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Abstract

A wel | -known job shop scheduling problemcan be fornulated as follows.
Gven a graph Gwith node set Nand with directed and undirected arcs, find an
orientation of the undirected arcs that mninmzes the length of a |ongest path
in G W treat the problemas a disjunctive program without recourse to
integer variables, and give a partial characterization of the scheduling poly-
hedron P(N), i.e., the convex hull of feasible schedules. In particular, we
derive all the facet inducing inequalities for the scheduling polyhedron i
P(K) defined on sone clique with node set K, and give a sufficient condition
for such inequalities to also induce facets of P(N). One of our results is that
any inequality that induces a facet of P(H for some HCK, also induces a facet
of P(K). Another one is é.recursive formula for deriving a facet inducing
inequal ity with p positive coefficients fromone with p-1 positive coefficients.
V¢ also address the constraint identification problem and give a procedure

for finding an inequality that cuts off a given solution to a subset of the

constraints.
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1. Introduction

VW consider the follow ng machi ne seguencing problemwhich is a

special case of resource-constrained scheduling (for background material see

[1t 2], [8,...,12]). A nunber of itens have to be processed by performng a
sequence of operations on each of themon specified machines. There are n
operations to be performed, including a fictitious "stop" (operation n), the
objective being to mnimze total conpletion tine subject to (i) precedence
constraints between the operations, and (ii) the condition that a machine can
process only one itemat a time, and operations cannot be interrupted. The

probl em can be stated as

mnt, -
tj-l:i 2 dij (1,1DeA
®) € 2 0, LeN
t:j-l:i > clij \Y ti'tj > dji’ (1,3)eE
wher e ti is the starting tine of operation i, d.]_;1 is the m ninum
required tinme |apse between starting operation i and starting operation
j  (for instance, completion time of operation i, plus set-up time for

operation ), A indexes the pairs of operations constrained by prece-

dence relations, E the pairs that use the same machine and therefore cannot
overlap in time, and "V' is the logical "or". It is useful to represent the

- -problemby a disjunctive graph [1, 2, 10, 12] G» (N°,A®,E), where H «fcO UN
is a set of nodes, one for each operation, plus a source node 0; A° * AL ()]
is not preceded by an operation} is a set of (conjunctive) directed arcs; E is

a set of undirected arcs, one for every pair of operations to be performed




on the sane machine. Solving the probleminvolves orienting the undirected

choosing for each of themone of the two possible directions. i

arcs, i.e.,
is therefore convenient to represent each undirected arc by a disjunctive pair
of directed arcs, i.e., a pair of which one menber needs to be selected: hence

the nane disjunctive graph. W will use this latter representation, and con-

of pairs of directed arcs (i,j),(j,i), et {((i,j)eg|i<fl

sider E to consi st

ee » Cd.j)«|i >j}, and E- E'UE-. The arcs of E occur in disjoint maxinal

cliques (bv a clique we rmean a conpl ete di graph), of which there is one for

every machine. Thus if Mindexes the set of maxi mal cliques (nachines), and

for VCN°, <v > denotes the subgraph of Ginduced by V, then for every rtM

the node set » of the r'" maximal clique <r > corresponds to the set of
r

-

operations to be performed on the sane machine (r).

Every directed arc (i,])caE has a positive length d®, while the arcs

(Qj)«A°\A have length doy - 0. For a pair {(i,j), (j,i)1<Es +4 ot
i

not only possible, but typical. Ve wll assume that the arc lengths are

integers satisfying the tri able
g ying LIl inegual;[y djig + defe_> A y

this assunption invol ves sonme loss of generality, it is realistic for the

TAVAN

Though

n-chi ne sequencing problem The disjunctive graph Gis illustrated in Figure 1




on a problemwith 5 itens (directed source-sink paths), 4 machines (maxinal
cliques, whose arcs are shown in dotted lines), and 14 operations (nodes other
than the soukce). The nunbers on the arcs are the |engths dij.
The subgraph obtained from G by deleting the disjunctive arc set
E is the ordinary digraph D°* (N({Acﬁ, in which node 0 has indegree
zero and outdegree the nunmber of items, node n has indegree the nunber
of itens and outdegree zero, while all renaining nodes have indegree and
outdegree one. In fact D is the union of as many disjoint (except for
their end nodes) paths from 0O to n, as there are itens.
A selection in G consists of exactly one menmber of each pair of
disjunctive arcs in E  Thus, if a «-% E| , there are 2% possible
selections in G In the undirected representation of E, a selection -

in G corresponds to an orientation of all the undirected arcs of G

For every selection S in G D. « (N°, AJS) is an ordinary di-
S

graph; and the problemobtained from (P) by replacing the set of dis-

junctive constraints indexed by E wth the set of conjunctive con-

straints indexed by Sis the dual of a longest path (critical path) prob-

lemin Dg. Thus solving (F) amounts to finding a mninmaximal path in the

disjunctive graph G i.e., finding & selection (orientation) S that mnim zes

the length of a critical path in Dy over the set of all possible selections.
Problem (P) stated at the beginning of this section has a variabl'e

t? associated with every node of G except for 0. One can of course

“introduce a variable t for node 0, but then the probl emdoes not
o 0 Q

change if t is constrained by t ¢ 0, which leads to the elimnation
n

of the variable just introduced. W therefore prefer to work with

vectors teR that don't have a conponent t  constrained to be 0.
0




Problem (F) is a disjunctive program |t can also be represented as a
m xed integer programby introducing a binary variable for every disjunctive
constraint, but there are advantages to not doing that and using instead the
di sj unctive programm ng approach (for background see [3, 5]). In this paper
we investigate the properties of the scheduling pol yhedron P, the closed con-
vex hull of all vectors tc.*a satisfying the constraints of (P). Section 2
i ntroduces the pol yhedron P, states sone of its basic properties, and di scusses :
the relationship of P to polyhedra defined by subsets of the constraint set.
Section 3 deals with scheduling polyhedra P(K) defined on a clique wth node
set K and characterizes the vertices of P(K). Section 4 gives a conplete
characterization of the facets of P(K). Qne of the results is that any in-
equal ity that defines a facet of P(H for sone HCK al so defines a facet o;‘-
P(K). Another result is a procedure for deriving a facet defining inequality
for P(KY with p nonzero coefficients froma facet defining inequality with
p-1 nonzero coefficients. This section also lists all the facets of P(K),
for Kof arbitrary size, having one, tw or three nonzero coefficients.
Section 5 gives a sufficient condition for an inequality that defines a facet
of P(K) to also define a facet of P. The condition is verifiable in o(]Egl)
time. Finally, section 6 addresses the constraint identification problemand
gives a procedure for identifying facet defining inequalities that cut off

a given t eH® that viol ates sone of the di sjunctions of (P). Some of

our results were presented in [4].

2. Sone Properties of the Schedul i ng_ Pol yhedr.on

Any tex® satisfying the constraints of (P) wll be called a
schedule for G The feasible set of (P), or the set of schedul es

for G can be witten as




£ty zdij, (1,1eA
T = ¢ teR® £, 20, ieN
tj-ti > dij v ci-tj > dji’ i,jek,, k), 4

The closed convex hull of T, clconv T, will be called the schedul i ng

pol yhedron, and denoted P(N), or sinply P.

T is adisjunctive set, and its convex hull is easiest to describe
when T is indisjunctive normal form[3, 4], i«e*, inthe formT » (J T,
SeQ®

where Q is the index set of all selections in G and TS is the

(pol yﬁedral) set of schedules for the digraph D, defined by the

selection S in G

r £5=€; > dij o (LL,i)eaUS
TS - < tC*n -
ty 2 0, I eN

If D contains a cycle, T#*0, So the only selections of interest

are those for which the associated digraph Db_ has no cycles, i.e.,
those indexed by Q » £s«Q D is acyclic}, since T= (J Te. Inthe
S -Se@ °

sequel we assune that Q * t. For any ScQ, we will denote by L(i,])s
3
the length of a longest path from i to j in D . The length of the

(unique) path* from i to j in D wll be denoted by L(i,j).
Ihearem?2.1. For every SeQ, T- has di nension ng
Pro'of,.Wadefine n+ 1 vectors t.leR”, i“"Dl,...,n,as follows.

Let t° be defined by t; *L(O,j)s, Jj»,...,n; and for i»l,...,n,

let ti be defined by




z::;’+e j=1i

2¢° A i,
] ] t
where 0 < €< 1/2.

Clearly, toeTs. For 1i=l,...,n, t; >0, ¥j, and for (h,j)eAUS, one can

i i i
easily check that tj - th > dhj' Thus for i = 0,1,...,n, t e’rs. Also, the n+l

points tielln are affinely independent, since the n X n matrix whose ith row

i
is t - Zto, i=1,...,n, is ¢ times the identity matrix of order n.ll

Corollary 2.2. P is full dimensionmal.
Next we turn to the extreme points of P, First we characterize

the extreme points of Tg for an arbitrary SeQ*.

Theorem 2.3. A schedule t for Ds is an extreme point of Ts if and oniy
if
1) €, - L(O,n)s;

(11) for jeN\{n}, e = L(0,i)g or t, = L(0,n)g - L(J,n)g (or both);

3

(1i1) if e, = L(O,j)s, then t, = L(O,i.)s for all 1 on any longest path

i
= I.(O,n)s - L(j,n)s, then t, = L(O,n)s - L(:I.,n)s for

3

from O to j; and if tj

all i on any longest path from j to n.

Proof. Necessity. Let t*cT_, be such that t: > L(O,n)s, and let

S
Nl = [j¢N|t‘3" > L(O,j)s}. Define t:1 and t2 by t}' = t;_r + ¢, t§ = t:}' - ¢ for
je,, and t;' = :§ = t:'; for ch\Nl. Then tl, tze‘l‘s, el # tx # t2, and

th = %‘-(tl + cz), i.e., t* is not extreme. Thus (i) is necessary.
Now let toe'rs satisfy (1), but violate (ii) for jeN*<N\{n}; i.e., let
e := {jei(n}|Le0,1)g < €

o

. A . . "
i < L(0,n)g - L(j,n)g}. Define t’ and t“ by

tj' = t‘j’ + ¢, i:j”- tg’ - ¢, jeN*; and t:j' = tj”= t;, jeN\N*, Then for suitably

small ¢, t', t"eT, t' # %4 £”, and ¢° = -}(t' + t”). Thus (1i) is necessary.




Finally, condition (iii) is inplied by (ii), hence it is also necessary.
Sufficiency. Suppose tcT- is not extrene. Then t is the convex conbina-
tion of tich,_.tif\t, i »I,.?.,n+1. If t >L(0,n)., condition (i) is

3 n o]
violated and we are done. So let t » L(0,n)¢; thentizL(O,n)e, io»1,...,
n 0 n S

n+1 Furthernore, for every j eNsuch that c. » L(0,n). - L(j,n)., we have

i j 0 b
td = tj, =1,...,n+1 Let Ni be the set of these indices jeN Then
there exists j~eNN such that t' <t'.for some ie{l,...,n+1}, or else

J JJu

i I i

t =t for all i. But then L(Qj*)g < t <L(O,n)g - L(j™ n)g (since t €T,),

hence condition (ii) is violated. ||

Corollary 2,4. If t is an extrene point of P, then tq« L(O,n)yg,

and t‘.}»L(O,j)g or tj» L(O,n)g - L(j,n)s (or both), VjcNOn}, for some ScQF.

-

Proof, FEvery extrene point of Pis an extreme point of Ty for sone .SQ.,!

‘For every (not necessarily maximal) cliqgue < K> we define a schedul e

for <K> as avector teT(K), where

£, 2 L(0,1), ik
T(K » { teB N
tyoty 2 dij Vogoey 2 dji’ 1,36, 14§

where p » \YL\, and L(Qi) is the length of the (unique) path from 0 to
i inD= (N,A’). The closed convex hull of T(K), clconv T(K), wll be called

the schedul i ng_pol yhedron on < K > and denoted P(K).

For any VcN, we denote by §(V) a selectionin< N>, i.e., a

set of arcs containing exactly one nenber of each disjunctive pair of

arcs with both ends in V. For v'cVcN, we say that the selection V)

is an extension to <V > .of the selection S(7Y) (the selection S(V).

is arestriction to <V > of the selection S(V)) if the arcs of §(V)

with both ends in V' are precisely those of S(V').




A selection S in G (where S is an abbreviation for S(N) is

al ways of the form

(2.1) S - US(Kr)
rcM

where each S(Kr) Is a selection in a nmaximal clique < K >e

For a vector t sH" and a clique <K>of G we wll denote by t.. the
[ Kl |

]
vector in B' ' whose conponents are t., j eK
Theorem 2.5, A schedule t for Gis an extreme point of Pif
(i) t is an extreme point of Ty for some SeQ; and

K
(ii) for every maximal clique <K>of G t- is an extrene point

of P(K).

Proof. Suppose t is a schedule for Gthg satisfies (1) and (ii),
and let t be the cogvex combination of some t eP, 1 » |,...,n+ 1. Since
t satisfies (11), tg e tge 1 « lg...9 N + 1o for every cliqge < K> of G
[f Sis the selection associatedwithit, this inplies that t cTy, 1 =1,...
n+1 Sincet also satisfies (i), t *t, 1 «1,...¢n+ 1 Thus t is an

extreme point of Pj|

Gven aclique <K>in G we say that a schedule t for G (a

vector teT) s an extension to G of a schedule t' for <K> (an ex-

1 1
tension to T of avector t'cT(K)) if t.-t.", VjeK. W say that a schedule

t'" for < K> -cafbe extended to T, if t' has an extension teT. Con-

versely, we say that a schedule t' for <K> is arestrictionto <K>
- of the schedule t for G if 't is an extension of t'e By the choice of
“the lover bounds L(0,i), 19K every schedule for G can be restricted to

any of the cliques of G Therefore, for every clique <K> of G
(2.2) P £ P(K) .




The nore interesting question, of course, is when can a schedule for sone
clique < K > be extended to a schedule for G This question is intinmately re-
lated to the problemof facet lifting, i.e., to the connection between facet
inducing inequalities for P(K) and for P. It will be investigated in section
5 where we will give a sufficient condition for an inequality that defines
a facet of P(K) to also define a facet of P. This condition is always satis-
fied for some of the cliques of G so at least some of the facet inducing
inequalities for P(K) are always facet inducing for Pitself. This provides
the main, though not the only, notivation for focusing in the next 2 sections

on the pol yhedra P(K).

3. The Scheduling Pol yhedron on a dique

In this section we study the properties of the scheduling polyhedron

ona clique, or briefly the cligue polyhedron P(K) « clconv T(K). If |Kl « p

and if we denote 1" - L(0,i), icK then

r 2L, i eK
T(K) - “telR .
L € " tigdij\/ti-:jz_dﬁ,vt,jm, 14

As before, a vector tcT(K) will be called a schedule for < K>,

Apart fromits connection with machine sequencing, and nore general I'y
with the resource constrained scheduling problem the polyhedron T(K) is an
interesting object inits own right. A selection S(K) in<K>is the arc
set of a tournament in < K>  Every tournanent is known to have a directed
~ Hanilton path (i.e., a directed path containing all the ver-ti ces), and for
an acyclic tournanent this path is unique. |In fact, every acyclic tourna-

ment is the transitive closure of its unique directed HamIton path. A
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selection S(K) is therefore uniquely determ ned by the sequence of the nodes
of Kinits directed Hamlton path, and conversely, every selection S(K) de-

fines a uni que sequence of the nodes of K Thus the scheduling probl emon

a clique, nanely the probl emof finding

(3-D mn mx t.
teT(K) ieK !
withL:»0, ieK is a "dual" formulation of the problemof finding a short-

est Hamlton path in < K> using node rather than arc variables. The

latter problemin turn is polynomally equivalent to the traveling sal es-

man problem (TSP). |Indeed, an optimal tour for the TSP yields a shortest

Ham Iton path by deletion of the largest arc. Conversely, finding for each

ieK a shortest Hamlton path originating ini (which is problem(3.1)) wth

the extra condition that ~ - 1 - 0), then adding to each path the uni que
arc that closes it, and choosing the shortest of the p resulting tours,
yields an optimal solution to TSP.

The scheduling pol yhedron P(K) on a clique <K >is related to the
linear ordering polyhedron P, on< K > studied recently by Gotschel, Jdhger

and Reinelt [5]. Pgis the convex hull of the incidence vectors of acyclic

tournaments in < K> It is a bounded polytope in *P(P"!). the space spanned

by the arcs of the conplete digraph < K>, whereas P(K) is an unbounded pol y-

p
hedron in R. Wen P(K) is specialized to the case where Li—O, ieK, there

is a one to one correspondence between its vertices and acyclic tournaments

in<K> aswll be show later in this section. Hence there is a one to

one correspondencé between the vertices of P(K) (in the case L'1 =0, ieK and
those of PIJNJ. (ne night therefore expect a simlarly close relationship be-

tween facets of P and those of P(K). In fact, however, the facets of P(K)

are rather different from and seemingly unrelated to, those of Pr,. A set of
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p vertices that lie on a facet of PLO may not lie on a facet of P(K), and vice
versac Wile the facets of I%g_are i ndependent of the arc lengths, the facets
of P(K) strongly depend on the arc |engths dij'

Wienevei r possi bl e without risking confusion, the notation S(K) for a

selection in <K>wll be abbreviated to S. Every selection Sin<K>

defines a pol yhedron

T(Kg * 4tc R

: 4

tj - tizdij’ (L,i) 8

which is nonenpty if and only if S is acyclic. Let QK) be the set of selec-.
tions in<K> and QK * » (ScQK|s is acyclic}. Then the disjunctive

normal formof T(K) becones

T(K » I T(K)q . -
ScQ(K) *

*

For every ScQ K)*, the pol yhedron T( K)S' is obviously full-dimensional;
hence so is P(K).

For ieK and an acyclic selection S in <K > we define the rank of i
inS as the position (rank) of i in the sequence associated with S

Theorem3, 1. Let S be an acyclic selection in < K >wth associated
sequence j(1),.*.,j(p). Further, let ki 1, and for i «,...,s <p, let

ki be the smallest integer (if it exists) such that

(3.2) v ocm)t <4 T(k>) <fdfi) -
i-1
“Then' t is a vertex of T(K)4 if and ohly if for i »1,...,s
(3_ 3) 'j Ck/\ _ Ln/\y.
for k > Kqg

(ard) G(k) " G(k-1) "G (k =1)3Ck) -
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and for kc[kl,k’] , k+ki’ 1*1,...58,

Sk-1y t dj(k-l)j(k)’ k = ketlyonosk +s,
(3-5) tj(k) =

1) T 0010 kom ket
for sonme «j«(l,...,Kisp-ke-13}¢ 0 =1,...,s.

Brogf. T(K)s is a special case of a pol yhedron T:s whose vertices are
characterized by Theorem2.3. Wth the definition of ki’ i »1,...,s, given
by (3.2), the conditions (i), (ii), (iii) of Theorem2.1 specialize to (3.3),
(3.4), (3.5 above.|]|

Note that T(K)4 has exactly one vertex t° of the form

=]

d) = (D .
(3.6)

° )

G(k)y " rrAjtk) ! G(k-1) Yo (k-1)j(K)I» K 2o P
nanely the vertex for which s, » kA-~-1. 1-1,...,s. This vertex,

whi ch we call the gain vertex of T(K)gy, Wwill be seen to play a special role

inthe structure of P(K).

Theorem3 2 The extrenme direction vectors of T(K)y are w', i - 1,...,p,
defined by
E ] rl k-P-1+1 -0 a p
(37w, -{ e
a3 LO ot her wi se.
Proof. For any t«T(K)g, t + XWgT(K)g for all \ >0andi » I,...,p,

aa one can readily see by substituting t + Xw" for t into the constraints de-
fining T(K)4. Thus every w' defined by (3. 6) is a direction vector of T(K),.
Further, each w' satisfies V\}j» oforj =j(1),..,] (p-i) and vx*’\ -

i , .. , .
W > 0 for k » p-|+2,_...,p. Thus eachvx" satisfies with equality
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p-1 iaequalities whose coefficient natrix has full row rank, and therefore
isextrene. ||
Qur nexf theoremgives a necessary and sufficient condition for the main
vertex of T(K)y to be its only vertex, i.e., for T(K)s to be a cone.
Theorem3.3. T(K)cis the displaced polyhedral cone with vertex t° de-
fined by (3.6) and extrene direction vectors Wi, i = 1,...,p, defined by

(3.7) if and only if
(Fo L (ka) (KK (K - T (k) Cre--Pe

Proof. If (3.8) holds, then condition (3.2) of Theorem3.1 is not

satisfied for any integer k 1 hence s « 1, (3.4) is vacuous, and (3.3), (3.5

becomes t A j -ty » lj(n> tige » iy e nioe K- 2P,
which is of the form(3.6). Thus the main vertex is the only vertex of
T(K)s« On the other hand, if (3.8) is violated for sone ke[2,...,p}, the
definition (3.4), (3.5), (3.6) gives rise to at least two distinct vertices.
Thus T(K)s has exactly one vertex if and only if (3.8) holds. The extrene
direction vectors of T(K)c are given by (3.7), irrespective of the nunber

(0]
of vertices.]]

Next we turn to the extrenme points and extrene direction vectors of P(K).

Natural Iy, every extrene point of P(K) is an extrenme point of T(K)c for some
(0]

ScQ K)*; but the converse will be shown to be true only if P(K) satisfies
a regularity condition. Al so, every extrene direction of P(K) is an extrene
direction of T(K)gy for some ScQXK)*, but the converse is never true. .

In order - to prove sone properties of the vertices of P(K) we need a
characterization of the extreme direction vectors of P(K), so we start with'
the latter.

Hecorem3«d<« The extrene direction vectors of P(K) are precisely the

unit vectors e i « |,...,p.
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200 For 1-1,...,n, the unit vector e, is an extreme direction vec-
tor of every T(K)y such that i is the last node of the sequence defined
by S. Hence every *. is a direction vector of P(K), and since .i is a unit
vector and T(K) is contained in the positive orthant, each e is extreme for
P(K). Every other extreme direction vector of T(K)s. for every SeQ(K)*, is
the sumof unit vectors; hence none of themis extrene for P(K). Since every
extreme direction of P(K) is an extreme direction of T(K)4 for some ScQ(K)*,

it follows that P(K) has no extreme direction vectors other than the p unit

vectors ei.||

Hreerem-3~5. Let S be an acyclic selection in <K >wth associated

sequence j(1)..... j(p), p- |«. Thent®° is avertex of P(K) if and only if

t° is the main vertex of T(K), for some SsQCK)*, and the conditions -

(3.9) Lj(i)-i-dj(i)j(l) >1.j(1) , i=2,...,p,

and
i=2,...,p-1

AN ) A
(3.10) - mexlytey Yruaeiy Oyt S iadias ! J(t) k= 4+1,...,p
seany

are satisfied.

Pronf.  Sufficiency. Suppose t° is not a vertex of P(K). If t° is not
the main vertex of T(K)4 for some SeQ(K)*, we are done. Now assume t° is
the main vertex of T(K),. Since t° is not a vertex of P(K), it is the con-

vex conbination of p+l schedules t"eT(K), h- 1..... p+l, such that t"# t°,

h»Il,...,p+L.
- 'Since t° is the main vertex of T(K)y, t° <t for all teT(K)s and hence
~at least one t nust have a conponent tf. . such that t"y <t°®, , for somg
Iw j (k) j(r)

k >r. Let r be the smallest integer for which there exists such k.
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If r =1, then

h
k) kT 2500 T a1
h

o
< = t =
2 5m T 5w T haye
i.e., condition (3.9) is violated for i = k.
1T re{2,... p-1}, then tfr(y <tjh(fc) <t*j(), and since t"is a
schedul e,
-] h h

5@ i 2 Am T @i

> max{L )}+d

h
§07 Siee-1) T 411 1) §¢r)

Therefore, since t!}(r_l) - C’alkr_j\’» (3-1>7s violated for i »r.

Necessity. Note first that for any schedule t for <K > if there

exists a schedule t* for < K> such that

(3.11) t* <t and t; < t'1 for some jcK

thent is not a vertex of P(K), since it can be expressed as the sum of
t* and a positive conbination of unit vectors, i.e., direction vectors of
P(K). Thus if t° is a vertex of P(K), then t® is the main vertex of T(K),4

for sone ScQK)*.

Now suppose t° and the associ at ed sequence j(1),...,j(p) are such that
(3.9) is violated for some i * ge{2,...,p}. Let St be the selectionin
< K > defined by the sequence 2(1),...,X(p), where 2(1) » j(q) and
i1y h»2....9
L¢h) = _
j(h) h » q+l,...,p,
and let t* be the main vertex of T(K)e.. Thenrt/-,ne Lyn<1t?, x = t:(l)’
e \L) j(a; [es

si nce
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q
te >t° + T d

i@ - jd) w2 I(h-1)jcn)
>Lj(1)
74 (a) "‘Ka) Jd)

>CI(1)

where the last tw inequalities follow fromthe assunption that (3.9) is
violated for i « g, and dnqv(i*\’>®* AOT Ak x 2  , p, we show by induc-*

tion that t~gg, At fh)* Ve firstdothls for worp, . (q}. For h* 2,

1(2) = ==yeays Thery * dacny,ue)?
= max{L

10 U@ Lt T By S te

, , , N A
since (3.9) is violated for q. Suppose tz(h)' <t " for h

and let h » r £9. Then by the induction hypothesis,

I
N
=

ery = gy epyy ¥ dgce-1ya0r) !

Q
< max{ly ey &5¢e-2) ¥ -2y ey}

0 - +°
£ Ee-1) T Sao
Next we proceed to he{g+l,..., p}. For h = g+1, we have

= max{L

Vi) 2(q+1) i) * Yuqagn !

]
< moxlly 1)’ EieaeD) * ¢ (-0, (qul)°

-
< mx{ly a1y T * 4@, 1]

< (0] (0]
= j(q*L) £(q+1)’
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where we have used the triangle inequality d.J(q_|) Aj (<2+1) S dj(q- 1)5j(q) *+

d"i.q).,_U.q+1)# If g+1 %x Pf We an done; otherwise suPPose ’\(h) _ Of(h)o for
h«agt,...,r-I, and let h « r >qg+2. Then '

Ky = max{ly ys iy * da(e-1)40r)

Q
<max[Lj, tj(r..]_) * dj(r-l),j(r)}

Q [>]
Sty T fanye

V¢ have shown that t* <t°, with t’i <t’: for j « j(q) * X(1)s Thus
t* satisfies (3.11) and hence t° is not a vertex of P(K).

Next suppose t° violates (3.10) for sone ic[2,...,p-1} and kcf] +1,..., p},
and let (i,k) = (gik) be the first such pair. Consider the selection S* defined

by the sequence 4(1)g...9X(p)o Where i(q) « j(k) and

L) i=1,...,9-1, k+t,...,p
L(Li) =
JCi-n i » g, ...,k
and let t* be the main vertex of T(K)gh. Tiven lrjjj[\jj.\g 3tt1(i,, for i »1,...,0-1.
For i « q,
@ " ™ (), -1 * X 1)i(g)!
o
(3.12) s oax{ly g tee-1) T 910!

Q
<ei T Y,

where the last inequality follows fromthe fact that (3.10) is violated for (i,k) =
(g.k). But thenfromdj(fc)j(q) >0and t] (9) <toj(k) « 1] (q)- We have ej (q) <

tf? q)  For i ef g+l . +e+»?} we show by induction that t* <t° . Firlst | et
() o »?} y i 2y = s

ie(q+,...,K}. For i - g+l
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ey T 2= Ly T T dacacern)?

max{L; 0y Ty T Lm0 i

o o
S tJ'(q) = tz(q+1). (from 3.12)

Now suppose tf ., < ‘2(1) for i = q+l,...,r-1, and let 1 = r, with q+2 < ¢ < k.
Then
By = ==y Fie-1) ¥ dae-1ya0n)?
s oaxllyc 1y €ee2) * 42y -1y}
_ S 1 " S
Next let ie{k+l,...,p}. For i = k+l,
Yo T =2 ey T * Y sae)!
< x{lyge1ys €1y * 45 0e-1) sy
< mnx{Lj(k+1), t?(k) + dj(k)j(k+1)} (by the triangle‘inequality)

o _ .0
S Byetl) T Care)

o
Suppose tz(i) < tl(i) for i = k+l,...,r-1, and let i = r > k+2. Then

o 2=y Feeny * (-1 200 ]

o
smax{l, oyt Y Y51
) _ .0
S ey T taqw) -

. 0 o
d % Je -
Thus t* < t  and tz(q)'< tz(q)’ hence t* satisfies (3.10) and ¢° is not

a vertex of P(K)a“
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It is of sone interest to characterize the situation when every vertex
of every pol yhedron T(K) g4, SeQK)*, is also a vertex of P(K). FromTheorem
3.5, this is the case if and only if for every acyclic selection S in
<K> T(K)sis acone and (3.9), (3.10) holds. But these conditions are
not easy to check. Next we give an easy to check necessary and sufficient
condition for the vertices of P(K) to be precisely those of the pol yhedra
T(K)c, in tenns of a regularity condition suggested by (but different fron
(3.9), (3.10). Ve say that a disjunctive set T(K) as well as the pol yhedron

P(K) and the clique < K>1is reqular if

(3.13) Le +d¢; > L , ¥i,jeK i #j
and
(3.14) difc"'dfej >d1j ) ¥i,j,kekKe i *j * k* i

As we will presently show, regularity is a necessary and sufficient
conditioh for T(K)y to be a cone and for (3.9) Iand (3.10) to hold for every
acyclic selection Sin< K> Later we will see that regularity also plays
acrucial role in the facial structure of P(K): certain facets exist if and
only if T(K is regular. |

Theorem 3.6. The vertices of P(K) are precisely the vertices of the
pol yhedra T(K)4, ScQK)*, if and only if T(K) is regular.

Broof,. Sufficiency. Let T(K) be regular. FromTheorem3.3, condition
(3.13) inplies that .each T(K)g is a cone. Ve will showthat conditions (3.13)
~and. (3*14) inply (3.9) and (3.10) for every acyclic selection S in <K > Lej
S be any such sel éction, with associated sequence j(l),...,j(p), and let t° be

the vertex of T(K)4. Then (3.13) clearly inplies (3.9), and (3.14) inplies
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3.15 ° + : + ?
(3.15) ®1ee-1) O3-1)I0) Yo T Sa-n Y Yy

for all i = 2,...¢p-1, K«i+, ..., p. Further, (3.13) inplies

¢ +d > +d >1L
jd-1) JUE-DF) = ®jL-1) FU-1)1(L) i@’

hence £y 4 (i-1)j (i) = F(G)» " e together with (3.15) inplies (3.10)
Necessity. Ve showthat if any of the conditions (3.13) or (3.14) is

violated, there exists sonme acyclic selection S in <K > such that (3.9)

or (3.10) is violated. Suppose (3.13) is violated for sone i,jeK Then

(3.9) is violated for every acyclic selection S whose sequence cont ai ns

j as first node. Now suppose (3.13) holds, but (3.14) is violated for some

i,j,keK Consider any selection S whose sequence contains i and j as

two consecutive nodes, say i - j(h-1) andj =j(h), with k - j(k) such

that k >h. Then the violation of (3.14) inplies

3.16 o o
(3.16) “10-1 Y Y@-010 T Ymim S Saen T G a-nym -

Since (3.13) holds, we have

[+ ]
-0 * Ge-nim 2hen Y Ye-nie T )

whi ch together with (3.16) inplies

Q
=2l a00 S@-n * S e-nie? T a0 m

< L , t°
S ™=y Samen * Ym-13m?

Ze\](h) o
i.e., (3.10) is violated for i =h||

Wiile the regularity conditions (3.13), (3.14) are sinpler and much
easier to check than the conditions (3.9), (3.10), and while they are necessary

and sufficient for (3.9), (3.10) to hold for everv acyclic selection, note
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that they cannot replace (3.9) and (3.10) when it comes to a particular

acyclic selection: regularity is a sufficient, but not a necessary condi -

tion for sone vertex of a particul ar T(K)_b, to be a vertex of P(K).

Exanple 3.1. Consider the clique K= [1,2,3} shown inFig. 2, with

Lx - 10, L, - 8, Lsz- 11, dy =1, diz =2, d, =2, dz3 - 4, di3; = 1, d32=2'

Condition (3.13) is violated for the ordered pair {i,j} » (2,1} and

condition (3.14) for the ordered triples {2,1,3} and {3,1,2}. Table 1 lists

Table 1

Sequences Main Vertex t° of T(K)s

associ at ed all dgy as

with S speci fied d21 =3 421 '+ 3« 931772
1,2,3 (10, 11, 15) (10, 11, 15) * (10, 11, 15) *
3,1,2 (13, 8, 12) (13, 8,12)* (14, 8,12)*
2,31 L (12,13,11)* L. (12,13, 11)* (13,14, 11)*
1,32 (10, 14, 12) (10, 14, 12)* (10, 14, 12)*
2,1,3 (10, 8,12)* | (11, 8,13)* (11, 8,13)*
3,21 (15,13, 11) (16, 13, 11) (16, 13, 11) *

"Vertices of P(K).
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the sequences associated with the 3! = 6 acyclic selections SeQQ K)* and

the mai n vertex of each of the correspondi ng pol yhedron T(K),. Because the
regularity conditions are violated, only 2 of the 6 main vertices are ver-
tices of P(K): (12,13,11) and (10,8,12). For every other t, there exists
sone t' such that t' <t. If we replace d,; = 2 by d,; = 3, condition (3.12)
is satisfied for all i,jcK i ~ j, and condition (3.13) is violated only for
the triplet {3,1,2}. As a result, all but one of the vertices of the poly-
hedra (now cones) T(K)4 become vertices of P(K), the exception being (16,13, 11)
(since thetre exists a vertex (12,13,11)). |If we also replace d3; * 1 by

ds; * 2, T(K) becorres regular, and as a result all 6 vertices of the cones
T( K)Oc becone vertices of P(K).]||

Next we turn to the facets of P(K).

4. Facets of the dique Pol yhedron

G ven a convex pol yhedron C CK?, an inequality ax za, is said to

define (or induce) a k-djpgensiopal face of C if ox > ay for every x ¢ C
and ax * ao for kK + 1 affinely independent points x ¢ C  Thus the inequality
oxzaodefines a tacat-of C if ox aag for all x ¢ C and ax « aqg for
n affinely independent points x « C

Let |[K * p. For i - I,...,p," let S! be the ith acyclic‘selection
in<K> andlet j~l),...,]j«(p) be the sequence associated with S .

i
Further, let v be the main vertex of T(K)sE, i.e., let vSI ~ be

the vector whose conponents are defined recursively by
: ) o i Lji(l),
. (4.1 vj (k) = i
: max{ly e (k-1 * dji(k-l‘),ji(k)} -
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Finally, let Vbe the pi X p matrix whose 1':h row is vi, and | et

e* (ly...f1)"*** P conponents.
Theorem4, 1. The inequality at > 1, where a, t e!R, defines a facet

of P(K) if and only if ais a vertex of the polyhedron

F= {a cRp

Proof, at >1 defines a facet of P(K) if and only if (i) at > 1 for

all tcP(K), and (ii)at * 1 for p affinely independent points teP(K).
Condition (i) holds if and only if criF.  Indeed, every vertex of P(K)
is present among die row vectors v of V; and the extrene direction vectors
of P(K) are the rows of the identity matrix associated with the constraint
cr>0. Furthernore, every row vt that is not a vertex of P(K), is never-
thel ess contained in P(K). Hence at > 1 is satisfied by all teP(K), if and

only if Va>e and a>0, i.e., if and only if a€F.

Further, condition (ii) holds if and only if for some integer kcfl, ..., p}s
P(K) has k extreme points vi’.\h), h® 1,...,k, and p-k extreme direction vectors
e ith
j('h)' hox k+ 1, ###,py SUCh that v *r o It h*® If...;k and e.ij_a)°
%5 h) “°» h«k+1,...;p. The "if" part of this statenent holds since
Vi e = 1 and ajn * 0 imply (Vi) 4 e m) a* 1 h-kH,....p and the
p points vi(B oyt oy T e Y eV e «e affinely

i ndependent. The "only if" part follows fromthe fact that any tcT(K) that
i's not évertex of P(K) and satisfies at » 1, can be represented as a posi-

‘tive linear combination of extrem points vt of P(K) that satisfy ov! s 1

and extreme direction vectors e.J of P(K) that satisfy eja + 0, where the

wei ghts of the visumto 1. Thus (ii) holds if and only if for some
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ke{l,...,p}, a satisfies with equality k of the inequalities via > 1 and
p-k of the inequalities aj > 0, such that the p inequalities in question
form a system of rank p; i.e., if and only if ¢ is a vertex of F.H

0f course, Theorem 4.1 remains true if all redundant inequalities are
removed from the system defining F. Because of the large number of constraints.
that define F, Theorem 4.1 by itself does not seem to offer a practical way
of generating facets of P(K). When combined with the next Theorem however, it
provides an efficient way of obtaining those facet inducing inequalities with
few positive coefficients.

Theorem 4.2. Let < H > and < K > be cliques, with HCK, |H| = 4 and
lKl =p, 2 <4< p. The inequality oy > 1, where o, ye¢ ]Rl', defines a facet
of P(H), if and only if the inequality (¢,0)t > 1, where (q,0), te RP, de-

defines a facet of P(K).

Proof. Necessity. Suppose qy > 1 defines a facet of P(H). Then there

exist L affinely independent points yicP(B), i=1,..,4, such that each yi

is a schedule for < H >, and ayi =1,1=1,...,4. Each yi can be extended

to a schedule ti for < K > as follows. If S(H)i is the selection in < H > de-

fined by yi, let S(K)1 be any acyclic extension of S(H)i to < K > such that

the rank in S(K)i of any jeH is less than that of any keK\H. Then let tic RrP

i i . i . i i
be any vector satisfying tj Yy jeH, tj*z Lj’ jeK\H, and tj -y 2 dhj’

¥ (h,j)cS(K)i. Extending each yi in this fashion gives L affinely indepen-

dent points ticP(K).

The remaining p-£ schedules are derived from tl. Assume w.l.o0.g. that

. the nodes of K are numbered in the order defined by S(K)l, i.e., such that

ti < t; < ...< t;. Fori=4+1,...,p, let ti be defined by c§ = t},
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ol p-i+2 andtE e t] 1] - p-i 42+ 1ss . Then the

(p-1)xp matrix whose rows are the vectors t' - t% i » 2,...,p, is of the

M.\
“'('II'IME Js
° 1722

where M, is of rank 2-1, while My, = (md is the (p-X)x(p-X natrix

form

defined by m* - 0 if i +) <p-Xand miJ« 1ifi +j >p-2. Snce M, is
nonsingul ar, the rank of Mis p-1. Thus (a0)t > 1 defines a facet of P(K).

Sufficiency. |If ayz.l‘does not define a facet of P(H), then it is the
conséquence of sone inequalities Piy‘z 1, i *I,...,k£2, satisfied by
every ycT(H). Then the inequalities (0,0t =1, i » 1,...,k, where (0% O,
teR", are satisfied by every tcP(K) (since a restriction to <H> of a
schedule for <K >is a schedule for <H>), and inply the inequality
(a, 0t =2 1. Thus (a,0)t > 1 does not define a facet of P(K).]||

From Theorem4.2 it follows that the conputational effort required to
generate a facet inducing inequality for P(K), wth positive coefficients
restricted to sone subset HCK, depends only on the cardinality of H not
that of K Thus there are large classes of facets of P(K) that can be gen-
erated at a fixed conputational cost, whatever the size of K Mre generally,
the work needed to derive a facet inducing inequality for P(K) grows with the
nunber of positive coefficients of the inequality; and facets defined by in-
equalities with few positive coefficients are easy to generate.

f\bxt we address the question of how one can derive a facet inducing
inequality with p.positive coefficients fromone with p-1 positive coefficients..
Let <K>be acliquewith |Kl * p, let HCKwith JH » p-1, say

H» {!,...,p-1}, and let V and Wbe the matri ces whose rows are the vertices
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of P(K) and P(H), respectively. Note that every roww of Wcorresponds to
sone rowv of V, where v™- (w% vVvy,), and the sequence associated with v
assi gns rank p' to node p. For all the remaining rows of V, the associated
sequence assigns rank p to sone node je(l,...,p-1}. Let RV) and R(W
denote the row index sets of Vand W where every row of V that corresponds

to a row of Wpreserves the index of the latter, i.e., the first JRIW| ele-
nments of R(V) are those of R(W.
For any matrix M let det(M denote the determnant of M let M denote

the matrix whose rows are those rows of Mindexed by S, and |et M be the

matri x obtained fromMby substituting a column of I's for the j'" col um.

Haeoremd 2 Let W be a (p-1)x(p-1) submatrix of Wsuch that the in-

equality at > 1, where the conponents of a are

[daccwg)
Jdet(W)>O , i I, ...
L° . J- P,

i nduces a facet of P(K). Further, let

(4.2)

Gj'

d P p
(4.3) '_“MAL_.U detsur N\

det(V
SUK>  i«RV)\S9et<Vsyfi})
Then the inequality 9t > 1, where the conponents of O are
. d-_t(vg! )
(L. B, = J=1,...,p,

I det(Vg nyy

al so induces a facet of P(K); and if the mni mumin (4.3) is positive and
uni que, then 33 >0, j - 1I,...,n -
" Pogf. Since the inequality at > 1 induces a facet of P(K), it also

i nduces a facet of P(H (Theorem4.2), hence the vector a (al ..... a ,)
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- w
is a vertex of the pol yhedron F

» ia|Wi>e, # >0} (Theorem4.1).

V¢ have to show that if (4.3) holds, then O defined by (4.4) is a vertex
v

of F - [BIW ze, 0 20}. Then by Theorem4.1, the inequality Ot >1

i nduces a facet of P(K).

Consi der the system of equations
(4. 5) vS* 1 , icS

where v! is the i '" rowof V. Since SCR(W, each viis of the form (w, th)'
There are two possibl e cases.

Case 1. There exists no BeF' satisfying (4.5) with Bp > 0. Then there
exists some kcRIV\S such that (4.5) together wth ka§ *1inplies B, - 0
and has the unique solution B* a. Hence the mninumin (4.3) is 0 and B * cr
is a vertex of FV.

Case 2. The mininumin (4.3) is positive, i.e., there exists BcFy
satisfying (4.5 wth OP > 0. Then (4.5) defines an edge of F , one of

whose endpoints is B * ctgy whereas the other endpoint is given by the snall est
value of B for which either (i) sone inequality B. >0, jc{l,...,p-1},
becones tight; or (ii) sone inequality viO =21, ic\I]?(\;\S, becones tight.

Let BiAnd OIZDbe the values of B_for which (i) and (ii), respectively, occur.
We claim that Bé_>2% s For supposelg 1<§ , 1.e., there exists a vector
B°cIR? that satisfies (4.5) and 0° » O for some j*c(l,...,p-l-}, and such that

vi0° > 1, ¥ icR(V)\S. Then (B?,....B? 4 0? *,...,B°) is a vertex of
1 J*-1 J*+H P

v . L. .
F"HO|l 0, ° 0)» hence we have v §g° @ 1 for p-1 of those inequalities indexed

by icRW\S, for which{” has rank p in the sequence defined by vi. - But this
contradi cts the assunption that Og'< Bf’-
Now Bi is the value defined by (4.3), nanely the pd'l conponent of the

solution B, as defined by (4.4), of the systemv'Be« 1, icSU{k}, where
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keR(V)\S is the index of the inequality that becomes tight for a Bz. Hence
B is a vertex of F » i.e., Bt > 1 induces a facet of P(K).
Further, if the minimum in (4.3) is both positive (as in case 2 above)

and unique, then Bj > 0 for all j, since otherwise, as shown above, the mini-

mum in (4.3) is not unique.
In the following we will list all facet inducing inequalities for P(K)
with 2 or 3 positive coefficients. But first we examine the trivial facet

inducing inequalities, i.e., those having a single positive coefficient.

Proposition 4.4. For all jeK, the inequality tj > Lj induces a facet
of P(K).

Proof. W.l.o.g, we assume that L, > 0 for all j. This can always be

3
guaranteed by shifting the origin of the coordinate system, which does not
affect the facial structure of P(K). Then the vector a defined by @y = I/Lj,
a =0, ¥1 # j, is a vertex of F = {o|Vq > e, o > 0}, where the rows of V
are the vectors vi defined by (4.1). Hence from Theorem 4.1, the inequality

ot > 1, that is t; 2L, induces a facet of P(K).||
Next we turn to facet defining inequalities with two nonzero coefficients.

Theorem 4.5. Let <K > be a clique. For any i,jeK, L # j,

(4.6) L )t:i + (d,, +L, - L )t >d,.d L d,, +L.d

Cgg ¥4y - Iy T 1391 ¥ Brdye ¥ Bydy
is a nontrivial facet inducing inequality for P(K) if and only if

4.7) -dji < LJ - Li < dij'

Proof. From Theorem 4.2, (4.6) defines a facet of P(K) if and only

1f 1t defines a facet of P({1,j}). From Theorem 4.1, this is the case if

and only if the point ¢° = (a:, ag), where
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o _Y43H 0 A9i +\Ai

a +*- ] e 4 - + *
17 4 d Ld TR A

is a vertex of the polyhedron F({i,j}) defined by the inequalities

LA + maxCLj, L. +d~} "N > 1

(4.8) max®, Ly +dn}n + Ly 21

< 2>°t a0 =20

If (4.7) holds, then the naxinumin the first and second inequalities
of (4.8) is attained for Li + dij and L.J + dji, respectively, and a,is t he
uni que solution to the systemobtained by requiring these two inequalities
to be tight. Since ct® also satisfies the remaining two inequalities of
(4.8), it is avertex of F({i,j}) and hence the inequality (4.6) defines
a facet of P(K). Further, if (4.7) holtds, then c£ >0 anda’.;>0, i.e.,
the facet ils nontrivial .

On the other hand, if L1 - Lj—>dij or Lj - Lj___.>d-J|i (both inequalities
‘cannot hold at the same tine), then the maxi mumin the first or second in-

equality of (4.8) is attained for L, or L., respectively, and the solution

Jv

to the systemof two equations is * * O, aj » ]JLJ in the first case, a, * 0,

h!
an * ]JLi in the second; hence in these cases at > 1 coincides with one of
the two trivial facet defining inequalities associated with the indices i,j,
and (4.6) does not induce a facet.]||

_ " Note that (4.7) is the regul_arity condition (3.4) for the clique _
< Urj} > S’nc;e [[i,j}] * 2, condition (3.5 does not apply. Thus regu;

larity of the clique < {i,j} >is a necessary and sufficient condition for
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the pol yhedron P(K) (where < K >is any clique containing [t,j}) to have a

facet inducing inequality at > 1 with,* >0, a. > Oand Q* * 0, ¥k #i,j.
Next we characterize the facet inducing inequalities with 3 nonzero

coefficients for an arbitrary clique <K >wth JK| « p. FromTheorem4.2,

an inequality of the forma. t. +a t. +a t. >1 induces a facet of
O Y272 373 -

P(K) if and only if it induces a facet of P(£] -L, ] 2> J3}), the clique poly-

hedron defined on the vertex set (j,’: 2, jf‘}. From Theorem4.1, this is

the case if and only if a* (a. , a. , a ) is a vertex of the polyhedron
7273

F- (ael R\t 2 e, , 20);
where ec g% and Vis the 6x 3 matrix whose rows are defined by (4.1) for
p»3. Tosinplify the notation, we assune that (] " J,, J3) ¢ [1,2,3}.
Denoting by Py the sequence (permutation) associated with row vi of V, we

will assume that the rows of V, indexed by R(V), are ordered so that

Pl - (1!2’3) P4 - d! 3! 2)
py = (2,3,1) Ps - (2,1,3)
03 = (3,1,2) P * (3,2,1).

Further, we will assume that < {1,2,3} > is regular; which inplies

that the matrix Vis of the form

( L Ly +4dyy Ly *dpp dza\
L2 + d23 + d31 _ L2 |_2 + d23 \
. L3 + d31 |_3 + d31 + d12 |.3
V=
_h Lo+ d13 + 93 -4 o3
Ly + dp1 L2 Lp +dpp *+ 413 /
\L3 d3p + 491 g Ay h J
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As in Theorem4.3, we let VA, » denote the 3 X 3 matrix consisting of
rows i,k,4 of V, and let vi, . " be the matrix obtained fromVr. N by

. Li,K, - U-sks -
substituing 1 for every entry of colum j.

Theorem4.6. Let K» {I,...,p}, let < (1,2,3} >be regular, and let every

4 x 4 submatrix of (V,e) be nonsingular. Then P(K) has exactly four facets
induced by inequalities at > 1 with cr.J >0 for j - 1,23, € » 0 for

j =4,5...,p. In particular the coefficients of the four inequalities

are defined by
(4.9) g « 4 t(V]iaagyd-e(vexy) -1 - 123,

aj* 0, j *4,5...,p, where the four triplets i,k, XcR(V) are [I|,5,r}, [2,6,5s},
{3,4,t} and {r,s,t}, with [r,s,t} » [2,3,1} or [4,5,6}.
Proof. FromTheorem4.2, an inequality at > 1 with a..I « 0, j «4,5...,p,

induces a facet of P(K), if and only if the inequality Cr-t, + Clafy + a3t33 1

i
induces a facet of P([l,2,3}> FromTheorem4.1, this is the case if and
only if ais a vertex of the polyhedron F * (aeK3r\br >e, a>0}.

According to a classical result of Steinitz, the nunber of vertices
of a polytope (bounded pol yhedron) in k3is bounded by 2f - 4, where f is
the nunber of facets; and this bound is attained when the polytope is sinple
(totally nondegenerate), i.e., when each vertex lies on exactly 3 facets,
or, equivalently, on exactly 3 edges (see for instance G uflbaum|[5], p. 190).
Now F i s never sinple, since yy- =Y4i» Y22 * V52 @ V33 » Vg3x o as 2
result each of the 3 vertices having a single positive conponent (namely:
| “1-' iy, & , 23 o ¢p + Unlyl a-|_* Ag * 0 and a3.' /1, &1 "a2-= 0)
lies on 4 facets, i.e., is degenerate, if it exists at all (i.e., if L.J" 0).
Furthermore, F is unbounded. W therefore define a polytope (bounded poly-

hedron) F*, obtained fromF by
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(1) assumng L, >0, j » 1,2,3 (this guarantees the existence of

the 3 vertices with ong positive conmponent);
(ii) replacing Lj by Lj +e>Ljr ] =123 inrows 456 (this
makes those same 3 vertices nondegenerate); and

(iii) adding the inequality ¢ + <, + <3 <M where M> 1/L.J, j «1,2,3
(this makes F* bounded).

Gven the regularity of < {1,2,3} > and the assunption that every 4 x 4
submatrix of (V,e) is nonsingular, F* is sinple; and listing its vertices
allows us to list those of F.

Since F* has 10 facets (defined by the 6 inequalities viA >1, the 3
inequalities a.J>_0, and the inequality introduced in (iii)), it has 2f - 4 - 16
vertices. O these, 3 lie on the plane g + <, + ¢*3 * Mand are therefore
not vertices of F. Another triplet consists of the 3 vertices with exactly
one positive component; these are also vertices of F. A third triplet of
vertices of F*, also shared with F, are those with exactly two positive
conmponents, that give rise to the facet defining inequalities (4.6) for the
corresponding 2-clique polyhedra. A fourth triplet consists of those ver-
tices of F* having two positive conponents, whose counterparts in F have a
single positive conponent (because pf the degeneracy caused by v.].l « v,“l,
V22 * Vg2* V33 x Vg3a# Thisisatotal of 12 yertjces of F* (6 vertices
of F) with one or two positive conponents (see Table 2, in which the facets
are numbered from1 to 6 for via 21, i -1,...,6; 7,89 for a. >0,

j » 1,23 and 0 for cry + ¢, +c3 <M . Thus there are 4 facets left,

each with 3 positive conponents.




FromTheorem4.3, there is a vertex with 3 positive conponents ad-
jacent to every vertex with 2 positive conponents. Two vertices (of a

3-di nensi ooal pol ytope) are of course adjacent if and only if they share

Tabl e 2
Vert ex Positive Li es on Ver t ex Positive Li es on
of F* conpoaent s f acet s of F conponent s f acets
1 j -1 0,89 - i - 1 1,4,8,9
2 j »?2 0,7,9 -
3 j »3 0,7,8 -
4 j -1 1,8,9 1 i - 1 1,4,8,9
5 j -2 2,7,9 2 j » 2 2,5,7,9
6 j -3 3,7,8 3 j -3 3,6,7,8
7 i - 12 15,9 4 b » 12 1,5,9
8 j 23 2,6,7 5 i - 2.3 2,6,7
9 J = 13 3 418 6 J » 1,3 31418
10 j - 12 2.59 2 ji - 2 2,5,7,9
11 j - 23 3,6.7 3 j'-3 3,6,7,8
12 j - 13 1,4,8 1 i - 1 1,4,8,9

two facets. Thus the vertices with 3 positive conponents adjacent to
{1,5,9}, {2,6,7} and {3,4,8} are of the fora {1,5,r}, {2,6,s} and {3,4,t},
respectively; whereas those adjacent to {2,5,9}, {3,6,7} and {1,4,8} are
of the form{2,5 u}, {3,6,w and {1,4,2}, respectively. Qearly, at |east
3 of these 6 potential vertices are distinct, and we know there exists a
- 4&-l vertex with 3 positive conponents. Finally, every vertex is adjacent
to exactly 3_-ot Her vertices. Checking all possible conbinations shows

that there are only two ways of satisfying these requirements, nanely if
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(r,s,t} - {2,3,1} and {u,wz} - (1,2,3}, or if {r,s,t} » £4,5,6} and {u,w z} «=
(6,4,5}. Inthe first case, there exists a vertex {1, 2,5}, adjacent to
[1,5,9} and to [2,5,9}; a vertex [2,3,6}, adjacent to [2,6,7} and [3,6, 7};
and a vertex [1, 3,4}, adjacent to (3,4,8 and to (1,4,8}. The 4B vertex
.w'th 3 positi've conponents is in this case (1,2,3}, adjacent to (1, 2,5},
(2,3,6} and (1,3,4}. |In the second case, there exists a vertex (1,45},
adj acent to (1,5,9} and (1,4,8}; a vertex (2,5,6}, adjacent to (2,6,7} and
{2,5,9}; and a vertex (3,4,6}, adjacent to (3,4,8 and {3,6,7}. The fourth
vertex inthis case is {4,5,6}, adjacent to {1,4,5}, {2,5, 6} and {3, 4, 6}.

Thus the only two possible facial structures of F* are those represented
by the graphs Gi and Gz of Fig. 3]

I\'b;[e that the pol ytope F*, which is bounded and totally nondegenerate
(sinple), has 16 vertices and 24 edges. The (unbounded) pol yhedron F has
at nost (i.e., when the only degenerate vertices are those with 1 positive
conponent) 10 vertices and 18 edges, as shown in Fig. 4, where GL and (32
are the "graphs" of F (the 3 unbounded edges of F being represented by "half-
edges™ pf G and G\

Thus P(K) has at nmost 4 facets induced by inequalities at > 1 with
aj> 0 for j - 1,2,3. The regul arit_y of <{1,2,3} >is a necessary condi -
tion for the existence of 4 distinct facets of this type, but is not by
.itself sufficient. For sufficiency we need, besides regularity, the absence
of any _si ngul ar 4 x 4 submatrices of (V,e), as assunmed i n the Theorem

Exanple 4.1. Let Gbe the disjunctive graph shown in Fig. 5
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6 has two disjunctive cliques, induced by the node sets Ki * {1, 6}
and K, - {2,4,7}, respectively. For <1” >we have LI » L(O,I) * O,

Lg - L(0s6) - 1, and dig « 2, dg * 3. PO") has 3 facets, defined by the
inequalities t, >0, t. >1 (Proposition 4.4), and t- + 4t. > 8 (Theorem4.5),
For <Kj >, w« have L, - L(0,2) » 2, Ls- L(0,4) - 2, 1~ - L(0,7) - 3,
and d,s - 2, dys » 4, dao - 4, d“ - 3, dys » 5, dosy - 6. W see that <I(2 >

is regular, and the matrix defining the polyhedron F is

[2 4 7
’10 2 5
vya| 8 10 3
2 12 6

6 2 10
\13 9 3

P(Ky;) has 10 facets: 3 of themare defined by the trivial inequalities

t, ~?> %4 "% 7 - > (Proposition 4.4); another 3 by the inequalities
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feoHh 2t 4 210
¢ H2t,> 14
2t4H-7t,.>_ 39

with 2 positive Coeffici ents (Theorem4.5); and, finally, 4 facets are

defined by inequalities with 3 positive coefficients (Theorem4. 6):

5t, wh 16t4, HK 4t, 2 102

£, *h 5t,HK 19t, > 115
13t,Hh 3t, Hi- 24t, > 206

. L, + ot + 3r_,3 27.

These 4 inequalities correspond, in the notation of Theorem4.6, to
the vertices {1,2,5}, Uf3¢6}, U3,4} and (1,2,3}, respectively, of F.
Here we have multiplied each inequality with the determnant in the

denom nator of the expression (4.9) In order to express themin integers.]||

5. Lifting the Facets of the O iaque Pol yhedron

In this section we address the question as to how the results of the
previous sections can be used to derive facet inducing inequalities for the
general scheduling pol yhedron F = clconv T introduced in section 1. 1In
particular, we give a sufficient condition for a facet inducing inequality
for one of the clique polyhedra P(K) to also be facet inducing for P.

V¢ introduce sone additional notation. For any icN let B(i) and A(i)
be the set of nodes jcN "before i" and "after i," respectively, in the di-

graph D» (N, A°.)'; that is,
B(i) » [JcN\[i}|] there exists a directed path P(j,i) in D

A(i) * G«N[i}| there exists a directed path P(i,j) in D}.
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Further, for any VCN, Iet

B(V) » UB(i) , AV) * U A@).
icV 1cVv

Before addressing the issue of lifting the facets of the clique pol yhedron,

we examne the role of the trivial inequalities t zL(O,'i) i n determning

i
the facial structure of P.

Iheorem?B. 1, For every icN the inequality t.LZL(O,i) defines a (n-q)-
di mensi onal face of P, where q « | (i}UB(i)]|.

Proof. Every tcP that satisfies ti» L(0,i) also satisfies t.J » L(Qj)
for every jcB(i). Hence the face Pn{teHa|ti» L(0,i)} of Pis at nost
(n-g)-dimensional, where g * [[i}UB(i)j. To showthat it is exactly (n-q)-
di mensional, we will construct n-q+l1 affinely independent schedules in G
that satisfy ty * L(0,i). Let S be any acyclic selection in G such that
for all rcM if Krhas a node jcB(i), thenj has rank 1 in S(Kr); and | et
4(h,j)s-denote t he Iengtlh of a longest path fromh toj in Dy » (N°y A°US) .
Further, let the nodes of L. be nunbered such that (h,j)cAUS inplies h <j,
and inaddition, (i}UB(i) * {l,-..,q}. Such a nunbering exists, since D,

is an acyclic digraph and every hcB(i) (IK:- has rank 1 in S(K)r' V¢ then
define t° by ti]x «*(0,j).« Qearly, t°is a schedule inG Further, by

the definition of S, 4(0,j)g- L(Qj) for all jc(i}UB(i), hence t° satis-
fies t1 » L(0,i). The next n-q schedul es th, h»Il,...,n-q, are defined
recursively by fcf « t~*! for jcN{n-h+] and t'3 » t'¢"t + 1 for j - n-h+l
.Each of these vectors is a schedule that satisfies t.2=1L(0,i). Then the

h o
(n-g) x nnmatrix whose rows are the vectorst -t , h* I|,...,nq, is of

the formM» (M M%, wher e Mlis (n-g) X q, wiile I\/Eis the (t>q) X (n-Qq)

nonsi ngul ar nmatrix
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Thus Mhas rank n-g, and the n-g+1 schedul es th are affinely independent. ||

Qorollary 5.2 The inequality t.1 >L(Qi) defines a facet of Pif and -
only if B(i) « O.

Next we address the question of lifting the facets of clique pol yhedra.
V¢ need a couple of definitions and sone auxiliary results.

Let <K >be a clique, S(K) an arbitrary acyclic selection in K, and
< K >the maximal clique containing < K> . As before, let Mbe the index

set of the naximal cliques of G Ve will'say that the selection

S- USK)
rcm '

is a confornal extensi.on of S(K) to G if it satisfies the follow ng
requirenents: |
(i) S(K*) is any acyclic extension'of S(K) to <K,‘>, such that, if
i eK and jer\K, the rank of i in S(Ki'] is less than that of j.
(ii) For rcM[i} such that KtﬂB(K) = 0, K> is any acyclic selec-
tionin < Kr > .
(iii) For r«M{Xt such that KrnB( K)y + 0, S(Kr) is any acyclic selec-
tion in < Kr > such that
(a) if i cKHB(K) andjeK,\B(K), the.rank of i inS(Kl_) is less than
that of | |
O if jcK,P.B(i). for some icK, the rank of j in S(K/) is no greater‘

than the rank of i in S(K); and
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(Y) ifi,hcK j(i)eKinB(i), j (h)cK f! B(h), and the rank in S(K) of i
is less than that of h, then the rank in S(K/) of j(i) is less than that
of j (h).

For any ieN B(i) is the set of nodes jcNNG) |lying on the
(unique) path P(0,i) from O to i in D Therefore every clique

has at nost one node in B(i), Let Mi) be the index set of cliques

that have such a node, i.e., Mi) » {reMK HB(i)#J}, and let [j (i)} »
KinB(i). r r

A (not necessarily maximal) cliquee <K> of G wll be called
dominant, if for every i.heK such that Mi)riMh)*J, and every
reMi)nMh),

(51 0y (yy () PEU ) SLULM,D) + 4,y

The term"dom nant” seens justified by the properties of these cliques.

Letma 5.3, Let <K > bé a domnant clique in G and S(K) an acyclic
selection in <K > . Then every conformal extension S of S(K) to Ghas the
property that, if icK jc{OQGUB(K) and i is reachable fromj in the digraph
DS » (N°, A°US), every longest path fromj toi in Ds contains only arcs of
A° US(K) .

00t Let S be a conformal extension of S(K) to G and for sone icK
jc{O}IIB(K), let P(jsi)s be a longest path fromj to i in Dy. -Suppose now
that P(j,i)s contains an arc of S\S(K); in particular, let (J;;:Js) ™ the
| ast such arc encountered when P(j,i)s is traversed in the direction of its
arcs, and let (J;»J,)«5(¥g)s Then fromproperty (iii) of S, for-k * 1,2,

" JkcB(K); in particular, j¢ lies on the unique path P(0,ig) in D for sone
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ik«K, and(ix,iz)cS(K). Further, if <K>is domnant, d.. + L(j.,,i,) <
- 2 2

11792
L(j,,i,) +d.i ». and replacing the segnent of P(j,i),, fromj. toi, by
L
the path P(j1si 1) U[(i-,!:)} yields a path fromj to i in D longer than

P(j,i)g. This proves that P(j,i)s cannot contain any arc of S\§K).||
Jheoremb5. 4 Let <K>be a domnant clique in G y° a schedule for
‘< K>with associated sel ection S(K), and S a conformal extension of S(K)

to G Then the vector t°e K* defined by

I{A J*

(5.2) - (0.])s jeB(R)

jaf\RU B(K)

V U= L(jn)g
is a schedule for G if U is sufficiently. large to satisfy, for any

selection V in G the condition

(5.3 Usmax(I-(0n), mx {y + L) )
L JCK J
Proor. W showthat t° is a schedule for G by showing that it

is a schedule for D. For this purpose we exanine all the arcs of D:5
S

and show that t° satisfies the associated inequaliti es. Al pairs i,]
consi dered bel ow are such that (i,j)eA JS

If both i and j belong to any one of tlhe threerets K, B(K) or
_ .‘Nhﬂ‘tL_JBhda()i_,neqUtélj ts;ubﬁt"-i].'tu{igg_ﬂ@jvalshes\sot het P atdret tO..begSaehsbye(JS. 2) |
For ieB(K), jcNNKUB(K), tj-tj » U-L(j,n)q - L(Osi)g_>d”, since

U>L(0,n)s >L(Oi)s + di; + L(j,n)s.




43

For 1dC | eN KUB(K), Jt°-it° - U-L(j, n>s -iyo->§1.j’ since U>y°i+
L(i,n)s 2y +du + L(j,n)s.

It remains to be shown that the constraints are also satisfied for
i eB(K), jcK, ~for all remaining ordered pairings of the three index sets
used in the definition of t°, the corresponding arc sets are enpty.

Now for icB(K) and j ekK tj" -t o> yj - L(0,i1)ss Let the rank of node j
in S(K) be k. The schedule y° satisfies the inequalities yJinx, 2U0,j (h)),
ho- Toapeand iy -y 30 (e l),(0) " x b pshere ppK
and h is the rank of j(h) in S(K).. It is not hard to see that these inequal-.

ities, plus the fact that j - j(k), inply

(54 vy 2mL0 (k). L) % )y

HOT) + a1, 5 }-

The expression on the righthand side of (5.4) represents the length
of a longest among those paths from 0 to | .in D_g; whi ch use only arcs
in A°US(K). Since <K>is a domnant clique, fromLemma 53 this
is equal to L(O,j)s, the length of any longest path from0 toj in Ds‘
Hence we have

515 <y - L(0,1)¢2L(0,])s - L(QI)S> d".

Since t2 satisfies all the inequalities associated with the arcs of

Dy, it is a schedule for Dg, hence for GJ|

W are now ready to state the main result of this section.
Iheorem 5.5, Let <K >be a (not necessarily maximal) dom nant
clique of G with JK| * p>1. If the inequality cty_> 1, where a,ycR", de-




fines a facet of P(K), then the inequality (q,0)t > 1, where (a,O),thRP, de-
fines a facet of P.

Qutline of proof If the inequality oy > 1 defines a facet of P(K), there

exists a set of p extreme points yi, i=1,...,p of P(K), such that Qyi =1,

i=1,...,p.

Since < K > is dominant, from Theorem 5.4 every y1 has at least one con-
formal extension ti to G. From each such schedule ti for G, additio;al sched-
ules can be constructed by adding a small positive scalar to certain components,
Using this approach one can in fact construct n affinely independent schedules

i

t” for G, each of which is an extension of some schedule for < K > and there-

fore satisfies ati = 1. This proves that the inequality (@,0)t > 1 induces

6. Identifying Violated Inequalities

o

a facet of P. Details are given in an Appendix.

For every clique < K > of G, let 7(K) be the set of all facet inducing
inequalities for P(K) = clconv T(K), and let ¥ = UZF(K), where the union is
taken over all cliques of G. In order to be able to use the inequalities of
7 as cutting planes in an algorithm for solving (P), one needs a way to solve
the following

Constraint Identification Problem (CIP). Given some t°¢ R" that satis-
o .0

3 ti > dij’ (1,5)¢A, t: > 0, i¢N, but violates some of the disjunc-

tions defining T, find an inequality in ¥ violated by t°, or show that none

fies ¢t

exists.

Let t’¢ R” be as defined in‘CIP, let <K > be a clique at least one '
of whose disjunctions is violated by t°, let F(K) be the polyhedron defined
in Theorem 4.1 relative to < K >, and denote by tx the vector whose compon-

ents are cj’ jeK, Further, let ao be defined by
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(6.1) t%°® = mia{tdalaeF (®)}.

Then if t£a° < 1, the inequality #% . > 1 obvi ously cuts off t° and
AP is solved. Qherw se we have

Proposition 6.1. If tfc* > 1, t£eP(K), i.e., t° satisfies all the in-

equal ities of >(K).

Proof. If tf£a® > 1, then fromthe definition of a°, atf > 1 for every

I
vertex a of FK).]||

Thus the procedure that suggests itself for solving AP is to choose
sone clique < K> at least one of whose disjunctions is violated by tg, and
sol 've (6.1). However, in the absence of additional infornationwe may well
choose a clique < K> for which t£1_c_r° >1. Aso, if <K>is large, solving
(6.1) is expensive.

The next Theoremgives a sufficient condition for JK to contain an
inequal ity viol ated by t °%  The condition occurs frequently and is easy to
check. Furthernore, the Theoremrestricts the size of <K>to the mni-
nmum subj ect to the above conditi on.

Theo 6.2 Let t° be as defined in OP. Let <K>be a (not nec-

essarily maximal) clique, with |K| » p and t* -. such that tO

< ... <t°, .,
(L) = = j{p
satisfies

° =
(6.2) tj(l) L(0,3(1)),

6.3 ° ° :
¢ )_ 10 é f3e-1) T ﬁj(p-l).j(p)'

and, if p> 3,

Q - +9
.o G(k) ™ Cre-1) Y Yye-1),300) ¢ K= Zseeep-l.
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Further, let a° be defined by (6.1). Then the inequality a°tﬁz 1
cuts off t°.

Proof. V¢ prove by contradiction that tR tf(K. It then follows that
#(K) contains an inequality that cuts off t°, and from(6.1), c°t® > 1is
such an inequality.

Suppose tI"(eP(K). Then there exist vectors t:_eT(K) and scal ars \1 >0,

..... p+, such that

o Pl 9+1
tz = E CX- , EX. - L
i-7 KX [-1 =*

Since tjc1y 2L(Qj(l)) for any t *TOO and tf.;’(l) - L(Oj(l)), we have
i -] .
€id) * CJ(D" * v bxrinde gl gl Urly, since t (10) >nax[L(0,j (k)),

AKT) TG () )N O AW Sgel) G ael) (k1) ()

kK»2...,p-l; it follows that tiﬁf)* NfAYE K% ZE_£PAIf whenever p 3 3.
But then from(6.3), for at least one icfl,... ,pH }; we have t?, y <t°.p\ <
J(P) J(P)

1
’\(P- D+dJ(p-DJ(P) " C"j(P-l) + dj(p-l),j(p)' contrary to the assumpl:tpn
that tA€T(K), i » l¢...¢p+l. Thus r;a(x).]l

Condition (6.2) of Theorem®6.2 requires that the snallest conponent
of t9 be equal to the lower bound on its value in any schedule. This condi-
tion is always nmet by a basic schedule t° for those cliques < K > such that
no node of B(K) is contained in any disjunctive clique. For other cli ques,

the condition nay or may not be satisfied, but it is of course easy to check.

The remaining conditions sinply state that a mnimum size clique to be
_considered is the one with node set K» (j(1),...,j(p)}, where j(l) is -the
node for which tf’(l) » L(Qj (1)), and j(p) is the first node in the sequence
. ) . . . _ N . . aad
defined by t° for which the condition t'J’tp') tj p- 1 _> (-j\/.p.]-}’\l']\/_p) (
hence the correspondi ng di sjunction) is violated.
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When there is no clique for which the conditions of Theorem6.2 are
satisfied, there is no guarantee that a° defined by (6.1) cuts off t°. In such
cases it is a reasonable heuristic to choose a clique for which (6.3) and (6.4)
are satisfied, while tj(_l) - L(Oj(l)) is small (in comparison with other
cliques), and which has not yet been used to derive a cut.

Exanple 6.1.  Consider the disjunctive graph G of Exanple 4.1.

Mnimzing ty subject to t tt.zdi.a (i,j)eAand t >0, icN yields

L
t° =(0,2,0,2,0,1,3,6). Sjince tj » L(0,1) =0 and t£ » 1 <tj + d16 « 2,
the clique induced by {1,6} satisfies the conditions of Theorem®6.2. Thus
we sol ve
m nOay +1a*
s.t. Q- +2° 21
4a, +las=1

<tle Cregz O

and find (J\, a) - (1/8, 1/2), which yields the inequality

violated by t°. Since < {1,6} >is a domnant clique, this inequality
induces a facet of P. Mnimzing t, subject to the sanme constraints as
before, plus * + 4ty >8, yields t' » (0,2,0,2,0,2,4,6).

Since ty » L(0,2) » 2 and t£ < tj + d* * 4, the clique induced by

{2,4} - satisfies the conditions of Theorem 6.2. Solving
min 2\ + 23

T4 W -

6&2 + ZQ&I 21




48

yields (a%, af) - d/ 10, 1/5), and the inequality

t, + 2t4210

vi ol ated by tl. Again, < {2,4} >is a domnant clique and hence the inequality
i nduces a facet of P. Adding this inequality to the earlier constraint set
ont and mninzing t, yields t2'» (0,4,0,3,0,2,4,7).

The conditions of Theorem®6.2 are no |longer satisfied, since tj° >L(Q])
for j » 2,4,7. However, each of the cliques not yet used to derive a cut,
i.e., (4,7}, (2,7 or {2,4,7}, provides an inequality that cuts off t? (this
can t;e seen by checking the list of facet-inducing inequalities for P(Kz) in

Example 4.1). In particular, if we take the clique {2,4,7}, then solving

oin 2a, + 4«4 + 4«

v
=

s.t. 2«o + Ad«y4 + Tao
100,2 + 2% + 5a7

v
—

v
-

iv
-t

6¢|2 + an + 10a,

v
[EEN

Iv

13a, + 90“ + 3a»

az’ aﬁy a72 Ol

3
yields (a, ai cN) - (13/206, 3/206, 24/206) (wth s.» 0 for i - 1,3,4),
and the (facet inducing) inequality

13t, + 3t, + 24t, > 206,

whi ch cuts off t il
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Appendi x:  Proof of Theorem 5. 5.

V¢ will make use of the following auxiliary result:

Lenna 5.6 Let <K >be a domnant clique of G y° an extrene point of
P(K) with associated selection S(K), and S a conforrmal extension of S(K) to G
Further, let t° be the extension to Gof y° defined by (5.2), and let keK be
such that y.: >L(O k). Then every path P(i,j)gq in Db originating with sone

icB(k) and such that t « t_=d for all (r,s)cP(i,j)., termnates in sone
S r rs )

j CB(K).
Proof. Let P(i,j)q be a path in D'9 origi nating wth sone i «B(k) and such

that t -t o d for all (r,s)eP(i,j) S nce t’>* L(Oi)_, there exists a
L 19
(Iongest) path P(0, |)C fromO to i in Dcsuch that t° - t° - d for all
0] S r rs

(r,s)cP(Qi)g It then follows that the’pathrP(O,j)g: »P(O 1) gUP(i, ])g Fs a
|l ongest path fromO toj in Dy since t° - t° « d,g for all (r,s)cP(0,j) . Now
suppose jeK Since <K >is a domnant clique of G it then follows fromLenm
5.3 that P(OQj)g4 contains only arcs of A°US(K), i.e., is of the formP(0:k) U
P(k*J) &£ where P(0,k) is the (unique) path from0 tok in D But ¥hen ®(Q k)
is a longest path fromO to k in Dy and tf » L(O k), contrary to t? * y? >
L(O k), as assuned in the Leoma. Thus j~K

Suppose next that j cN\ KUB(K), and let (r,s) be "the (unique) ®arc & P(it8j).
such that rcB(K), SeN\ KUB(K)4 Then fromthe definition of t°, t° - t° >d |,
contrary to our assunption about R(i,j)y. This proves that j*N KUB(K).
Consequently jeB(K). || i

Proof of the Theorem Let y , i = 1,...,p, be g£xtreme points of P(K),
each of which satisfies <y " 1. W will contract n schedules t *for G each
of which is an extension of one of the p schedules y for < K> and therefore
shtisfies (a,Ot * 1. W wll then prove that these n vectors t'«R® are affine-
'y independent, by showing that the (n-1) x n natrix whose rows are the vectors

% -’{1,:.],;],2’3&)”’ E f’f.f?,'é}foa‘{‘ﬁéa'@&un.(x) - tq+1,...,n}.

Fgr’stmevxgssé%gnah?t w?hgunb%q‘lfrll%e? |ndepen%5ent sgheauISUCh L’hat
i * I,...,p, for <K> To this end for i =1,...,pwe let Sk), be the sel ec-
tionin <K>associated with y , and Si. a conformal extension of S(K)i to G
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with the proviso that the arcs of S chosen freely under rule (ii) of the

definition of a conformal extension (see section 5) are the same for all

icfl,...(p}. Next, for i «1,..., P, we let t? be the extension of y* to G de-

fined by (5.2) for S» S, with the proviso that the scalar U used in the defini-
1 i i

tion of t be the same for all kcfl,...,?}e The fact that the vectors t defined

in this way are schedules for G follows fromTheorem5.4. Note that our specific*

tions for S. and t' inply that L(j,n)$ * L(j,n)S and t* * t* jeNK JB(K),
- J J

| ! L i 1 i
- 2,...,N. : . L

Subtracting the vector t, fromeach of the p-1 vectors t , i - 2,...,p,
yields the (p-1) X nnpjirix,M whose rows gje t -t,i«2, PR pl, and whi ch
is of the form™ » O0** ** M,, 0). Here M- is the (p-1) Xp full rowrank
mgtrix whose rows are the p-1 linearly independent vectors'y -y, i =2,...,p,
Mo is (p-1) x (g-p), and 0 is the (p 1) X (n-q) zero matrix.

(||) The next g-p schedul es th, g+ p ...,(Q, are generated s follows.
oL BUST Hnnggeokekry Nore,pxigts gt Least, gne r{"”ﬂ Lhe PLYESHG'S Yro WSS
| [
this is true, notice that if y. * L(0,k) for i * I,...,p, then the p vectors y
lie in the (p-2)-dinensional subspace of 1R defined by the two equations ay * 1

and y.K * L(0,k), hence they cannot be affinely independent. -
Now | et S(K)X*‘®¥X be the selectionin < K> associated withy" , S i&

a conformal extension to Gof S(K).,,:, and t'% the extension to G of
y'VA defined by (5.2) for S - Syc. For icB(k), let A(i)i(rey be the set of
nodes jcN reachable fromi (including i itself) by a path P(i,j)s in Dy
such that for every (r,s)cP(i¢j)q ot 1)« d ) and et 00 H(k)
Sl(k) S r rs
A(B(k)) = U A@) .
i(k) 1 B (k) i (k)
Then from Lexnna 5. 6, A(B(k))i,(ej CB(K), k=1,...,p, and since for each
ke{l,...,p} by definition A(B(k))i(rc) contains B(k),
P
kal-J1A(B(k))'—"" » B(K).

Wl.0.9., let the g-p nodes of B(K) be numbered in such a way that
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AB)) gy = (pH,...0p + B,

A(B(2)) 5y MBM) gy - {P+8; +1,...,p +8,]

. SN S A I I S AER N SED N W W T . S M SR SN ey s mE R AR

p-1
A(B(P))i(p) U AB(r))i() = fp+ 8,1 +1,...00 + 3},
r=1
with p+9p* g; and, ia addition, if i,je(p + 9‘!’._?L +|,...,p+9k} for some
ke{l,...,p} (where we define 90:0) and (i,j)cAUS(K) ,..., theni <j.
W then define the vectors t*"" for h » l,.... %, by
i(L)
t + ’ j'P"'B 'h"'l,---,P“"B
ot “h 1 1
i (1) : ot herw se

with0O<?r<1 h»!, ..« 3" and for h » Pe.y +1,...," k» 2,...,p, by

- Ej T ey je{p + Beoy * B v b *leee,p Bk}UR(B(k))i(k)
g =

1(k)
]

where 0 < Cia <1, ¥h, and

ot herwi se

) k-1
A(B(K))icre) = A(B(K)) 10y M C YA py)-
r=1

X From Lemma 5.6 and the definition of A(B(k))i('lcl‘\» each of the yactors
¢P™ defined above is a schedule for Dg , hence for G
~+h L (i i
Renunbering the schedules t*~, he 1,...,0 (°g-p) as t~, i = p+l,...,q,
i 1 A
and subtracting fromeach t the vector t , we obtain the (g-p) X n matrix M
whose rows are t' -t i - ptl,...,q, and which is of the formM »

(HZI’ M2z 0). Here K is (g-p) Xp, O0is the (g-p) X (n-q) zero matrix, and

oM s a (g-p) X (g-p) -lower block triangular matrix of the form.

_ /'rl o . . . (A
X21 T*q-y .o m 0 0
My =
Xsi X . . T
L S2 e s)
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where the ith diagonal block is

/o . . . O ¢, +1)

o . Ll

€ . . . € €
L?i Bi Bi )

(11i) Finally, we construct the last n-q schedules in G from the schedule
t1 as follows. W.l.o.g. we let the nodes of N\KUB(K) = {q+l,...,n} be numbered
in such a way that, if i,je¢{q+l,...,n} and (i,j)cAolJSI, then i < j. Then for
i = q+l,...,n, we define t1 by c? = t; for j=1,..., - 1 + q, and t? = t} + 1
for j=n-1+q+1,...,0. The resulting vectors ti are obviously schedules
for G, since t1 is a schedule, no component was decreased, and if a component j
was increased, all components corresponding to nodes reachable from j by a

directed path in Ds were increased by the same amount. Furthermore, since the

first p components %f tl were not changed, clearly these schedules ti also
satisfy ati = 1.

Subtracting :1 from each :i, and letting the vectors ti - tl, i=gqg+l,...,n
be the rows of a matrix M3, we obtain M3 = (0, O, M33), where the two zero
matrices are (n-q) X p and (n-q) X (q-p), respectively, while M33 is the (n-q) X
(n-q) nonsingular matrix whose element in position (i,j) is 0 i1f 1 + j < n-q,
and 1 if i + j > n-q.

(iv) It remains to be shown that the n schedules :i that we have con-
structed are affinely independent. We will do this by showing that the (n-1) x n
matrix whose rows are the n-1 vectors ci - tl, i=2,...,a, is of full row rank.

From parts (1), ({1) and (iii) of the proof. this matrix is of the fomm

M, My O
M=) My My 04,
0 0

M35
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where M* is (p-1) x p and has full rowrank. Let M be a (p-1) x (p-1) non-
singular submatrix of M*, and |et M21 be the matrix obtal ned fromMu by re-
movi ng the colum corresponding to the one that was renoved fromM Furt her,
let us permute the bl ocks of colums of Mz» and the corresponding bI ocks of
M{gx by reversing {he order of the s blocks, and |et Mz and I\/F be the resulting
matrices.

Then Mis of full rowrank if and only if the (n-1) X (n-1) matrix

Mg vp O
M=l My wp O
0 0 My
i's nonsingular. Since Hu and M 5 are nonsingul ar, Mis nonsi ngular if and only
if the matrix M ""22 Hn 1}‘12 'Sacasiagulars 1t 0s a5t hard to see that

the nunbers ey used in the construction of £, can always be chosen in a way
that makes M, nonsingular. W show this by induction on g-p. For g-p » 1,

the conditionis ¢y £ m, where m, is the first elenent of the last row of
Mp1M plyox Such Cg obviously ayjsts.  Suppose the condition can be satisfied
for g-p » |,2f...,f-’l, and let g-p « t. Let Abe the matrix consisting of the
last t rows and first t colums of IVIo. Denoting by aij the elements of A and
by Aj-.‘l the cofactor of 313' and using expansion by the last colum of A we have

t
det (A - a;i{ Ay +’_Ez'itAit .

By the induction hypothesis, there exist nunbers 0<e.J <1, § = Bgs

Ps - l¢...tPg - t + 1; such that Ay + 0. Since au* «Bs - BE:’ vvherem

is the elenent of 1 Al R |- A 12 cne nosition corresponding to a- . e have that
det (A) jic 0 if and onIy if

" a condition which can obviously be satisfied. This conpletes the induction.
Thus the n schedules t for G i =1,...,n are affinely independent. In

addi tion, each one of themis an extension of a schedule for <K > hence satis-

fies (c*,Qt » 1. Therefore the inequality (a 0)t > 1 defines a facet of P]|




to al so induce facets of P(N). One of our results is that any inequality that

I nduces a facet of P(H) for some HCK, also induces a facet of P(K). Another one

is a recursive formula for deriving a facet inducing inequality with p positive
coefficients fromone with p-1 positive coefficients. W also address the constraint
identification problem and give a procedure for finding an inequality that cuts off
a given solution to a subset of the constraints.
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