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Abstract

Schwarz alternating method (<?$0 is an old mathematical technique dating from

1869. It was commonly believed that §iM was a useful tool for theoretical anal-

ysis but not a very practical approach for computations. The earlier experiences

showed that fyM converged slowly. In this thesis, $M is reexamined and general-

ized. The governing factors of convergence of $M are explored through the analysis

for the model problem. Based on this knowledge, many acceleration schemes can

be combined with §fiM to yield a new type of iterative method for large sparse ma-

trix problems. In particular, when these techniques are applied to the solution of

the model problem, an optimal complexity can be achieved. Some generalizations

of 4 ^ , namely Schwarz splittings (3>), are presented here. For many important

applications, such as performing parallel computations in a non-shared memory

environment, using composite grids and also applying fast solvers in an irregular

region, $Ts are found to be useful techniques.

In order to identify the types of problems for which <$*s are most suitable, a

new structure for the linear operators called template operators has been developed.

Some decay results for the elements of the inverses of sparse operators are given.

These results provide a theoretical basis for determining when these $S techniques

can be used successfully.
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Chapter 1

Introduction

This dissertation is a reexamination and generalization of a very old mathematical
technique -Schwarz Alternating Method (tyM). It was commonly believed that &M

was a useful tool for theoretical analysis but not a very practical approach for com-
putations. Some preliminary experiments had indicated that §fiM was not promising
because it converged too slowly. There was little knowledge of the factors governing
the convergence of this method. In this study, an analysis of QM for the model
problem for elliptic partial differential equations is presented. The convergence fac-
tor of QM is found to be a function of many components. Based on the analysis,
many acceleration schemes can be combined with this idea to yield a competitive
new type of iterative method for large sparse matrix problems. Generalizations of
fyM are also introduced in this thesis. We show that $M is not only suitable to
solve elliptic partial differential equations, it is also a good computational model
for many other important applications. Particularly, a new structural view of linear
operators is presented which provides a useful tool for analyzing the behavior of
sparse operators.

Here the original version of §iM is first introduced. Following this description the

motivations of this study are discussed. Then a brief historical survey is presented.

At the end of this introduction, the organization of the rest of this dissertation is

outlined.

In the last century, Schwarz [Sch69] found that, for a region consisting of the

union of two rectangular regions or disks, he could construct a sequence of solutions

of the Laplace equation on subregions which would converge to the solution of the

Laplace equation on the union. His method is now called tyM. The description of

a simple version of $M is as follows:



CHAPTER 1. INTRODUCTION

Figure 1.1: Two overlapping subregions

Consider the Dirichlet problem for an elliptic operator L x

L{u) =/, xen,

" |ro = $, x 6 Fo

where 12 is a bounded region in ^-dimensional space, FQ is the boundary of ft,

x = {^i,^2, • • •,Xk} is the independent variable.

Schwarz split the solution domain fi into two overlapping subdomains Cl\ and

^2- Let ^12 = fti n Q2 9̂  0, Fon Fo2, Fn12 denote the boundaries of Hi, Q2

respectively (see fig. 1.1). Let

FQJ = Fi + Fi,

where

1 We assume that the solution of this problem exists and is unique.



ri = Fn, n Fnia,
r2 = rnnrn a ,

From this splitting we can formulate two coupled problems

L{ux) = / ,

, x €

>, x € F2,

n, xeF'2.

(1.2)

(1.3)

It is clear that u, the solution of (1.1), is the solution of (1.2) and (1.3). We

may also easily show that:

t i l = U2» X €

Thus, the problem (1.1) is equivalent to the pair of problems (1.2) and (1.3). Since

there are unknowns which are coupled in the boundary conditions, we cannot solve

the two problems independently. But giving an initial guess u |rj= ô> we will be

able to construct a sequence {u^ ,t4* } as follows:

(0) I
U l To,

= /,

= / ,

>, x €

!>o, x €

' 2 ,

(1.4)

(1.5)

u?^, x
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L(u?) = /,

It can now be shown that the sequence {u\ ,i4 } will converge to the solutions

of (1.2) and (1.3) under certain conditions (see section 2.3). Then, from

the solution of (1.2) and (1.3), the solution of (1.1) can be constructed.

Here we have just described the simplest version of 4$f. Unlike some other
techniques which usually are precise procedures for solving problems, tyM basically
gives us only a philosophy for solving a problem. The freedom inherent in fyM

provides great opportunity to incorporate many other techniques in order to obtain
good performance.

• Freedom in the geometrical shapes of the subproblems. This freedom makes
it possible to tailor the subregions to meet the requirements imposed by fast
solvers or by grids.

• Freedom in the solution techniques for subproblems. We are able to choose

different solution techniques for different subproblems. It is also possible to use

different ways to obtain the solution of the same subproblem in the different

stages of the computation, allowing us to use an optimal approach at any

particular moment and in any particular location. This is a unique feature of

• Freedom in the numerical model for each subproblem. Special boundary

shapes or local behavior of the solution need a special treatment in the mod-

eling. The decoupled subproblems allow us to localize the special treatment

to the place where it is needed. Composite grids are a good example of this

case.

• Freedom in the number of subproblems. This freedom will permit us to adapt

this algorithm to different degrees of parallelism.



• Freedom in the coupling pattern.

— The type of boundary value for these artificial boundaries in the decom-
position.

— Overlapping area.

— More than one partitioning.

Later we will show that proper use of these freedoms can yield an efficient

algorithm.

A particularly interesting application of §fiM is for parallel computations. *^f

not only provides parallelism in the algorithm. Another advantage for an efficient

implementation of $lM is the local communication pattern and the hiding of global

information exchange. For any current state-of-the-art parallel computer the cost

of the communication is always a killer of efficiency. The relatively cheap cost

of the hardware provides a possibility of using a large number of processors to

solve a big problem. Unfortunately, in the near future the communication cost will

prevent us from fully taking advantage of fine grain parallelism in a general purpose

computer architecture. The low ratio of communication verse computation, the

coarser granularity and the flexibilities we mentioned above make fyM an attractive

candidate as a parallel algorithm. This is one of the major motivations for our

study.

Since this alternating method appeared, many application areas have been found.

Here we present a brief historical survey of the literature:

In 1869 Schwarz [Sch69] first developed a method he called an alternating

method to prove the existence of the solution of the Dirichlet problem for the Laplace

equation on a union of two overlapping areas. Soon Neumann [Neu70] observed that

a similar idea could be applied to the solution of the Dirichlet problem in a region

that is the intersection of two other regions overlapping one another. Later Poincare

[Poi90] developed his methode de balayage, which is similar to Schwarz's method,

Poincare was also concerned with existence proofs rather than computation.

During the 30's many Russian mathematicians applied Schwarz's method to

problems in elastostatics. They treated the solution process of tyM as a search



6 CHAPTER 1. INTRODUCTION

for the minimum of a variational problem. This new way of thinking provided

possibilities for enlarging the applicable areas. Gorgidze [Gor34a], [Gor34b] applied

fyM to a plane problem in the theory of elasticity. Almost at the same time, Mikhlin

[Mik34] generalized this idea to a biharmonic problem. He proved the convergence

of fyM to the solution of the second elastostatic boundary value problem. A more

general proof of this method for the second boundary value problems of elasticity in

three dimensions was sketched out by Sobolev[Sob36]. He reduced the consideration

of convergence of the sequence of approximations to a study of convergence to the

minimum of the integral of strain energy.

In the early 50's, Kantorovich and Krylov [KK58] gave a set of sufficient conditions2

which guarantee the convergence of $$£. These conditions encompass most of the

areas to which &M can be applied.

After the 60's people started to apply $)M to numerical computations rather

than to existence proofs or theoretical analysis. Some new algorithms such as ADI

methods or Fourier series methods were the state of the art at that time, but they

could only be applied to rectangular regions. $lM was a very natural way of applying

these methods to a union of rectangular regions.

D'Jakonov [DJa62] derived some work estimates for solving Poisson's equation

to a given precision on overlapping rectangular regions by ^M. The rectangular

solutions are by the alternating-direction implicit method, or a similar method of

D'Jakonov's, applied to the 5-point difference approximation.

Werner [Wer60], [Wer63] considered application of $lM to any linear second-

order elliptic P.D.E. with boundary conditions of the third type. He proved the

existence of a continuous solution and gave error bounds for a solution which satisfies

the differential equation, but only approximates the boundary data. He presented

some numerical results for the Laplace equation on an L-shaped region with mixed

boundary conditions. The rectangular solutions are expressed as a double finite

Fourier series.

We have mentioned the result by Miller [Mil65]. In the same paper he also gives

work estimates for several cases. Fairweather and Mitchell [FM66] applied ^M to

2 We will present them in section 2.3 of the next chapter.



a 9-point difference approximation on an JD-shaped region. They used a modified

ADI method to solve the subdomain problems.

Dupont[Dup67] generalized their idea to the equation V(aVti) = p, and derived

work estimates on overlapping rectangular regions.

Stoutemyer[Sto72] applied QM and Neumann's variant to the Laplace equation
on the union and intersection of two disks.

As we mentioned earlier, applications of «5^to the composite mesh method have

attracted people's attention for some time. Volkov [V6168] first presented a second

order composite mesh method for the Dirichlet problem for the Laplace equation;

he also used $lM to solve the system of linear equations.

Later, Starius [Sta77] generalized this idea to linear second order elliptic equa-

tions.

When computer technology advanced to parallel processing, the inherent paral-

lelism in this algorithm obtained new appeal. Kang[KCSQ85] extended the varia-

tional form of QM to general second order elliptic P.D.E.s, and tried to apply it to

parallel computations.

Glowinski, Dinh and Periaux [DGP80] [GDP80] formulated a conjugate gradient

variant of fyM. Essentially, they reduced the problem to a minimization problem

on the intersection of two overlapping regions.

Rodrigue[RS84a], [RS84b] [Rod86], and [RS85] recast %M in terms of numerical

linear algebra so that classical techniques of acceleration could be applied. A Jacobi

splitting of the modified matrix problem was studied in these papers.

Analyses and experiments have shown that the convergence rate of the plain

§lM can be further improved. Many authors have independently found that SOR

acceleration of $M works very efficiently. Oliger, Skamarock, Tang [OST86] also

noticed that the sensitivity of the relaxation parameter is related to the overlap.

Theoretical estimates of the convergence rate and choice of the best relaxation

parameter for the model problem are given. In the same paper we mentioned

above, Kang also proved the convergence of the SOR acceleration for the finite

element method[KCSQ85]. Meier [Mei86] had also proposed a parallel SOR variant

of
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In the next chapter, an analysis of fyM for the continuous model problem in the

fc-dimensional case is presented, a few of the important factors which govern the

convergence of ^Af axe explored and then a generalization — multi-color fyM— and

its convergence proof are shown. This generalization is mainly motivated by parallel

computation. Because as we mentioned before, QM can be viewed as a general

methodology for solving a problem, sets of sufficient conditions for convergence of

fylM when applied to functional equations are then presented.

Following Rodrigue and Simon's idea, we propose a linear algebra analog of
this model in Chapter 3. The original matrix is modified into an equivalent, loosely
coupled matrix which is called the Schwarz Enhanced Matrix (or %M). Some equiv-
alence theorems and the applicable matrices of the SEM are discussed. A Schwarz
splitting {SJS) of the SEM is then defined. If the original matrix is an M-matrix, then
$5 is a convergent splitting.

In Chapters 2 and 3, the analysis concentrates mainly on convergence and gen-

eralizations. Another important issue is the characterization of problems for which

SAM is most suitable. One particular phenomenon, exponential decay of the in-

verse of a sparse operator, which contributes to the success of 4j^, is investigated

in Chapter 4. We found that matrices were not good structures for the study of

this problem. New data structures, template vector and template operator, for a

linear operator in a finite dimensional space are introduced. Some bounds for the

norm of the wavefronts are shown. Particularly, a sufficient condition which yields

exponential decay of the inverse is given. These results provide some guidance for

a successful application of $lM.

Detailed analyses of the application of SJS to the model problem in one and

higher dimensional cases are presented in Chapter 5. The spectral radii of the

Jacobi iterative matrices of <9> for these cases are derived. Similar results can also

be derived for higher order difference schemes or finite element methods. We show

that if the overlapping area is a constant fraction of the subproblems, this algorithm

has an optimal order of complexity. This means that the work needed to obtain an

approximate solution which is accurate to truncation error is proportional to the

number of unknowns.



In Chapter 6, based on the analysis in Chapter 5, we apply several acceleration
schemes to the different hierarchical levels of this algorithm. One consequence of the
analysis of $5 in the last chapter is that many classical techniques of acceleration,
especially SOR (Successive Over Relaxation) acceleration, can be app1 ed to this
model. For the model problem, the classical analysis of SOR and many other accel-
erations, for instance Chebychev acceleration, can be applied to this case without
any difficulty. Theoretical analyses and experiments show that the improvement
in the performance is significant. The choice of the relaxation parameter in SOR
acceleration is the only global information exchange in the algorithm. But if a lo-
cal relaxation method is used, this global communication can be eliminated. As
we show in Chapter 4, the mesh size is only involved in a higher order term of
the convergence rate. Also, the low frequency errors dominate the convergence. A
multi-level grid strategy is appropriate here. In the last section we present some
other parallel implementation strategies to make this algorithm a powerful parallel
algorithm.



Chapter 2

Convergence Analyses and Multi-Color SAM

In this chapter an application of fyM to the continuous model problem for elliptic
partial differential equations in the ^-dimensional case is given in detail. Through
the analysis of this example many important factors which affect the convergence
rate of fyM are disclosed. This analysis provides useful guidance for an efficient
implementation of fyM. Motivated by the parallel computations, a new parallel im-
plementation of multi-color §fiM and its convergence proof are presented in Section
2.2. Finally, two sets of very general sufficient conditions for the convergence of QM

in the literature are listed.

2.1 An Analysis of SAM

In this section we will apply $M to the model problem on a uniform cube in fc-

dimensional space. Through the analysis of the solution process in this problem

we can demonstrate many important characteristics of this method . In later chap-

ters we will take advantage of these features to make $^T a competitive iterative

algorithm.

Consider the Dirichlet problem:

where Q is a it-dimensional uniform cube for which the lengths of the edges are all

equal to a. The restriction to uniform length is only for convenience of discussion;

generalization to different lengths in different coordinates is straightforward.

Let us decompose this cube into two1 overlapping subregions. Suppose the
xWe can generalize this analysis to the case which has any finite number of subregions.
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F D H

E G

Figure 2.1: Two overlapping rectangular grids

overlapping direction is x\. Figure 2.1 shows a two dimensional case2. Denote c

as the width of the overlap, and b as the length of the subcube in the overlapping
direction x\. Here T[ is CD and 1^ is EF. Apply the algorithm 1.4-1.6 to these
two overlapping regions; the sequence will eventually converge to the solution on
the uniform cube. Denote u^\ vip as the i-th approximate solutions in Q\ and fi2,
u\ and u2 the true solutions in the two subregions* Let

4°
JO
e2

JO)

JOcl

JO

(0) i /

= e2 |p/=^o —

-4"
=4"

2If we may imagine the lines AB, CD, EF and EG are * - 1-dimensional uniform cubes. Then
it can also represent Jb-dimensional case.
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Then the error functions e^' and €•£ will satisfy the following relations:

Ae[(0)) = 0 x € fti
o x e r !

A40 =0 x€Q2

(0 , • _ / °

? =0

(2.1)

(2.2)

(2.3)

Now we are able to analyze the convergence process by Fourier analysis. Since
the error functions of the approximation satisfy the Laplace equation and have
boundary values 0 except at one face of the subcube, by expanding the boundary
value 6; at T[ in Fourier series, we may express the error function in the whole
subcube in terms of the coefficients of the boundary values. Let

Let

sin • • • sin
a a

(0) 22 .
= ot\2Uk sin — sin

and

Then we have

1 ~ ^ sinhr(t2,•••,**)£

The boundary value at Tf
2 will be

r ( t 2 , •••»<*) = y/*2 + ' • • + *l-

t« . • • • i t I*
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By using the same reasoning, we have:

Thus the amplification factors are:

s inhr ( i 2 , • • • ,**)£
(2.4)

It is obvious that the amplification factor of the lowest frequency component
will dominate the convergence. If we define the convergence factor as the ratio of
the two norms of consecutive error functions, the convergence factor of this method
for the model problem is:

FVom 2.4 and 2.5 we can observe a few important facts of $$i. First the over-

lap ratio c/b has a strong influence on the convergence rate. That is: when the

overlap increases the convergence factor will improve exponentially. Also, the ratio

b/a will affect the convergence. It is clear that we should avoid overlapping in a

direction for which the width of the subregion is too short in comparison with the

other directions. Another important observation is that the amplification factors

exponentially decay when the frequencies increase. This is a favorable feature for

multilevel grid strategies. We can start the computations with a very coarse grid to

obtain coarse frequency information, then reduce the grid size to obtain the higher

frequency information. Moreover, 2.4 tells us that the high frequency errors do

not make a significant contribution to the error inside of the region. So we might

carry on the communication at some coarser grid level in order to reduce the com-

munication cost. Another important feature of 4 ^ , especially propitious for large

scale computations, is that the higher the dimension the faster the convergence. In

later chapters we will elaborate these characteristics of $M in depth and apply sev-

eral acceleration schemes simultaneously to this model to construct a very efficient

algorithm.
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Using the same idea and notation we can easily analyze the case of applying

Neumann boundary condition on CD and EF. Now equations 1.2 and 1.3 become :

An, = / ,

-te.
Att2 = / ,

a |ra » 0»
Irj

(2.6)

(2.7)

The corresponding equations for the error functions are:

Ir,
= 0,

= 0,

= e°,

= 0,
=*0,

= 0,

\Tt - 0 ,

Ir,

(2.8)

(2.9)

(2.10)

(2.11)

Similarly, we may expand the error in the Neumann boundary condition problem

in a Fourier series:

• sin

The solution of the error in Q\ is as follows:

jo)
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By the same reasoning, we know that the convergence factor of the error on the

artificial boundaries is:

It is not difficult to see that the Dirichlet boundary condition on these artificial

boundaries works better than the Neumann boundary condition. In Chapter 6

we will show that this conclusion is also true for discrete cases. There are also

other kinds of combination of different boundary conditions can be imposed on

these artificial boundaries. For the Laplace operator, we have shown that Dirichlet

boundary conditions are better. This conclusion can also be derived from the decay

rate of the Green's function. We will not present the details here. We could not

extend this analysis to obtain a general conclusion. I conjecture that for different

problems the best choice of the type of boundary conditions may vary. It is a very

interesting open problem for future research;

2*2 Multi-Color SAM and Its Convergence

The $lM was originally constructed as a sequential process by Schwarz in 1869.

But the inherent parallelism in this idea provides many possibilities of constructing

some highly parallelized implementations. In this section a multi-color §iM for the

solution of a second order linear elliptic PDE is presented. The convergence proof

of this method is also given.

A simplest parallel implementation of &M is two color or red-black $iM. It is a

nattiral extension of the red-black SOR algorithm. The basic idea of red-black fyM

is as follows: construct two sets of partitions of the solution region3, red and black,

given some initial guess on the artificial boundaries in the red set of subregions,

solve the red set of subproblems independently. Using the solution of the red set

for the value of the artificial boundaries in the black set, solve the subproblems in

the black set independently and repeat this process. If the partitioning provides a

balanced load for each processor, this implementation is a highly parallel algorithm.

But from the analysis in Section 2.1, we know that the error reduction varies from
3They have to cover the whole solution region.
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different positions in each subproblem. The new boundary values for these artificial
boundaries should be taken from fast convergent zones of a partitioning in which
this artificial boundary resides. If we only have two sets of partitions, there is only
one choice for each point on these artificial boundaries. The best partitioning and
choice of boundary values is very difficult to accomplish. Instead, we may plan a
few sets of partitions so that each point on the artificial boundaries belongs to a
fast convergent zone in at least one of the partitions. With more than two sets of
partitions, this goal is easier to be fulfilled. The same idea can be applied to the
elliptic operator L in any finite dimensional space. This implies that the multi-color
§fiM can also be used to solve any linear system of equations which has a positive
definite coefficient matrix.

To simplify the notation, a description of the algorithm for a two-dimensional

problem is given here. The extension to higher-dimensional problems is straight-

forward.

Let Z2(H) be a Hilbert space with respect to the inner product

v) = /

and the norm

where ft is a bounded, connected open set in R2. Ci(ft) denotes the space of real

valued continuously differentiable functions on ft, where ft = ft U F and F is the

boundary of ft. Let

a = (ai,a3), | a |= ct\ + a2, <*i, as > 0

Da = - r - ^ — , « (a) = Dau.
d*da*'

Then the Sobolev spaces &(&) and H1/2(T) are defined as

ff*(ft) = {u | Dau e L3(ft),0 <| a \< 1}
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Particularly,

jro»(n) = {u | (« € H\Q)) U (« | r = 0)}

J5r>(ft) = {u | (« € J5Tl(ft)) U (u |r= *)}

Consider the boundary value problem

L(u) = -\piux]g - \p2Uy]v + qu = / , x €
i« Ir = 9,{

where Pi,P2>9 € Ci(Q),f € Zf2(ft),0 € Hl/2(T). It is well known that this problem
(2.13) is equivalent to the minimization problem

/(ft, it) = ^ao(u, it) - j

where

ao(ti,t;) =: I \p\uxvx + frUyVy + quv]dQ,
JQ

Gtt(u) = / fudCl.
JQ

Construct a sequence of partitions of ft:

n 3 :

such that

i. Qf)n«y) = 0, if*^i.

2. Vx € ft, 3 * and j : x € ftjj).

Let ft^^ = U ft,- , i = 1, • • •, k. Each II, is referred to as a color ci. So condition

(1.) means that any two of the subregions do not overlap if they have the same

color. For any v € H^(ft) and ft*'\ a subspace $(ftW, v) is defined as follows:

$(ft(l>,v) = {« | ti € ff,x(ft) n (u = v, if x € ft - ft(/))}.
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For partition II;, the functional I(Q, u) can be calculated as follows:

i(n, u) = £ i(nW, u) + i(n - n<o, u) = i(ch u).

The multi-color fyM is then as follows:

Algorithm. 1 Choose a initial guess u(0) € H]{0). We construct a sequence

{u('">,c,} such that

^ inf

onrf V / > 0 onrf J € [1,2, • • •, k], 3 i such that i > I and c, = J.

Since • # i impUes Q? D fl}0 = 0,

inf /(^u?) = £ inf<> ^J ()

Each /(ft* ,u>) can be computed independently. That is where parallelism comes

from.

A rigorous complete proof of convergence is wordy. Here we present an concise

version of the proof.

From the construction of the algorithm, V t > 0

,aW)</(ft , «<'

If u denotes the solution of (2.13), then

|| tt(0 - u ||J < Iao(u<''> - u, u<«> - u)

So there is at least one subsequence u(**) such that

l imu w =5. (2.14)
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From the construction of the algorithm and (2.14), u € -ff*(O) achieves the minimum
in every subregion QJJ' Now, let's prove that u actually is the solution of (2.13).

Let Ti be the boundary of the subregion 0,^ , which is the ith subregion in
color j. T\J' is consists of two parts. First part is I; (1) = I* (J^n- I* c a n be
empty if there is no common part in the boundaries of T^ and TQ. The second
part is the so-called artificial boundary 1^ (2). It is a union of the pieces which
are located in other subregions (of different colors).

From the definition of 2, we know that it is the solution of the following problem.

x G ^ m \

h x 6 rfc)(l), (2.15)
»<—1>, x € r&>(2),

n = 1,2,-•- ,1m,

in = 1,2, • • •, k

where £1^ is th nth subregion in color Cm and u(m~l) are the solution for partition
nm-i . The coupled problems (2.2) and (2.3) are the simplest case of this problem.

First we know that the solution u of (2.13) is a solution of (2.15). It is also known
that if the solution of (2.15) exists, it is unique. Therefore, we may summarize the
above discussion as the following theorem:

Theorem 2.1 For any initial guess u^ € Hg(Q) the sequence constructed in the

multicolor ZfcM algorithm converges to the solution of (2.IS).

The extension of this algorithm to a matrix problem is straightforward. We may

replace the sequence of subregions £1+ by a sequence of diagonal block matrices Aj j

of the original matrix A, which satisfy the following conditions:

1. Any two of the diagonal blocks do not overlap if they have the same color.

2. Each row of the matrix A is covered by at least by one of the blocks A^j.

Then the rest part of the algorithm is the same as the continuous case. The

convergence of the discrete version of multi-color $lM is also analogous with the

continuous case.
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2.3 Sufficient Conditions for Convergence

There are several proofs of convergence of %M [KK58], [CH62], [KCSQ85]. The most

general case was given by two Russian mathematicians Kantorovich and Krylov

in the 50's [KK58]. They showed that five conditions together are sufficient for

convergence of fyM to a solution of a boundary-value problem 4

(2.16)
x 6 FQ.

These five conditions are as follows:

Uniqueness. Two solutions u and uf which satisfy equation (2.16) in ft are bounded,

have identical values on the boundary FQ (except, perhaps, at a finite set of

points) and are identically equal in ft.

Monotonicity 5. Two bounded functions u and u' which satisfy equation (2.16)

in ft and have u > uf on FQ (except, perhaps, at a finite number of points)

will satisfy u > u' everywhere in ft.

Limit solution. The limit of any monotone and uniformly bounded sequence of

solutions to equation (2.16) is also a solution of (2.16).

Maximum principle. A solution to (2.16) cannot have either a positive interior

maximum or a negative interior minimum. For linear problems this implies

the monotonicity condition.

Continuity onto the boundary. If u = / on a boundary segment except perhaps

at a point P inside the segment, where / is continuous on this segment, then

the solution u(Q) for Q in ft approaches / (P ) as Q -+ P.

The numerical analog of $)M is straightforward. We can discretize the problems

1.4-1.6, and then solve them numerically. Miller[Mil65] showed that the following
4 As mentioned in their book, this same proof can be applied to a more general functional equation.
5 For linear problems, this condition can be derived from the maximum principle.
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conditions are sufficient for convergence of the solution of the numerical $)M to the

original continuous problem:

Existence of a continuous solution. The solution of the continuous problem

2.16 exists. This implies that the solutions of the problems 1.2 and 1.3 exist.

Existence of the discrete solutions. Solutions of the discretized problems 1.2

and 1.3 exist.

Convergent discretization. Discrete approximations of 1.2 and 1.3 are conver-

gent to the continuous solution of 1.2 and 1.3.

Contraction mapping. There exist numbers Q\ < 1, Q2 < 1 , such that Q1Q2 <

1 and

\\U2 - U2 | | <

where €1,62 are perturbations of the boundary data on F^F^; u 1,1*2 are the

perturbated solutions which correspond to tii, and tx2.

For elliptic partial differential equations we can also express problem 2.16 in an

equivalent variational form; then it is possible to prove that the solution sequence

of the corresponding finite element method is a convergent minimization sequence.

The independence between convergence and the the ordering of the solutions of

these subregions can be easily shown in variational form [KCSQ85].

We can also recast the numerical analog of QM as a modified matrix problem,

then prove its convergence. From analysis of the linear algebra analog of §fiM for the

model problem we can obtain many new results by applying classical acceleration

approaches in numerical linear algebra to this method. In Chapters 5 and 6 we will

discuss these problems in detail.



Chapter 3

Schwarz Splitting

In this chapter a more general model of fyM for application to problems in linear
algebra, Schwarz Splitting (or $>), is presented. For a matrix equation Ax = / , we
first introduce a Schwarz Enhanced Equation (or S^S) Ax = / . The corresponding
matrix A is called a Schwarz Enhanced Matrix (or 5^1/). A necessary and sufficient
condition for the equivalence of the original equation and S^S is shown. In Section
3.3 a few splitting matrices of SEM are presented. In particular, the Schwarz Splitting
(or SJS) is defined. Then some relations between the eigenvalues of these splitting
matrices and the corresponding splitting matrix for the original matrix are shown.
If the original matrix is an Af-matrix, then *§> is a convergent splitting. The original
QM is equivalent to applying a block Gauss-Seidel scheme to the <& It is clear that
other classical acceleration schemes can also be applied to this model.

3.1 Definitions

As we mentioned in our last chapter, the approach of &M to a problem is to modify

it to produce an equivalent enhanced problem, then to solve the new one iteratively.

It is not necessary to view fyM only as a way of solving elliptic partial differential

equations. As we mentioned in the introduction, QM can be viewed as a general

methodology for problem solving. A similar idea has been applied to a nonlinear

problem arising in circuit simulations [Deu85]. It was suggested that the application

of SftM to the system of ODE is promising. Here fyM is discussed in terms of matrix

theory. In Rodrigue and Simon's paper "A generalization of the numerical Schwarz

algorithm", QM is first recast into numerical linear algebra. Then many results

of the classical analyses in linear algebra [Var62] could be applied. This approach
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provided possibilities of generalizing and improving §lM. We extend this thought

further to a general linear system of equations in this chapter.

Consider a matrix problem:

Ax = / , (3.1)

where A is an N x N nonsingular matrix, / and x are N vectors. A partitioned

form of the equation (3.1) will be used in the rest of this thesis. A partitioning

is defined by the integers ni,n2, • • • ,n2*+i where n2t- > 0, n2t+i > 01 for all i, and

where

rti + n2 + • • • + n2*+1 = N. (3.2)

Given a set {n,}?**1 which satisfies (3.2), the {2k + 1) x {2k + 1) partitioned form
of the matrix A is then given by

(3.3)

where Aij is an n, x rtj submatrix. We always assume that the unknown vector x

and the known vector / in the matrix equation Ax = / are partitioned in a form

consistent with A. Thus, if A is given by (3.3), then x is assumed to be partitioned

A2,2k+1

as
x = [xu x2, • • •

where x, is an nt- x 1 matrix (column vector). A dual vector of x

]X =

(3.4)

(3.5)

is defined such that: all even subvectors a?2t*, i = l,***,fc are duplicated once in

their places, and all odd subvectors remain the same.

A partitioned matrix can also be represented by a directed graph. Consider any

2Jb + 1 distinct points Pi, P2, • • •, P2*+i in the plane, which we shall call nodes. For

every nonzero entry A+j of the matrix A, we connect the node Ĵ f to the node P, by
xWe will explain the reason for this partitioning pattern later.
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122

Figure 3.1: Directed graph G(A).

means of a path 2 PiPj, directed from Pi to Pj, as shown in Figure 3.1. By relating

each path PiPj to the corresponding A t j , the matrix A is associated with a finite

directed graph G(A). As an example, a dense 3 x 3 partitioned matrix

A =

has the directed graph G(A) in Fig. (3.1).

If the operator L(u) in equation (1.1) is a linear second order elliptic operator,

then the discretized problem can be written as a matrix equation :

An A12

A2i

A31

A22 A23

Az2 ^33 : :

• m

ft

h
L/aJ

= /• (3.6)

The order of the unknowns is arranged so that [x\9 x2] corresponds to the unknowns

in fti, [22,23] corresponds to the unknowns in Cl2 and [x2] corresponds to the tm-

knowns in ft 12, which is the overlapped part of the two. The numerical $M for the

2For a diagonal entry Ai%%
illustration, see Figure (3.1).

0, the path joining the node P, to itself is called a loop. For an



3.1. DEFINITIONS 25

above problem solves the following subproblems alternatively:

4°

4°
4°

(3.7)

A23 h
h

*1 •

It is not difficult to observe that this procedure is equivalent to a 2 x 2 block Gauss-
Seidel iteration for the following matrix equation:

Ax =

n
Al2 0

A22 0

0 A2

0

m m

x2

*2

X3

h
h

(3.8)

From the convergence proof discussed in the last chapter we know that the procedure

(3.7) will converge, the solution of equation (3.8) satisfies x2 = 2j, and [xi^x2,x3]
T

is a solution of equation (3.6). This is to say that the dual vector of the solution

of (3.6) is the solution of (3.8) and vice versa3. We shall call the equation (3.8) the

Schwarz Enhanced Equation (or «3sP) of (3.6) and the corresponding matrix A in

(3.8) the Schwarz Enhanced Matrix (or $EM) of the matrix A. The formation of

SEM can also be illustrated in terms of a directed graph. As we mentioned before,

the original matrix is represented by the directed graph in Fig.(3.1). Let us split

node 2 into a pair of dual nodes (P^ P2), and let the incoming path from Pi point

to P;, and the incoming path from P3 point to P2.

The loop path of the original node is duplicated for both dual nodes (see Fig.

3.2 ). This new directed graph is called the dual graph for the Sfjflf A.

This idea of forming a new equivalent problem can be generalized in two ways:

we may enhance the new enhanced equation recursively; or we may partition the

matrix A into a matrix like (3.3) and then enhance this partitioned matrix. Here

3Later we will prove that this conclusion can be true only when A^2 exists. For most approxi-
mations of an elliptic partial differential equation this restriction is satisfied.
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122 A22

Figure 3.2: Dual graph G(A).

we only discuss the latter approach. The results of the following discussion can be

easily applied to the former.

Let the matrix A in (3.1) be partitioned in the form (3.3), where n2f- > 0 and

7*21+1 > 0 for all i. The reason for assuming n2« > 0 is that we are going to split

the node P2» and splitting a null node 4 is meaningless. On the other hand, a null

nonsplitting node can be used to cover the case of adjacent nodes. The case of

splitting a node into three or more nodes can be covered by recursive splitting, but

there is little practical reason to do that. To form the Schwarz Enhanced Matrix

A, we first split every even node P2i into a pair of dual nodes (P2,-, P*), * = 1» •••»*>

and copy every odd node P21+1 to a new node P21+1. The even nodes P2t- are also

called overlap nodes. The new nodes P, and P{ are the nodes of the directed graph

G{A) for the S$f A. Then for each path P(Pm in the original G(A), we will put a

corresponding path (or paths) into the dual graph G(A). The rules are listed in the

following table. The far right column lists six logical expressions, of which only one

can be true for each path in G(A). After identifying the case for which the logical

expression in the fourth column is true, we will add the path (or paths) in the third

column to G(A). The corresponding entry for each path (or paths) is given in the

second column. Let So and Se denote the sets of odd numbers and even numbers,
4 Here we define a node as null node if there is no path to or from this node. Equivalently, we

may say that a node P, is null if n< = 0.
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respectively. We have the following table:

Case

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Entry

Au

An

Aim

Alm

Aim

Alm

Path

hh
hh p{Pi

PlPm

PlPm

PlPm P[Pm

PlPm P{Pm

Condition

(/ = m) D (/ € So)

(/ = m) n (/ € Se)

(/ / m) n (/ G So) n ((m € So) U (/ > m))

(/ ^ m) D (/ € So) D ((m € Se) D (/ < m))

(/ # m) D (/ € Se) n ((m € So) U (/ > m))

(/ ?* m) D (/ € Se) n ((m € Se) D (/ < m))

We may also interpret this table graphically. As in Fig. (3.1) and (3.2), we may

lay the 2k + 1 nodes in a straight line, with the nodes in numerical order. Then we

split each even node into P'2i and P2,, one by one, starting from P2. All incoming

paths from the left side of P<ii will point to P9
2i\ and all incoming paths from the

right will point to P<i%- The outgoing path from P<n is then split into two outgoing

paths for both new nodes and will point to the same destination as before. All loops

of the overlapped nodes will be duplicated for both dual nodes. After we split all

even nodes, the new graph is the dual graph G(A). Notice that the dual nodes of

each pair have exactly the same outgoing paths, with the exception of the two loop

paths. The matrix A constructed according to the above rules is called the Schwarz

Enhanced Matrix (^EM) with respect to the partition (3.3), and the corresponding

matrix equation

Ax = / (3.9)

is called the Schwarz Enhanced Equation (^?) , where / is the dual vector of / .

Here is an example of a 5 x 5 block matrix equation and its

An

A2\
A31

Mx

Al2

A2i

A&
A42

An

A13

A23

A33

A$3

Au

A24

A34

A44

AS4

An

A2$

A55

Xi

x2

x3

x4

A
h
h
fA

£
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Ax =

An

A 2 i

A 2 i

A31

A«
A41

A51

A12

A22

0

0

0

0

0

0

0

A22

A32

A42

A42

A52

A13

A23

A23

A33

A43

A43

A53

Au

A24

A24

A34

A44

0

0

0 A15

0 A25

0 A25

0 A 3 5

0 A4S

A44 A4 5

A54 A5 5

Xx

x2

A
x*
x4

<

=

/ l

/ 2

/ 2

fz
h
/ 4

h

= 7.

If we merge each pair of dual nodes into a single node, and fold each pair of paths

from the same dual pair into a single path, the resulting graph is identical to the

original one. From the construction of ^ , it is easy to see the following result:

Lemma 3.1 If vector x = (a?i, x2, • • •, z2*+i)T is the solution of equation (S.I), then

its dual vector x is the solution of SE$ AX = / , where f is the dual vector of f.

The matrices A2it2i* i = 1, • • •, ^ are also called overlapped blocks. If two Schwarz

enhanced matrices B and C of the same matrix A, for which the overlapped blocks

are B2%,2i a*id C^tfn* = 1>#• • »̂ ? respectively, have such a relation that each i?2it2t

is a submatrix of the corresponding C2,,2t, then we say C has more overlap than

B. This overlap is closely related to the overlap area of the solution regions for the

subregions mentioned in the introduction. As we have shown, for the continuous

model problem, if the amount of overlap increases, then the convergence rate will

increase too. For the matrix model we have a similar result.

3.2 Equivalence Theorem

A necessary and sufficient condition for the equivalency of equation (3.1) and its

8$ (3.9) is given in this section.

Theorem 3.1 Let \(A), X(A) and \(Au), i = 1, • • •, 2k+l be the sets of eigenvalues

of A, A and A-{, i = 1, • • •, 2k + 1, respectively. Then \(A) C A(A) U ( U \(A2i,2i))-
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Proof. Let A be an eigenvalue of A and

x =

be the corresponding eigenvector. Substituting x into the equations which corre-

spond to the dual nodes P^ and P21 > we have

S,- = Ax'2|., (3.10)

= Ax2t. (3.11)

As we mentioned in the last section, only one term is different in the left hand sides

of the two equations. Subtracting (3.10) from (3.11), we have:

-Aat\2t(2« - *2t) = A(x2f. - x2 , ) , i = 1, • • •, k.

If x'2i — x2% ^ 0 for some i, then we have A € (J ^(^2t,2t)- If A £ (j
1 l

then X2t has to be equal to 5^ for i = 1,- • • ,fc. Therefore, £ is a dual vector of

x = (xi, X2, X3, • • •, X2*+i)T> which will satisfy equation

Ax = Ax.

Thus A G A(A), which concludes the proof.

Define 4 P (3.9) as equivalent to (3.1) if A""1 exists and the solution vector x is

a dual vector of the solution x of (3.1). Similarly, we say that $EW A is equivalent

to matrix A if A~l exists. With this definition and the result from Theorem 3.1 we

have

Theorem 3.2 / / a matrix A is a Schwarz enhanced matrix of the nonsingular ma-

trix A, then the following are equivalent:

1. Matrix A is equivalent to matrix A.

Proof. If 0 & U A(i42»,2i)> then from Theorem 3.1 we know A"1 exists. Applying

the strategy used in the proof of Theorem 3.1, we can show that the solution x of

Ax = / is a dual vector of the solution x of Ax = / .
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k
Now we show that 0 £ U \(A2i,2%) ls also a necessary condition. Suppose there

is a j such that 0 € KA2jf2j)- We know that A2j,2j is singular. Let the rows of

matrix A2j,2j be r,-, i = 1, • • •, rij. There is a constant vector a = (ai, • • •, an> ) T ^ 0

such that:

Let the rows of the SEM A for the dual nodes P2j»-Pjy be b, and c,-, t = 1, • • •,

respectively, where

b» = (ei , • • •, e 2 j - i , r^ 0, c2 j>i, • • •,

Ct = (Ci, • • • , C2j-l, 0, r

From the definition of a 9EM, the only differences between rows bt- and ct- are in the

positions where the rt are located. It is easy to verify that:

/ s i

It means that A is singular. The proof is complete.

If a matrix is a positive definite matrix or an M-matrix5, any principal minor of

this matrix is also a positive definite matrix or M-matrix. Thus, we immediately

have

Corollary 1 Any S^iof a positive definite matrix A is equivalent to A.

Corollary 2 Any SjjjjMof an M-matrix A is equivalent to A.

3.3 Splittings of Schwarz Enhanced Matrices

From the results of the last section we know that the solution of Ax = / is equivalent

to the solution of Ax = / . Here we will analyze the application of some classical

5 Any nx n matrix A = (<ty) with <ty < 0 for all t ^ j is an M-matrix if A is nonsingular, and
A"1 > 0.
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splitting techniques to SEM* If we want to solve the matrix equation Ax = / where

A is an n x n nonsingulax matrix, we consider expressing the matrix A in the form

A^M-N, (3.12)

where M and N are also n x n matrices. If M is not singular, we say that this

expression represents a splitting of the matrix A, and associated with this splitting

is an iterative method

Mx^l) = NxW + f. (3.13)

Most important iterative methods can be described from this point of view. It is

also called a linear stationary method of first degree. The matrix M~lN is called

the iterative matrix of this splitting. The convergence behavior of this splitting

is decided by A(M~1iV), more specifically, by the spectral radius6 of the iterative

matrix M~lN and the distribution of the eigenvalues of this matrix. Particularly,

we call a splittings a convergent splitting if p(M~lN) < 1 holds. If the diagonal

entries of the matrix A = (ay) are all nonzero, and we express the matrix A as the

matrix sum

A = D - L - 17,

where D = diag(a\9i, 03,2,' • • ^n,n) and L and U are , respectively, strictly lower
and upper triangular n x n matrices, then the following choices

D-} NPJ =L + Uy

MPG= D-L; NPO =U

give the point Jacobi and point Gauss-Seidel splitting, respectively.

Let A = Mpj — Npj be the point Jacobi splitting of SEM, and A^i = A — Li —

Ui, i = 1, • • •, 2k +1 where Att, is the diagonal block in (3.3). The eigenvalues of the

iterative matrix MpjNpj and the eigenvalues of the point Jacobi iterative matrix

of A have the following relation:
6The spectral radius p(A) of a matrix A is defined as

p(A) = max I At- |
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Theorem 3.3

X(MpljNPj)CX(MpljNpj)U

Proof. Notice that the iterative matrix MpjNpj is a S^d of the matrix MpjNpj

with respect to the same partition of A in (3.3). Apply theorem 3.1 to this point
Jacobi iterative matrix, the proof is complete.

This theorem shows that the point Jacobi splitting of S$£ does not change the
performance of the point Jacobi splitting of the original matrix.

For the block Jacobi iterative method in which the matrix A is partitioned into
the form of (3.3), a conclusion similar to theorem 3.3 can be derived. Let A be the
SEM of the matrix A, the block Jacobi splitting for this partitioning of A be

A = MBJ - NBJ,

and the corresponding block Jacobi splitting of the

A = MBJ -

where MBJ = diag(A\,i, • • •,<A2*+i,2*+i) and MBJ is $EM of the matrix MBJ* Then

for this special block Jacobi splitting we have

Theorem 3.4

Proof. As in the case of the point Jacobi iterative matrix, this block Jacobi iterative

matrix of A is the $<M of the block iterative matrix of A. Since the diagonal

blocks of both iterative matrices are zero, the second term on the right hand side in

Theorem 3.1 vanishes; and thus the equality holds. If we split the diagonal blocks

as Aiti = Mi - Ni and let M'Bj = diag(Mu • • •, M2k+\), then we have a more general

result than Theorem 3.4:
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Corollary 3

__. x^ k

\(M'BJ~ N'BJ) C KM'BJ^N'BJ) U (IJ A(M^"1AT .̂)).
t=i

Theorem 3.4 tells us that this particular block Jacobi splitting of a SEM does not
improve the convergence rate when we compare it with the corresponding splitting
of the original matrix A.

For the point Gauss-Seidel splitting of the dual matrices we also have a similar
theorem. Let A = MPG — NPG be the point Gauss-Seidel splitting of a S]$dm it is
not difficult to see that MPG and NPG are the SEM of the matrices MPG and NPG,

respectively. The following result can easily be obtained from the proof of theorem
3.1.
Theorem 3.5

C \(Mp£,NpG) U ( I ) A((D2t- - I s * ) - 1 ! / * ) ) .

This result shows that if we relax each subproblem only once, the convergence

factor is independent of the overlap7. It is interesting that this non-positive result

has a very useful application. When we use the multigrid method in a composite grid

environment, one important question is how the overlap will effect the convergence.

There are some experiments (see [ST82]) which show that the amount of overlap

does not affect the convergence, and thus we can reduce the overlap to a minimum8

in order to cut down the cost of each sweep. This theorem gives us an explanation.

Another extreme is tyM^ in which case the relaxation is carried out to convergence of

the subproblem. Then the convergence factor is exponentially related to the overlap

(see introduction). We might expect that the effect of the overlap on the convergence

will increase when we increase the relaxation sweeps in each subproblem.

So far the splitting techniques we have discussed are not very promising. But

this picture can be changed. Consider a new partitioning of $<M, let

(3.14)
7If we relax the subproblems more than once then the conclusion is not valid
8There are other factors which must also be considered. For example, the amount of overlap

must be sufficient to ensure the accuracy of the interpolation.
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where Ms = diag(S\, , S*), and

^21+2,21

i — 9 . . . h —. 1 •Si =

sk =

We define the splitting (3.14) to be a Schwarz Splitting ($>). We should always

relate a Schwarz splitting to the corresponding partition. A different partitioning

will lead to a different *$?. From this definition we know that a $5 is essentially a

block Jacobi splitting for a particular partition of SEM, and ^f is the Gauss-Seidel

splitting which corresponds to this partition.

Very often problems in the biological, physical and social sciences can be reduced

to problems involving matrices which have some special structure. One common

situation is where the matrix is an M-matrix. As we mentioned in last section, any

$EMO{ an M-matrix is equivalent to the original matrix. Now we have the following

result:

Theorem 3.6 A Schwarz splitting of any Schwarz enhanced matrix A is a conver-

gent splitting if A is an M-matrix.

Proof. We define a splitting A = M — N as a regular splitting of A if M is

nonsingular with M > 0, and N > 0. A well known result for the regular splitting is

that if A~l > 0, any regular splitting of the matrix A is a convergent splitting[Var62].

It is clear that if A is an M-matrix then the $ is a convergent splitting. By the

comparison theorem for Af-matrices9, we can also derive a comparison relation

between the splittings we discussed above.

»Let A = Mi - Nx as A/a - N* be two regular splittings of A, when A"1 > 0. If Nx > N2 then
the spectral radii of the matrices M~XN\ and M^Ni have the following relation:

[Var62]
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Theorem 3.7

Proof. From the construction we have

NPJ > NBJ > N'Bj

Application of the comparison theorem concludes the proof.

From this result, we know that $S is the best splitting among these splittings.
In Chapter 5 we will derive some quantitative results for $> of the model problem
of elliptic PDE's.



Chapter 4

Template Operators and Exponential Decay

In the last two chapters, we have shown that fyM or SJ5 can be applied to large

classes of problems, but we have not addressed the issue of how to recognize the

problems for which $lM is most suitable. Now we will reexamine the analysis of the

model problem in the Chapter 2 from a different point of view. More specifically, we

will study a particular behavior of the inverse of the same operator, the exponential

decay phenomenon. First, the Green's functions for the model problem in 1-, 2-

and 3-dimensional solution space are discussed. The relation between the decay of

the Green's function and the convergence speed of fyM is studied. Then in Section 2

the decay of the "discrete Green's function" of a matrix is studied. Specifically, the

exponential decay of a banded matrix is examined in detail. We have found that the

matrix is not a good structure to study this problem. In Section 3, a new structure,

template operator, for a linear operator in a finite dimensional space is developed.

In the last Section, the concepts of influencing and influenced wavefronts are intro-

duced. Then some estimates of the norm of the wavefront are presented. These

results provide a theoretical basis for determining when these Schwarz techniques

can be used successfully.

4.1 A Key to the Success of SAM

In Chapter 2, the analysis of $M for the model problem shows that if the over-

lap increases the convergence factor of ^M improves exponentially. Moreover, the

higher the spatial dimension, the bigger the improvement. If we combine these

analyses with some other techniques, $)M or $j can be developed to be as compet-

itive as other powerful methods. One of the key facts which makes %M become
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an optimal iterative method is the exponential relation between the overlap and
the convergence factor. More specifically, when the overlapping area increases the
convergence factor decreases exponentially. For a Poisson equation, we may also
use the decay of the Green's functions to explain this result more intuitively. As
we know, the solution u(P) for the model problem with homogeneous boundary
condition can be expressed by the corresponding Green's function as

u(P) = JaG(P,Q)f(Q)dQ.

The influence of the forcing function f(Q) on the solution u(P) is decided by the
value of the Green's function at (P, Q). The Green's functions for model problems
in one-, two- and three-dimensional solution space are as follows l:

1. One dimensional problem (0 < x < 1):

fl — f}x far T < P

[1 "" x)i for x ^ 6

2. Two dimensional problem:

Gfoy^id^r-ln

3. Three dimensional problem:

- 0 2 + (v - V)2 + (* - C)2

Let P represent x,(x,y), or (x,y,z) and Q represent £,(£,77), or (£,77,0- W e

may observe that when the distance between P and Q increases, the influence of

Q on the solution at P decreases. If the overlap is increased, the artificial bound-

aries are moved away from the boundaries of the subregions. Consequently, the

contributions from the error on the boundaries of these subregions diminish expo-

nentially with the increasing distance. This observation is not only true for the
1Here we list the Green's functions for 2 - and 3-dimensional Poisson equations in infinite domains

which are easier to explain. The Green's functions for finite domains have a similar decay but are
more complicated.
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Poisson equation. Actually, it appears in many physical processes. The decay of

the Green's function is just a mathematical description of a common physical phe-

nomenon: that the influence between two points will weaken if the distance between

them increases. This suggests that fyM and % can be applied to many important

applications successfully. Late on, we will explore this issue mathematically.

Another observation which can be obtained from these Green's functions is that

the higher the spatial dimension the faster the decrease of the influence!

The inverses of the matrices A associated with Poisson's equation with Dirichlet

boundary value conditions give "discrete Green's functions". A"1 should be a good

approximation to the Green's function (See Birkhoff's book "Numerical Solution

of Elliptic Problems"). Thus a similar decay behavior should be true for these

inverses2. This observation motivates us to seek more kinds of operators for which

the inverse has such a decay property.

4.2 Exponential Decay and Banded Matrices

The exponential decay of the off-diagonal elements of the inverse of a diagonally

dominant tridiagonal matrix was observed decades ago[Ker70]. There were several

papers which discussed the topic of the exponential decay of the inverse of a banded

matrix [Dem 7 7], [dB80], etc.. In summary, an estimate of the form

I o « |< C71'-'1 (4.1)

was given in these papers, where a , j is the element of the inverse of a banded

matrix. The claims in these paper are somewhat misleading. The first issue is: can

we guarantee a decay from (4.1)? The answer is no! Without any further conditions

on the linear operator the above estimate provides us with no useful information.

There are two pitfalls in this statement. First is the "constant" C. In the following

example we will show that C can be so big that an exponential increase may happen!

The second pitfall is the decay term y^'K Even though we do have 7 < 1 here, 7

is a function of the order of the matrix n in question. For example, 7 ^ 1/(1 + n~2)

2In next chapter, we will prove that these conclusions can be derived for discrete model problems
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for a matrix derived from the model problem. So we will have *fn £ e~2, a nonzero
limit, asn-+oo. These two factors lead to a bound which is so weak that virtually
anything can happen. Here are some counter examples. The first is:

1

- 2 1

- 2 1 0

- 2 1

A =

0

It has an inverse:

1

2

4

8

1

2 1

4 2

On—1

2n

-2 1

- 2 1
nxn

0

1
2 1

nxn

The off-diagonal elements of the inverse actually increase exponentially. People may

argue that this matrix is not stable 3. Imposing a stability condition only solves

the problem of the big constant C. The second problem still exists. The following

example is derived from a boundary value problem for the one-dimensional model
3Here we need to consider A to be a family of matrices with respect to the size n, or the mesh

size /i, if we want to discuss the stability. A commonly used definition of stability in this context
is that the norms of the inverses for this family of matrices are bounded by a constant which is
independent of n or /i.
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problem. This matrix is symmetric positive definite, but its inverse still has a

growth away from the main diagonal along some rows and columns.

0.92 - 1

- 1 2 - 1

- 1 2 - 1

0

0

•1 2 - 1

- 1 2
10x10

50 45

45 41.4

40 36.8

35 32.2

30 27.6

25 23

20 18.4

15 13.8

10 9.2

5 4.6

40 35

36.8 32.2

33.6 29.4

29.4 26.6

25.2 22.8

21 19

16.8 15.2

12.6 11.4

8.4 7.6

4.2 3.8

30 25

27.6 23

25.2 21

22.8 19

20.4 17

17 15

13.6 12

10.2 9

6.8 6

3.4 3

20 15

18.4 13.8

16.8 12.6

15.2 11.4

13.6 10.2

12 9

10.4

7.8

5.2

2.4

7.8

6.6

4.4

2.2

10 5

9.2 4.6

8.4 4.2

7.6 3.8

6.8 3.4

6 3

5.2 2.4

4.4 2.2

3.6 1.8

1.8 1.4

Both examples have shown that band structure does not guarantee decay in the

inverse. Here is another example. The following matrix is not banded(!), but its

inverse shows an interesting decay. If we arrange the elements of any row or column

of this matrix on a circle with equal spaces and think of the original diagonal

element as a central element, the elements on this circle decay away from this

central element. This matrix is derived from a periodic boundary value problem.

All these examples show that band structure is not a good predictor for the decay of

its inverse. Furthermore, band structure is also related to the ordering of the matrix

in question. If we reorder a banded matrix as a random sparse matrix, the decay

still exists, but it can not be described in terms of distance from the main diagonal.
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This suggests that the decay is essentially caused by a locality or compactness of

an operator which is independent of the bandness of the matrix or the ordering of

the variables.

A =

2.1 - 1

- 1 2.1 - 1

- 1 2.1 - 1

- 1

0

0
- 1

- 1 2.1 - 1

- 1 2.1
10X10

1.702 1.286 1.001 .8143 .7096 .6758 .7096 .8143 1.001 1.287

1.287 1.702 1.287 1.001 .8143 .7096 .6758 .7096 .8143 1.001

1.001 1.287 1.702 1.287 1.001 .8143 .7096 .6758 .7096 .8143

.8143 1.001 1.287 1.702 1.287 1.001 .8143 .7096 .6758 .7096

.7096 .8143 1.001 1.287 1.702 1.287 1.001 .8143 .7096 .6758

.6758 .7096 .8143 1.001 1.287 1.702 1.287 1.001 .8143 .7096

.7096 .6758 .7096 .8143 1.001 1.287 1.702 1.287 1.001 .8143

.8143 .7096 .6758 .7096 .8143 1.001 1.287 1.702 1.287 1.001

1.001 .8143 .7096 .6758 .7096 .8143 1.001 1.287 1.702 1.287

1.287 1.001 .8143 .7096 .6758 .7096 .8143 1.001 1.287 1.702

Particularly, for operators in a high dimensional solution space or for operators

which are derived from the finite element method, the concept of band can no

longer characterize the locality of the operator.

The second issue is how to define a concept of distance between nodes which is

meaningfully related to their influence upon each other. Essentially, the purpose of

introducing the concept of exponential decay is to characterize the decreasing influ-

ence as the distance between two nodes4 increases. Using a matrix data structure,

the exponential decay is characterized by the decrease of the off-diagonal elements.

For one-dimensional problems, this decay gives a good characterization of decreas-

ing influence. But for higher-dimensional problems, this characterization is not
4Here we adopt the terminology node and distance from the graphical representation of a matrix.
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adequate. For example, consider the Dirichlet problem of a Helmholtz equation

Au — au = / ,

* Ir = 9,

* € [ 0 , l ] x [ 0 , l ] ,

where a = 0.00278. Let the grid size be 1/6. Using an nine-point stencil, we can

construct a 36 x 36 diagonally dominant, banded, positive definite matrix. We list

the first column of the inverse matrix in the following table. Each item in the table

has been multiplied by a factor of 104. The superscript of each number in the table

is the row number of the elements in the inverse.

568

162

59

26

12

5

I

7

13

19

25

31

162

129

69

36

18

8

2

8

14

20

26

32

59

69

52

33

18

8

3

9

IS

21

2T

33

26

36

33

24

15

7

4

10

16

22

28

34

12

18

18

15

10

5

5

11

17

23

29

35

5

8

8

7

5

2

6

12

18

24

30

36

It is easy to see that the off diagonal elements decrease in an oscillatory manner,

since the enforced ordering has destroyed the topological relationship among these

variables. Measuring the distance between two nodes by the difference of the row

and column numbers here is not suitable to characterize the influence between them.

But if we imagine a center in the upper left corner of this table, the elements decay

monotonically and exponentially in a wavefront form.

After a careful study of these issues and counter-examples, we have found that

the abstract data structures vector and matrix prevent us from seeing important

features in many physical problems. Actually, in a recent paper, Demko [DMS84]

had noticed this limitation of the matrix structure. A linear operator in finite

dimensional space is often a discrete approximation of a continuous operator for

some particular application. Instead of solving the original problem in the entire

solution region 0, (say in R*, where Jfe usually is 1, 2 or 3), we choose only a finite

number of nodes (or points) Oi, 02, • • •, on in Q, and try to find the solutions on these
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nodes. A discrete approximation of the original problem

Ax = b

is then formed, where x = {xt} is the set of unknowns defined on the set of nodes

O = {o{} and A is the discrete approximation of the original continuous operator.

On the one hand, X{ is a component of an n-dimensional vector. On the other,

each Xi is also associated with a node o,- of the solution region £l in R* or some

other solution space. In an abstract vector space, the elements x, are given a forced

linear ordering which in general cannot adequately represent their positions in the

solution space. The corresponding data structure for the linear operator in this

space is represented by a rectangular matrix. Again, the positions of the coefficients

in any one of the rows or columns have little relation with the positions in the

solution space. Generally speaking, these abstract data structures have successfully

represented the topology of the problems in one spatial dimension and are a good

theoretical tool for many analyses. But for operators which are derived from higher-

dimensional problems, the enforced linear ordering of the unknowns in the matrix

structure has destroyed the proximity relations of the variables and the compactness

of the operator. This is an example of how our thinking and theory has been

influenced by sequential filters which have disfigured many physical features in a

particular application. Since sequential arithmetic and two dimensional scratch

paper were the means to study mathematics a few hundreds years ago, it is not

surprising that people proposed the matrix data structure for the linear operator

at that time. Now, the parallel age has come. It is the time to free ourselves from

this filter.

4.3 Template Operators

In the course of this study, J. Oliger suggested finding a new structure which would

preserve the topological structure of the original problem. The discussions led to

a new vector space — Template vector space T£ and a new structure of the linear

operator — Template operator. Most of the linear operators in finite-dimensional

space are derived from discrete approximations of continuous operators. The main
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idea of these new structures is to maintain the primary topological structure of the

original problem in the discrete approximation. In this way, many characteristics

of the original continuous problem can also be easily seen in the finite dimensional

approximation.

Let oi,O2,---,on be n nodes in a solution region Q, which usually resides in

R*, k = 1,2 or 3 5. These nodes usually are the positions on which the discrete

approximations of a continuous problem are sought. Let O denote the set of all

nodes ot.

Definition. 1 A template

is a topological structure of the set O in which all nodes ot* maintain the same

proximity relation with each other as they have in the solution region Q.

Intuitively, T is the pattern of the distribution of the set O. For example, there

are four templates in Fig. 4.1. They all have the same number of nodes, but they

are associated with four different topological structures. The first three come from

R1, R2 and R3 respectively. The second and fourth templates are both from i22, but

they have different topological relationships among the nodes. We consider them

to be different templates.

Given a template T, construct n Cartesian products of R* and o,-, S% = RJ x ot,

i = 1,2, • • •, n, where R* is an ^-dimensional vector space. Now define set

Tn
# = Si x 52 x • • • x 5 n .

Each element in TJ consists of n ordered pairs6:

If there is no confusion, we may also abbreviate the notation as

5 Actually, Q can exist in any space.
6To simplify the typesetting, we will not express all the following concepts by their real topological

picture, but by a linear array of n ordered pairs.
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O\ 0*1 03 O\ o$ O

• # • • • •
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or

O4

08

OB

> <>

O\ O3

/

03
4

. /

O7

O5

O4

/

Figure 4.1: Four different templates
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where xt or xOi are s-dimensional vectors. In physics, X{ or xOi can be interpreted

as the state variables for node ot. Each X{ or xOi is defined on the node o, on the

template T.

A template vector space which we may abbreviate as template space over

R9 is the set Tn* with operations, addition and scalar multiplication, which are

defined as follows: let

x = ( < xuox > , < x2,O2 > , • • • ,< xn,on >),

V -

and

ax =

Under these definitions, TJ is a linear space.

Each element x eTJ is called a template vector.

For example, Fig. 4.2. presents four template vectors which are associated with

the corresponding template in Fig. 4.1.

Let 23 denote the summation over all nodes ot 6 O. Define the operation of

scalar product of two template vectors x and y as follows:

where (xOiJyoi) is the scalar product of two ^-dimensional vectors. We may in-

tuitively think of this operation as matching the two template vectors together,
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x(o2) 1(03) x(o4) x(o$) x(oe) x(o7)

x(oj)

x(o4) x(oi)

x(oi)

Figure 4.2: Four different template vectors
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forming the scalar products for the matching pairs, and then summing the prod-

ucts. By the length (or norm) of a template vector in this space we mean the

quantity

II x | |= y/(x,x)T.

It is easy to see that Tn* is a Euclidian space under this operation.

In order to simplify the notation, the following discussion will assume s = 1. Let

Tn denote Tn
l. Thus there is only one state variable on each node. In the appendix,

we will remove this restriction and generalize to other spaces.

Given a template vector space Tn, a template operator space over Tn can be

introduced as follows: let

be the template of Tn. Construct n Cartesian products

Let

C = Qi x Q2 x .. • x Qn.

Each element L € C consists of n ordered pairs

L = [< Ruox >,

or simply
L = [Ro^Rot,* • •, ROn]i

where JR, or ROi is a template vector in Tn associated with the node ot- in the template

T 7

A template operator space over Tn is the set C with two operations addition

and scalar multiplication which are defined as follows: let

7Here the subscript I of L means this expression is a left form of a template operator. Late, we
will introduce its right form
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L2 = [<RUOX > , < R2, O2 >, ',

= [ROl ,

and

LX+L2 = [ < i ? l + f l l , O ! > , ' • , < Rn + Rn, On

= [Roi + ̂ 01, * * ' , -ROn + Ron]h

ah = [

= [aROl, a ^ , • • •, a

Under these definition, £ is a linear space.

Let

X = \XOl, Xoj , • • • , XOn )

be a template in Tn and

L = [ROl> R021 • •# > -Ron]/

be a template operator in £. Define the operation of L on x as follows:

y = Lx

where (ROi,x) denotes the scalar product of the template vectors ROi and a:. We see

that y is again a template vector in Tn. Under this definition, L is a linear operator,

mapping Tn into Tn. In another words, L maps x to y, and y is the image of x under

this mapping. L is called a template operator of the template space

ROi is called an operating template or input template of the template op-

erator L for node ot. Let lOi(oj) denote the component of ROi associated with the

node Oj so that

i ( ( ), On > ) .

I0i(o%) is called the center element of the operator template for node ot.
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An in-web for node 5 in second template space

'*(«*)

An In-Web for Node 1 in Fourth Template Space

Figure 4.3: Two in-webs

Given an operating template

for each

we may construct a directed graph in which

we put a path from node Oj to node ot. This graph is a picture of how the operating

template collects the information from the nodes which have non zero coefficients

lOi(oj) and forms the value of the image y at node ot. We call this graph represen-

tation of an operating template an in-web of the template operator for node ot.

Figure 4.1 shows two examples of in-webs. The in-web in the first picture, with

four paths to node 5 from its neighbors, corresponds to a 5-point stencil for node

five.

The structure of the left form of a template operator for the second template
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Figure 4.4: A template operator in the second template space

space in Fig. 4.1 has the following arrangement:

Ror Ro.

RO1 R02

By expanding ROi to tinveil its internal structure, we may obtain the the picture in

Fig. 4.4:

If we map the template vector to a conventional vector (using the same ordering
as the nodes have), then the template operator corresponds to an n x n matrix as
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follows:

A =

I0l(o2)

J nxn
It is easy to see that the operating template ROi for node o, corresponds to the row

i of matrix A. Now let

t\ = ( < 1, O\ > , < 0, O2 > , • • • , < 0, On > ) ,

e2 = ( < 0, ox > , < 1,02 > , • • •, < 0, on > ) ,

Cn = ( < 0, OX > , < 0, O2 > , • • . , < 1, On > ) .

It is easy to see that {e,-, i = 1, • • •, n} is the basis of space Tn.

Applying L to the basis, we have

Let Co< denote Let-, i = 1, • • •, n. COi are another set of templates which can be used

to represent the template operator L. We call COi the image template or output

template for node ot-, because it is the image of et* under the mapping L. We may

also interpret it as the distribution of the output for a unit source at node ot under

this mapping. Again, ot is called the center of this image template and /0|(°*) the

center element of the image template.

We can see from the definition that the image template of the node ot* corresponds

to the i-th column in the corresponding matrix we mentioned above.

Analogous to the in-web, another graph called the out-web for node ot- may be

constructed, in which we include a path from o, to Oj whenever lOi{oj) ^ 0 in an

image template. In this graph all paths start at node o, and indicate which nodes

are directly influenced by the node o,\ The pictures in Fig. 4.5 are two out-webs for
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M)

UO4)

An out-web for node 5 in second template space

/I<*(«*)

hx (01)

An Out-Web for Node 1 in Fourth Template Space

Figure 4.5: Two out-webs

the node o5 of the second template space and for the node o\ in the fourth template
space in Figure 4.1, respectively.

Now the right form of a template operator can be defined as:

L = [< Cuoi > , < C2,O2 > , • • • ,< Cn,on >]r

or simply

L = [Co!, Co, , • • •, COn]r'

Then the right product of a template vector and a template operator can be intro-

duced as follows:

x=yL = y[OOl ,0^", OOn]r

= {(y, 001)T, (y, C U r , • • •, (y, OOn)T}.

It is interesting to compare this operation with the corresponding operation
x = yA in a matrix structure. There, the matrix A keeps the same form while the
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vector y needs to be transposed as a row vector. Here, the template vector y keeps
the same form, but the operator needs to be expressed as a right form in order to
obtain an operation consistent with the left form. The rule for deciding when we
should use the right or left form of a template operator is simple: if L appears on
the right of the operand , the right form is used and vice versa. We will see that
with these two kinds of products the multiplication of two template matrices can
be expressed very simply.

Let

A = [R01, Ro2> • • •, ROn]i

and

It is easy to verify that

= ^ C ' 0»
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Each element in the product of two template operators is a scalar product of a

operating template of A and an image template of B. An operating template of D

is a left product of the operating template of A for the same node and the operator

B. An image template of D is a right product of the operator A and the image

template for the same node. It is easy to see the relationship with the operation of

multiplying a row and a column in the matrix structure.

The transpose of any linear operator L can be simply obtained by swapping the

input template and output template for each node.

L T = [CO1> Cot, • • •, COn]i

= [ROl, R02 > • • ' > Ron]r •

For a self-adjoint operator, we have ROi = COi,Oi € O.

Corresponding to the concept of diagonal dominance in row or in column for the

matrix structure, a template operator is center dominant in output or in input if

i(oi), for all ° t e O ,

or
~ UoA, for

is true.

Although we have also developed other new concepts for template operators, we

will not present them here, since they are not directly related to the discussion in

the next section. The interested reader can refer to the Appendix B.

4.4 Estimates of the Decay of Inverse Operators

In this section we will concentrate on the discussion of a decay phenomenon for

the inverse of a sparse template operator. As with the matrix structure, if there

are only few non-zero elements in a template operator we call it a sparse template

operator.
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• stands for first influencing wavefront of the ?̂ node

© stands for second influencing wavefront of the <? node

o o o o o o o o

o o © o o o o o

o o o © # © o o o o o o

o o © « < ? # © o o o o o

o o o © # © o o o o o o

Figure 4.6: First and second influenced wavefronts

To describe the decay phenomenon more precisely, we need to introduce two

important concepts: kth influencing wavefront and kth influenced wavefront of the

node Oi in a template operator. Let

be the center of the influenced wavefront for node o,-,

be the set of all nodes except node o, for which the corresponding elements in

the output template COi are non-zero. VV£i(o«) is called the immediate or first

influenced wavefront of the node o,-. The kth influenced wavefront of the node o,

can be defined recursively:

Definition. 2 The kih influenced wavefront of the node Oi, W^](o»),w a set of

nodes o/ defined as follows:

U

Fig. 4.6 shows the first and the second influenced wavefronts of a node o,-.
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Likewise, let

wL0 )(oo = <*
be the center of the influencing wavefront for node o,-,

be the set of all nodes except node o, for which the elements in the input template
ROi are non-zero. W^ (o,-) is called the first influencing wavefront of node ot.

Definition. 3 The kih influencing wavefront of the node oi} Win\oi),is a set of

nodes o\ defined as follows:

U £ W

It is clear from the definition that

and8

e> = U wii!(o.) =

where \i i=> v and the p and g are the largest integers for which the

yVin(o%) are not empty. Here p and ^ both depend on node o,. To simplify the

notation, we will not explicitly express this dependence. For many important appli-

cations, IVJi^oO and W^ (oi) are compact in the sense that the first influenced and

influencing wavefronts are located in a small area in the solution space. For P.D.E.

applications, the number of elements in Win\<>i) or Wiil(oi) is typically bounded

by a constant which is independent of the mesh size. We often call this property

the locality of the operator. In terms of the graph representation, we have the

following results which will be useful later.
dHere we assume the operator is irreducible.
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Lemma 4.1 The k-th influenced wavefront is the set of nodes to which the shortest

path from node o, is of length k.

Similarly, the k-th influencing wavefront is the set of nodes from which the
shortest path to node ot is of length k.

Let V(oi) and U(<>i) be the first influencing and influenced wavefront for node o,
of the fc-th power of template operator L. We have9:
Lemma 4.2

U ^in(<>0 = V(*)>

and

The two kinds of wavefronts characterize how influences are propagated to or
from other nodes graphically.

The identical template operator / is as follows:

where

J* - {kM = Sij | oj e O).

The template vector IOi is a structure corresponding to the base vector in a ordinary

vector space; both have only one element which is 1 and the rest are zeros.

Let

be the inverse of the operator L where

9 Here, we ignore the possibility of cancellation producing new zeros.



4.4. ESTIMATES OF THE DECAY OF INVERSE OPERATORS 59

are the input and output templates of the node o,- for i""1, respectively. It is easy
to see that the input template JR"1 of the inverse is a discrete Green's function for
node ot. (i?"1,/) is the solution of the equation

on node ot. Intuitively, if L is a finite approximation of a linear differential operator
and the mesh is fine enough the following is true:

and

Let

I I K 1 II'' = £ (O;
l = £ (C/(o,))2\l

~} \\tJ2"1 ||2 approximates the norm of the Green's function

if the linear operator is a discretized linear differential equation and the mesh size is

small enough. The norm || JRJ.1 || is bounded by a constant which is independent of

the mesh size if this finite approximation is stable. The structures of the continuous

and discrete operators are more consistent for the template space than for the

traditional vector space for the matrix structure.

Let XA be the characteristic function on the subset A. Construct two new

sequences of template vectors
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where p and q axe the largest integers for which W^(o,-) or Wi{$(o«) are not empty,
and N is the number of the nodes for this template operator. By the above defini-
tion, we have:

n(*)(o.) , ( <?(<*), oj
K 3) \ 0, e

j
6 M

elsewhere,

0, elsewhere.

In another words, Pfk' only gathers the elements of C~ l on the fc-th influenced
wavefront and Q\ ' gathers the elements of J?"1 on the Ar-th influencing wavefront.
Let

lk)\\l =

We have the following theorem:

Theorem 4.1 If there is an integer k > 2 such that Wt*n (̂ot) is not empty, then

for any such integer k the following inequality holds:

II <?ik) ll' < 7*11 J t f II2 (4.2)

where 7 < 1 and depends only on the condition number of the operator L. A

corresponding result for the kih influenced wavefront is also true:

II J f > ll! < 7*11 C-» ||2. (4.3)
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Proof. The proofs of (4.2) and (4.3) are parallel. Here we present the proof for

(4.2). From the definition of an inverse, we have:

Construct two sequences of template vectors:

£ Ptu)

= {ROl, J?oj, • • •, Ro^Ri

By the definition, we have:

Oi € U

pu
o,

o,
(i
o,

It is clear that the non-zero patterns of W^ and W$k~2^ do not overlap. Now,

t II ~ I 2Li

0

J»f*> + î f
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The rest of the proof can be completed by the following lemma [Dem77]:

Lemma 4.3 Let {a,-},->o be & sequence of nonnegative numbers. If there is a K > 0

so that Zi>k <** < #<**-i for all k > 1 , then ak < [K/(K + l)]ks0 for all Jfc > 1,

where s0 = £ t > 0 a.% -

If a matrix has only real eigenvalues or is positive definite, a stronger result can

be obtained. Here we present the result for a positive definite template operator.

Theorem 4,2 If L is a positive definite template operator, then

( 4 - 5 )

Proof. The proof of (4.4) is rather easier. Apply the optimal Chebychev iteration

to the equation

LTx = IOi

and choose the initial guess x^ = 0, where IOi is the output template of the identity

operator for node ot. We know that the solution of this equation is the input

template R~* of L~l for node o,\ The fc-th iteration x^ has the error bound

Since z<°> = 0, *<*>(<*) = 0,o, € O - V(o.) and

Using the same argument with

Lx

we can prove (4.5).
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These two bounds are rather pessimistic, but we can still derive some very useful

results from them. For example, apply the Crank-Nicolson scheme to a parabolic

boundary problem

du

-QT + CU = / , areftx(0,T],

lu =flf, x€rnx(0,T],

u(x 0̂  — u°(x)
where

Cu s - jt wi
a^Wi+ ^

lu =cu-

at > 0, 6, c and d > 0. It is known that the condition number of the resulting linear
system has the bound [Kuz87]

KL < Crh~2

where r is the time step and h is the spatial mesh interval. If we choose T ~ hy

then asymptotically, we have

where d = kh is the distance between the node ot- and the node in the fc-th wavefront.

There is almost no influence to node o, from those nodes which are a few wavefronts

away. Thus, if we apply S& to this problem, the overlapping needed is very small.

For a higher-dimensional problem where decay of the norm of the wavefront does

occur, the average size of an element in the fc-th wavefront even diminishes faster,

since the number of elements in fc-th wavefronts will increase when k increases.

The number of elements in each wavefront is proportional to A:^1) where a is the

dimension of the solution space, but the bound on the rate of decrease in (4.2),

(4.3), (4.4) and (4.5) depends only upon the condition number of the operator.

Because the condition number of approximations to the model problem is only

weakly related to the dimensionality of the solution space, the individual elements

of the inverse operator decrease faster in a higher-dimensional grid, explaining the

faster convergence of fyM for higher-dimensional problems.
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Unfortunately, these bounds still cannot guarantee that the norm of the k-th

wavefront of the input or output template of the inverse will decay as k increases.

In Section 4.2, we presented illustrative counterexamples and explained how bounds

such as (4.2) and (4.3) can permit growth. The conditions of spaxsity or positive-

definiteness are not strong enough to ensure that decay will occur. Here we will

present a sufficient condition which will yield decay.

For simplicity, in the following discussion we rescale the template operator L so

that

hXoi) = 1, for all Oi € O.

If a template operator is output or input strictly center dominant, then we have

the following result.

Theorem 4.3 Let L — I — B be a sparse template operator and || B H^ = 7 < 1,

then

II Plk) IL * 7ll ̂ *"1} IL- (4-6)
//||B||1=7<1, then

II Q\k) IL * 7ll Qt" IL. (4.7)
Proof. First note that || B [^ < 1 or || B \\t < 1 are equivalent to saying that L

is input or output center dominant, respectively. Another important fact for the

proof is the following: if

Oi € VV<2(o<),

from Lemma 4.1 we have

This means that the input template ROj only has non-zero elements in the (k—l)-th

or higher influenced wavefronts of the node ot*. Similarly, if

then
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The proof of (4.6) and (4.7) axe parallel. Let's prove (4.6).

Vz' we have

and

- £

•Bit
First, we prove: when k = p, (4.6) is true. Let Oj be the node in W^(°t) such that

C< ( ° i ) = II P%P lloo-
Then we have

= 0,

I tfiPi) |= || p/rt IL < E I U°i) II tfW I •

^ " l ) IL- (4-8)

If || P$p) H^ > || P/P~x) U^, we could conclude that 1 < 7, a contradiction. Thus we

can replace || P\v) W^ in the right hand side of (4.8) by || P\v~x) W^ and obtain

II P(l>) II < 'vll P.^"1) II
I I •»« l loo — ' I I • *» l l oo '
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Using reverse induction, suppose

L,
is true. Let Oj be the node in VVjS(o,-) such that

Then we have

= 0,

Since

we have

c U

loo —

\ umk

« lloo

As with in (4.8), || P$k) | L > II ^f
have

L

W II < -/ll P.(A:""1)
% lloo — 711 r%

(4.9)

w i U l e a d t o a contradiction. We therefore

A: = 1 • • • v

The proof is completed.

Notice that || B | L < 1 ^oes n o t ensure the conclusion of (4.7). There is a

mistake in a theorem dealing with a diagonally dominant tridiagonal matrix in a

recent paper of Rong-Qing Jia. He claims that || B | L < 1 could yield a sharp
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estimate for both columns and rows. A simple counter-example is the following

matrix, which is row diagonally dominant but not column diagonally dominant:

-56.1
21

35
-55.1
21

34

-54.1 33

21 -53.1 32

0

21 -35.1 14
21 -34.1

The inverse of this matrix exponentially decays in its columns but not in its rows.

If we loosen the condition of strictly center dominant to center dominant, then

following are true:

P l") lloo (4-10)L <
or

loo < II Qtl)
L (4.11)

We may also derive a simple bound as follows:

Theorem 4.4 Let L = I — B be a sparse linear operator. If \\ B H^ = 7 < 1, then

// | |S| |1=7<1, then

< n<
Proof: If || B ^ < 1, we have L'1 = £ £ 0 ^ and C~l =

lemma 4.2, it follows that

(4.12)

(4.13)

,.. From
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Consequently,

1 — 7
oo

The proof of (4.13) is parallel with the proof of (4.12).

For an M-matrix A, there is a diagonal matrix D > 0 such that DA is strictly

diagonally dominant. Applying this result to the corresponding template operator,

the exponential decay law can then be applied to the new operator.

It is also very interesting that for some problems (e.g. the five point discrete

Laplace operator in a rectangle, which we will analyze in detail in the next chapter),

the operator is not center dominant in the physical space, but is center dominant

in the Fourier space.

The concept of the wavefront also allows us to discuss the exponential decay for

some random sparse linear operators without ordering the nodes since there is no

ordering relationship involved in the definitions of the influencing and influenced

wavefronts.



Chapter 5

Model Problem Analysis

The exponential decay law presented in the last chapter has shown that there is a

relationship between the overlap and the convergence of $^f. A general quantitative

relation is very hard to derive for arbitrary cases. A common approach is to analyze

prototype model problems. In this chapter we present spectral radius analyses of the

Schwaxz splitting ($ ) for model problems in one- and higher-dimensional solution

spaces. We have found that the convergence speed of fyM is a function of the

overlap, the geometries of the sub regions, the frequency of the Fourier component

and the dimension of the solution space.

The relationship between convergence and the area of the overlap has been

observed previously. Miller [Mil65] proved a result for the case of two overlapping

rectangles, while Kantorovich and Krylov mentioned in their convergence proof

that the convergence rate is related to the geometries of the subregions. They were

mainly interested in solving elliptic equations in irregular regions; an analysis for

applications motivated by parallel processing and composite grids has not been

carried out. Our analyses extend the earlier work in the following respects:

• The number of the subregions can be an arbitrary finite number.

• A quantitative relation between the convergence and the shapes of the subre-

gions is shown.

• A relation between the convergence and the dimension of the solution space

is explored.

• For two- or higher-dimensional solution spaces, the analyses are carried out in

Fourier space. The convergence speeds for different frequencies are presented.
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• An analysis of higher-order finite difference schemes is carried out.

These analyses have provided guidelines for implementing an efficient parallel algo-
rithm for the solution of elliptic PDE's.

5.1 One-Dimensional Case

There is no practical reason for paralellizing the solution of a one-dimensional
model problem, but the analysis of this problem provides some results useful for
the higher-dimensional cases. It also makes the whole analysis more complete.

The model problem in one dimension which we will consider is

y"(s) = /(*) , . 6 ( 0 , 1 ) ,

y(0) = a; y(l) = fi.

After discretization using a centered second order method, the resulting linear sys-

tem is

Tnx = 6, (5.1)

where

Tn = Tridiagonal{l, - 2 , l } n x n -

The fytf for solving this problem divides the region into k overlapping subregions

Q,i i = 1, • • •, k as shown in Figure 5.1. (To simplify the analysis we assume the

overlap pattern is uniform. Similar conclusions can be deduced for more general

cases.)

Let h be the grid size, £ the length of the overlap and rj the length of every

subregion. Then letn + l = j j , / = £ and m + 1 = £. The circular points in Figure

5.1 are the boundaries of the subregions. A natural way to implement fyM is to

first guess some "reasonable" initial values on the artificial boundaries and then to

solve these subproblems separately. Next, use the solutions of these subproblems

to update the values on the artificial boundaries and proceed iteratively until the

solutions on the overlapping regions converge. If we solve on these subregions in a

natural order, each succeeding subregion takes its boundary values from the new
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ft

Figure 5.1: One-dimensional overlapping grid.

solution on the previous subregion. As we have shown in Chapter 3, this procedure

is equivalent to applying the block Gauss-Seidel method to the Schwarz enhanced

equation

Tx =

Em Tm Fm

Em Tm

(5.2)

Em Tm

= (Tm ® Ik + Em ® Lk + Fm ® I^)« = b.

The corresponding block Gauss-Seidel iteration for this equation is as follows:

(Em ®Lk + Tm® h)2{k+l) = -(Fm ® Uk)x™ + 6. (5.3)

The quantities above are defined as:

• Em: an m x m matrix with zero elements everywhere except for 1 in position
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• Fm: an m x m matrix with zero elements everywhere except 1 in position

(m,J).

• Ik', a k x k identity matrix.

• Lki a k x k matrix with zero elements everywhere except for l's on the sub-

diagonal.

• Uk'- a k x k matrix with zero elements everywhere except for l's on the su-
perdiagonal.

As we showed in Chapter 3, (5.1) and (5.2) are equivalent. Therefore, the
convergence analysis of §fiM is reduced to calculating the eigenvalues of the block
Jacobi matrix J = M~lN of the $S where

M = Tm®h,

N =

If we multiply out M~lN then

J =(T

= (T-1 <g> Ik)(Em ®Lk + Fm® Uk)

Fm® Uk,

where Em and Fm have almost all zero elements except columns (m — / + 1) and /,

respectively. The rank of this matrix is clearly at most 2(fc — 1). After some row

and column exchanges J can be transformed to 7, which is similar to J:

J = UJljT = [ 0(n-2*)x(n-2*) C ^
[ 02kx(n-2k) C?

where

G = D' ® h + E' % Lk + F' ® Uk,

1 D-[
0 ' 6 0 0 a

J
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! , m + l-l
ba - ( m + l ) ' b~ (m + 1) '

It is clear that Xj 6 (0 U AG), where Xj and XQ are the eigenvalues of matrices J
and C7, respectively. Using matrix polynomial theory we may obtain the following
theorem.

Theorem 5.1 If a <b then XQ satisfies the following equation:

XQ + 2 • a * cos0 • XG + a2 - b2 = 0

where the parameter 0 is the root of the following equation:

cos 0 + *

The proof of this theorem is lengthy and has nothing to do with the discussion of

QM. We present it in an appendix.

Let

p = max{\ XG |} = max{\ Xj |} ,

it is easy to show that p corresponds to the smallest root 0* of equation (5.4). In

particular, if k = 2

/> = &,

and if k = 3

Now we can immediately observe some important facts about

1. First, the spectral radius of J only depends on the number of subregions k

and the overlapping area a. If both k and a are independent of the mesh size

hj then the convergence of fyM is also independent of h. Figure 5.2 shows the

distribution of the roots 0 when k = 4,5,6,7, with a = 0.4 and b = 0.6 for all

four values of k. As k increases, the curve for the left hand side of equation

(5.4) remains the same, while the frequency of the jumps in the curve for
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the right hand side increases. We can see that the smallest root of equation
(5.4) moves leftward when k is increased. This implies that p increases if k is
increased. From these pictures we can also see that matrix G has 2k distinct
real eigenvalues when a < b.

2. For the cases of k = 2 and 3, we notice that when the overlapping area

increases, p decreases, and when k increases, p increases. These conclusions

also are valid for the general case (k > 2). We cannot give a closed form

solution for k greater than 5, but the numerical results indicate that these

results hold. Figure 5.3 1 shows the theoretical and computational values of

p. The computational results (denoted by ©, A etc..) are very well matched

with the theoretical values. This picture also indicates that the conclusions

we mentioned are general.

3. Furthermore, the SEM of the matrix Tn has Property A^ [You71], thus the

Gauss-Seidel iteration can certainly be improved by the SOR acceleration.

Since p is known, the optimal relaxation parameter can be estimated exactly

(see Chapter 6 for detailed discussion).

1 Increasing K = l/m corresponds to increasing overlap.
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Figure 5.2: The distributions of the roots for different k.
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the block Jacobi iteration matrix in the 1-D case.
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5.2 Two— and Higher—Dimensional Cases

Two-dimensional model problems are commonly used to test numerical methods

for the solution of elliptic PDE's. Here we use a method which combines Fourier

analysis with the method used in the last section to analyze the application of

fyM to the two-dimensional model problem. The same approach can be applied in

higher-dimensional cases.

The Poisson equation in two-dimensions is:

, y), (x, y) € (0,1) x (0,1), (5.5)

,V). (5.6)V\r =

Using central differences we obtain a discretization of this equation:

Ax = 6, (5.7)

where

A = Tn<g)Jn+Jn<g>Tn.

This is of the same form as we obtained in the one-dimensional case, with h being

the mesh size and n + 1 = jr. If we cover (0,1) on the x axis with k subregions

as in the one-dimensional case, then the solution area is covered by k overlapping

rectangles as shown below 2.

If we apply fyM to these overlapping subregions, then it is equivalent to applying

the Gauss-Seidel method to the following

Wm F'
v * m M tn

w

Ax =

E'm F'

w
E' w

(5.8)

= {Wm Em) ®Lk

kxk

Fm)®Uk}x = b,
2The subregions are shifted upwards to improve visibility of the overlapping pattern.
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1

1

*

I

a.

-

•

where

Figure 5.4: Two-dimensional overlapping grid.

® Tm , E'm = In = Jn

In order to analyze the convergence of fyM , we need to study the spectral radi

of the block Jacobi iterative matrix of the Sjg:

J = M~lN

where

We have the following restdt:

Theorem 5.2 The matrix J is similar to the matrix

C(n*-2nk)x2nk

where

~ _

G = Block — diagonal{A}? t = 1, • • •,n ,



5.2. Two- AND HIGHER-DIMENSIONAL CASES 79

i = D\ l® Uk,

a, 0

0 0
, &i =

o
0

o o
0 a<

sinhmfl;

cosh &i == 2 — cos
Z7T

s inh( l — Ac

sinhmtf,

z = 1, • • •, n ,

and K = l/m is the overlap ratio. Let pi be the spectral radius of the D{, then each

Pi is the convergence factor for the corresponding Fourier component of the error

in the approximation.

Proof. Let

where Xn is an orthogonal matrix whose columns are the eigenvectors of the matrix

Tn, and U is an orthogonal matrix. Note that UNUT = N. Then

f =UJUT =UM~lNU~lNUT

= {{Dn

® Tmyl ® Ik}N

where Dn is a diagonal matrix whose diagonal elements are the eigenvalues of Tn.

We know that there is a ran x mn permutation matrix P such that

P(A ® B)PT = B®A

where A and B are any n x n and m x m matrices, respectively. So we have

P(In Fm)PT =

In = /m ® Z?n + Tm
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Notice that:

= Block-diagonal{Ti}nxn,

ti = Tridiagonal{l,yi, 1}
, iv x7t = —4 + 2 cos( - ) ,
n + 1

Let P = P ® J*. Then we have

, mxm
IK

m
® Im + In ® Tm)PTTX ® Ik}{(Em ® /n) ® Lh + (F

= (Q"1 ® h){(Em ® /n) ® X* + (Fm ® /n) ® Uk]

As in the one-dimensional analysis, we can move all of the non-zero columns to

the last columns and the theorem follows.

Since the structures of these diagonal blocks are the same as those analyzed in

the one-dimensional case, we can find a tight estimate of />j, the spectral radius of

*7, by using theorem 5.1. But here it is clear that

a t + # < l , a t > 0 , A->0 i = l , --- ,n

and thus we cannot derive a closed form of pj for general fc, but we may use the

Gershgorin theorem to get a very good bound for pj.

Corollary 4

pj < <*i + ft.

If we denote fi = -J, it is easy to estimate the asymptotic bound for pj (as h —• 0):

Corollary 5 / / k = 2,
sinh((l — «)//*•)

"" sinh(/i7r)

J / * > 2 ,
sinh(«/x7r) + sinh((l — K

"" sinh(/i7r)
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> 2 SUBREGIONS

O.t

OVBUPE

Figure 5.5: Theoretical and computational values of the squared spectral radius for
the block Jacobi iteration matrix in the 2-D case.

Figure 5.5 3 shows that the estimate derived from the Gershgorin theorem is quite

accurate. The computational results (denoted by 0 , A etc..) are very close to the

theoretical curve. Note that the curves are the asymptotic bounds of pj.

From this theorem and its corollaries the following conclusions can be deduced:

• The convergence rate of $&£ is a function of the overlap ratio K. If K is

constant4, then the convergence rate of %M is independent of the mesh size.

This is where the conclusion about optimal complexity comes from. If an

optimal algorithm is used for solutions of these subregions, the total compu-

tational work required for achieving a fixed accuracy is proportional to the

number of discrete unknowns.
increasing I corresponds to increasing overlap. Note that the domain sise increases with increas-

ing overlap when the subregion sise is held fixed.
*This means that * is independent of the mesh sise. We also assume here that the number of

subregions is independent of h.
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K = 0.25 K = 0.03

il

Figure 5.6: Three two-dimensional overlapping grids.

• The convergence rate of QM is also a function of the shape of the subregions,

specifically, a function of /i. If the subregions are thin in the overlapping

direction (usually caused by increasing the number of subregions), then the

convergence rate is slow. This suggests that we shotdd avoid slicing the do-

main into many thin overlapping subdomains. A multidirection decomposition

strategy is proposed in the next chapter.

• As in the one-dimensional case, the %$& of the matrix A has property A^K

Therefore, some classical acceleration schemes can be applied.

• The convergence factor decreases monotonically when the frequency increases.

Furthermore, if the overlap is increased, the errors of high frequencies are

damped exponentially faster than for the smaller overlap. The picture above

shows three different overlapping grids. The corresponding table presents how

the convergence factor />,- is changing when the the overlap and frequency are

changed. The last column lists the number of iterations needed to reduce

the errors of the corresponding Fourier components by a factor of 105. An

important message which can be obtained from this table is that we should

combine the strategies of increasing overlap and using multi-level grids. In

the following chapter we will discuss the accelerating strategies in detail.
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Frequency
i

1

6

11

16

21

0.5
0.25
0.03
0.5

0.25
0.03
0.5
0.25
0.03
0.5
0.25
0.03
0.5
0.25
0.03

Matrix D,
a,

0.3794
0.1987
0.0256
0.0095
0.0037
0.8058*10"4

0.0002
0.384U10-4

0.9612*10"e

0.5067*10"5

0.4423*10"7

0.1039*10"8

0.1409*10"7

0.5987*10-*
0.1215*10-"

A-
0.3794
0.6754
0.9602
0.0095
0.1555
0.8302
0.0002
0.0338
0.7126
0.5067*10"5

0.0076
0.6141
0.1409+10"7

0.0018
0.5320

Pi
0.5366
0.7684
0.9729 _j
0.0135
0.1574
0.8306
0.0003
0.0338
0.7126
0.7166*10"5

0.0076
0.6141
0.1987*10"6

0.0018
0.5320

Number of
iterations

18
44

420
3
7

62
2
4
34
1
3
24
1
2
19

Table 5.1: Convergence factors for three two-dimensional overlapping grids.

The model problem in a uniform p-dimensional cube is as follows:

= g.

p

£&
As in the two-dimensional case, the cube is divided into k overlapping subcubes.

Figure 5.7 shows a 3-dimensional cube and its decomposition. The subcubes axe

shifted upwards to improve the visibility of the pattern of overlap.

The same approach is used for this problem as for the former case. Before

discussing the analysis, some notation needs to be defined. Let

= Tn

= tridiagonal {1, - 2 , l } n X n

and l(l\n) be the n x n identity matrix. If there is no confusion, we will use

instead of I^(n). We can recursively define the matrix5 derived from the model
5 As in the two-dimensional case, a central difference scheme is used here.
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H ' I-

Figure 5.7: Three-dimensional overlapping grid.

problem in a p-dimensional cube as follows:

Tp(p) — 'r(p-i) *

where

Let

and

Then X^ is the orthogonal matrix which diagonalizes the matrix T$*\ That is

discretiza-where JD(P) = Diagonal { -2p+ 23 c 0 8 © ^ / ^ + 1)}(np-ixnP-i)#

tion of the p-dimensional model problem can be written as:

Tip)x = b.
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The corresponding fyjfi and its Jacobi iterative matrix of the

(/(P-D(n) <g> J5m) ® Lk + ( / ^

are as follows:

) ® Fm) ® Uk)x

b,

M-iN

(n) ® Em) (n) ® Fm)

where

A result which is very similar to that obtained in the two-dimensional case can be
obtained as follows:

Theorem 5.3 The matrix jW %s similar to the matrix

XT —

where

= Block diagonal {D^},

av 0
0 0

0

, 0

_ sinh(l — K
sinh m0,,

, LIT v

0 0
0 av

= 2p -

!/ = ( ! ! , • . . , ip ) , ti f • • •, tp = 1, • • •, n.

spectral radius of each Du is the convergence factor for the corresponding

Fourier component of the error in the approximation.

Proof. The proof is completely parallel with the two-dimensional case. We only

need to change the Fourier transform matrix from X^ to X(p~lK

There is also a corresponding result for the asymptotic bound:
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K = 0.25 K = 0.03

Figure 5.8: Three three-dimensional overlapping grids.

Theorem 5.4 For the p-dimensional model problem the asymptotic bound for the

spectral radius of the block Jacobi iterative matrix of the $S is:

P<
sinh(\/p — sihh(y/p — 1(1 — «

The following picture and table present examples similar to those presented

for the two-dimensional case. The same conclusions can also be found in higher-

dimensional cases. If we compare this table with Table 5.1, an interesting observa-

tion is that the convergence rate of the higher-dimensional case is faster. Actually,

we can derive this conclusion directly from Theorem 5.4. A more favorable result

is that the errors in the higher frequency components damp even faster than in

the two-dimensional case. Thus the strategy of a multi-level grid will be more

successful.

5.3 Higher-Order Approximation Cases

In this section we will discuss the convergence behavior of $M for higher-order

approximations to separable elliptic PDE's.
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Frequency
i =j

1

6

11

16

21

K

0.5
0.25
0.03
0.5
0.25
0.03
0.5

0.25
0.03
0.5
0.25
0.03
0.5
0.25
0.03

Matrix Dij

0.2998
0.1622
0.0218
0.0014
0.3748*10"3

0.9105*10"4

0.6625*10-5

0.6101*10-e

0.1445*10"e

0.3820*10"7

0.1255*10-"
0.2383*10-*
0.2869*10"9

0.3543*10""
0.5055*10""

fly
0.2998
0.6164
0.9518
0.0014
0.0722
0.7689
0.6625*10"5

0.0085
0.6207
0.3820*10~7

0.0011
0.5050
0.2869*10"9

0.1524*10~3

0.4153

PiJ
0.4239
0.6923
0.9627
0.0020
0.0724
0.7690
0.9369*10~5

0.0085
0.6207
0.5402*10~7

0.0011
0.5050
0.4058* 10"9

0.1524*10"3

0.4153

Number of
iterations

14
32
302
2
5

44
1
3
25
1
2
17
1
2
14

Table 5.2: Convergence factors for three three-dimensional overlapping grids.

The two-dimensional separable elliptic problem on the rectangle [0,1] x [0,1]
may be stated as follows:

where

>e>0

Here the unknown U(x, y) will be approximated by tensor-product B-splines. When

the Rayleigh-Ritz-Galerkin discretization using this approximation is applied to the

above equation, it gives rise to a matrix equation

Ax = 6,

where the matrix A is of the form

A = MX ® Sy + SX ® My.
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If the B-splines are of order fc, then the matrices Mr , My, 5X, Sy are 2k — 1 banded

matrices arising naturally in one-dimensional problems. Moreover, Mx, My are

symmetric positive definite and 5*, Sy are symmetric semidefinite. We will not

discuss the derivation of this system here. Interested readers can refer to the paper

[KW84].

Let the decomposition of the solution region be the same as in the two-dimensional

case. After a slightly more complicated derivation, we may obtain the S^jM of the

matrix A as follows:

Fm

W2 Fm

4JL • " •

m

0

0

E
Fm

Wk

where

M
y,

Afy ,

My.

Wi = Mi ® Sy + Si <

XT*. — T . /O\ C i rJZ/| — JJ\% xy Oy T" *J2i

Fi = U\i ® Sy + U2%

Here the matrices Mt and S% are the B-spline matrices from the subregion Ht, while

the matrices Ly and Uij are matrices with zero elements everywhere except for

a lower or upper triangular matrix at the position ( l , m — / — d) or (m,/) which

is related to the boundary conditions on these artificial boundaries. Because the

detailed definitions of these matrices depend on the particular approximation, we

will not discuss them here. An example will be presented later.

In contrast with the case in the last section, we cannot use a Fourier transfor-

mation to diagonalize both matrices Sy and My here. Fortunately, a generalized

eigensystem will do. Since My is symmetric and positive definite and Sy is symmet-

ric, there exists a matrix Z such that

ZTMyZ = In,
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ZTSyZ = Dn,

where 7n is the identity matrix and Dn is the diagonal matrix. The diagonal elements
of Dn are the generalized eigenvalues A of

SyZ = XMyZ.

Now a similar approach can be applied to analyze the spectral radius of the

Jacobi iterative matrix of the $S. The matrix Z ®Im can be used to diagonalize the

matrices My and Sy in A such that:

(ZT ® In)Wi(Z ® Jm) = Mi®Dn + Si ® In,

{Z ® In)Ei(Z ® Jm) = Xi,- ® Z)n + L2i ® /n?

Let P be the permutation matrix such that P(A ® B)PT = I? ® A, then

Dn + Si ®

P(LU ®Dn + L2i ®

Dn + U2i ® / n ) P r = 5/ocib - diagonal{Ui},

where {J?,}mXm is a 2d— 1 banded matrix, {£t}mxm is a matrix with zero elements

everywhere except a d x d lower triangular submatrix in the position (1, m — / — d),

{Ui)mxm is a matrix with zero elements everywhere except a d x d upper triangular

submatrix in the position (m, /). Now, following the same approach as in the proof

of Theorem 5.2, we can prove the following theorem:

Theorem 5.5 The Jacobi iterative matrix of the $} is similar to the matrix

X (n? -2ndk) C(n2 -2ndk) X 2ndk

ri? -2ndk) G2ndkx2ndk

where

G = Block — diagonal{Di}, i = 1, • • •, n ,
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Hi

0
0
0

0

ft
Qi'

0
0
0

0

Hi

Zet pt 6e ifee spectral radius of the D%; then each pi is the convergence factor of the

error component of the corresponding generalized eigenvalue.

Here we cannot present a general quantitative estimate for pt-, but a similar
qualitative result such as the results in the last few sections is also true in this
case. When we increase the overlap, Ik will move leftward or upwards in 5/ or 7/
(/ = £/h). By the exponential decay law in the last chapter, the norm of 7£, and Qi

will exponentially decay. If the overlap ratio K is independent of the mesh size /i,
then these norms are also independent of h, as can be seen in the following example.

Strictly speaking, the nine-point stencil is not derived from the tensor product

J3-spline. Since the matrix derived from the nine-point stencil has the simplest

tensor product form and also has higher-order accuracy, we present it as an example,

discussing the convergence behavior when $$f is applied to this problem.

The matrix equation derived from the nine-point stencil on a unit square is as

follows:
(Mx ®Sy + Sx® Mv)x = 6,

where

s*

Mv =

Tridiagonal{l, - 2 , 1},

Tridiagonal{l, 4, 1},

Sv = Tridiagonal{6, -12, 6}.



Frequency
i

1

6

11

16

21

K

0.5
0.25
0.03
0.5

0.25
0.03
0.5

0.25
0.03
0.5
0.25
0.03
0.5
0.25
0.03

Matrix D{
a,

0.3794
0.1987
0.0256
0.0094
0.0036
0.7939*10~4

0.1928*10"2

0.3481*10"4

0.8709+10"6

0.3950*10~5

0.3280*10"7

0.7641+10"8

0.8092*10"7

0.3088*10-"
0.6097*10-*

0.3794
0.6754
0.9602
0.0094
0.1547
0.8298
0.1928*10~2

0.0327
0.7103
0.3950*10"5

0.0069
[o.6O86
0.8092*10"7

0.0015
0.5240

Pi

0.5366
0.7684
0.9729
0.0135
0.1565

[0.8298
0.2726+10-2

0.0327
0.7123
0.5585+10"8

0.0069
0.6086
0.1144* 10~5

0.0015
0.5240

Number of
iterations

18
44

420

3
7

62
2
4
34
1
3
24
1
2
18

Table 5.3: Convergence factors for three two-dimensional overlapping grids using
nine-point stencil.

Since Sy is an identity matrix, the generalized eigenvectors are the same as the
Fourier components. Applying the above theorem to this matrix equation we have

^ sinh Km9i ^ s i n h ( l -
"*~ sinhmft ' %~

5-2cos-fe
cosh* = ^

sinh mdi

It is not very difficult to see that the higher-order approximation has the same

asymptotic bound for pj as in the Corollary 2 of the last section. The above table

lists the convergence factors for different frequencies and the number of iterations.

The decompositions are the same as in Figure 5.6. Compare this table with Table

5.1. The iteration counts are exactly the same except the last one. But for the

higher frequency errors the convergence factors are slightly better. We can also

prove this conclusion by comparing the 7^, Qi with or,- and ft.



Chapter 6

Acceleration of the Convergence and Numerical

Experiments

The discussion of the last chapter has provided insight into the behavior of

Particularly, some possibilities for further improvement in the performance of this

method have been mentioned. In this chapter, detailed discussions of the accel-

eration strategies are presented. Section 1 discusses the SOR (Successive Over

Relaxation) acceleration. For the model problem, the classical theory of SOR can

be applied here directly. Both theoretical and experimental results show that the

improvement is significant. In order for a parallel algorithm to be efficient, global

communications should be avoided as much as possible. Here a local relaxation

scheme is discussed, and a general convergence proof for this acceleration is shown

providing a theoretical basis for the scheme. Section 2 discusses the application

of other classical acceleration schemes. Since we have obtained the eigenstructure

of the iterative matrix of the plain 4 ^ , many acceleration schemes for QM can

be analyzed. Particularly, optimal Chebychev acceleration is studied here. There

are other powerful accelerations schemes, such as preconditioned conjugate gradient

methods which are not mentioned here. This is not a oversight. They are very good

iterative methods for a conventional computer, but they require a global informa-

tion exchange in every iteration and introduce a lot of communication overhead,

and the parallel efficiency degenerates. If a new technology, which can reduce the

high cost of the global information exchange, appears in the future, these CG types

of accelerations will certainly be very interesting for further study. In Section 3,

hierarchical computation is discussed. Combining it with the other accelerations

makes $lM a competitive parallel iterative method for real applications. The re-

maining sections discuss several other issues which are important in the use of
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for real applications, namely decomposition considerations, solution methods for the

subregions and convergence checking. Due to lack of much real experience on the

new parallel computers and the rapid advances in hardware and software, further

studies are needed for these topics.

6.1 SOR Acceleration and Multi-Color Splitting

Among the many possible acceleration methods, the SOR acceleration is an attrac-

tive choice. It is easy to implement and its theoretical background is well under-

stood. The local communication pattern of this method is also an appealing feature

For parallel computation.

As we discussed in the last chapter, fyM is actually the following block Gauss-

Seidel iteration *:

(Em ®Lk + Tm® I*)*(*+1) = - ( F m <g> Uk)x^ +1 . (6.1)

Thus, an obvious choice for an acceleration scheme is the SOR acceleration. We

can construct a new approximation

and then attempt to choose an optimal relaxation parameter u to speed up the

convergence. Since the connections between the subregions merely involve artificial

boundary values, the relaxations are carried out only for those boundaries. Late

in this section we will present a general convergence result: for any choice of the

relaxation parameter between 0 and 2, this scheme will converge to the true solution.

But as we know, SOR cannot be successfully applied to an arbitrary matrix. The

following famous example is due to Kahan [Kah58] :

1 - a 0

0 1 - a

- a 0 1

xHere we exhibit the case of a one-dimensional model problem.
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where 0 < a < 1. This matrix is an M-matrix and is positive definite. A short

calculation will show that the optimal relaxation factor is UJ = 1, which is equivalent

to saying that SOR acceleration does not help in this case. Some further restrictions

on the iterative matrix are needed. For instance, the well known property A and

the consistent ordering of the iterative matrix will guarantee a successful relaxation

iteration. Fortunately, we are able to construct an algorithm which satisfies these

restrictions on the iteration matrix of the multi-color QM.

Let us start with some simpler cases. Since we have found the eigenstructure

of the iterative matrix for the model problem, the analysis of the application of

SOR to the model problem is straightforward. As we see from equation (5.2), this

S$d has property A^ 2. It is easy to verify that natural ordering and red-black

ordering of the subregions will both lead to a consistent ordering in the matrix.

Therefore, the classical analysis of the SOR theory can be applied here directly!

We have calculated the spectral radius p of the Jacobi iterative matrices for the

model problems in any dimension, the optimal relaxation factor can be calculated

from the following formula:
2

Table 6.1 lists some comparisons between plain $lM and its SOR acceleration for the

one-dimensional model problem. The third column of this table lists the number of

iterations needed to reduce the error by a factor of 105 for plain <5^, while the fourth

column lists the same quantities for SOR acceleration with the optimal relaxation

factor. The last two columns are the experimental and theoretical optimal relaxation

factors for the same cases. We can see that they agree very well. There is a detailed

discussion and the results of many experiments are presented in the paper [OST86],

which we will not repeat here. As we see in this table, the improvement of the SOR

acceleration is significant. For the higher-dimensional problems, we could also make

a similar table using the spectral radius we obtained in the last chapter. The next

several sections will discuss interesting issues which appear when this method is

applied to more general cases.
2 Property A^ is an extension of Young's famous property A to the block matrix case. Since we

consider only block matrices in this chapter, we will later omit the adjective block.
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SOR Acceleration Results for 1-D Model Problem
Number of
subregions

2

3

4

5

Overlap
ratio
0.333
0.182
0.095
0.039
0.019
0.427
0.309
0.250
0.175
0.071
0.030
0.333
0.220
0.167
0.083
0.333
0.190
0.167
0.083

Plain
%M

14
27
52

129
258

19
26
37
66

141
349
44
70
97

204
88

169
193
397

+ SOR
7

10
14
22
30

10
10
12
16
21
35
12
16
18
26
17
26
26
36

Optimal ijj
observed
1.2
1.3
1.42
1.60
1.68
1.3
1.3
1.38
1.48
1.62
1.71
1.42
1.5
1.52
1.67
1.55
1.62
1.65
1.75

Optimal o»
from theory
1.15
1.27
1.40
1.57
1.67
1.21
1.28
1.33
1.44
1.58
1.71
1.36
1.46
1.51
1.63
1.50
1.61
1.64
1.74

6.1.1 Multi-Color SAM and Consistent Ordering

As we mentioned above, some restrictions are needed to ensure the success of the

relaxation iteration. A well known candidate class of matrices is those which have

property A^\ or more generally, block p-cyclic matrices. An n x n matrix A is

p-cyclic if there is an permutation matrix P such that PAPT is of the following
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form:

PAPT =
0

0 •••

-42,2

-43,2 ' * •

0
0

0

M
0

0

0 0 Ap,p-i APiP

But simply having the property A^ or being a p-cyclic matrix is not enough.
Consistent ordering is also needed. A detailed discussion of these concepts is given in
Varga's book [Var62], For the model problem which is decomposed in strip fashion,
these requirements are automatically satisfied. The block-tridiagonal structure of
the iterative matrix in (4.2) has property A^ and is consistently ordered. But,
the inherent dependence in the natural ordering of the equation (5.2) prevents an
efficient parallel implementation. Instead, red-black ordering is commonly applied.
For a general solution region, the decomposition has to be carefully implemented
in order to meet these requirements. The multi-color QM proposed in Chapter 2 is
a way to obtain a block p-cyclic matrix. If we impose an extra restriction on the
decomposition such that:

= !,-•• ,* ,

where k is the number of colors, and i\ is the number of subregions in color /,

then the blocks which correspond to a particular color only need to be connected

to the previous color in the solution order. It is not difficult to see that the SEM

for this splitting is a consistently ordered p-cyclic matrix. When p = 2, the p-

cyclic matrix is a block 2-cyclic matrix, which is usually called a red-black ordered

block matrix. The advantage of the multi-color splitting is the parallelism inherent

in this decomposition. Subregions which have the same color can be computed

independently. In previous chapters we also mentioned the strategy of locating the

artificial boundaries near the middle of other subregions in order to maximize the

reduction of the error on these boundaries. If we group the subregions into only
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two colors, this requirement is very hard to achieve. This is the major reason we

are motivated to propose the multi-color splitting.

6.1.2 The Sensitivity of the Relaxation Factor to the Overlap

The analysis of the relationship between the spectral radius p and the overrelaxation

factor uj shows that when p is close to 1 the rate of convergence is much more

sensitive to changes in the relaxation factor. A slight perturbation of the relaxation

factor can result in a big degradation in performance. This is not good for practical

implementations. Since the spectral radius is exponentially related to the overlap,

the sensitivity of the rate of convergence drops dramatically if the overlap increases

(see Figure 6.1). Although the increased overlap causes more work in each iteration,

the total work is still less than it is for a small overlap. The work per iteration

increases linearly with the overlap, while the spectral radius decreases exponentially.

In Figure 6.1 the relation between the number of iterations and the relaxation factor

is shown. These results are all for the two-dimensional model problem in a unit

square. We divide the square into 5 overlapping subregions. The six curves in this

figure correspond to six overlap patterns, which have different overlapping ratios.

As we see in this figure, for the smallest overlap the performance of the method is

tremendously sensitive to the choice of the relaxation factor.

This figure strongly suggests a need to increase the overlap. Now a natural

question to raise is how to choose the best overlap ratio for a given number of

processors. Let us study the two-dimensional model problem again. We divide the

unit square successively into 2, 3, 4, 6, 8, 10 overlapping subregions. Then for each

case we vary the overlap ratio from 0 to 0.5. Using the spectral analysis in the last

chapter, we can calculate the total work needed to reduce the error by a factor of

105. Figure 6.2 shows the relation between the overlap and the total work for these

six cases. From this figure we can see that although the spectral radius will be

minimum for an overlap ratio of 0.5, in terms of the total work the optimal overlap

ratio is somewhat less than 0.5. When K decreases, the spectral radius increases.

But, if the change of overlap is small the number of iterations needed for reducing

the norm of the error by a fixed factor does not change. Thus, the total work will
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Figure 6.1: The number of iterations as a function of the overtaxation factor u>

decrease until the number of iterations jumps. That is the reason why these curves

show saw-tooth shapes. As the number of the processors increases, however, the

optimal overlap ratio will approach 0.5.

6.1.3 A Local Relaxation Strategy

SOR acceleration has a very efficient parallel implementation, but unfortunately, the

estimate of the relaxation factor still requires global information exchange in gen-

eral. This is a well known problem which causes the parallel efficiency to degrade.
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Figure 6.2: The total work as a function of the overlap ratio K
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Recently, a new technique3 which uses local relaxation factors has received some

attention. The motivation for this technique was to try to find a more efficient re-

laxation technique for irregular meshes or variable coefficient problems which could

avoid estimating of the spectral radius of the Jacobi matrix and obtain more error

reduction than the uniform relaxation factor. The reasoning behind this technique

is very convincing. Since the relaxation is a local operation, the relaxation factor

should also be characterized well by local features. Experience has shown that this

idea works well for many test problems. Of late, the locality of the communication

in this method has obtained the attention of the parallel computation community.

C. Kuo, B. Lever and B. Musicus [KLM86] apply this idea to a mesh-connected

array.

The basic idea of the local relaxation method is to determine a relaxation factor

for each individual grid point. Consider a five-point difference equation

CLgXg + anxn + aexe + awxw + aoxo = b0

where x0 is a grid function located at the position (iyj)
 4, £,, xn , xej and xw are

the grid functions located to the south, north, east and west of x0, respectively, and

a0, a,, an, ac, aw are the corresponding coefficients. Suppose that there are N

and M grid points in the row i and column j in which x0 is located. Now we may

imagine that there is an N x M rectangular grid and that each grid point has the

same difference equation as x0. Then the spectral radius of the Jacobi matrix for

this problem is

P J = - [vOTT COS — • + v ^ COS

Therefore, the optimal relaxation factor for this imaginary rectangular grid is:

We will use this uopi as the local relaxation factor for grid point x0. We can obtain

different relaxation factors for each grid point which are only related to the local
3It is also called the ad-hoc SOR method. See [Erh81], [Erh84]
4The solution region need not be rectangular.
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features surrounding the point in this way. When the solution region is rectangular

and the coefficients of the PDE are constant, the local relaxation factor is the

same as the global optimal relaxation factor. Experimental results show that this

relaxation scheme is successful for many test problems.

The same idea can also be applied to the SOR acceleration for $)M. The calcu-

lation of the spectral radius for the model problem can be easily generalized to a

general second order elliptic PDE with constant coefficients. As we have seen in the

last chapter, the estimate of the spectral radius only involves the overlap ratio and

information about the shape of the subregions, both of which are local information.

If we want to estimate a local relaxation factor for an artificial boundary, which

is located in some other subregion, we may imagine two overlapping rectangular

subregions and let the shapes of these rectangular regions be as close to the real

ones as possible. Then we may use the estimate of the relaxation factor for the

rectangular regions as the relaxation factor. Thus, global information exchange can

be avoided. In the next subsection we will prove that, for any choice of u> between

0 and 2 for each subregion, the iteration will converge.

This local relaxation method has been successful experimentally. Theoretical

analysis of the relationship between these relaxation factors and the convergence

rate remains a very interesting open problem.

6.1.4 The Convergence Proof for Local Relaxation

In Chapter 2 a multi-color $t^for elliptic PDE's was introduced and an extension to

a positive definite matrix, called multi-color $ , was mentioned. Here the detailed

definition of this splitting is presented. Combining it with the local relaxation

method, we may prove the following theorem:

Theorem 6,1 When the multi-color §fiM is applied to a positive definite matrix, if

every u>j , which is used as the relaxation factor for block j of color i, satisfies

0 < wj0 < 2,

then the relaxation process of the multi-color $S converges.
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Proof. The basic idea of this proof was given three decades ago by Ostrowski [Ost56],
who used the same idea to prove convergence of the group relaxations. The new
aspect here is that we combine two old techniques, $)M and group relaxation, to
obtain an efficient parallel implementation.

Let

Ax = b (6.2)

be the linear system of equations, where A is a positive definite matrix. The multi-
color <?? with local relaxation can be described as follows: First we find p permu-
tation matrices Pj, / = 1, • • • ,p such that matrix A can be permuted to p different
partitioned matrices, where p is the number of colors:

A=
( )
2,2

4<x) 4*1)

PJ

Local SOR relaxation is then applied to each of the blocks A\J as follows:\J

The motivation for this algorithm came from the fact that the original block relax-

ation (or group relaxation) still suffered from slow convergence. After we studied

the inverse structure of the sparse matrices in Chapter 3, we noticed that the er-

ror decay rates for different variables in the same block differed greatly. The plain

block relaxation failed to take advantage of the exponential decay of the inverse of

a sparse matrix. The multi-color $S tries to put every variable within the fast decay

area of some color (geometrically, we may say "near the middle of some subregion").
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As we show in the model problem cases, it eventually yields a method which has

optimal complexity.

The proof of convergence is straightforward. It is well known that for each

positive definite operator there is a functional

F(X) = (AX,X)-2(b,X)

which corresponds to the system of equations, such that the vector which achieves

the minimum of this functional is the solution of this system. The iteration process

can be viewed as the process of minimizing this functional.

Let us consider each calculation of a block as one step of the algorithm. It is

easy to verify that the decrease in the value of the functional for two consecutive

iterations is as follows:

where rj** is the residual of block i in color /. If every u^ satisfies 0 < u;f * < 2 , the

sequence of F(Xi) monotonically decreases. Using arguments of Ostrowski, we

can prove that this sequence will converge to the solution of (6.2). This concludes

our proof of convergence.

6.2 Other Classical Acceleration Schemes

Applying $5 to equation (3.12) we have

where G, = M~lN9. This is a typical form of the basic iteration. Many acceleration

schemes for this iteration are available. There is an excellent survey and comparison

for them in L. Hageman and D. Young's book, Applied Iterative Methods. We

will not repeat their comparison here. As we mentioned in the beginning of this

chapter, some of these methods are not discussed here due to the high cost of

the communication overhead in a parallel computer environment. Among these
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different schemes, the popular Chebychev acceleration is rather interesting in this
case. The adaptive Chebychev procedure still suffers from the high cost of the heavy
global information exchange in each iteration, but if we have some knowledge of the
eigenvalues of the iterative matrix G,, then optimal Chebychev acceleration is very
attractive. Particularly, for the model problem a detailed analysis of the eigenvalues
for the Sb is available. The application of the optimal Chebychev acceleration to
the model problem is therefore straightforward. Let

m(A) =

M(A) =

From Chapter 4, we have

m(G.) = -M{G,)

and

M(S.) < si°M^) + * ° h ( ( ' - ^ ( M )

The test results in the last chapter show that the bound (6.3) is very accurate5.

Moreover, all eigenvalues of the matrix G9 are real provided that the overlap ratio

K < 0.56. Applying the estimate (6.3) to the classical formula for the convergence

rate for optimal Chebychev acceleration, we can expect this acceleration to yield an

improvement similar to that offered by the SOR acceleration. Unfortunately, this

result cannot be generalized to the other cases as the SOR acceleration can. First

of all, there is no local Chebychev acceleration available, and the classical adaptive

Chebychev procedure requires an extensive global information exchange. Secondly,

the eigenvalues of the iterative matrix G9 can be complex in general. Chebychev

acceleration can only be applied to some of the complex eigenvalue cases. How to

apply the Chebychev acceleration to a general problem is still an interesting open

problem in some sense.

5If the result in Theorem 4.1 is used, the exact value of M(G9) can be estimate by some numerical
computations.

6There is no advantage in making K > 0.5. We need not consider this case.



6.3. HIERARCHICAL COMPUTATION 105

6.3 Hierarchical Computat ion

During the last ten years, very important advances in computational science have

been made in the area of the hierarchical computation. Among the best known

techniques are multigrid techniques[Bra77], adaptive grid methods [Oli84], hierar-

chical information flow[OU86]. Although, their approaches, theoretical foundations

and applications are very different, one idea behind these techniques is the same.

According to the particular application, the computational process is decomposed

into several different phases, regions or grids, which we will abstract as a hierar-

chy. Instead of using one uniform approach for the whole problem, we treat each

component of the hierarchy separately, attempting to choose the most efficient way

of obtaining the result in that component. The components of the hierarchy will

communicate with each other, and after some assembling or iterations, the final

result can be obtained in a very efficient way. To use a business expression, we

might say that we are only willing to pay what we have to pay. This same philoso-

phy can even be applied to the design of the computer hardware and programming

languages. If the designs of the computer and language are "smart" enough, it is

certainly worthwhile to run an algorithm in such a way that in the different stages

of the computation different precision of arithmetic are used. There is no point

in using double precision when the iteration has just started. The same idea can

certainly be adapted to the acceleration of $lM. In Chapters 2 and 4 we have stud-

ied the convergence rates of $\M for different frequencies for both continuous and

discrete cases. An important observation from the analyses is that the slow conver-

gence is caused by the low frequency errors. Table 4.1, which lists the number of the

iterations required for reducing the error corresponding to particular frequencies by

a factor of 105, strongly suggests that we should start the computation at the coarse

grid. After the low frequency errors converge to the truncation error level at this

grid, we should then refine the grid and continue the computation. This procedure

can be recursively repeated until the results of the desired accuracy are obtained.

We have used the model problem to test this idea. Our results show that the cost

is substantially reduced.
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The Numbers of Iterations in Each Grid Level
Number of
subregions

5
10

Grid Levels (5 is the Finest Grid)
1
3
7

2
1
3

3
1
2

4 5

\JL. 2

Total
7
16

The Equivalent Numbers of
Iterations on the Finest Level

1.5
2.7

Table 6.1: Hierarchical computations

The test problem is the two-dimensional model problem on a unit square. The

finest grid is [320 x 320]. There are 5 grid levels. The mesh size of each level is

double that of the previous one. The iteration starts at the coarsest grid. After the

iteration converges to the level of truncated error at this particular grid size, we

refine the grid and continue the iteration on the next finer grid, and so on. Table

6.1 lists the number of iterations carried out on each grid level for two different

decompositions. The last column lists the total work, measured as the equivalent

number of iterations on the finest grid. Although the total number of fyM iterations

remains the same as it would have been for a single fine grid, The total work needed

is reduced to a small fraction of what it would have been.

6.4 Decomposition Considerations

In the early 1950's, Kantorovich and Krylov had noticed that the way the solution

region was decomposed would affect the rate of convergence. In our analyses of

the model problems we have seen that the rate of convergence is a function of the

overlap, the shape of the subregions, the frequency of the errors and the dimension of

the solution regions. The first important issue in the consideration of decomposition

is the overlap. For the model problem, the overlap can be characterized by a

simple quantity K (overlap ratio). But, in a general application, K can no longer

be used for this purpose. In Chapter 5, the exponential decay law was seen to

be the reason for the success of ^M. From this law, we recognize that the rates of

convergence for different variables (or grid points) in $\Miteration are very different.
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The errors on the artificial boundaries will affect the error in each point by the

influence wavefront of the out-web in the inverse operator. Ideally, we would like

arrange the subregions in such a way that all the artificial boundaries axe located

in the "heart" of another subregion or subregions7, in order to maximize the decay

of the error in each iteration. For the model problem, this can be easily achieved

by setting the overlap ratio K to 0.5. In general, we need the multi-color splitting

to achieve this goal.

Another related issue is the shape of the subregions. For the model problem,

the ratio m/n is a very important influence on the convergence rate, where m and n

are the height and width of the subregion, respectively. If we would like to partition

the solution region into many subregions, we should not dissect the region in only

one direction(such as in the strip case). A one-direction dissection would result in

having many thin, long subregions, leaving the artificial boundaries very close to

the boundaries of those thin subregions. This principle is also applicable to general

cases. The subregions should have comparable dimensions in every coordinate.

Any small width in one coordinate will result in a short influence wavefront in the

inverse of the operator on the thin subregion, causing slow convergence as we saw in

Chapter 3. A good way of decomposing the solution region is to dissect the solution

region in k directions, where k is the dimension of the solution region. Figure 6.3

shows a dissection in two directions for a two-dimensional problem. A comparison

is carried out for two kinds of dissection. The first case decomposes the square into

32 thin strips. The second one is to decompose the square into 36 rectangles. The

first one needs 40 iterations while the latter only needs 15 iterations. Even though

the latter case has almost twice as many variables in comparison to the former case,

the overall work in the two direction dissection is only three fourths of the other

one.

Another interesting issue in the decomposition of the solution region is the au-

tomation of the dissection. In principal, this problem is similar to the grid genera-

tion problem for the finite element method. There is no intrinsic difficulty in this

7The motivation is to put all the artificial boundaries in the quickly converging zone. Then, by
the maximum principle, after one iteration the total error will be bounded by the error on these
boundaries.
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Figure 6.3: A dissection in two directions

problem.

The last issue is the mapping of the decomposition to a parallel computer ar-

chitecture. Since the efficient communication pattern of the target computer will

strongly affect the choice of the decomposition, it is a very hardware dependent

issue. We did not include such mappings in this study, but if we would like to make

a really competitive method, they should be carefully treated.

6.5 Solution Methods for the Subregions

The choice of methods for the solution of the problem on the subregions is also an

important issue for applications oifyM. Because of the inherent modularity in the

$\M algorithm, each subregion can be solved using a different method. Depending

on the particular application, we may take advantage of this flexibility. For example,

we can use a fast solver or even an analytic method, to compute the solution on

a regular subregion. Direct and iterative methods each have their own advantages

and disadvantages. Iterative methods are generally preferred. This is because, at

any step, the result from the last iteration is a very good initial guess for the next

iteration. But this does not mean that iterative methods always win. We have
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compared the multigrid method with the fast solver for the model problem. In fact,

the fast solver wins in the timing comparison. Comparison of the two programs

will show that this result should not be a surprise. The multigrid method has more

overhead than the fast solver has. The advantage in complexity for the multigrid

method only becomes dominant in a very large problem. For sparse problems, if

there is enough memory for storing the LU decomposition in each processor, a sparse

solver can also be very competitive. The complexity of the work in each iteration

is only O(N) in this case, where N is the number of unknowns.

A strategy of incomplete solution in solving on the subregions has been tried.

The basic idea of this strategy is that we really do not need a very accurate so-

lution on the subregions in the early iterations. If an iterative method is used for

the solution on the subregions, we can ask if we can stop the iteration at some

point before the solution converges? The preliminary results are disappointing. For

example, we have applied the multigrid method to solve the subproblems. If the

number of V-cycles or W-cycles for solving the subproblems is reduced, the rate

of convergence of §)M immediately degenerates. The total work needed to converge

is also increased. G. Rodrigue has also had a similar experience. Further study is

needed on this question. It seems likely that a way can be found to successfully use

incomplete solutions.

6.6 Convergence Checking

Until communication cost became an important factor for the performance of a par-

allel algorithm, convergence checking was never an efficiency issue in implementing

an iterative algorithm. Due to the requirement of global information exchange

and control, the convergence check in an iterative algorithm has to be carefully

implemented. The granularity of SfaM is very desirable in this aspect since coarse

granularity results in a low frequency of convergence checking.

In addition, the hierarchical computation in $M can also be used to reduce the

cost of a global convergence checking. It is clear that we dp not need a global check of

convergence until the finest grid is reached. During the computation on the coarser
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grids, we need only check the local error for each subregion (or processor). Each

subregion will keep checking two things: the local error and the maximum update

of the variable in the subregion. If the local error is good enough for a particular

subregion, the corresponding process can be put to sleep 8. If the maximum update

is large, then any of the neighbor processes which are sleeping should be awakened,

since the boundary values of these neighbors have changed significantly. All these

information exchanges of convergence information are local and can be combined

with the exchange of boundary values. There are no extra communication requests

required for the exchange. Thus, the cost of global checking will only be required on

the finest grid. As our experience shows that only one or two iterations are needed

on this grid, the overall cost of communication is greatly reduced. In general, the

global error checking is still a very interesting research problem for any iterative

method in a parallel computer environment. Some hardware design considerations

can be very helpful in resolving the efficiency problem. For example, if the control

processor can check a built-in flag in each processor at a yery low cost, then the

cost of the checking can be substantially reduced.

8In a time sharing system the processor on which the sleeping process was running can be recycled
by the system



Chapter 7

Conclusion

This thesis has reexamined and generalized an old mathematical technique —
Schwarz alternating method ($$£). Through the convergence analysis for the model
problem, the governing factors for the convergence of fyM are explored. Using this
knowledge, the performance of QM can be significantly improved. As a concrete
example of the improvement in performance, let's apply fyM to the model problem

where the five-point stencil is used and the mesh size is 1/320. In Table 7.1 we

summarize the results from five different ways of applying $$M to this problem. For

each implementation, we list the number of iterations and the total relative work

needed in reducing the norm of the error by a factor of 105, as well as the con-

vergence factor. In the first approach, the unit square is divided into 5 strips and

each strip overlaps with its neighbors only by one mesh width. The Jacobi type

of fy$A with natural ordering is applied. As we might expect, the convergence is

very slow. The second approach is to increase the overlap to the optimum, namely,

each strip now overlaps with its neighbor by half of its width. The same Jacobi

iteration is used. The exponential relationship between the convergence factor and

the overlap makes a big improvement in the performance. Next, Gauss-Seidel fyM

is applied. The convergence speed is doubled. Then SOR acceleration is incorpo-

rated. We list a result for which the optimal u is used. Again the performance is

improved further. Finally, a multilevel grid technique, with five grid levels, is com-

bined with SOR acceleration. The combination of these four modifications yields a

significant improvement in performance. As we show in Chapter 6, multi-direction
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decomposition can lead to further improvement.

Iteration
technique
44^ with minimal overlap
fyM with optimal overlap
Gauss-Seidel %M
SOR + $&* (with optimal u)
Multi-level grid + SOR + %M

Convergence
factor

0.99308
0.90097
0.8117
0.395
0.395

Number of
iterations

1658
110
55
13
13

Total relative
work
1658

183.33
91.67

21
2.1

Table 7.1: A comparison of 5 different implementations of SAM

We have incorporated several acceleration strategies in this example. An im-

portant factor for practical application is that these accelerations do not interfere

with each other. The various freedoms in $}M which we mentioned in the intro-

duction allow us to combine many other techniques to improve the performance

when we apply fyM to a particular problem. Particularly, generalizations of ^fiM

, Schwarz splittings (<?>), axe introduced in this thesis. Thus, we can apply this

powerful technique to many important applications other than elliptic PDE's.

There is an increasing demand for parallel algorithms, the inherent parallelism,

the local communication pattern and the hiding of global information exchange

make fyM an attractive candidate for large scale computations on a parallel com-

puter with non-shared memory. A generalization of $M— multi-color %M — is

presented. It preserves the parallelism of the original fyM, while provides a fast con-

vergence. Many parallel implementation issues such as: local relaxation strategy;

convergence checking; carrying the exchange of boundary values at coarser grid level

even after the computation has proceeded to finer grid level are discussed in this

thesis. We also propose some open problems which should be further investigated.

In Chapter 4 we discussed the problems caused by the matrix structure. The ab-

stract form of a matrix creates difficulties for observing many important features of

a linear operator. A new structure template operator, which is more consistent with

the form of the original continuous operator than the matrix is, has been developed.

Using this new structure, we have presented the concepts of influencing and influ-

enced wavefronts which provide tools for quantitatively describing the exponential
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decay phenomenon. Several estimates for the exponential decay axe shown in this

study providing a theoretical basis for determining when $S can be used successfully.

Although QM is an very old mathematical technique, the understanding of this

approach is still young. Particularly, computational experience is very limited. Our

study has presented a promising but preliminary investigation. Interesting open

problems remain to be solved. We have seen increasing interest in this topic among

numerical analysts, and expect $5 to become a competitive and popular iterative

technique.
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The Eigenvalues of the matrix Wn

Let
A x A 2

AQ A\ A2

A\ A2

Ao A\

(A.I)

where
a 0

0 0

0 b

b 0
0 0
0 a

and 6, a > 0. We will discuss the calculation of the eigenvalues and eigenvectors for

this matrix in this appendix.

Before we calculate the eigenvalues of this matrix, the following result is useful

for later discussion.

Lemma A.I Ifb>a then

a + b>\ \wn \> b-a,

where \wn is any eigenvalue of matrix Wn.

Proof. The left half of the inequality can be derived directly from Gershgorin's

theorem. Let

be the corresponding eigenvector of Xwn and

zk = max{| sn
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For k = 2 or k = 2n — 1, we have

bz2 =

or

So,

\>b>b-a.

For 2 < k < (2n - 1), we have1

azk-2 -

Then,

XWn~ a " 7 ~ = 6*

Finally, we have

The eigenvalue and eigenvector problem for Wn is equivalent to the boundary
value problem of the matrix difference equation:

AoZk + (Ax - pI)Zk+x + A2Zk+2 = 0 , h = 1, • • •, n,
ZQ = Zn+1 = 0 ( ' j

where p is an eigenvalue of Wn. It can be solved easily by the nonmonic matrix

polynomial theory. Here we will use the same notation in Gohberg's book [GLR82].

It is interesting that the spectral theory of the general matrix polynomials L(X) is,

surprisingly, of very recent origin.

lU k = 1 or k = 2n we have

or
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The nonmonic matrix polynomial2

L(X) = A2X
2 + (Ax - pI)X + Ao

corresponds to the matrix difference equation (A.2). The solution of (A.2) can be

expressed in terms of a decomposable pair of L(X). Let (A>, JF) and (A"*,, Joo) be

a finite and an infinite Jordan pair respectively. The decomposable pair of matrix

polynomials L(X) is

From Theorem 8.3 in [GLR82] we know that the general solution of the homogeneous

finite difference equation (A.2) is given by

Zk=XFJk
Fg, fc = 0 , l , - . - . (A.3)

A short calculation shows that

det(L(A)) = -A(apA2 - (a2 + p2 - 62)A + ap).

Then the eigenvalues of the L(X) are

Ao = 0 ,

a2 + P2 - &2 + y/((b - a)2 - P*)((a + b)~ p2)
A l = ^

a2 + P2 - fr2 - y/((b - a)' - />2)((a + 6) - p>)
= ^

We know that Ai, A2 ^ 0. The eigenvectors of X-(A) corresponding to the eigenvalues

At and X(At) are

x0 =
0

1
L(Xo) =

a 0

0 0

3 A matrix polynomial

i=0

is said to be monic if At = /, otherwise it is called nonmonic. Here A, are m x m matrices.



X\ =

x2 =

Q\\— a

1

6A2 J

l) =

, L{\*) =

a - p A i 6A1

6A1 aAi — pAi

a — jpA2 6A2

6A2 a A 2 — /0A2

where
— a pA2 — a

r̂  , u;2 = 6A2
Since the Jordan chains which correspond to these eigenvalues all have only one

eigenvector each, the finite Jordan pair is as follows:

XF =

JF =

0 1 1

1 <JJ\ U>2

0 0 0
0 \i 0
0 0 A2

Now we may use the general solution and the boundary value to determine the

eigenvalues and eigenvectors of matrix Wn. Note

- pI)XFJF =

•
0
0

0

0

[

[

0

0

0
0

(u>i

(b-

a a
0 0 J

L 6 - p )

—a
2

0

l
2aw1 A

A2(w26 -~P)'
A3(6 - pa>2)

—a

A2
2aa;2

0
Jau>2

and

AQXF + (A\ — pI)XFJF
2 _= 0-

Thus, the general solution (A.3) does satisfy the matrix difference equation (A.2).

Now let's determine the constant vector g = (go,9u92)T to satisfy the boundary
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conditions. For the first boundary condition

XFg = 0,

we have

and
CLyXi — A 2 )

6AiA2

From the second boundary condition

XFJF
n+lg = 0,

Ai and A2 have to satisfy the following condition:

AaA2 = 1

The first equality is satisfied from the definition. If b > a, then Ax and A2 are
complex, the second implies the following condition:

a sin n9 = p sin (n + 1)^, (A.5)

where

A! = ei$. (A.6)

Theorem A.I The eigenvalues of the matrix Wn satisfy the following equations:

XWn
2 + 2a cos 6\Wn + a2 - b2 = 0. (A.7)

The corresponding eigenvectors are

xF($)[ JF(euM$))2,--'y( f

where $ is the root of the following equation:

COS0
\

7*V ^Tal sin(ntf)
- - sm3 $ = . t, '... (A.8)

\aj J sm((n + l)0)



Proof. Equation (A.7) can be directly derived from the definition of Xx. Then we

may solve \wn *n (A.7) and substitute it into (A.5). After rearranging the terms of

sin((n + 1)0) and a, (A.8) follows.

Corollary 6 Ifa < b, matrix Wn has 2n distinguish real eigenvalues. When n is

increased, p is also increased?.

Let

p = majc{| XWn | } .

A short calculation shows that if n = 1

P = 6, (A.9)

and if n = 2

p = yjb(a + 6). (A.10)

Equations (A.9) and (A.10) are true for any a and 6.

3Here a and 6 are fixed.



Appendix B

Extensions of the Template Operator

Here we present a few extensions of the template operator introduced in Chapter

4. First, the template operator L over 7^, where s > 1, is discussed. Then a more

generalized operator -block template operator- is considered. In the last section,

other kinds of operations on the template vectors using template operators are

presented.

B.I Template Operator over Tn*

In Chapter 4, the simplest case of the template operator, L on template space T^1,

is examined. A more general case, the template operator on 7^, where s > 1, is

considered here.

Given a template vector space 7̂ *, s > 1, the template operator space over this

space is defined as follows: let

be the template of Tn*y M§ be the space of all s x s matrices. Construct n Cartesian

products

Ni = M9 x o t,i = 1, • • •,n.

Let

M9
n = Nx x N2 x • • • x JVW.

Each element U 6 M*n consists of n ordered pairs
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where MOi, i = 1, • • •, n are sxs matrices. After defining the operations of addition

and scalar product on these elements, it is easy to see that the space M9
n is a linear

space. We call it a template matrix space. Each element m G M'n is called a

template matrix. Now construct n Cartesian products

Let
r = Q i x Q 2 x . . . x Q n .

Each element L G C* consists of n ordered pairs

L = [< RU Ox >, < R2, O2 > , • • , < Rny On >]/,

or simply

L = [ROl, R^ ,.* • •, <ROn]/.

As in the case when 5 = 1, a template operator space C* over 7̂ * with the

operations of addition and scalar product can be defined.

Let

and

x = {< xi,oi > , < s2,O2 >, • • • ,< ^n>on >} G TJ.

Define the product of R and x as

where ROixOi is the product of an s x s matrix ROi and a vector xOi. Here the result

Rx is an ^-dimensional vector. Now we can define the operation of a template

operator L G C* on a template vector a? 6 Tn'. Let

L =

We define

y = I x =
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From this definition, we know that y = Lx € T£ and L maps Tn
8 to Tn

$. We may

also introduce the concepts of operating template matrix, image template matrix,

right form of the operator and so on. Since they are so similar to the case of s = 1,

we may leave them to the reader.

B.2 Group Template Operator

In many cases, we need to group the nodes in a template into a few sets, each

including several nodes. The number of the nodes can be very different. Schwarz

splitting is a good example of an application of this idea. An alternative view is that

each node in a template is associated with a state vector which may have different

dimensions in different nodes. Here the group template operator is introduced from

the second point of view.

Given a template Tn, and n vector spaces V*, i = 1, • • •, n, where the dimension

of Vi is A:,, construct n Cartesian products

Si = Vi x o,-,i = l ,--- ,n.

The group template vector space Qn is the set

Qn = Si x 52 x . . . x Sn

with two operations —addition and scalar product. Each element

X = ( < XU Oi > , < a?2 , O2 > , * • • , < X n , On > )

or

X = \XOl, X^, • • • , XOr% j

in Qn is called a group template vector. Let Mij denote the space of all fct- x kj

matrices. A group template matrix space Q» is the set

Qi = { M M x 01} x {M^ x 02} x • • • x {Miin x on}
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with two operations —addition and scalar product—. Each element R G Qi is n

ordered pairs

fl= ((<Muol >,<M2,o2 > , . - . , < M n , o n >)>

where MOi is a &,- x kj matrix. Define the product of a group template matrix R and

a group template vector x as follows:

Rx = ] T MOjxOj.jxOj.

The product is a vector of dimension fc».

Then the group template operator space Cg is the set

Cg = {QX X Oi} X {Q2 X Oj} X • • • X {Qn X On}

with two operations —addition and scalar product. Each element L € Cg is n

ordered pairs

L = [< Ru <h >, < R2,02 >, • • •, < Rn, on >],,

or simply

L = [ROl, iZ^, • • •, ROn]i

where ROi is a group template matrix in Qi. The definition of operating a group

template operator L on a group template vector x is the following:

where i?Oix, the product of the group template matrix ROi and z, is a vector of

dimension Jb,-. The group template operator is a parallel concept of the partitioned

matrix in the matrix structure. As in the last section, we leave many of the defini-

tions to the reader.

B.3 A Template Operator Maps Tn into Tm

So far the template operators we have discussed are mappings for which the domain

and range are the same space. Here a more generalized template operator which



124 APPENDIX B. EXTENSIONS OF THE TEMPLATE OPERATOR

maps one template space TJ into another T£ is presented. In order to simplify the

notation, we only consider the simplest case, that is the case when s = 1.

Let

T n = < o 1 , o 2 , - - , o n >

and

be the templates for Tn and Tm, respectively. The left form of a template operator

L which maps Tn into Tm is

where R~. is the operating template for node ot- and is a template vector in Tn.

The corresponding right form of this operator is

L = [ < CX, OX >,< C2, 02 > , • • • , < Cn, On >]r

where COi = LIon the image template for node ot, is a template vector in Tm. We

also leave the rest of the definitions for this case to the reader.
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