
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Using Analogical Reasoning to Design Buildings

by

F. Zhao and M.L Maher

EDRC-12-22-88

USING ANALOGICAL REASONING TO DESIGN BUILDINGS

F. Zhao and M.L Maher
Department of Civil Engineering

Carnegie Mellon University
Pittsburgh, PA

Abstract
This paper presents a methodology for identifying the relevant design elements for the synthesis of

new structural designs using previous design situations and their corresponding solutions. The study is a
reflection of the observation that engineers use related experience when solving new problems. The
methodology is an application of transformational analogy, a form of analogical reasoning.

A prototype system STRUPLE has been developed to implement the methodology, making use of
knowledge based expert system techniques. The emphasis of STRUPLE differs from that of traditional
expert systems in that the latter only use formalized or compiled knowledge while STRUPLE uses an
experience database as a knowledge supplement.

1. Introduction
Engineering design is a creative process in which the experience and knowledge of the designer serve

as resources. Facing a new design task, an experienced designer will easily recall similar cases which he
or she has met before, and will attempt to make an appropriate adaptation of one or more previous
design solutions to fit the new situation. A less experienced designer may go through much trial and error
before he or she achieves a suitable design solution. The difference between the two is experience,
which can only be accumulated over a long period of practice. This paper proposes a methodology for
using previous design situations and their solutions to plan the synthesis of new designs. The area of
application is the preliminary structural design of buildings.

A popular way of using experience to solve new problems is to develop an expert system that contains
an appropriate representation of the relevant experience. MYCIN [Buchanan 84], DIPMETER [Davis 81],
VT [Marcus 86], XCON [Kraft 84] and VEXED [Mitchell 85] are examples of such expert systems. Most
current expert systems use experience in the form of heuristics that are well recognized and have
become rules of thumb. Such heuristics arise from the experience gained from occurrence of related
situations and are usually summarized by experts in their particular domains. This means that such
expert systems use a very small portion of the experts' experience, since most experience is not easily
represented by heuristic rules. In order that more of the experts' experience can be utilized, and that
through the use of such less formalized experience one can learn their implications so that one can
discover heuristics or even the principles behind them, there is a need to find a way to use experience in
computer programs directly, instead of limiting them to using compiled knowledge only.

A current structural design expert system, HI-RISE [Maher 85], relies on the definition of a knowledge
base containing objects representing structural subsystems and rules representing the appropriate way to
combine these objects and compare the resulting solutions. The methodology described in this paper
expands the knowledge used during the structural design process to include experience in the form of
previous building design situations and solutions. Specifically, this knowledge is used to identify the
relevant search space for the synthesis of alternative structural systems for a given building design
problem.

This paper is organized into five sections. The second section introduces analogical reasoning as a
problem solving approach. The third section briefly discusses structural design and highlights the phases
relevant to this paper. The fourth section describes a prototype implementation for using design
experience directly. Finally, the last section provides some conclusions.

2. Analogical Reasoning
According to Paul Harmon and David King, knowledge can be considered in two categories: deep

knowledge and surface knowledge ([Harmon 85]). Deep knowledge includes general theories that are
derived from domain-independent facts, definitions, first principles, axioms and laws. Surface knowledge
includes domain and performance theories that evolve from domain-dependent facts and their
generalized forms - heuristics. Since engineering design theories are not well developed and engineering
design is mostly empirical, especially during the early design stages or in unprecedented designs,
engineering design processes involve more surface than deep knowledge. Moreover, domain theories
are sometimes insufficient to guide design processes in producing successful or optimal solutions, and
heuristics and experience have to be used. This explains why in the engineering design field, though not
the only field, experts and experience are so cherished.

Another way to view knowledge is in terms of the degree of its compilation. Compiled knowledge is
"information that is organized, indexed and stored in such a way that it is easily accessed." [Harmon 85]
The knowledge used to analyze and verify an engineering design is compiled to the degree that it can be
expressed in algorithms. An example is the finite element method. The design heuristics are often also
compiled in the sense that they are well known and easily indexed. Experience that is used by people
consciously or unconsciously is not compiled; this experience can sometimes give inspiration and lead to
creative thinking. The advantage in using experience directly is that they contain richer information than
heuristics and theories and can be helpful when no heuristics and theories are available. However,
uncoupled experience usually contains also irrelevant information that can be misleading. Therefore,
irrelevant information contained in the experience has to be filtered out and the conclusions drawn from
them need to be carefully verified.

Analogical reasoning is a very efficient way to use past experience. In an analogical reasoning
process, previous experience of similar situations is recalled, related and selected to solve a new
problem. People use analogical reasoning every day solving various problems and are very successful.
It is suggested by Carbonell that analogical reasoning is "a central inference method in human cognition".
The following definition of analogical reasoning is given by Carbonell [Carbonell 86]

Definition: Analogical problem solving consists of transferring knowledge from past problem solving
episodes to new problems that share significant aspects with corresponding past experience and using the
transferred knowledge to construct solutions to the new problems.

The two types of analogy of interest here are:
1. Transformational analogy. For old and new problems, if the problem statements have

strong similarity and their solutions fall in the same category, the past solutions can be
transferred, i.e. retrieved, modified and augmented, to satisfy the criteria of the new
problems. [Carbonell 83a, Carbonell 86]

2. Derivational analogy. Sometimes, even though old and new problems have similar
problem statements and problem solving process or techniques, the resultant solutions may
bear little direct similarity. In such cases, the reasoning steps in the construction of the past
solutions may be retrieved and modified in order to construct derivational paths toward the
solutions to the new problems [Carbonell 86].

Transformational analogy is only concerned with the problem definitions and their solutions and ignores
the reasoning processes that result in those solutions. Machine learning in this case requires storing the
solution to the new problem in memory to be used later. However, transformational analogy cannot
provide the reasons for the decisions made, which in many cases are relevant and important to solving
new problems.

Depending on the nature of the problem at hand, derivational analogy is sometimes more suitable.
Some problems that appear very different may have similar goal structures, or use similar reasoning
steps. In this case, the reasoning steps can be replayed, evaluated whether they are applicable to the
new problem, and if so, modified as necessary. Argo[Huhns 87], developed recently by the

UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY

2 PITTSBURGH, PENNSYLVANIA 15213

Microelectronics and Computer Technology Corporation, is a system that employs this approach for
solving generic design problems. This approach requires more information to be stored, namely not only
the problem statements and final solutions, but also all the intermediate states of the problem solving,
including how decisions are made under the current conditions, how the alternatives are evaluated,
accepted, or rejected, and how a path is followed and for what reason it fails. Derivational analogy
stresses the problems' similarity on logic rather than on particular problem characteristics, thus it is very
powerful for applying the same knowledge to problems in different domains. However, this approach
usually does not allow discontinuity in reasoning, which is a characteristic of innovative design. Despite
the power and usefulness of this approach, it is more difficult to implement for structural design than the
transformational analogy, because both the identification of problems which may have the same
reasoning processes and the formulation of the reasoning processes are very difficult using the current Al
theories and techniques. For now, our interest is in the transformational analogy, because it is more
easily applied to structural design and can serve as a good start in this study.

Regardless of which analogical reasoning approach is used, the following important issues have to be
addressed and settled before any implementation attempt [Carbonell 86].

1. What are the "significant aspects" shared by old and new problems? In other words, the
similarity between old and new problems must be identified. The nature of this similarity will
determine whether the analogical reasoning approach is suitable and, if so, whether
transformational analogy or derivational analogy is to be used. The identified common
aspects that the old and new problems share also serve as the basis of a similarity metric.
This similarity metric is to be used to search for the solutions to or reasoning steps of old
problems which are relevant to the new problem solving.

2. How is the past successful experience to be selected from a possibly large long term
memory? Retrieving past experience is a search process in which the solutions to old
problems are examined and measured by the similarity metric, and then selected or
rejected. Because the search space for the analogical reasoning approach is potentially
very large, the efficiency of search is of concern. The efficiency is determined mainly by the
way in which past experience is represented and stored. To achieve search efficiency,
experience must be organized and stored in such a way that during the search only the
most relevant experience is pursued, irrelevant experience is ignored, and other experience
is considered only when it becomes necessary.

3. What knowledge is to be transferred from the past experience to the new solutions? The
answer depends on the nature of the problem to be solved, the type of the analogical
approach used, and the results of past experience retrieval. The nature of the problem
determines the knowledge about a particular domain that is needed for constructing its
solution. The use of transformational analogy or derivational analogy specifies the source
of the knowledge that will come from either the solutions to the old problems or the
reasoning steps used in past problem solving. Finally, the result of past experience retrieval
will show the availability and suitability of the knowledge represented by the experience.
The knowledge can be in a very abstract and comprehensive form as solutions to a problem
or a subproblem solved before, or it can be in a concrete and simple form as a physical
component used to construct a mechanism, a rule of thumb used to make a decision, an
algorithm applied to produce a result under certain conditions, etc.

4. How does the knowledge transformation process occur? Transferring the knowledge from
past experience to the solution of a new problem or to the process of constructing a solution
of a new problem is a problem solving process itself. In simple cases, algorithms, functions,
or perhaps heuristic rules can be used to convert the knowledge found in the past
experience into a constructive component of the new problem solving task. In more
complicated cases, use of various problem solving strategies becomes necessary.

Of the above four issues addressed, the first and last ones are usually the most important and the most
difficult. We will illustrate these ideas in more detail by describing STRUPLE, an implementation of
transformational analogy, in Section 4.

3. Building Design
Due to the complexity of modem buildings, it is common practice that the architectural and structural

design are performed by different professionals. Usually, architects conceive the form of the building,
assign functions to different spaces in the building according to the intended floor uses, give the spaces
geometric attributes, etc. Structural design is then performed by engineers to give a precise description
of the physical form of the building that meets the architect's requirements. In this section, we briefly
discuss architectural specifications and their impact on structural design, and possible structural design
methods suitable to the use of analogical reasoning.

3.1. Architectural Specifications
The architectural design products are the architectural specifications, usually in the form of drawings,

which specify mainly the geometric, topological, and functional attributes of a building. Sometimes, the
specifications also contain the architect's preferences for some particular construction material or
structural systems for architectural purposes. In current practice, structural engineers usually take
architectural specifications as a problem statement that partially specifies the building structure,
depending on how explicit the specifications are and whether the building design is common or unusual.
These specifications implicitly define a subspace of the design space in which the structural engineer
searches for solutions in the form of structural systems that satisfy the architectural specifications.

3.2. Structural Design
Given the architectural specifications, the structural design process starts with the definition of a need

to transmit loads in space to a support or foundation, subject to constraints on cost, geometry, and other
criteria. The final product of the design process is the detailed specification of structural components
capable of transmitting these loads with the appropriate levels of safety and serviceability. The design
process may be viewed as a sequence of three stages: preliminary design, analysis and detailed design.

1. PRELIMINARY DESIGN involves the synthesis of potential structural systems satisfying a few
key constraints, and the selection of one, or at most a few, systems to be pursued further.
Synthesis requires a knowledge of structural subsystems and their appropriateness for
different situations.

2. ANALYSIS is the process of modeling the selected structural system and determining its
response to external effects. This process involves transforming a physical structure to a
mathematical model, analyzing the model, and interpreting the results of the analysis in
terms of the actual physical structure.

3. DETAILED DESIGN is the selection and proportioning of the structural components such that all
applicable constraints are satisfied.

The first stage, preliminary design, deals with a different level of abstraction than analysis and detailed
design. During preliminary design, the form of the design solution is identified. During analysis and
detailed design this form is refined. There may be significant deviations between the properties of
components assumed at the analysis stage and those determined at the detailed design stage, which
necessitates a reanatysis. Other major and minor cycles of redesign may also occur. The process
continues until a satisfactory (or optimal) design is obtained. The conceptualize-analyze-de tall cycle is
typical of many design paradigms.

Many of the conceptual aspects of structural design are embodied in the preliminary design phase. At
this point, the only information available to the designer are the architectural specifications and
constraints on the solutions. It is during this stage of the design process that the creativity and
experience of the engineer are mostly needed. The increasing complexity of engineering design
problems has made synthesis a very difficult process, even for an experienced designer, if not
approached in a structured and organized fashion.

There is no standard approach to the synthesis process suitable for all design problems. One
approach is to decompose the design problem into the design of independent or loosely-coupled

subsystems. In a similar manner, each subsystem can be further decomposed into major components.
The subsystems and components associated with structural engineering form the design space in which
the synthesis process operates.

3.3. Design Space, Design Vocabulary and Experience
The synthesis of alternative designs can be considered as the manipulation of a design vocabulary that

forms a subset of the design space. A design vocabulary is a set of design elements that may be used as
the constructing components of a certain class of products. For structural engineering, a design element
can be a basic structural component such as a beam or column, or it can be a structural subsystem such
as a rigid frame or braced frame, which are obtained by combining the basic components according to
certain well accepted rules. The design space for a particular class of problems includes the description
of the levels of abstraction and of the subsystems and components the designer knows about. For
example, the design space for the structural system for buildings includes knowledge about rigid frames,
braced frames, shear walls, etc. The boundary of the subset of the design space appropriate for a given
situation defines the design vocabulary to be considered and identifies the design knowledge required.

The boundary of the subset of the design space is often unclear given only the architectural
specifications, and it varies with different structural engineers depending on their knowledge and
experience. Identifying the boundary of a design subspace is not an easy task but is very important. It
affects the efficiency and quality of the subsequent synthesis. An experienced and knowledgeable
engineer not only possesses knowledge of a large design space, but also is very good at determining the
most appropriate design vocabulary for a given situation as well as the knowledge needed for the
synthesis. This kind of experience is difficult to capture in an expert system that contains heuristics in rule
form.

4. STRUPLE
STRUPLE (STRUctural PLanning from Experience) is a prototype system intended to demonstrate how

the analogical reasoning approach can be applied to structural design. The effort has focused on the
representation of experience, the development of a similarity metric to find relevant experience, and the
definition of criteria for selecting the design vocabulary. In this section, the concepts used in STRUPLE
and their applications are presented. Except for some basic ideas about analogical transformation and its
major aspects, the rules and formulas used in STRUPLE come from the authors' own knowledge about
structural engineering, rather than from any publications or structural design experts.

4.1. Overview of STRUPLE
STRUPLE is not a complete system that performs the structural synthesis. Instead, it serves as a

pre-processer for a structural design synthesizer. STRUPLE accepts the description of a building to be
designed, searches relevant past experience and determines the design vocabulary to be used in the
synthesis according to the useful experience found.

The specification of the current building to be designed includes the following information:

• the location of the building and the project budget;

• geometric information such as the gross area, dimensions, shape, etc.;

• architectural information about the number of stories, intended floor use, typical bay sizes
and their numbers in different directions, and the number and location of the service shafts;
and

• loading information including the design live load, the design wind load, the seismic zone,
and the soil bearing capacity.

Some information is not used by STRUPLE, e.g. number of bays and number of service shafts, but is
included because it is needed during synthesis. In addition to the specification listed above, STRUPLE

also checks if the user wants to specify an initial boundary on the design space by choosing among
alternatives of construction materials, 3D systems, 2D systems, floor systems and foundation systems.

The output from STRUPLE is the design vocabulary selected for synthesis. STRUPLE can be linked to
a synthesis program which will take the results of STRUPLE as input and synthesize the structural
configuration using the design vocabulary provided.

Input Current
Building

Description

Check and
Change

Input

Setup
Similarity

Metric

Check and
Change

Similarity Metric
- •

Find Matching
Buildings and

Their Solutions

Select
Design

Vocabulary

JT

Figure 4-1 : Overall Process of STRUPLE

The overall process of STRUPLE is shown in Figure 4-1. STRUPLE starts a working session with the
input described above. The similarity metric is then set up using the input. The user can check and
change it. After the user approves the similarity metric, STRUPLE uses the similarity metric to find
matching buildings stored in a database as experience. If no matching buildings exist, the user can either
modify the similarity metric used in the previous search, or modify the input information about the building
and the similarity metric will be redefined according to the modified input. Any change of the similarity
metric will initiate a new search process. If there are matching buildings, STRUPLE examines their
design solutions and selects the design vocabulary from these solutions for the new design.

4.2. Representation of Experience
Experience is stored declaratively in STRUPLE in a database, also called the experience base, and is

represented in the form of incomplete descriptions of building design solutions, which give the following
information about buildings.

1. General information: Building number, name, design completion date, city and state where
it is located, owner, general use of the building, and unit and total costs (land cost is
excluded).

2. Geometric information: Gross area, height, width, aspect ratio, overall shape and shape
irregularity.

3. Other architectural specifications: The number of stories below and above grade, their
intended floor uses, bay numbers and sizes in the two principal orthogonal directions, floor-
to-floor height, floor-to-ceiling height, number of service shafts and general description of
their location in the build plan.

4. Loading information: Dead load, live load, wind load and seismic zone.

5. Primary 3D systems: A building may have more than one type of 3D system, for example,
one or more cores with a 2D orthogonal system, which may be composed of rigid frames,
tied together.

6. Lateral 2D systems: Lateral 2D systems are the subsystems of 3D systems. The
information for each lateral 2D system includes the structural type, the construction

material, and direction of the placement.

7. Floor system type: In addition to structural information, system type implies material type,
support system, and support system material type.

8. Foundation system type: System type provides structural information, material type, and
bearing capacity.

In order to determine whether the design solutions represented in the experience base were
successful, they should be evaluated by experts not only from the viewpoint of structural engineers, but
also those of other professionals participating in the project. The evaluation should be made on a holistic
basis including aesthetics, function and economy of the design solution. Here, we assume that all the
buildings which are stored in the database are successful designs in order to simplify the problem.

4.3. Selection of Experience
In STRUPLE, the selection of experience involves finding the relevant experience from the database

and ranking them through evaluation. The result is an ordered set of design elements that identifies the
subset of the design space for a given structural design problem.

4.3.1. Finding Relevant Experience
In STRUPLE, relevant experience for a new building is a set of similar buildings found in the database.

The buildings which are considered by STRUPLE to be similar to the current building are called matching
buildings, or sometimes matches, and are identified using a similarity metric. In STRUPLE, the similarity
metric is described by a set of criteria, also called matching criteria, which define what significant common
aspects the matching buildings and the current building should share. A matching criterion is a
requirement of similarity imposed on a feature of a matching building. For example, the number of
stories, the intended use, the design wind load, the construction material, etc., all are features of a
building and are potential criteria. Obviously, not all features of a building are equally important in terms
of their impacts on the choice of a structural system for the current building. Thus, criteria are divided into
three classes: required criteria, desired criteria and no-match criteria. Required criteria must be satisfied
by a matching building. The satisfaction of desired criteria is desirable but not necessary. No-match
criteria are not considered. Required, desired and no-match are qualifiers that are defined as the status
of criteria.

The status of a criterion is assigned by STRUPLE according to the description of the current building.
Whether a criterion is defined as required or desired depends on the extent to which it would aid in
determining the structural system for the current building. For instance, when a building has over thirty
stories, the lateral system design will more likely govern the design, or at least be as important as the
gravity system. In this case, wind load is chosen to be a required criterion. If the the number of stories of
the current building is in the range of five to thirty, wind load will not be as important a factor and is
defined as a desired criterion. When the building has less than five stories, wind load will not govern the
design, so it is defined as a no-match criterion. Table 4-1 lists all the criteria used in STRUPLE as well as
their status assumed in different cases.

When searching the database for similar buildings, required criteria are used as qualifiers. In order to
locate a matching building explicitly, the limits within which the building can be considered to be a match
must be known. Thus a range must be set for each required criterion. A range is defined by the limits of
allowable difference of the feature values of the two buildings compared. A required criterion is satisfied
by a building being matched if the value of its corresponding feature falls within the range of the criterion.
There are features which do not have numerical values but can be discretized; examples are intended
use and construction material. For matching these features, check-lists are used. A required criterion on
such a feature has one or more items on its check-list, each of which is an alternative that is considered
to be an eligible value of a feature. When a required criterion has a check-list, it is satisfied by a building
if the feature value of the building is an item on the corresponding check-list.

Criteria ranges are set heuristically according to the feature values of the current building. For most

Criteria

unit cost

state

stories above grade

stories below grade

intended use
of stories below grade

intended use of
stories above grade

building shape

typical bay size

floor-to-floor height

floor-to-ceiling height

wind load

live load

seismic zone

soil bearing capacity

construction materials

3D systems

2D systems

floor systems

foundation systems

required

desired

desired

required

required

required

no-match

required

required

required

desired

required

required

required

desired

no-match

required

required

required

no-match

required

no-match

required

required

required

required

Status

if project budget is tight

if project budget is not tight or unknown

if number of stories below grade > 0

if number of stories below grade = 0

if intended use is commercial

if intended use is residential

if stories >* 30

if 5 < stories < 30

if stories <» 5

if that of current building available

if that of current building not available

if user has preferences

if user does not have preferences

if user has preferences

if user has preferences

if user has preferences

if user has preferences

Table 4-1 : Criteria and Their Status

building features with numerical values, e.g. floor-to-floor-height, live load, etc., ranges are set arbitrarily
to be from 0.85 to 1.15 times the corresponding values for the current building. The exceptions are unit
cost, seismic zone and number of stories, in which the authors have enough information to be more
discriminating. Criteria that have check-lists instead of numerical ranges are intended use, building
shape, and those on the structural subsystems and construction materials. For criteria on structural
subsystems and material types, the check-lists contain the subsystems or material types that the user
prefers to use. For others, the corresponding feature values for the current building constitutes the
check-lists. Two particular extensions are made to the intended use when the current building has more
than 40 stories and the intended use is residential or commercial. In such cases, both commercial and
residential are considered similar and appear in the check-list for intended use. The criterion on building
shape usually requires that a matching building have the same shape as the current building. However,
when the current building's shape is multi-rectangle, e.g. L shaped or U shaped, rectangle is considered
to be an additional matching alternative.

8

Before STRUPLE searches the database for matching buildings, the user is allowed to check the
criteria. This includes changing the status of a criterion, redefining the matching range for a criterion, and
adding or deleting matching alternatives on the check-list for a criterion. However, certain criteria's status
can not be changed by the user in order to ensure that the matching criteria make sense. For example,
the status of criteria on intended use and number of stories above grade must always be required. A
matching alternative can not be removed if it is a feature value for the current building.

After the user approves all the criteria, STRUPLE searches the database to find all the matches which
satisfy the required criteria. If matches are found, STRUPLE presents them to the user and allows the
user to determine if the matching buildings found by STRUPLE are in fact similar to the current building.
Then, STRUPLE proceeds with the similarity evaluation of the matching buildings if the user approves
any of the matches.

4.3.2. Ranking Relevant Experience
Each matching building is evaluated and ranked to measure how well it resembles the current building

according to both required and desired criteria. The method for evaluation is intuitive and simple; it is
similar to measuring the relative error of two function values. This method requires that desired criteria
also have ranges as required criteria. The ranges for desired criteria are defined in the same way as
those for required criteria. When used for evaluation, the ranges indicate desired limits within which the
values of different features of the matching buildings are expected to fall, though a value's falling out of a
range will not cause the elimination of a matching building.

The evaluation of an individual matching building is completed by feature evaluations and a global
evaluation. A feature evaluation is made on each of the features that have required or desired criteria,
and is a measure of the difference between the feature values of the current building and a matching
building. The result of a feature evaluation is a real number between 0.0 and 1.0. A positive value is
considered a penalty in the sense that 0.0 means an exact match while 1.0 means no match or that the
difference is too large. A global evaluation is a comprehensive measure combining all evaluations on
individual features of a matching building.

Feature evaluations are done in different ways, depending on whether a criterion has a numerical
range or a check-list. The following formula is used for a feature evaluation of a criterion with a numerical
range:

^ ^ 1

where elk » evaluation of feature i for match k
vik = the value of feature i for match k
vcuntntjLa t h e v a l u e o f t h e s a m e feature for the current building
ui = the upper limit of the range for criterion i
/•»the lower limit of the range for criterion i

If the result is greater than 1.0, it is set to 1.0.

A feature evaluation of a criterion with a check-list is made according to the following rules.

IP vik is in the check- l i s t
AMD vik is the same as vcurrgnifi

THEM eik is 0.0

IP vik is in the check- l i s t
AND vik is not the same as vcurrenii

THEM eik is 0.4

IP v;* is not in the check- l i s t
THEM eik is 1. 0

Here e±% v^ and *cwrma%, have the same meanings as defined before, but they are strings of characters
instead of numerical values.

Cost is an important factor in the selection of structural systems. If the user desires, cost is included as
another feature evaluation. In the database, the unit cost of each building is stored (i.e., as $ psf). The
evaluation is made differently in two cases. In the first case, the estimated project budget is given and
STRUPLE calculates the estimated unit cost by dividing the estimated project budget by the gross area of
the current building and determines a matching range for the unit cost. Formula (1) is used in this case to
evaluate each matching building based on the unit cost. In the second case, the project budget is not
given and the cost evaluation is made on a relative basis. The maximum unit cost and the minimum unit
cost of all matching buildings are found and STRUPLE uses these values to evaluate each match with the
following formula:

costk- cost

cost_- cost^
k ^

'""** c o s t c o s t (2)

where ecostJt«the cost evaluation for match k
costk »the unit cost of match k being evaluated
costmin = t h e minimum unit cost among all the matches
costmax = the maximum unit cost among all the matches

The global evaluation of a matching building is the summation of all feature evaluations multiplied by
the corresponding weights in a weight table defined in STRUPLE. The weights reflect the degree of
relative importance of the criteria. Each criterion has two weights; one to be used if the criterion* status is
required and one if the status is desired. This is due to the fact that for a required criterion, the weight
should be greater than that corresponding to a desired criterion.

* " « • 0)

where ek = the global evaluation for match k
eik = feature evaluation i for match k
wi - the weight for feature i
m = the total number of the features evaluated

Ranking of the matching building is done according to the global evaluation values of the matching
buildings. A match which has a smaller evaluation is ranked as a better match since a smaller evaluation
value indicates less difference between the match and the current building. The rank of a match is
indicated by an integer. The purpose is to provide a clearer view to the user of how one match compares
with the others.

4.4. Structural Configuration Planning Using Selected Experience
The third subproblem of analogical transformation is to determine what knowledge is to be transformed.

Even though two buildings could have many common aspects, because of their different special design
requirements, the design solutions may not be the same. This means that it is not always feasible to take
the whole solution for one building and convert it into one for the other. However, a certain group of
design vocabulary frequently appears in certain types of buildings. Although we can not directly use the
design solution of an existing building for a new building, we can use the design vocabulary of the old
design in constructing the new solution. Thus the design vocabulary is chosen as the knowledge to be
extracted from the old design solutions and be transformed.

The last task in the analogical approach is to embody the transformation of knowledge existing in the
past experience. Here, the transformed experience is considered to be the different types of structural
elements used in similar buildings. STRUPLE has a set of structural elements that are stored in its
knowledge base representing the complete design space that the synthesis process knows about. In
STRUPLE, a building is decomposed into several levels of abstraction (Figure 4-2). The elements of
design space are organized into different levels of abstraction under lateral system and gravity system

10

Figure 4-2: Levels of Abstraction of a Building

Levels

3D system

2D system

material type

Alternatives

tube
tube in tube
core
core and suspension
bundled tubes
2D othogonal

rigid frame
braced frame
megaframe
solid wall
staggered trusses

masonry
steel
high strength steel
precast re
prefab-prestressed concrete
cast-in-place re
cast-in-place prestressed re
cast-in-place post-tensioned re

Table 4-2: Design Space for Lateral Systems

levels, as shown in Table 4-2 and Table 4-3.

For each level of abstraction, STRUPLE determines the design vocabulary to be considered for the
new building, thus identifying a subset of structural elements that is most promising. This design
vocabulary will be used during the synthesis process, in which each structural element will be examined
to determine whether it is an eligible or efficient alternative.

The elements of the design vocabulary selected by STRUPLE should come from the matching
buildings. In order to make the use of design vocabulary efficient, the elements in the design vocabulary
are ordered by STRUPLE. First, the occurrence of each element of design vocabulary used in the old

11

Levels

floor system

support system

material type

Alternatives

flat slab
beam and slab
waffle grid
plank
steel deck and concrete topping
open-web joists and composite concrete

column
beam and column
beam-girder and column
wall

masonry
steel
high strength steel
precast re
prefab-prestressed concrete
cast-in-place re
cast-in-place prestressed re
cast-in-place post-tensioned re

Table 4-3: Design Space for Gravity Systems

design solutions is calculated. Then each element is assigned a priority of consideration according to its
occurrence in the matching buildings and the global evaluations of those matching buildings in which it is
used. A high priority indicates that this type of element is frequently used in the buildings similar to the
current one and should be considered first.

There are several general situations when selecting design elements. First, if all types of elements at
one level have close priorities, all of them should be considered one by one during the synthesis.
Second, if a few types of elements have much higher priorities than the others, then those with very low
priorities may not be considered if satisfactory solutions can be obtained by using the elements with high
priorities. Third, if no similar building is found, or there are only a few types of elements at each level with
very low priorities, then all structural elements in the design space should be considered. In the third
case, useful experience is not available and STRUPLE has to use the general design knowledge stored
in its knowledge base.

The computation of priorities and the selection of design elements is done in the following steps:
1. Compute the occurrence oijk of an element j at level of abstraction i that is present in a

single matching building k and this element's priority pijk concerning this single building.
The priority is calculated as follows

where ek is the global evaluation for matching building *, computed from Formula (3). oijk

should be 0 or 1, where 0 indicates that element j does not appear in building k and 1 the
opposite. It can be seen that the priority of an element increases when the value of the
global evaluation of the corresponding building decreases, which indicates a better match
for the input building.

2. Compute otJ, the total occurrence of an element j at level of abstraction i in all matching
buildings and plJt the sum of the priorities of this element computed from Equation (4). otj

indicates the number of matching buildings in which element/ has been used. It is an
integer between 0 and n% where n is the total number of matching buildings. If o- is 0, then
element j is not used in any of the matching buildings. If otj is *, it is useo in all the

12

matching building. oi} will be used when determining whether element; should be included
in the subset of design vocabulary for the synthesis. /?• has the same property as pijk: it
increases when o~ increases or the evaluations of tne buildings in which it appears
decrease. After normalization, ptJ will be the priority of the element that will be used by the
synthesizer.

3. Compute oi% the total occurrences of elements of all types at level of abstraction < in all
matching buildings and pi% the sum of their priorities. oi is needed to determine how often
an element is used in comparison with the other elements at the same level of abstraction,
and Pi will be used to normalize the priority of each element at the same level of abstraction.

O; * y o;i
I ^ IJ

J
4. Normalize the priorities computed in (6) according to the following formula.

After normalization, PtJ is a real number between 0 and 10, where 0 indicates the lowest
priority and 10 the highest.

5. Select the elements to be used in synthesis. The decision about whether an element j
should be selected or eliminated is made heuristically according to o^, its occurrence, oijt

the occurrences of other elements at the same level of abstraction x, the total occurrence ot

of all elements at the same level, and the number of matching buildings. Table 4-4 shows
the decisions made in different cases. Each row in the table corresponds to a production
rule in STRUPLE.

Number of
Matching Buildings

>-10

5 -9

<-4

°ijloi

- 0
<5%
<5%
>»5

<5%
<5%
>- 5%

any

°'ij/oi

any
>» 50% (at least one)
< 50% (all)
any

>» 75% (at least one)
< 75% (all)
any

any

Disposition

eliminated
eliminated
selected
selected

eliminated
selected
selected

selected

Table 4-4: Decisions in Different Cases

In Table 4-4, the first column represents the number of matching buildings. The second
column represents the percentage of the occurrence of an element j at level i in the
occurrence of all the elements of level /. The third column represents the percentage of the
occurrence of any other element at level i in the occurrence of all the elements of the same
level. A smaller oij/ot indicates less use of element; compared to other elements at the
same level. The fourth column in the table indicates the decision about an element's
disposition, i.e. whether it is selected or eliminated. All the cases considered fall into three
categories according to the number of matching buildings found in the database. The

(5)

(6)

(7)

(8)

(9)

13

number of matching buildings reflects how much experience is available. When the number
of matching buildings is less than 4, which means that little experience exists concerning
the structural systems that could be used for the input building, all the elements of the
design space that STRUPLE knows about are selected. When there are a few (5 - 9)
matching buildings, which means that some experience is available but not enough to
ensure that certain structural elements not used or rarely used in the matching buildings
would be inappropriate for the input building, the occurrence of the element against the
occurrence of all the others at the same level of abstraction is examined. An element which
is not or rarely used is eliminated only when there is at least one other element at the same
level of abstraction that is heavily used. Finally, when many matching buildings are found,
an element that is not used in the matching building is eliminated at once and those that are
not used often are selected only when no other elements at the same level are frequently
used. The figures that are used to define different cases were chosen by the authors.

Material Alternatives
(Total Matches = 10)

Type

high strength steel

prefab-prestressed re

cast-in-place prestressed re

composite concrete

masonry

steel

reinforced concrete

Occurrence

0.6

0.2

0.1

0.1

0.0

0.0

0.0

Priority

5.55

2.40

1.11

0.94

0.0

0.0

0.0

Disposition

selected

selected

selected

selected

eliminated

eliminated

eliminated

Table 4-5: A Typical Output of Elements at Material Level

A typical output of the elements at the material level may look as shown in Tabel 4-5. After the
disposition of all the elements is determined, it may be necessary to let the user check the design
vocabulary selected by the system and delete or add some elements.

4.5. Implementation
STRUPLE is implemented in OPS83, a language that combines production and Pascal-like modular

programming. The database used in STRUPLE, called bidgs, is implemented with Ingres, a relational
database management system. The communication between the database and the expert system is set
up through a C procedure call. In this section, some implementation details of STRUPLE are given to
show how the program is organized and how the different environments and tools are coordinated.

4.5.1. Productions, Procedures and Modules in OPS83
Most of the programming for STRUPLE is done in OPS83. OPS83 has two different program units,

production rules and procedures. In STRUPLE, rules are used to represent the knowledge, such as
setting up the matching criteria, evaluating matching buildings and selecting design vocabulary. Rules
are also used as procedures to perform some computational and output (printing) operations related to
the working memory elements (WMEs). Procedures are used for low-level operations, e.g. reading
numbers and printing menus and are called from the rules as macro-actions.

OPS83 allows flexible modulization which makes it easy to organize, manage, and modify a medium or
large size program. STRUPLE is organized into twelve modules. Each of them either contains rules and
procedures and performs a major task or is only a group of procedures and functions that serve as utilities

14

for other modules.

Instances for criteria are created at the beginning of the program execution and their status are all
initialized to no-match. The following rules are typical for determining the status of a criterion and its
range/check-list.

Rule: use of above grade stories is a required criterion
IF goal set_up_criteria La ac t ive
AND criterion use of above grade stories has status no-match
THEN modify the status of this criterion to be required
AND make a check-list item for the criterion containing the

same alternative as the use of the current building

Rule: extend check-list of criterion building shape
IF goal set_upjcriteria La ac t ive
AND criterion building shape has status other than no-match
AND the shape of the current building is multi-rectangles
AND there is no check-list item for this criterion containing

alternative rectangle
THEN make a check-l ist item for the criterion containing the

alternative rectangle

Rule: wind load Is a required criterion
IF goal set_upjcriteria is active
AND criterion wind load has status no-match
AND current above grade stories is greater than 30
THEN modify the status of th is criterion to be required
AND make a range for the criterion to be from 0.85 to 1.15 times

of the wind load applied on the current building

Rule: wind load is a desired criterion
IF goal set_upjcriteria La active
AND criterion wind load has status no-match
AND current above grade stories is no more than 30 but not l ess

than 5
THEN modify the status of this criterion to be desired
AND make a range for the criterion to be from 0.85 to 1.15 times of

the wind load applied on the current building

4.5.2. Ingres Database
The relations in the database are defined using the same organization as described in Section 4.2.

Examples of three typical relations are given below.

GENERAL Rotation

caseno

5300

7000

7400

building name

Holiday Inn

IBM Office Building

Elm Park Towers

city

Greensboro

South Field

Worcester

state

NC

Ml

MA

use

commercial

commercial

residential

unit cost
($psi)

24.41

67.40

24.24

total cost
($)

6000000

17730000

3733000

Table 4-6: Example of GENERAL Relation

In the general relation, caseno is the case number of a building. Each building is assigned a unique
integer case number and this number is used as the primary key for locating and retrieving the
information about a building. In lateral_3D and lateral_2D relation, id\s an integer used as the identifier

15

LATERAL-3D Relation

caseno

5300

7000

7400

id

1

1

1

type

2D-orthogonal

core

2D-orthogonal

Table 4-7: Example of LATERAL-30 Relation

LATERAL-2D Relation

caseno

5300

7000

7000

7400

part_of

2D-orthogonal

core

core

2D-orthogonal

id

1

1

1

1

type

staggered trusses

braced frame

braced frame

staggered trusses

material

steel

high strength steel

high strength steel

high strength steel

direction

y

X

y

y

Table 4-8: Example of LATERAL-2D Relation

for a 3D and 2D lateral systems in a building. A building may have more than one 2D lateral system of
different types and each of them has a unique ID number. For these relations caseno is used as the
primary key and id is used as the secondary key. In lateral_2D relation, direction is used to indicate the
orientation of a frame. For more details, refer to [Zhao 87].

5. Conclusions
A methodology for applying analogical reasoning to structural design has been described. The

motivation for this work is to provide a means for capturing and using design experience directly in an
expert system so that the performance of the expert system will not be strictly limited by the surface
knowledge that can be formalized. The potential for using design experience can be considered in two
areas. One area is the advantage of saving relevant experience that a human designer may have
forgotten. The other area is the potential for machine learning by recording and using the design
experience of the design expert system itself.

In developing STRUPLE, conventional programming methods, expert system techniques and database
techniques are all employed. Although STRUPLE works in a way similar to many other expert systems, it
has a character that other current expert systems do not have. In addition to the well compiled
knowledge, which can be formulated in forms such as rules, STRUPLE uses uncompiled design
experience directly as a supplement to the compiled knowledge. Moreover, integrated into a design
system, it could gain experience from the structural solutions the system itself produces, thus
incorporating a form of doing-learning cycle.

The methodology presented, although it illustrates the concept of using design experience directly, has
some limitations that need to be addressed. The method for determining similar situations, i.e. finding the
matches in the database, is based on a fixed set of criteria and cannot consider odd or unusual
circumstances, while people are very good at modifying their problem solving method to deal with them.
A second limitation is that STRUPLE only matches a building at the top level of abstraction, though
sometimes it may be desirable or more appropriate to match a building at one specific level and then
determine what experience can be extracted from the results of such a partial matching. Another
limitation is the inability of the existing method to benefit from the spatial decisions made in previous
situations; currently, the methodology provides a means for reasoning about appropriate structural
systems and subsystems, not about the number or location of these systems.

As a first effort, STRUPLE is far from being complete. More studies need be made of the structural

16

design process and design principles in order to reflect them more accurately and make the analogical
approach more powerful and useful.

17

References

[Bethlehem 85]

[Buchanan 84]

[Carbonell 82]

[Carbonell 83a]

[Carbonell 83b]

[Carbonell 86]

[Davis 81]

[Forgy 84]

[Harmon 85]

[Huhns 87]

[Ingres 85]

[Kraft 84]

Building Case Histories.
Bethlehem Steel Co., 1985.
Unpublished notes.

Buchanan, B. G. and Shortliffe, E. H.
TheMYCINExperimentsoftheStanfordHeuristicProgrammingProject".
Addison-Wesley Publishing Company, Massachusetts, 1984.

Carbonell, J. G.
Towards a Computational Model of Metaphor in Common Sense Reasoning.
Proceedings of the Fourth Annual Meeting of the Cognitive Science Society, 1982.

Carbonell, J. G., LarWn, J. H. and Reif, F.
Towards a General Scientific Reasoning Engine.
Technical Report CIP No. 445, Department of Computer Science, Carnegie Mellon

University, 1983.

Carbonell, J. G.
Learning by Analogy: Formulating and Generalizing Plans from Past Experience.
Machine Learning: An Artificial Intelligence Approach.
Tioga Publishing Company, Palo Alto, California, 1983.

Carbonell, J.G.
Derivational Analogy: A Theory of Reconstructive Problem Solving and Expertise

Acquisition.
Machine Learning: An Artificial Intelligence Approach.
Morgan Kaufmann Publishers, Inc., Los Altos, California, 1986.

Davis, R., Austin, H., Carlbom, I., Frawley, B., Pruchnik, P., SnekJerman, R. and
Gilreath, A.
The Dipmeter Advisor: Interpretation of Geological Signals.
Seventh International Joint Conference on Artificial Intelligence, 1981.

Forgy, C.L.
The OPS83 User's Manual and Report.
Technical Report CMU-CS-84-133, Department of Computer Science, Carnegie

Mellon University, May, 1984.

Harmon, P. and King, D.
Expert Systems: Artificial Intelligence in Business.
John Wiley & Sons, Inc., 1985.

Huhns, M. N. and Acosta, R. D.
Argo: An Analogical Reasoning System for Solving Design Problems.
Technical Report MCC-AI/CAD-092-87, Microelectronics and Computer Technology

Corporation, April, 1987.

Woodfill, J., Siegal, P., Ranstrom, J., Meyer, M. and Epstein, R.
Ingres Version 7 Reference Manual
Electronics Research Laboratory, College of Engineering, University of California at

Berkeley, Berkeley, California, 1985.

Kraft, A.
XCON: An Expert Configuration System at Digital Equipment Corporation.
The Al Business: The Commercial Uses of Artificial Intelligence.
The MIT Press, Cambridge, Massachussatts, 1984.

18

[Lin 81] Lin, T.Y. and Stotesbury, S.D.
Structural Concepts and Systems for Architects and Engineers.
John Wiley & Sons, Inc., 1981.

[Maher 84] Maher, M.L., Sriram, D. and Fenves, S. J.
Tools and Techniques For Knowledge-Based Expert Systems For Engineering Design.
Advances in Engineering Software, 1984.

[Maher 85] Maher, M.L
HI-RISE: A Knowledge-Based Expert System for the Preliminary Structural Design of

High Rise Buildings.
PhD thesis, Department of Civil Engineering, Carnegie Mellon University, January,

1985.

[Marcus 86] Marcus, S., Stout, J. and McDermott, J.
VT: An Expert Elevator Designer that Uses Knowledge-Based Backtracking.
Technical Report CMU-CS-86-169, Department of Computer Science, Carnegie

Mellon University, 1986.

[Mitchell 85] Mitchell, T., Steinberg, L, Shulman, J.
A Knowledge-based Approach To Design.
IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-7(5):502-510,

September, 1985.

[Schodek 83] Schodek, D.
Structures.
Prentice-Hall Inc., 1983.

[Winston 81] Winston, P. H. and Horn, B. K. P.
An Introduction to Database.
Addison-Wesley Publishing Company, Massachusetts, 1981.

[Zhao 87] Zhao, F.
Application of Al Techniques to Planning Structural System Configurations.
Master's thesis, Department of Civil Engineering, Carnegie Mellon University, March,

1987.

19

