kj >, w« have L2 - L(0,2) » 2, L4 - L(0,4) - 2, 1^ - L(0,7) - 3,

and d24 - 2, d2? » 4, d42 - 4,

is regular, and the matrix defining the polyhedron F is

- 3, d?2 » 5, d?4 - 6. We see that <

f2

10

8

2

6

13

4

2

10

12

2

9

7

5

3

6

10

3

2 ^

P(K2) has 10 facets: 3 of them are defined by the trivial inequalities

2> C4 ̂  2» C7 - 3 (Proposition 4.4); another 3 by the inequalities
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fc2 H

C2

h 2 t 4

H

2 t 4 H

—

- 2 t ? >

- 7 t . >

10

14

39

with 2 positive coefficients (Theorem 4.5); and, finally, 4 facets are

defined by inequalities with 3 positive coefficients (Theorem 4.6):

7 H

13t 2 H

h 16t 4 H

h 5 t 4 H

h 3 t 4 H

K 4 t ?

K 19t ?

i- 24 t ?

> 102

> 115

> 206

> 27.

These 4 inequalities correspond, in the notation of Theorem 4.6, to

the vertices {1,2,5}, Uf3f6}, Ut3,4} and (1,2,3}, respectively, of F.

Here we have multiplied each inequality with the determinant in the

denominator of the expression (4.9) In order to express them in integers.||

5. Lifting the Facets of the Clique Polyhedron

In this section we address the question as to how the results of the

previous sections can be used to derive facet inducing inequalities for the

general scheduling polyhedron F = clconv T introduced in section 1. In

particular, we give a sufficient condition for a facet inducing inequality

for one of the clique polyhedra P(K) to also be facet inducing for P.

We introduce some additional notation. For any icN, let B(i) and A(i)

be the set of nodes jcN "before i" and "after i," respectively, in the di-

graph D » (N°, A°); that is,

B(i) » [jcN\[i}| there exists a directed path P(j,i) in D}

A(i) * Cj«N\[i}| there exists a directed path P(i,j) in D}.
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Further, for any VCN, let

B(V) » U B(i) , A(V) * U
icV icV

Before addressing the issue of lifting the facets of the clique polyhedron,

we examine the role of the trivial inequalities t > L(0,i) in determining

the facial structure of P.

Theorem 5,1. For every icN, the inequality t. > L(0,i) defines a (n-q)-

dimensional face of P, where q « |(i}UB(i)|.

Proof. Every tcP that satisfies t » L(0,i) also satisfies t. » L(O,j)

for every jcB(i). Hence the face Pn{teHa|t » L(0,i)} of P is at most

(n-q)-dimensional, where q * |[i}UB(i)j. To show that it is exactly (n-q)-

dimensional, we will construct n-q+1 affinely independent schedules in G

that satisfy t. * L(0,i). Let S be any acyclic selection in G such that

for all rcM, if K has a node jcB(i), then j has rank 1 in S(K ); and let

4(h,j)s denote the length of a longest path from h to j in Dg » (N°f A
0US).

Further, let the nodes of D_ be numbered such that (h,j)cAUS implies h < j,

and in addition, (i}UB(i) * {l,-..,q}. Such a numbering exists, since Dg

is an acyclic digraph and every hcB(i) (IK has rank 1 in S(K) . We then

define t° by t°x « *(0,j) Clearly, t° is a schedule in G. Further, by
J 5

the definition of S, 4(0,j)g - L(O,j) for all jc(i}UB(i), hence t° satis-

fies t. » L(0,i). The next n-q schedules t , h » l,...,n-q, are defined

recursively by fc* « t^*1 for jcN\{n-h+l] and t1? » t1?"1 + 1 for j - n-h+1.

Each of these vectors is a schedule that satisfies t. = L(0,i). Then the

(n-q) x n matrix whose rows are the vectors t - t , h * l,...,n-q, is of

the form M » (M^ M ), where M. is (n-q) X q, while M is the (t>q) X (n-q)

nonsingular matrix
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0 . . . 0 1

0 . . . 1 1

\l • • • l l ,

Thus M has rank n-q, and the n-q+1 schedules t are affinely independent.|

Corollary 5.2. The inequality t. > L(O,i) defines a facet of P if and

only if B(i) « 0.

Next we address the question of lifting the facets of clique polyhedra.

We need a couple of definitions and some auxiliary results.

Let < K > be a clique, S(K) an arbitrary acyclic selection in K, and

< Kf > the maximal clique containing < K > . As before, let M be the index

set of the maximal cliques of G. We will'say that the selection

S - U S(K )
rcM r

is a conformal extension of S(K) to G, if it satisfies the following

requirements:

(i) S(K^) is any acyclic extension of S(K) to < K, > , such that, if

ieK and jeKAK, the rank of i in S(KJ is less than that of j.

(ii) For rcM\[i} such that = 0, S(Kr> is any acyclic selec-

tion in < K > .

(iii) For r«M\{X} such that K nB(K) + 0, S(K ) is any acyclic selec-

tion in < K > such that

(a) if icKrHB(K) and jeKr\B(K), the rank of i in S(K ) is less than

that of j;

O) if jcKrP.B(i) for some icK, the rank of j in S(Kr) is no greater

than the rank of i in S(K); and
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(Y) if i,hcK, j(i)eKrnB(i), j (h)cKr f! B (h), and the rank in S(K) of i

is less than that of h, then the rank in S(Kr) of j(i) is less than that

of j(h).

For any ieN, B(i) is the set of nodes jcN\Ci) lying on the

(unique) path P(0,i) from 0 to i in D. Therefore every clique

has at most one node in B(i), Let M(i) be the index set of cliques

that have such a node, i.e., M(i) » {reM(K H B(i)#J}, and let [j (i)} »
r r

KrnB(i).

A (not necessarily maximal) clique < K > of G will be called

dominant, if for every i.heK such that M(i)riM(h)*J, and every

reM(i)nM(h),

(5,1) d,

The term "dominant" seems justified by the properties of these cliques.

Lemna 5.3. Let < K > be a dominant clique in G, and S(K) an acyclic

selection in < K > . Then every conformal extension S of S(K) to G has the

property that, if icK, jc{O}UB(K) and i is reachable from j in the digraph

D » (N , A US), every longest path from j to i in D. contains only arcs of

A°US(K).

Proof. Let S be a conformal extension of S(K) to G, and for some icK,

jc{0}llB(K), let P(jfi)s be a longest path from j to i in Dg. Suppose now

that P(j,i)s contains an arc of S\S(K); in particular, let (JlfJ2)
 be the

last such arc encountered when P(j,i)~ is traversed in the direction of its

arcs, and let (J1»J2)«
S(K )• Then from property (iii) of S, for k * 1,2,

JkcB(K); in particular, jfc lies on the unique path P(0,i,) in D for some
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i «K, and (i.,i2)cS(K). Further, if < K > is dominant, d. + L(j.,,i,) <
J1J2 2 2

L(j,,i,) + d i ,. and replacing the segment of P(j,i),, from j. to i, by

the path P(j1>i1)U [(i-,!-)} yields a path from j to i in Dc longer than

P(j,i)g. This proves that P(j,i)s cannot contain any arc of S\S(K).||

Theorem 5.4. Let < K > be a dominant clique in G, y° a schedule for

< K > with associated selection S(K), and S a conformal extension of S(K)

to G. Then the vector t°e Ka defined by

{A J*
(5.2) t°. - < L(0,j)s1

V U - L(jfn)g

is a schedule for G if U is sufficiently large to satisfy, for any

selection V in G, the condition

(5.3) U > max {l-(0,n)v, max {y° + L(j,n) }} .
L jcK J

Proof. We show that t° is a schedule for G by showing that it

is a schedule for D . For this purpose we examine all the arcs of D-
S

and show that t° satisfies the associated inequalities. All pairs i,j

considered below are such that (i,j)eA'JS.

If both i and j belong to any one of the three sets K, B(K) or

N\KUB(K), then substituting the values of t? and t°. given by (5.2)into the inequality t°. - t° > d shows the latter to be satisfied.

For ieB(K), jcN\KUB(K), tj-tj » U-L(j,n)g - L(0fi)g > d^, since

U > L(0,n)s > L(O,i)s + dtj + L(j,n)s.
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For idC, jeN\KUB(K), t°-t° - U-L(j,n>s - y° > d since U > y° +

L(i,n)s > y° + dtJ + L(j,n)s.

It remains to be shown that the constraints are also satisfied for

ieB(K), jcK; for all remaining ordered pairings of the three index sets

used in the definition of t , the corresponding arc sets are empty.

Now for icB(K) and j eK, t° - t° » y° - L(0,i)s# Let the rank of node j

in S(K) be k. The schedule y° satisfies the inequalities y?fhx >U0,j(h)),

h - I 9 . . . 9 p t and y°Hh) - y j ( h . 1 } >
 d j ( h - l ) , j ( h ) '

 h * 2 " " P > where P " IKI

and h is the rank of j(h) in S(K).. It is not hard to see that these inequal-

ities, plus the fact that j - j(k), imply

(5.4) y° >max{L(0,j(k)), L(O,j(k-l)) + d
j (k.i) ,

k

L(O,j(l)) + I d

The expression on the righthand side of (5.4) represents the length

of a longest among those paths from 0 to j in D g > which use only arcs

in A ° U S ( K ) . Since < K > is a dominant clique, from Lemma 5.3 this

is equal to L(O,j)s, the length of any longest path from 0 to j in D .

Hence we have

t°-t° « yj - L(0,i)g >L(O,j)s - L(O,i)S > d^.

Since t satisfies all the inequalities associated with the arcs of

D g, it is a schedule for Dg, hence for G.||

We are now ready to state the main result of this section.

Theorem 5.5, Let < K > be a (not necessarily maximal) dominant

clique of G, with JK| * p > 1. If the inequality cty > 1, where a,yc R P, de-
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fines a facet of P(K), then the inequality (cr,O)t > 1, where (a,0),tc!Ra> de-

fines a facet of P.

Outline of proof If the inequality ay > 1 defines a facet of P(K), there

exists a set of p extreme points y1, i = l,...,p of P(R), such that ctfy1 = 1,

i * 1,...,p.

Since < K > is dominant, from Theorem 5.4 every y has at least one con-

formal extension t to G. From each such schedule t for G, additional sched-

ules can be constructed by adding a small positive scalar to certain components.

Using this approach one can in fact construct n affinely independent schedules

t for G, each of which is an extension of some schedule for < K > and there-

fore satisfies at » 1. This proves that the inequality (a,O)t > 1 induces

a facet of P. Details are given in an Appendix.j|

6. Identifying Violated Inequalities

For every clique < K > of G, let 7(K) be the set of all facet inducing

inequalities for P(K) » clcoov T(JC), and let tf - U ^ O O , where the union is

taken over all cliques of 6. In order to be able to use the inequalities of

7 as cutting planes in an algorithm for solving (P), one needs a way to solve

the following

Constraint Identification Problem (CIP). Given some toc]Ra that satis-

, (i,j)cA, t° > 0, icN, but violates some of the disjunc-fies t?- t° >

tions defining T, find an inequality i n ? violated by t , or show that none

exists.

Let t°eH a be as defined in CIP, let < K > be a clique at least one

of whose disjunctions is violated by t , let F(K) be the polyhedron defined

in Theorem 4.1 relative to < K >, and denote by t~ the vector whose compon-

ents are t.f j«K. Further, let a° be defined by
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(6.1)

Then if t£a < 1, the inequality # t > 1 obviously cuts off t and

CIP is solved. Otherwise we have

Proposition 6.1. If t£c*° > 1, t£eP(K), i.e., t° satisfies all the in-

equalities of >(K).

Proof. If t£a° > 1, then from the definition of a°, atf > 1 for every

vertex a of F(K).||

Thus the procedure that suggests itself for solving CIP is to choose

some clique < K > at least one of whose disjunctions is violated by t£, and

solve (6.1). However, in the absence of additional information we may well

choose a clique < K > for which t£cr° > 1. Also, if < K > is large, solving

(6.1) is expensive.

The next Theorem gives a sufficient condition for J>(K) to contain an

inequality violated by t • The condition occurs frequently and is easy to

check. Furthermore, the Theorem restricts the size of < K > to the mini-

mum subject to the above condition.

Theorem 6.2. Let t be as defined in CIP. Let < K > be a (not nec-

essarily maximal) clique, with |K| » p and t̂ .-. < ... < t° ., such that t

satisfies

(6.2)

o

and, if p > 3,

Cj(k)
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Further, let a° be defined by (6.1). Then the inequality a°t_ > 1

cuts off t .

Proof. We prove by contradiction that t^ tf(K). It then follows that

contains an inequality that cuts off t°, and from (6.1), cr°t̂  > 1 is

such an inequality.

Suppose t°eP(K). Then there exist vectors t_eT(K) and scalars \ > 0,

i » l,...,p+l, such that

t 9+1
E CX , E X . - 1.
-1 K x l-l *

t°Since tj(1) >L(O,j(l)) for any t^TOO and t° ( 1 ) - L(O,j(l)), we have

Cjd) * CJ(Df * " 1'*"'(ri"1* SlalUrly, since t (fc) > max[L(0,j (k)),

^(k-l) + dj(k-l),j(k)^
 f o r a U ^W a n d eJck) " CjCk-l) + dj(k-l),j(k)'

k » 2,...,p-lf it follows that t ~* * ^ f ^ ) *
 k * Zf-fP^if whenever p > 3.

But then from (6.3), for at least one icfl,... ,p+l}f we have t̂ , N < t° N <
J(P) J(P)

^(P-D + dJ(p-D J(P) " C

that t^€T(K), i » lf...fp+l. Thus

Condition (6.2) of Theorem 6.2 requires that the smallest component

of tg be equal to the lower bound on its value in any schedule. This condi-

tion is always met by a basic schedule t° for those cliques < K > such that

no node of B(K) is contained in any disjunctive clique. For other cliques,

the condition may or may not be satisfied, but it is of course easy to check.

The remaining conditions simply state that a minimum size clique to be

considered is the one with node set K » (j(1),...,j(p)}, where j(l) is the

node for which tj ( 1 ) » L(O,j(l)), and j(p) is the first node in the sequence

defined by t° for which the condition t., . - t , ,, > d̂ /p.jN j/p) (
aad

hence the corresponding disjunction) is violated.
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When there is no clique for which the conditions of Theorem 6.2 are

satisfied, there is no guarantee that a° defined by (6.1) cuts off t°. In such

cases it is a reasonable heuristic to choose a clique for which (6.3) and (6.4)

are satisfied, while t (1) - L(O,j(l)) is small (in comparison with other

cliques), and which has not yet been used to derive a cut.

Example 6.1. Consider the disjunctive graph G of Example 4.1.

Minimizing tg subject to t - tt >
 d
±.t (i,j)eA and t > 0, icN, yields

t° = (0,2,0,2,0,1,3,6). Since tj » L(0,l) = 0 and t£ » 1 < tj + d « 2,

the clique induced by {1,6} satisfies the conditions of Theorem 6.2. Thus

we solve

min 0a* + la*

s. t. Oor- + 2 ^ > 1

4a, + la6 > 1

<*!• cr6 > 0

and find (a\, aj) - (1/8, 1/2), which yields the inequality

violated by t°. Since < {1,6} > is a dominant clique, this inequality

induces a facet of P. Minimizing t? subject to the same constraints as

before, plus ^ + 4tg > 8, yields t
1 » (0,2,0,2,0,2,4,6).

Since t2 » L(0,2) » 2 and t£ < tj + d^ * 4, the clique induced by

{2,4} s a t i s f i e s the conditions of Theorem 6.2. Solving

min 2a^ + 2a#
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yields (a*, a£) - d/10, 1/5), and the inequality

t2 + 2t4 > 10

violated by t . Again, < {2,4} > is a dominant clique and hence the inequality

induces a facet of P. Adding this inequality to the earlier constraint set

2
on t and minimizing t? yields t » (0,4,0,3,0,2,4,7).

The conditions of Theorem 6.2 are no longer satisfied, since t° > L(O,j)

for j » 2,4,7. However, each of the cliques not yet used to derive a cut,

i.e., (4,7}, (2,7} or {2,4,7}, provides an inequality that cuts off t2 (this

can be seen by checking the list of facet-inducing inequalities for P(K ) in

Example 4.1). In particular, if we take the clique {2,4,7}, then solving

oin 2a2 + 4«4 + 4«7

s.t. 2«2 + 4«4 + 7a? > 1

13a2

10a? > 1

3a? > I

, a7 > 0,

yields (a2, a4> c^) - (13/206, 3/206, 24/206) (with s± » 0 for i - 1,3,4),

and the (facet inducing) inequality

13t2 + 3t4'+ 24ty > 206,

which cuts off t .il



References

[1] E. Balas, "Finding a Minimaximal Path in a Disjunctive PERT Network.ff

Theorie des Graphes, Journees Internationales dfEtude, Dunod, 1967,
p. 21-30.

[2] E. Balas, ftMachine Sequencing via Disjunctive Graphs: An Implicit
Enumeration Algorithm/1 Operations Research. 17, 1969, p. 941-957.

[3] E. Balas, "Disjunctive Programming.ff Annals of Discrete Mathematics.
5., 1979, p. 3-51.

[4] E. Balas, "Disjunctive Programming and Combinatorial Optimization."
Paper presented at the Symposium on the Application of Discrete
Mathematics, Cambridge, Mass., June 27-30, 1983.

[5] M. Grotschel, M. Junger and G. Reinelt, fTacets of the Linear
Ordering Polytope." Report No. 82217-OR, Institut fur 6'conometrie
und Operations Research, University of Bonn, May 1982.

[6] B. Grtfnbaum, Convex Polytopes, Wiley, 1967,

[7] R. G. Jeroslow, "Cutting Plane Theory: Disjunctive Methods."
Annals of Discrete Mathematics. 1., 1977, p. 293-330.

[8] J. K. Lenstra, Sequencing by Enumerative Methods, Mathematical Centre
Tracts 69, Matheaati3ch Centrum, Amsterdam, 1977

[9] J. F. Muth and G. L. Thompson, Industrial Scheduling, Prentice-Hall,
1963.

[101 L. Nemeti, "Das Reihenfolge problem in der Fertigungs-programmierung
und Linearplanning mit loglschen Bedingungen." Mathematica (Cluj),
£, 1964, p. 87-99.

[11] A. H. G. Rinnooy Kan, Machine Scheduling Problems: Classification.
Complexity and Computations. Nijhoff, The Hague, 1976.

[12] B. Roy and B. Sussman, "Les Probiernes d'Ordonnancement avec Contraintes
Disjonctives." SEMA, Note DS 9 bis, Decembre 1964.



A.I

Appendix: Proof of Theorem 5.5.

We will make use of the following auxiliary result:

Lenma 5.6. Let < K > be a dominant clique of G, y° an extreme point of

P(K) with associated selection S(K), and S a conformal extension of S(K) to G.

Further, let t° be the extension to G of y° defined by (5.2), and let keK be

such that y. > L(O,k). Then every path P(i,j)g in D- originating with some

icB(k) and such that t • t = d for all (r,s)cP(i,j)c, terminates in some
s r rs o

jcB(K).

Proof. Let P(i,j)g be a path in Dg originating with some i«B(k) and such

that t - t • d for all (r,s)eP(i,j) Since t? * L(O,i)_, there exists a
5 L 19 O j. D

(longest) path P(0,i)c from 0 to i in DC such that t° - t° - d for all
^ o s r rs

(r,s)cP(O,i)g. It then follows that the path P(0, j)g:»P(O,i)g U P(i, j) g is a

longest path from 0 to j in Dg> since t° - t° « drg for all (r,s)cP(0,j) . Now

suppose jeK. Since < K > is a dominant clique of G, it then follows from Lemma

5.3 that P(O,j)g contains only arcs of A°US(K), i.e., is of the form P(0fk) U

P(k*J)Sf where P(0,k) is the (unique) path from 0 to k in D. But then P(O,k)

is a longest path from 0 to k in Dg and tf » L(O,k), contrary to t? * y? >

L(O,k), as assumed in the Leoma. Thus ĵ K.

Suppose next that jcN\KUB(K), and let (r,s) be "the (unique) arc of P(i,,j)c

such that rcB(K), SeN\KUB(K)# Then from the definition of t°, t° - t° > d ,

contrary to our assumption about P(i,j)g. This proves that j*N\KUB(K).

Consequently jeB(K).||

Proof of the Theorem. Let y , i =* 1,... ,p, be extreme points of P(K),

each of which satisfies <*y " 1. We will contract n schedules t for G, each

of which is an extension of one of the p schedules y for < K >, and therefore

satisfies (a,O)t * 1. We will then prove that these n vectors t1«Ra are affine-

ly independent, by showing that the (n-1) x n matrix whose rows are the vectors

t - t , i * 2,...,n, is of full row rank.

W.l.o.g., we assume that the numbering of the nodes of G is such that
(i) First, we extend to G the p affinely independent schedules y ,

i * l,...,p, for < K >. To this end for i = l,...,p we let S(k) be the selec-

tion in < K > associated with y , and S a conformal extension of S(K) to G,
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with the proviso that the arcs of Si chosen freely under rule (ii) of the
definition of a conformal extension (see section 5) are the same for all
icfl,...fp}. Next, for i « 1,...,P, we let t1 be the extension of y1 to G de-
fined by (5.2) for S » S , with the proviso that the scalar U used in the defini-

. i J

tion of t be the same for all kcfl,...,?}• The fact that the vectors t defined

in this way are schedules for G follows from Theorem 5.4. Note that our specific*

tions for S. and t1 imply that L(j,n) * L(j,n) and t* * t1, jeN\K'JB(K),
1 i 1 J J

i - 2,...,n. .

Subtracting the vector t from each of the p-1 vectors t , i - 2,...,p,

yields the (p-1) X n matrix M. whose rows are t - t , i « 2 , . . . , p , and which

is of the form ̂  » 0**,** M-2, 0). Here M-- is the (p-1) X p full row rank

matrix whose rows are the p-1 linearly independent vectors y - y , i = 2,...,p,

M-9 is (p-1) x (q-p), and 0 is the (p-1) X (n-q) zero matrix.
i(ii) The next q-p schedules t , i * p+l,...,q, are generated as follows.

For every node kcK, there exists at least one among the p vectors y chosen at
the beginning of this proof, say y v '9 such that yr > L(0,k). To see why

i i

this is true, notice that if y. * L(0,k) for i * l,...,p, then the p vectors y

lie in the (p-2)-dimensional subspace of 1RP defined by the two equations ay * 1

and y. s L(0,k), hence they cannot be affinely independent.
Now let S(K).,. v be the selection in < K > associated with y v , S (. .

i(V>a conformal extension to G of S(K).,,,, and t v the extension to G of
y i V ^ defined by (5.2) for S - S1(fc). For icB(k), let A(i) i ( f c ) be the set of

nodes jcN reachable from i (including i itself) by a path P(i,j)s in Dg
such that for every (r,s)cP(ifj)Q , ti(k)- ti(k) « d , and let 0 0 i(k)

Si(k) s r rs

A(B(k))

Then from Lexnna 5.6, A(B(k))i,fej CB(K), k = l,...,p, and since for each

ke{l,...,p} by definition A(B(k))i(fc) contains B(k),

P
U A(B(k)).... » B(K).

W.l.o.g., let the q-p nodes of B(K) be numbered in such a way that
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- {p

p-1
A(B(p))i(p)\ U A(B(r))i(r) 3p} ,

with p + 9 * q; and, ia addition, if i,je(p + 9 + l,...,p + 9 } for some

ke{l,...,p} (where we define 9 = 0 ) and (i,j)cA US(K) . ., then i < j.

We then define the vectors t*"" for h » I,...,?- by

Lti(l) , otherwise

with 0 < ^ < 1, h » !,..•,3^, and for h » Pfe-1 + 1,...,^, k » 2,...,p, by

" h

otherwise ,

where 0 < c. < 1, ¥ h, and

UA(B(k)) i ( f e ) - A(B(k)) 1 ( k )

From Lemma 5.6 and the definition of A(B(k))i/u\»
 each of the vectors

defined above is a schedule for D , hence for G.
.p+h

Renumbering the schedules t^ , h • 1,...,0 (sq-p) as t , i
i 1 ^

and subtracting from each t the vector t , we obtain the (q-p) X n matrix M.
i 1whose rows are t - t , i - p+l,...,q, and which is of the form M^ »

M , 0). Here K^^ is (q-p) X p, 0 is the (q-p) X (n-q) zero matrix, and

is a (q-p) X (q-p) lower block triangular matrix of the form

0 . . . (A
* *y • m 0

M22

X 2 1 To . . 0

Xsi Xs2 •
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where the i diagonal block is

0 . . . 0

0 . . . e.

+ 1

+ 2

A

'i-l

(iii) Finally, we construct the last n-q schedules in G from the schedule

t as follows. W.l.o.g. we let the nodes of N\KUB(K) = {q+l,...,n} be numbered

in such a way that, if i, jc(q+l,... ,n} and (i,j)eA°US , then i < j. Then for

q+l,...,n, we define t1 by t* * t) for j
J J

l,...,n - i + q, and t
J•i
 Z] + l

for j * n - i + q + 1,...,n. The resulting vectors t* are obviously schedules

for G, since t is a schedule, no component was decreased, and if a component j

was increased, all components corresponding to nodes reachable from j by a

directed path in Dc were increased by the same amount. Furthermore, since the
1 1 i

first p components of t were not changed, clearly these schedules t also

satisfy crt • 1.

Subtracting t from each t , and letting the vectors t - t , i » q+l,...,n

be the rows of a matrix M-, we obtain M- = (0, 0, M33)* where the two zero

matrices are (n-q) X p and (n-q) X (q-p), respectively, while M ^ is the (n-q) X

(n-q) nonsingular matrix whose element in position (i,j) is 0 if i + j < n-q,

and 1 if i + j > n-q.

(iv) It remains to be shown that the n schedules t that we have con-

structed are affinely independent. We will do this by showing that the (n-1) x n
i 1

matrix whose rows are the n-1 vectors t - t 2,...,n, is of full row rank.

From parts (i), (ii) and (iii) of the proof, this matrix is of the form

M

"ll

k21

M.12

M22

\

M33
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where M^ is (p-1) x p and has full row rank. Let M-- be a (p-1) x (p-1) non-

singular submatrix of M ^ , and let M 2 1 be the matrix obtained from M 2 1 by re-

moving the column corresponding to the one that was removed from M... Further,

let us permute the blocks of columns of M--» and the corresponding blocks of
M12* by r e v e r s i n 8 the order of the s blocks, and let M-2 and M-2 be the resulting

matrices.

Then M is of full row rank if and only if the (n-1) X (n-1) matrix

M

M 12

M21 M 22

is nonsingular.

if the matrix M

Since and M3 are nonsingular, M is nonsingular if and only

^1^12 iS a o a s i a 8 u l a r * It: is aot hard to see that

the numbers e used in the construction of £„ can always be chosen in a way

that makes M nonsingular. We show this by induction on q-p. For q-p » 1,

the condition is cft £ m^, where m. is the first element of the last row of
M21MlP112* Such CB o b v i o u s l y exists. Suppose the condition can be satisfied

for q-p » l,2f...,t-l, and let q-p « t. Let A be the matrix consisting of the

last t rows and first t columns of M Denoting by a the elements of A and

by Aj. the cofactor of a ^ , and using expansion by the last column of A, we have

det (A) - a l t A u +

By the induction hypothesis, there exist numbers 0 < e . < 1 ,

Ps - lf...tP8 - t + lf such that A l t + 0. Since a * « - BL where m.

is the element of l i ^ i ^ ia c^e position corresponding to a- , we have that

det (A) jfc 0 if and only if

a condition which can obviously be satisfied. This completes the induction.

Thus the n schedules t for G, i = l,...,n, are affinely independent. In

addition, each one of them is an extension of a schedule for < K >, hence satis-

fies (c*,O)t » 1. Therefore the inequality (a,0)t > 1 defines a facet of P.||



to also induce facets of P(N). One of our results is that any inequality that
induces a facet of P(H) for some HCK, also induces a facet of P(K). Another one
is a recursive formula for deriving a facet inducing inequality with p positive
coefficients from one with p-1 positive coefficients. We also address the constraint
identification problem, and give a procedure for finding an inequality that cuts off
a given solution to a subset of the constraints.
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