
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Heuristic Generation of Layouts (HeGel)
Based on a Paradigm for Problem Structuring

by

O. Akin, B. Dave and S. Pithavadian

EDRC-48-10-88

Heuristic Generation of Layouts (HeGeL)
Based on a Paradigm for Problem Structuring

Omer Akin, Bharat Dave
and Shakunthala Pithavadian

Department of Architecture
Carnegie Mellon University

Pittsburgh, PA 15213

5 November 1987

Abstract

This report describes a computer based system called HeGeL which is developed to_calibrate and
verify a model of problem structuring in the design process. Implemented as a production system,
HeGeL simulates the design behaviors of humans observed during protocol experiments. This report
discusses the representations used, flow of actions and the computing environment of HeGeL as
well as the validity of the proposed design paradigm and the adequacy of methods used.

Heuristic Generation of Layouts (HeGeL):
Based on a Paradigm for Problem Structuring

Omer Akin, Bharat Dave,

and Shakunthala Pithavadian

Department of Architecture

Carnegie-Mellon University

Pittsburgh PA 15213

5 November 1987

Abstract

Based on protocol analysis of the designers solving spatial problems in architecture, a paradigm for the
designers' behavior was proposed [Akin87] in terms of: Problem (Re)Stnjcturing, when problem
parameters are established or transformed, and Problem Solving, when these parameters are satisfied in
a design solution.

In order to calibrate and verify the paradigm, we implemented a computer based system called HeGeL
(Heuristic Generation of Layouts). In this report, we describe our approach to developing HeGeL, its
architecture and performance. Implemented as a production system, the computer program simulates
behavior of the designers observed in the protocol experiments conducted earlier. This report intends to
serve multiple purposes. First, we describe architecture of HeGeL in terms of representations used, flow
oTactions and computing environment in which it was implemented. Based on performance of HeGeL, we
discuss validity of the proposed paradigm for the designers' behavior, adequacy of our methodology, and
some other issues faced during the development of HeGeL. Some research issues that need further
exploration t̂re also highlighted.

This research is funded by NSF Grant No: CEE-8411632

* »

Table of Contents
1. Background 1
2. Objectives 1
3. System Architecture 2

3.1. The Task 2
3.2. Computational Model 4

3.2.1. OPS83- A Production System 4
3.3. Major Data Types 6

3.3.1. Design Units 6
3.3.2. Predicates 8
3.3.3. Process History 9
3.3.4. Other Data Types 10

3.4. Sequence of Operations 10
3.4.1. Initialization 10
3.4.2. Solution Development 11
3.4.3. Predicate Selection 12
3.4.4. Generation 13
3.4.5. Testing 15
3.4.6. Backtracking 17

3.5. Review: Sequence of Operations 19
3.6. Sample Runs 22

4. Evaluation 32
4.1. Validity of the Paradigm 32
4.2. Final Solutions 33
4.3. Role of Heuristics 34

4.3.1. Initializing Active Predicates 34
4.3.2. Selecting a Generative Predicate 35
4.3.3. Selecting a Promising Location 35
4.3.4. Backtracking 37
4.3.5. Restructuring 38

4.4. Appropriateness of Production Systems 39
5. Conclusion 40

List of Figures
Figure 3-1: System Outline
Figure 3-2: Solutions generated by the subjects
Figure 3-3: Solutions generated by HeGeL
Figure 3-4: A sample WME declaration in OPS83
Figure 3-5: A sample OPS83 rule
Figure 3-6: WM type for design units
Figure 3-7: Alternate furniture patterns for SEs
Figure 3-8: WM element type for predicates
Figure 3-9: Direct and easy access
Figure 3-10: Natural Light
Figure 3-11: Privacy
Figure 3-12: Process History
Figure 3-13: A Sample Inltilization File
Figure 3-14: Initialization Process
Figure 3-15: Predicate Selection
Figure 3-16: Generating locations: Direct access
Figure 3-17: Generating locations: Easy access
Figure 3-18: Generating locations: Natural light
Figure 3-19: Set of Test Criteria
Figure 3-20: Shrink and Stretch Operations
Figure 3-21: Backtracking mechanism
Figure 3-22: Sequence of operations
Figure 3-23: Locating unit S
Figure 3-24: Locating units SE and CE
Figure 3-25: Locating units C and R
Figure 3-26: Search space generated
Figure 3-27: Restructuring
Figure 3-28: Locating units S and SE
Figure 3-29: Locating units CE and C
Figure 3-30: Relocating unit CE
Figure 3-31: Relocating units CE and C
Figure 3-32: Relocating units SE, CE and C
Figure 3-33: Locating unit R
Figure 4-1: Selecting a promising location
Figure 4-2: Acceptable locations for unit: S
Figure 4-3: Acceptable locations for unit: SEs
Figure 4-4: Unacceptable locations for unit: R

2
3
3
5
5
6
7
8
8
8
9
9

11
11
12
14
14
14
15
16
18
20
22
23
24
25
26
27
28
28
29
30
31
36
37
37
38

1. Background
The purpose of our research is to understand the designers' behavior when solving spatial problems in

architecture and to develop an operational model that accounts for this behavior. Based on empirical

observations underlying patterns of phenomena have been elucidated in various disciplines. Once a

j:oherent_paradigm is developed in this fashion, it is then validated by showing how it accounts for,

explains or predicts" similar phenomena [Baylor71, Moran70, Eastman70, Foz73, Akin78]. In a similar

vein, we approached our research task in two stages: (a) developing a paradigm for the designers1

behavior and (b) simulating and verifying the paradigm as a computer program.

As part of the first stage in our research work, empirical data were collected through protocol experiments

of designers solving spatial problems. Based on the analysis of protocols, a paradigm for the designers'

behavior was presented by Akin et al. [Akin86a, Akin86b, Akin87] in terms of two functionalities: Problem

(Re)Structuring, when problem parameters are established or transformed, and Problem Solving, when

these parameters are satisfied in a design solution. In the second stage, we implemented a computer

program to test and validate the paradigm. This report is mainly concerned with the implementation of this

system.

Previous studies have addressed some of the issues that we pursued in our work. One of the central

concerns in our work has been understanding the process of structuring a design problem. This issue has

drawn attention of many researchers from the area of artificial intelligence

[Reitman64, Freeman71, Simon73, Akin78]. These studies suggest that most design problems acquire

structure during the very process of design development and even then, at best, a designer is likely to

set t le . jQL a satisficing solution. Another salient /Observation to emerge from some

studies [Foz73, Simon73, Baykan84, Akin86c] is that the designers employ heuristic techniques in

searching for a solution to design problems.

Many such studies have concentrated on modeling a specific component of the design process. In this

regard, some of these studies are directed towards developing techniques and tools that are as good, if

not better, than the performance of a human designer. Our work has slightly different objectives. Primarily

our interest in this research lies in understanding and modeling the design process as a cognitive skill.

JA/e did not aim to develop any prescriptive methods for design; rather we have attempted to demonstrate

what the designers do. To this end, we describe a system that simulates the behavior of designers as

recorded in our protocol experiments.

2. Objectives
A paradigm for the designers' behavior was presented earlier [Akin87]. In order to validateihis paradigm

we implemented a computer program which we call HeGeL for Heuristic Generation of Layouts. B>

comparing the performance of HeGeL against the behavior of designers, we gradually developed

computer program that enabled us to look closely at our paradigm. This effort also pointed out certa

.areas which need further work in order to test the validity of the suggested paradigm.

In this report, we first describe architecture of HeGeL in terms of the representations used, flow of actions

and computing environment in which it was implemented. This section, entitled "System Architecture,"

describes in detail the data structures, operations, input and output of data as developed in HeGeL

Although we describe computational aspects of heGeL, we have attempted to correlate the discussion

with major components of the paradigm presented earlier. Here, a detailed example run of HeGeL is also

included.

In the next section entitled "Evaluation," HeGeL i£ assessed in terms of its performance compared to the

behavior of designers as seen in the protocol experiments. We discuss the validity of the proposed

paradigm in light of the results demonstrated through the implementation of HeGeL just described.- Here,

some open issues concerning methodology, problem structuring in design and architectural layout

problems are also delineated in general terms. Based on our implementation efforts, we also discuss the

advantages and disadvantages of adopting a production system architecture. General issues pertaining

to implementation of a computer system are described. The study ends with a "Conclusion" section.

3. System Architecture

3.1. The Task

HeGeL is designed to develop solutions to a space planning problem identical to the one given to the

subjects in our protocol experiments. Specifically, the task given to HeGeL is to design an office layout

given a list of personnel and furniture to be accommodated. Based on the analysis of 18 different

subjects in our experiments, we developed a paradigm that accommodates all different solutions

produced by the subjects. HeGeL is implemented to reflect this paradigm and broadly comprises of the

following operations [Akin87].

START

INIT. OF PROBLEM

PROBLEM STRUCTURING

RESTRUCTURING

GENERATION

STOP

PSt

PSo

TESTING i DIAGNOSIS

SELECTED SOLUTION

Figure 3-1: System Outline

First, structure the problem by establishing pertinent requirements to be satisfied. Next, select one of

these requirements and generate alternative solutions that satisfy this requirement. Test the generated

alternatives to find those that satify the remaining pertinent requirements. If more than one alternative are

feasible, select one according to additional requirements. If no solution is feasible, either restructure the

problem by modifying the set of requirements or search for alternate ways of satisfying the original set of

requirements based on a diagnosis of the situation. This process continues until all the requirements are

satisfied. At this point, one may either have a final solution and the process stops or one may want to look

for another solution that may be better than the one found so far. In its broadest outline, the problem

solving portion of the paradigm follows a generate-and-test sequence of operations as shown below the

dotted line in Fig.3-1.

A successful run of HeGeL is capable of finding solutions that are remarkably similar to the ones

produced by the subjects. Three final solutions produced by the subjects and the corresponding layouts

generated by HeGeL are shown in Figures 3-2 and 3-3. As explained in the next few sections, HeGeL

generates layouts at a particular level of detail, specifically in terms of functional areas. It does not yet

work at the next detailed level of furniture arrangement for individual functional areas. This simply reflects

a decision on our part to set HeGeL up hierarchically. In future iterations, we intend to implement

individual furniture placement once functional zones are established using the same paradigm underlying

HeGeL Incidentally, in our protocol studies, human subjects treat furniture placement in similar,

hierarchic fashion.

1 n 2\ R z\

Onh r
O

55a
4

JLJU
a

A3 A4 S4

Figure 3-2: Solutions generated by the subjects

\

\

Figure 3-3: Solutions generated by HeGeL

Next we shall describe in depth each component operation of HeGeL and the underlying representations.

3.2. Computational Model

When we embarked on Implementation of HeGeL, a couple of choices in terms of programming tools

were available to us. We were looking for an implementation environment that would facilitate

representation of the following:

1. To perform generate and test operations in a graphic domain

2. To manipulate spatial constraints easily

3. To modify the constraints list with ease

4. To use relations for generation and testing interchangeably

We had developed the paradigm in a descriptive form and we anticipated a gradual and incremental

development of its implementation as a computer program. Clearly, the imperative programming

languages were not suitable for our purposes.

Since our research subject involves representation and manipulation of substantial domain knowledge,

we were naturally faced with choosing one from among the major architectures for knowledge-based

systems: frame-based, rule-based and logic-based represenation. Specific advantages provided by each

of these architectures in certain domains are nicely summed up by Friedland [Friedland85]:
...logic where the domain can be readily axiomatized and where complete causal models are available,

rules where most of the knowledge can be conveniently expressed as experiential heuristics, and frames
where complex structural descriptions are necessary to adequately describe the domain.

Initially, we settled on a Lisp-based frame representation environment. A particular frame-based

lanaguage, Schema Representation Language(SRL) [Wright83] was available to us at the time. SRL is a

Usp-based environment with some special features like maintaining incremental frame-based databases

and object oriented computational facilities. Additionally, SRL has an interpreter that seemed ideal for our

application. Subsequently, due to circumstances beyond our control, SRL was no longer supported on

the computing machines available to us. And we had to select another implementation environment

which ended up being OPS83- a production system language [Forgy85]. In retrospect, we realized both

advantages and disadvantages existed in this choice.

3.2.1. OPS83- A Production System

HeGeL is programmed as a production system in OPS83 [Forgy85]1. Since in the following sections w-

will frequently refer to the data structures and rules as encoded in this programming language, we fir;

present a brief overview of OPS83.

OPS83 is a production system language and owes its lineage to the earlier classic production systc

languages like OPS4 and OPS5. Basic components of a production system are: (a) a global databc

called working memory(WM) represented as WM elements (WME), (b) a collection of if-then rules, and »

a conflict resolution strategy(CRS).

1 While other versions of OPS83 running under different operating systems and machines are also available, we used C 83
running under 4.2 Unix on a VAX 11-780 in the Computer Science Department, CMU.

The WM is represented as a collection of working memory eiements(WME). A WME consists of an

identifier name and a list of field tags each of which can store values of a defined type. A formal

declaration of WME in OPS83 looks very similar to a record structure found in procedural languages like

Pascal. In the following example (Fig.3-4), a WM element of type vertex is declared with two fields or

attributes named x and y, each of which can store real values.

type vertex - element

x : real;
y : real;

Figure 3-4: A sample WME declaration in OPS83

Each rule contains a left-hand-side(LHS) that specifies a condition part under which the rule can fire and

a right-hand-side(RHS) that specifies actions to be executed if the rule fires. The LHS of the rule consists

of one or more patterns that are to be compared to the elements in working memory. If a match is found,

then the rule becomes a potential candidate for firing and the matching elements from working memory

are available to the RHS of the rule for whatever action is specified. The RHS of the rule may contain

system defined primitive actions (e.g. make, modify, remove) on the elements in WM. The RHS may also

be specified in a manner that is very similar to procedural syntax found in other languages like Pascal2.

In the following example (Fig.3-5), a rule called example consists of a LHS pattern specifying a WME of

type vertex whose field x is equal to zero and y is greater than zero. If there is such a WME and the rule

fires, the RHS action will modify the WME associated with &V (on the LHS) by changing the value of field

x to be equal to y and then setting the field y equal to zero.

r u l e e x a m p l e

AV { v e r t e x x - 0 . 0 ; y > 0 . 0) ;

m o d i f y iV (x - A V . y ; y - 0 . 0) ;

Figure 3-5: A sample OPS83 rule

The production system is activated by finding rules whose patterns match the elements in working

memory and firing those rules. This component of the system is defined as a recognize-act cycle. It

proceeds in the following fashion:
1. Match: Find all rules whose LHS match the current contents of working memory. All such

rules are placed in a conflict set

2. Conflict Resolution: Select a rule from the conflict set. If no rules were found, halt.

3. Act: Execute actions specified in the RHS of the selected rule.

4. Go to step 1.

*This is one of the differences between OPS83 and the earlier production system languages like OPS5.

In order to use OPS83, the programmer has to specify a conflict resolution strategy(CRS) according to his

needs3. We implemented a CRS that selects a rule that has changed most recently, and that has the

most number of patterns in its LHS from among rules in the conflict set. Selection of such a strategy

provides a direction to the sysetm since it becomes sensitive to more recent tasks and executes them to

completion before selecting new ones. This strategy also takes into account the fact that more specific a

rule, more specific contexts it is likely to serve and thereby such a rule is given priority over the others.

Both criteria seem to follow from human subject's behaviors in solving similar space planning tasks

[Akin86b].

3.3. Major Data Types

3.3.1. Design Units

HeGeL comprises of a number of data types or WM elements and a collection of operations or rules that

manipulate WM elements. A fundamental concern in our domain is representing spaces in terms of their

geometric (e.g. location) and non-geometric (e.g. solid boundary) attributes, and certain relations (e.g.

adjacency) among spaces. We decided to limit the scope of our system to deal with only rectilinear

spaces that are parallel to the Cartesian coordinate axes. This decision was influenced by the fact that

most of the subjects in our experiments came up with solutions that could be modeled within these

limitations. A few protocols that deviated from these assumptions did not seem to offer additional

evidence towards the validation of the paradigm that we proposed.

type design_ur.it - element

crig_dims :

cocrds :

ccr.tains :

orientation :

iyrabol; — site, S, CE, ...

rray(2: real); — hcriz. £ vert, dimensions

,rray(2: vertex); — location coords.

,rray(2: symbol); — alternate furniture patterns

ymbol; — N, E, S, W

alt_locs : array(30: vertex);— alternate location coords.

) ;

Figure 3-6: WM type for design units

Declaration of a typical spatial unit consists of a number of attributes as shown in Fig.3-6. A unique

identifier is used for each distinct spatial entity required by the program. Essentially, such a declaration

provides a template for a particular kind of a WM element, and specific instances of it are distinguished by

creating and assigning a unique identifier to each of them. Not all WM elements of one type need to use

all the attributes associated with it. For our problem, the site of a design is completely defined a priori and

there is no need to compute, for example, its coordinates. On the other hand, a design unit, i.e. a

functional area associated with one of the personnel to be accommodated in the site, needs to be first

3ln the production languages available previously, the system interpreter took care of this component. This is the second major
difference between OPS83 and its predecessors.

given a size based on the kind of furniture to be placed inside that design unit.

Viewed in this fashion, a WM element type for design units defines a universe of possible attributes (of

interest to us), particular instances of which take on different values. For example, we needed to define

specific functional areas for the personnel to be accommodated; secretary (S), chief engineer (CE), staff

engineers (SEs), and conference (C). A functional area, in a generic sense, defines a universe of

furniture placements that are possible. A particular WM element for a design unit, say SEs, may have

more than one possible furniture arrangement. Depending on which furniture pattern is asserted during

execution, HeGeL takes care of assigning appropriate dimensional requirements for a design unit.4A set

of possible furniture arrangements for a design unit SEs (staff engineers) is shown in Fig.3-7. Note that

each of these patterns incorporate a band of access space from one or more directions. This is to ensure

that a design unit will have sufficient area for forming a continuous circulation space when combined with

other design units.

• D
I !

• • !
I
1

I J
3 90 .0 cms. 3 90 .0 cxs.

Figure 3-7: Alternate furniture patterns for SEs

In addition, HeGeL should be able to handle all different sites and all different functional areas to be

accomodated with the same data structure. There are three different kinds of sites in our problem; a

rectangular, a square and an L-shaped site. The first two can be defined within the limits imposed earlier,

namely treating them as rectangles. In case of the L-shaped site, we simply defined a larger rectangle

with a dummy (transparent) design unit that is already located inside the larger rectangle during the

system initialization.

Although HeGeL, at present, does not manipulate each furniture piece separately, such an extension

seems to require a generalized declaration for each furniture item. Currently, for each of the furniture

patterns, we have declared marginal spaces in all four directions that may or may not be allowed to be

overlapped with some other space. A more generalized form could explicitly store each furniture item in

the form of: (a) a space occupied by the object (and hence cannot overlap with any other space), and (b)

a clearance space in order to make the object usable or accessible (which may be allowed to overlap with

other similar clearance spaces). Such individual items can then be collapsed into furniture patterns and

used just as HeGeL uses them presently.

4This feature of HeGeL in which design units like S, CE, etc. are first assigned an approximate dimension based on a furniture
pattern is consistent with behavior of most of the subjects. Given a list of personnel and furniture items, the subjects invariably
organized the furniture items that are related to a functional area thereby (a) getting a sense of scale of the space to be
accommodated and (b) freeing their attention from very low level details Ike individual furniture placement to a higher level
abstraction.

3.3.2. Predicates

Predicates deal with relationships among design units as well as attributes associated with a particular

design unit. An example of the former is: secretary has to be directly accessible from the main entrance;

this predicate stipulates an access relation between S and the main door (Dm). An example of the latter

is: staff engineers need natural light, this predicate stipulates a spatial attribute for the design unit SEs. A

typical declaration of a WM element type for predicates is shown in Fig.3-8.

type predicate - 6lament

— active, current, passive
-- design unit- 1

g

i d
status
unitl

: S\TTU?C1;
: s v m i c l ;
: si ir iel;
: S\TTJ:C1;

relation : snrJ:cl; — re.aticr. or attribute,
— e.g. arress, rrivacv,

Figure 3-8: WM element type for predicates

Based on the analysis of protocols, possible relationships were defined in HeGeL For each instance of a

relationship, HeGeL creates a unique predicate and assigns proper values to its attributes. Almost all the

predicates for our application are concerned with direct access, easy access, natural light, and privacy.

These in our implementation are interpreted as follows.

Direct access is a symmetric relationship between two design units, D1 and D2, if D1 and D2 are directly

adjacent, i.e. one of the edges of D1 is coincident with any one of the edges of D2 (Fig.3-9). Easy access

is a symmetric relationship between two design units, D1 and D2, if there is a third design unit D3 such

that D1 and D3 are directly accessible and D2 and D3 are directly accessible (Fig.3-9).

Dl

D2
Dl

D3

D2

DIRECT ACCESS (Dl, D2) EASY ACCESS {Dl, D2)

Figure 3-9: Direct and easy access

Natural light defines a spatial attribute of a design unit D1 if one of the edges of D1 has a window opening

onto the exterior of the site (Fig.3-10).

exterior

Figure 3-10: Natural Ught

Privacy is a spatial attribute of a design unit D1 and is defined in terms of D1 having solid boundaries.

Unless explicitly assigned some other value, all the edges of design units located by HeGeL are

considered transparent. If a predicate specifies privacy as an attribute of unit D1 with respect to another

design unit D2, then D1 is located as far away from D2 as possible and only those edges of D1 that face

D2 are assigned solid boundaries (Fig.3-11). If the predicate does not specify D2 and requires that D1 be

private then all the edges of D1 are assigned solid boundaries.

e l

—— v _ d i s t a n c e

e~: solid edges

Figure 3-11: Privacy

The subjects in our experiments developed a final solution satisfying a set of relationships that were

established as the design progressed. In other words, the design process that we observed and aimed to

model was made up of a number of stages or cycles. During each such stage, called episodes in the

design process, certain relationships were consistently used in generating and testing alternative

solutions and these were not modified or completely disregarded until after the end of the episode. In the

implemented version of HeGeL, each episode is modeled by a certain number of predicates that are

active and the remaining ones are passive. The generation and test operations recognize only those

predicates that are active. At the end of the episode, HeGeL can manipulate both the active and passive

predicates to restructure the design problem.

3.3.3. Process History

In order to keep a chronological record of its own design process, HeGeL makes use of a global two-

dimensional history matrix(Fig.3-12). Each row in the matrix corresponds to an episode or a cycle in the

solution development by HeGeL. Each column records the sequence in which design units are located or

attempted to be located in each episode. An episode in which all the design units are successfully located

will have found a design solution.

Assignment Sequence for
Design Units

1

2

3

1 2 3 4 5 6

Figure 3-12: Process History

10

3.3.4. Other Data Types

In addition to the major WM elements described above, other data types are also used in HeGeL Some

of them are used to direct execution of HeGeL, e.g. a WM element called blackboard is used as a first

pattern on the LHS of all productions. This enforces a desired sequence to the execution of HeGeL since,

during the recognize-act cycle, only the productions that have successful match for each of the patterns

on their LHS become candidates for potential firing. In other words, a WM element like blackboard Is used

to partition the productions into chunks of process-specific actions like initialization, generation, etc.

Some other data types were also used to store and pass values to productions or to make some

operations more straight forward. Since they were used for very narrow or specific purposes, they are not

described here.

3.4. Sequence of Operations

3.4.1. Initialization

All the subjects in the experiments were given a specific site and an identical problem statement in terms

of the personnel and furniture items to be accommodated. Each subject developed a different solution

depending on how he structured the problem. Some of them first established an object hierarchy or a

functional hierarchy [Akin87], and then identified a set of relationships that were to be satisfied among the

design elements. This process proceeds in cycles, each cycle involves a number of alternatives to be

generated and tested. Some of them are developed further, gradually converging towards a final

solution.

A typical session with HeGeL starts by setting up the problem definition. In order to simulate the data

from a given protocol in HeGeL, first a file is set up that specifies a particular site, design episodes

observed in a particular protocol, relationships identified for each episode, and furniture patterns

associated with each design unit. At the start of the session, the system is initialized by reading in these

data from a file.

As shown in Fig.3-13, an initialization file has three major sections. The first line specifies a site from

among three possible ones; rectangular, square or L-shaped. The next section (lines 3-17) specifies the

predicates (Section 3.4.3) corresponding to relationships derived from human protocols, each separated

by a blankline. Some of these predicates are designated active, i.e. only those predicates can affect

generation and test operations during a given episode; and the rest are designated passive. Passive

predicates can be activated just as active ones can be placed on passive status at the end of each

episode. The last section (lines 19-23) specifies the design units and alternate furniture patterns for each

design unit. In this way HeGeL permits the "playing out" of different episodes, successively.

The initialization process can be described in a different way. All the subjects brought their personal

knowledge to bear on developing a solution to a given design problem. The system at the start of a

session reflects only a container for such knowledge in all its variations. Once initialized, the system is

11

Z 4 t

p 5 <

pS

szt

!rt

i S Zrr. iir^rt
i rf c -i - rA --

a T£ Zs iirert
i 3£ £ private

i 3£ S private
s R S direct

13
plC passive C
pll passive C

plZ passive C

pi 5

passive C
p a s sive C
passive C

easy
direct.

r.:I private
Irr. easv

SE f 5

R f 9

Figure 3-13: A Sample Initilization File

equipped with specific knowledge which will determine its subsequent behavior (Fig.3-14).

sites: re;t,

predicates: F

design units:

sqr

Dl

D2

Dn

, ell

P2, ...,

defined

defined

defined

Pn

by Fl, F2,

by Fl, F2,

bv Fl, F2,

Fn

Fn

Fn

re<

CE

S

SE

C

R

defined

defined

defined

defined

defined

rl 5

by

by

by

by

by

fl,

f3,

f5,

tl.

f9

*̂>

f4

f 6

f8

Figure 3-14: Initialization Process

3.4.2. Solution Development

As observed in [Akin87]t the subjects generate solutions by pattern or by zoning. The former utilizes

object (e.g. furniture items) or functional (e.g. design units) hierarchy. The latter utilizes extant cues in the

site (e.g. door and window locations) to first create zones into which the design units are mapped.

Presently, HeGeL is capable of generation by pattern only. This is purely a circumstantial limitation of

HeGeL; we did not have sufficient time to implement generation by zoning. But the underlying principles

are well analyzed and described in [Akin87]. In the rest of this report, we describe implementation of

HeGeL in terms of developing solutions by pattern only.5

slt should be emphasized that the data structures and initialization of HeGeL are designed to handle both generation by pattern
and by zoning.

12

3.4.3. Predicate Selection

The design units are assigned in accordance with certain desired relationships which we have termed

predicates. They represent relations between design units or attributes of a design unit. Depending on the

context, predicates are used as generative constraints or evaluative criteria. In order to assign a design

unit, HeGeL first needs to find a predicate which then will be treated as a generative constraint for that

design unit. Selection of a generative predicate can be done in a number of ways, and any one or a

combination of the following choices are acceptable to HeGeL

1. By specifying a particular design unit, and finding ail the predicates with which the design
unit is associated.

2. By specifying a particular relation or an attribute, and finding all the predicates in which the
relation occurs.

3. By specifying that design units are to be assigned in the decreasing order of the number of
predicates associated with each of them. This is a form of most-constrained first strategy.

4. By specifying a relational predicate between two design units in which at least one of the
units is already located. This is a by reference strategy.

5. By specifying a predicate in which an attribute of a design unit depends on the given site
elements (e.g. windows).

6. By selecting at random.

To illustrate, if the selection strategy for the initilization file in Fig.3-13 were specified as a combination of

CE and privacy, HeGeL would find predicates as illustrated in Fig.3-15. From the set of initialized

predicates, a subset is created containing only those predicates that are active. From this subset another

subset is created with those predicates in which CE occurs, and so on. In a sense, selection criteria are

treated as successive filters which let through only certain predicates insuring, eventually, the

identification of one or only a few predicates.

Selection strategy args.
Predicates Predicates (predicates associated with)
Initialized Active CE privacy

Pi pl
?2 ?2
P3 F3 p3
P* P4 p4 p4
P5 F5 F5
p6 p6 p6
p7 p7
P8 p8

P»
plO
pll
pi:
pl3
P14
PIS

Figure 3-15: Predicate Selection

If HeGeL is moving forward i.e. not backtracking (explained in in Sec.3.4.6), the user interactively inputs

predicate selection criteria. If HeGeL is in a backtrack mode, then it will find all pertinent predicates since

the process history records the sequence in which design units were assigned previously. In either case,

this process may lead to three possibilities for a given predicate selection strategy: (a) no predicate is

13

found in which case predicate selection process has to start again, (b) a unique predicate is found then

HeGeL moves forward to the process of generating alternative locations for a design unit, and (c) more

than one predicate are found in which case the user has to interactively select one of those predicates.

Currently, HeGeL interacts with the user in either of these three situations. The first and the second

possibilities can be trivially automated, while the third possibility requires addition of substantial domain

knowledge to HeGeL to full automation. In Sec.4.3.2, we discuss some of the heuristics applicable to this

category.

3.4.4. Generation

Once a predicate is selected and designated as a generative constraint for a particular design unit,

HeGeL is ready to generate alternate locations for the design unit. As noted previously, a generative

constraint (i.e. a predicate) may involve one of the following two situations:

I .The constraint deals with some relationship between the design unit that HeGeL is
attempting to locate (DU) and another design unit which we will call the reference design
unit (RDU). If the RDU is not yet located then HeGeL cannot proceed, and the user
interacts with it to either return to the earlier state of predicate selection (Sec.3.4.3) or
directs it to first locate the RDU instead of DU.

2. The constraint deals with some attribute of the unit to be located (DU).

HeGeL generates alternate locations depending on the relationship or attribute specified in the generative

constraint. It is important to note that any given predicate may be treated as a generative constraint or an

evaluative criterion. In either case, a relationship or an attribute associated with a predicate has the same

meaning except that (a) if used in a generative form, a specific relationship or an attribute becomes the

prime parameter for generating alternate locations for the DU (i.e. generating locations that satisfy the

constraint), and (b) if used in a testing phase, generated locations are checked to see if they satisfy the

interpretations associated with a specific relationship or an attribute.

A generative constraint may have two design units DU and RDU. If the constraint deals with direct

access, HeGeL projects dimensions of DU from all corner and intermediate vertices of RDU to compute

relative coordinates of all possible locations for DU (Fig.3-16).

When the generative constraint requires easy access, HeGeL first generates locations as if the specified

relationship were direct access as explained above. Next, HeGeL finds ail design units that are directly

adjacent to RDU. From all corner and intermediate vertices of each such design unit(AU), HeGeL

projects dimensions of DU to compute possible locations (Fig.3-17).

When the generative constraint requires natural light, each corner vertex of the existing windows on the

site is taken as a reference point from which dimensions of DU are projected and locations computed

(Fig.3-18).

When the generative constraint requires privacy, HeGeL projects dimensions of DU from all corner and

intermediate vertices of the site as well as all the design units that are already located. At this point, it is

not necessary to consider whether the constraint specifies privacy of DU in reference to another unit RDU

14

1

i1 D-T I
1 " 1

I

r

RDU

"i r
i i D "
i i

1

1

RDU ?ru

I—I

F.D'J "J DU

RDU

I I

I I

I I

i
RDU

I
I
I DU

RDU

"1

?DU

I I

Figure 3-16: Generating locations: Direct access

RDU

!

AU

r
i
i
!

RTU

DU

AU

I

j

RDU

r
DU

AU

_ J

RDU

DU j

AU

RDU AU

1
DU]

I
RDU

AU

1

DU
RDU

AU DU

I I

I I

DU

I

RDU
AU

j DU

1

RDU AU

1

RDU
AU

DU |

1

Figure 3-17: Generating locations: Easy access

: v I

I I

RDU

1 ~J

L

r

L

1
J

RDU

1 I
I I
I D V I
I I
I I

! I ! I

Figure 3-18: Generating locations: Natural light

or not. During the subsequent stage, the test procedures assign solid boundaries depending on whether

15

an RDU is specified in the generative constraint or not.

All the generated locations are stored in an array. Some of these may be duplicate locations, e.g. if a

given DU is square in shape. HeGeL scans the array of possible locations and drops any locations that

are duplicated. Next, all the locations that fall outside the site boundaries by more than 10.0 cms. are

deleted from the array. Lastly, HeGeL drops any location that overlaps by more than 30.0 cms. with any

other design unit located previously. Locations that fall ouside the site by a margin of 10.0 cms. or

overlap with another design unit by a margin of 30.0 cms. are permitted since some flexibility in floor area

is acceptable in most solutions.

Once this process of generating and filtering locations is complete, HeGeL already may have come up

with one or more locations for a DU that satisfy a particular generative constraint, and it proceeds to the

next stage of testing them against other predicates associated with DU. It may also happen that no

locations are generated because either they fall outside the site or they overlap with previously located

design units. In this case, HeGeL undertakes backtracking as explained in Sec.3.4.6.

3.4.5. Testing

Once HeGeL has generated alternate locations for a design unit (DU), such locations are tested against

all predicates that are pertinent to DU. As noted earlier, a set of predicates in which DU appears is

identified during the predicate selection stage. From this set, one predicate is selected as being a

generative constraint according to which alternate locations for DU are generated; hence that particular

predicate is already satisfied. The remaining predicates in this set are treated as test criteria (Fig.3-19),

and the generated locations need to be tested to ensure that they satisfy test criteria.

Selection strategy args .
Predicates Predicates (predicates associated with) Generative Test
Initialized Active CE privacy Constraint Criteria

pl pi
?2 p2
p3 F3 ?3 F3
P< P4 p4 p4 F-4

p5 p5 p5 p5
F-6 p6 p6 p6

?8 P3
p9
plO
pll
pl2
P13
pi 4
plS

Figure 3-19: Set of Test Criteria

While testing the locations, HeGeL interprets each criterion as described previously (Sec.3.3.2). If the

criterion deals with direct access between two design units, DU and RDU, HeGeL attempts to infer if any

one edge of DU is coincident with any one edge of RDU. If such an edge is found, that location of DU is

considered to satisfy the criterion, else that location is dropped. Similarly, if the test criterion deals with

easy access between two design units DU and RDU, HeGeL attempts to find a third unit AU such that

16

each pair of DU and AU, and RDU and AU satisfy the criteron of direct access (thereby ensuring a path

between DU and RDU). If the test criterion deals with natural light, each edge of DU is compared with

locations of available windows. If there is an overlap, the location fulfills the criterion. If the test criterion

deals with privacy for a design unit DU with respect to another unit RDU, the generated locations are first

sorted by decreasing order of the distance between DU and RDU. And HeGeL selects a location for DU

that is the farthest from RDU.

Once all relevant tests have been carried out, it may happen that none of the generated locations

successfully passed ail the test criteria. In such a situation, HeGeL backtracks as explained in Sec.3.4.6.

On the other hand, there may be one or more locations that successfully pass all the test criteria. If a

unique location is identified (either because only one location passed through or more than one location

passed through but they are ordered by distance) then HeGeL establishes if any edges of DU need to be

assigned an attribute solid (since one of the predicates associated with a DU may specify privacy). If

more than one location are available but they are not ordered by distance, then HeGeL displays all

successful locations and the user selects one of them as a final location for the DU. The remaining

successful locations, if any, are stored as alternate locations for that particular DU and may be utilized

later during backtracking.

Ka) Kb)

DU &

AU

DU

I
J

II(a) 1Kb)

L: 10.0 cms. or less
M: 60.0 cms. or less
N; 30.0 cms. or less

Figure 3-20: Shrink and Stretch Operations

Finally, the DU is assigned the uniquely identified location coordinates. At this point, HeGeL makes

appropriate adjustments, if any, to the location coordinates of DU. If a selected location either falls

outside the site or overlaps with any other other design unit within allowable margins, HeGeL shrinks the

DU. If the DU is located in such a way that there is another design unit or a site boundary only 60.0 cms.

away or less, HeGeL expands the DU in that direction (Fig.3-20). Since in our specific design problem all

the windows are along the site boundaries, stretching a design unit in relation to windows is subsumed

17

under stretching operations in relation to the site boundaries and no additional operations need be

defined for this purpose.

Once a location for DU is adjusted and assigned, HeGeL updates adjacencies for all the design units

located so far. For each design unit, any other unit that is directly adjacent to it in a cardinal direction is

stored. In this way, HeGeL maintains an accurate record of assignments as well as other attributes and

relations among the located design units. At this point, if any design unit remains to be located, HeGeL

returns to the predicate selection stage (Sec.3.4.2). After a number of such generate-and-test cycles, all

the design units are located and the task is accomplished. If HeGeL cannot successfully locate a design

unit, it undertakes backtracking as explained in the next section.

It should be noted that the order in which test operations are applied to the generated locations is not

important since eventually only those locations that pass all the test criteria are considered as candidate

locations for a design unit. On the other hand, test operations are applied only to the design unit being

located and HeGeL, in its present form, cannot ensure that none of the previously located design units

get affected in the process. Although this is a serious concern, we have not dealt with it in the present

version of HeGeL.

3.4.6. Backtracking

Whenever HeGeL is unable to locate a design unit during either generation or testing stage, it employs

backtracking to find alternate locations for any of the previously assigned units and then reattempts to

locate the design unit. In a very strict sense, HeGeL employs a simple chronological backtracking

mechanism.

As described earlier, HeGeL maintains a chronological history of the order in which design units are

attempted to be located. With each successful predicate selection operation, an additional design unit is

inserted into the history list. For each design unit, all generated locations that successfully pass test

criteria pertinent to that design unit are stored as alternate locations for that unit. Not all the located

design units may have such alternate locations. In essence, combining the history list consisting of the

order in which design units are attempted to be located and possible alternate locations for each of the

units can be depicted as shown in Fig.3-21.

According to the history list in Fig.3-21, the sequence of assignments of design units reads: S, CE,

C. While S shows three alternate locations (L1, L2, L3), CE has two such locations {L4, L5) and C only

one (L6). Now if SE were to be located next and no possible locations could be found for SE,

backtracking mechanism works as follows. Note that SE would already be inserted in the history list, only

it is not yet assigned any location. HeGeL searches backwards through the history list to find the first

design unit with alternate locations. When HeGeL cannot find any locations for SE, it will traverse

backwards in the history list to find a unit located preceding SE, namely unit C. Since there are no

alternate locations associated with this unit- C, HeGeL will backtrack once more to find the preceding unit

in the history list, namely unit CE, and it would find an alternate location for CE (L5). Once such a unit

with alternate locations is found, HeGeL deassigns design units including and following that unit in the

18

ALTEPJCATE

Figure 3-21: Backtracking mechanism

history list. In the above example, CE and C would be deassigned. No action for SE is necessary since it

is not yet assigned. Note that this operation removes locations assigned to selected design units and

updates adjacencies for other design units that remain unaffected by backtracking. HeGeL does not

modify the history list which is left intact. As long as HeGeL performs chronological backtracking, it also

need not adjust the dimensions of the remaining units after backtracking. This is due to the fact that

shrinking and stretching operations are always performed on the DU that is most recently located. At the

same time, HeGeL cannot update the remaining units in terms of their edge attributes like solid that may

have been previously required by design units with privacy relations.

Once this process is complete, HeGeL picks up the alternate location for the selected unit, i.e. location L5

for CE. Since all alternate locations for a design unit are stored only if they satisfy all test criteria pertinent

to that unit, HeGeL does not repeat any tests except in one condition. If the design unit for which an

alternate location is found appears in some predicate that specifies privacy then the alternate location

needs to be checked to find if all or a few edges need to be assigned an attribute solid. Next, this location

is post-processed for any required shrinking or stretching as described earlier, followed by adjacency

update for all the design units located so far. Once a design unit is successfully relocated and all

appropriate bookkeeping is complete, HeGeL goes about locating all other design units that were

deassigned.

This is accomplished by simply following the history list In the above example, once SE could not be

located, the backtracking mechanism deassigned CE and C. Next, CE is relocated and HeGeL scans the

history list to find a design unit that follows CE, namely C. HeGeL returns to the stage of predicate

selection and finds all predicates associated with C. Once a predicate is designated as a generative

constraint for C, generate and test operations take care of locating C. Once again, HeGeL scans the

history list to find a design unit following C, namely SE and the cycle continues until all the units in the

history list are located. In the end, if all the units are assigned then the task is finished. If HeGeL

successfully locates all units in the history list but all units in the design problem are not yet located, it

returns to the stage of predicate selection (Sec.3.4.3) as a normal sequence of operations. In that case,

the next design unit will be inserted in the history list unlike backtracking mode which does not delete or

19

insert new design units in the history list.

This is a very simple chronological backtracking mechanism which, if needed, will exhaustively search the

entire space of available alternate locations for all the design units. If even after exhaustively searching

all possible locations no solution is found, current set of active predicates will be interactively modified.

This operation corresponds to restructuring of the problem.

3.5. Review: Sequence of Operations
A paradigm for the designers' behavior was presented [Akin87] in terms of two functionalities: Problem

(Re)structuring and Problem Solving. In the preceding sections, we described a computer program-

HeGeL, that operationalizes these two functionalities. A complete and detailed sequence of operations

carried out by HeGeL is illustrated in Fig.3-22.

At the start of the session, HeGeL is given the problem definition in the form of an initialization file

(Fig.3-22, link 1). The initialization file specifies a set of predicates some of which are active and the

others passive. Each time the status of a predicate is changed from active to passive or vice versa,

HeGeL prompts for a generation mode (Fig.3-22, link 2), the options being generation by pattern or by

zoning. If the latter is selected (Fig.3-22, link 4), HeGeL has to undertake solution development by zoning,

a component not currently encoded. If the former is selected (Fig.3-22, link-3), HeGeL proceeds to the

stage of predicate selection (Fig.3-22, link 5). If HeGeL is not backtracking, predicate selection is

interactively carried out based on various criteria, otherwise predicates are selected according to the

design units in the history Jist (Fig.3-22, link 6). Depending on the number of predicates identified

(Fig.3-22, links 7, 8, 9), HeGeL may be directed to designate a unique predicate to be used as a

generative constraint (Fig.3-22, links 11, 12). If no predicate is identified (Fig.3-22, link 10), HeGeL

returns to predicate selection phase (Fig.3-22, link 38).

If the generative predicate contains a reference unit that is located, HeGeL generates possible locations

for a design unit according to the specified relationship (Fig.3-22, links 14, 17). If the reference unit is not

located (Fig.3-22, link 13), HeGeL is directed to locate that unit first by generating alternative locations

(Fig.3-22, links 15, 16). If one or more locations are generated (Fig.3-22, link 18), HeGeL tests each of

these locations according to test criteria (Fig.3-22, link 20). A successful location is selected and post-

processed for any adjustments required (Fig.3-22, links 22, 23, 26, 27), and a design unit is assigned the

location coordinates. If another design unit remains to be located as called out in the problem definition,

HeGeL returns to the stage of predicate selection (Fig.3-22, links 30, 37, 38). If all the design units are

successfully located, HeGeL can be directed to search for another solution (Fig.3-22, links 37, 39) or to

stop (Fig.3-22, link 36).

If no location is generated (Fig.3-22, link 19) or if the generated location(s) could not pass all the test

criteria (Fig.3-22, link 24), HeGeL backtracks (Fig.3-22, links 21, 25). Currently, HeGeL is equipped to

undertake chronological backtracking (Fig.3-22, link 31) by searching through the history list to find a

design unit that has alternative locations. If such a unit is found (Fig.3-22, link 32), HeGeL deassigns all

20

sj/ : 5

LOCATE REF.
W/ PREDICATE

UK IT
ID

16 \ GENERATE
PREDICATE

si/17

LOCS. ACC.
RELATION

/TO

1 3EN.LOCATION >
ill

[GEN.LOCATION - 0

TEST LOCS. ACC./TO
PREDICATE RELATIONS

:i

1 TEST.LOCATION- 1| [TEST.LOCATION> 1 | [TEST.LOCATION- C |)[DIAGNOSE |

\|/2 6 fn
1 SELECT |

1 LOCATE UNIT

STRETCH/SHRINK

UPDATE ADJS.

• 3 0

AKY UNIT
TO BE LOCATED ?

SEARCH BACKWARDS TKRC.
GEN.HISTORY TO FIND
UNIT (D) WITH ALT.LOCi

YES

DEASSIGN UNIT (D)
& SUBSEQUENT UNITS
ACC./TO HISTORY

RETEST ALL ALT.LOCS
FOR UNIT (D)

34

- I STOP |

Figure 3-22: Sequence of operations

the design units including and following that design unit, picks up an alternative location that is then

subjected to test criteria pertinent to that design unit (Fig.3-22, links 33, 34). Having successfully located a

21

design unit to an alternate location, HeGeL attends to the task of locating the remaining design units by

repeating the previous operations (Fig.3-22, links 30, 37, 38). If HeGeL cannot find any design unit with

alternative locations (Fig.3-22, link 35), it can be directed to either change the predicate set (Fig.3-22,

links 37, 39), or to stop (Fig.3-22, link 36).

22

3.6. Sample Runs

In order to illustrate various features of HeGeL described in previous sections, a sample run is presented

below. The left hand column shows alphanumeric component of HeGeL, letters in bold indicate user

input. The right hand column shows current stage of design development in a graphical format.

Name cf initialization file : D»ta3.r»a

Generate by 'pattern' or 'z:ne' ? pattern

Enter :an. strategy to select predicates,

finishing with 'end' : S %nd

Predicates identified: pi p2 p4 p7 p3

Select: <ID> (predicate from current set)

(predicate not in current set)

F(ire new generation strategy) : pi

Net assigned yet. Select rr.ain aocr : Dl

Passing generated locations to test_procs.

Goal: test_locs Status: pi Locating: S

More than one locations are possible.

150 480 390 780

90 480 390 720

150 90 390 390

90 150 390 390

60 390 300 €90

0 390 300 630

60 180 300 480

0 240 300 480

150 390 390 690

10: 90 390 390 630

11: 150 180 390 480

12: 90 240 390 480

Select a location : 8

1

- \ n
1

r
3

N

i
5

r
7

r-j

9

r

2

4

| \
i

r

6

8

10

N

I

"I

i

11 12

Altarnat* location* for dasign unit- S

Located design unit S 0 240 300.480

Figure 3-23: Locating unit S

HeGeL reads in data from an initialization file (Fig.3-13), followed by a selection of the solutio

development strategy- by pattern or by zoning. Next, HeGeL identifies all predicates associated with 5

i.e. p1, p2, p4, p7, p8. From this set, p1 is selected as a generative constraint based on which possib

locations are generated, while the rest are used as criteria for testing generated locations. Befc

generating locations for S, HeGeL prompts for assignment of main door(Dm) since predicate p1 specif

direct access between S and Dm. From 12 acceptable locations, unit S is assigned location #8 (F

3.23.8). Note that any other location is equally valid and they all are stored as alternate locations for S.

23

Inter :9r.. strategy to ssle:: predicates,

finishing with 'end' : SI «ad

Predicates identified: p7 p2

Select: <I2> (predicate from current set)

(predicate net in current set)

F(ire new cer.eraticn strategy) : p2

Passing generated loraticr.s to test_prccs.

Seal: test_lccs Status: p2 Locating: SE

Mere than one locations are possible.

1: 0 480 250 S"0

2 : 0 4 3 0 2 90 "30

3: 50 480 300 S~0

4: 0 -10 3 90 2 40

Select a location : 4

L:cated design unit SE 0 0 2 9C 2 40

Enter gen. strategy to se.ect predicates,

finishing with 'end' : CS «nd

Predicates identified: p3 p5 p6 p4

Select: <Z2> (predicate from current set)

(predicate not in current set)

F(ire new generation strategy) : p3

Passing generated locations to test_procs.

Goal: test_locs Status: p3 Locating: CE

Located desian unit CE 0 910 300 1200

1

:\T\
I

i \ \ _

2

location* for d*aign unit.- SB

K \
i

Alt«raat« location* for design unit- CX

Figure 3-24: Locating units SE and CE

Having located S, HeGeL generates and tests locations for unit SE. There are four acceptable locations

from which location #4 is selected for SE. Note that location #4 falls outside the site by 10 cms. (which is

within the acceptable margin of 30 cms.). Before actually locating SE, HeGeL shrinks the area so as to

bring it within legal bounds of the site as reflected in the final locational coordinates of SE. The other

locations are stored as alternate locations for SE.

Next, HeGeL locates unit CE in a similar fashion. In this case, HeGel does find a unique solution after

generating locations and testing them against all applicable test criteria. Since there is only one

acceptable location, HeGeL takes the proper action of assigning coordinates to CE without requiring user

interaction.

24

£r/.er gen. strategy :: s^lert predicates,

finishing with 'end' : C and

Predicates identified: p6

Select: <ID> (predicate from current set)

(predicate not in current set)

F(ire new generation strategy) : p6

Passing generated locations to tes:_pr::s.

Goal: test_iocs Status: p6 Locating: c

More than cne locations are possible.

1: 0 520 340 910

Z: 0 5"0 3 90 9-10

Select a location : 2

Located design unit Z 0 570 3 90 910

Enter gen. strategy to seleot predicates,

finishing with 'end' : R •nd

Predicates identified: p8

Select: <IC> (predicate from current set)

(predicate net in current set)

F(ire new generation strategy) : p8

Passing generated locations to test_procs.

Goal: test_locs Status: p8 Locating: R

More than, one locations are possible.

1: 0 480 150 600

2: 150 480 300 600

Select a location : 1

Located design unit R 0 480 150 570

All units located. Finished ...!

G«n.Cycl«:<l>: S SE CE C R

JLLtarnat* locations for daaign unit- C

\

\

! \

\

\
1

\
\U\ \

Alt*xn»t« locations for design xuxit- R

final Solution

Figure 3-25: Locating units C and R

Here, HeGeL finds two acceptable locations for C, out of which location #2 is selected and the other is

stored as alternate location for C. Similarly, two acceptable locations are found for unit R. Note that both

locations for R overlap with unit C within allowable margin (30 cms. or less) and hence are considered

acceptable. Once location #2 is selected for unit R, it is shrunk in the direction of overlap with C and

adjusted coordinates are assigned to R.

25

HlfTCRY AL7EF.NATE

120

* FINAL SOLUTION

Figure 3-26: Search space generated

In the preceding session with HeGeL, a number of alternate locations were available for most design

units. Topology of the search space explored in this particular session is illustrated in Fig.3-26. Note that

even if some other node in the search tree were selected, backtracking mechanism would have found the

current final solution since the search space would not be altered as long as the set of active predicates is

not altered. To illustrate, in Fig.3-26, locations L1 through L12 for the unit S satisfy all the active

predicates that are related to the unit S. Although the unit S is assigned location L6, the remaining

locations are stored as alternate locations. If a location other than L6 for S were selected and

subsequently other units could not be located for some reason, HeGeL would backtrack and the unit S

would be assigned the next available location from the list of alternate locations. Eventually, HeGeL would

assign location L6 to the unit S and the solution illustrated in Fig.3-26 would be found. It should be

stressed that the alternate locations for a design unit are in reference to a particular set of active

predicates. As long as this set of active predicates is not changed, backtracking mechanism by

performing exhaustive search will find a solution if one exists in the current search space.

At this point, all the units are located and an acceptable solution has been found. HeGeL can be directed

to stop here or search for another solution as shown in the next segments. This feature of HeGeL

corresponds to the behavior of subjects found in our protocol studies. Some subjects, after having found

an acceptable solution, attempted to search for another, possibly better solution. Some subjects

searched for another solution without changing any of the predicates asserted previously while some

others changed the predicates. Additionally, if even after an extensive search a solution was not found,

subjects (and HeGeL) searched for a solution by changing the predicates asserted. This amounts to

restructuring the design problem. We call each such (re)structuring an episode in the design process.

Figures 3-23, 3-24 and 3-25 together constitute one episode; the following segments constitute another

such episode.

26

Search frr ar. :tr.«r s-rlutier.? ;y, r.." : y

Change main door? [y, n]: y

New main door: DC.

Initialized set :f predicates contains:

?R£D_ID: p9 passive C SE private

C SE easy

C CE direct

C CE easy

C nil private

C Dm easy

PR£D_ID: plO passiv

FR£D_ID: pll passiv

FR£D_ID: p!2 passiv

PPZD_ID: p!3 passiv

FRED_ID: pi4 passiv

?RED_I2: pi5 passive

FRED_ID: pi active £ Dm direct

FP£D_ID: p2 active SE £ direct

?RED_ID: p7 active SE S private

FF£D__ID: p4 active CE S private

FRED_ID: p5 active CE r.ii light

FR£D_ID: p3 active CE Ds direct

?RED_ir: p6 active C CE direct

FR£D_ID: ?& active R S direct

Change predicates- 'active' to 'passive'.

Enter <ID's>, finishing with 'end': p3 •&

Changed predicate p3 to passive.

Change predicates- 'passive' to 'active'.

Enter <ID's>, finishing with 'end': p9

Changed predicate p9 to active.

Restructured predicate set.

Generate by 'pattern' or 'zone' ? pattaxn

Figure 3-27: Restructuring

In order to search for another solution, some problem parameters are changed as shown in Fig.3-27. Two

global changes are executed in this segment. First, the main door, i.e. entrance into the office is changed

from the previous episode. Second, one of the active predicates- p3 is changed to passive, whereas

predicate p9 is activated. In this example only two predicates are changed, i.e. their status is modified,

however, it is possible to modify any predicate in the initialized set of predicates.

Additionally, HeGeL prompts for a solution development strategy- by pattern or by zoning. This feature

corresponds to the behavior of some subjects who, after pursing one strategy, decided to switch to

another development strategy. Following this selection, HeGeL continues in a fashion similar to the earlier

example.

27

Enter rer.. strategy t: scle:: rrs-iratss,

finishing with 'end' : S and

Predicates identified: pi p2 p" p4 pS

Select: <!!:> (predicate frrm currant set)

(predicate not in current set:

F'ire new generati:n strategy; : pi

Passing generated Irrations to :*st_cr::s.

3cal: test_locs Status: pi Lrrating: S

More than cne locations are possible.

1: 150 S10 290 1110

C: 90 S~0 290 1110

2: 60 900 300 1200

4: 0 960 300 12 00

5: 150 900 390 1200

6: 90 960 390 1200

Select a location : 5

Located design unit S 150 900 390 1200

Enter gen. strategy to select predicates,

finishing with 'end' : SB «nd

Predicates identified: p9 p7 p2

Select: <ID> (predicate from current set)

(predicate not in current set)

F(ire new generation strategy) : p2

Passing generated locations to test_procs.

Goal: test_locs Status: p2 Locating: SE

Mor« than on© locations ar« possible.

1: 150 510 400 900

2: 140 510 390 900

3: 0 650 290 900

Select a location : 1

Located design unit SE 150 480 3 90 900

1
4

Jj
! I

5 6

Alternate location* for d*«ign unit- S

n

n

Xlt«r&at« location* for d*»ign unit- SI

Figure 3-28: Locating units S and SE

Having restructured the problem parameters, HeGeL develops acceptable locations for S and SE

according to pertinent constraints and criteria for each unit. Next, HeGeL assigns coordinates to both

these units according to the selected location while the others are stored as alternate locations. Unlike

the previous episode wherein main door was not assigned initially and had to be specified before

locations for S can be generated, here HeGeL has made pertinent modifications for both doors during the

restructuring stage (Fig.3-27).

28

Enter :sr.. strategy to selert predicates,

finishing with 'end' : CX aod

Predicates identified: p5 p6 p4

Select: <ID> (predicate from current set)

(predicate not in current set)

F{ire new generation strategy) : p4

Passing generated loratirns to test_proos.

Goal: test_locs Status: p4 Locating: CE

Located design unit CE 0 0 30 0 2 90

Enter gen. strategy to select predicates,

finishing with 'end' : C *nd

Predicates identified: :9 p€

Select: <I2> (predicate from current set)

(predicate not in current set)

F{ire new generation strategy) : p€

Passing generated locations to test_prors.

No locations are generated.

Xlt«znat« locations for d*«ign unit- CX

Unacceptable location* for d*aign unit- C

Figure 3-29: Locating units CE and C

Next, HeGeL finds three acceptable locations for CE which are first sorted in decreasing order of distance

from unit S as required by predicate p4. Once these locations are ordered, HeGeL assigns CE to the first

location (which is the farthest from S), the other two locations are stored as alternate locations.

Next, HeGeL attempts to generate locations for C without success. This is because both possible

locations that can be generated overlap with SE exceeding the allowable overlap margin. This forces

HeGeL to backtrack as seen in the next segment. Note that the unit C is not yet located but it is already

inserted into the history list.

Backtracking to search for alternate locations.

Child & Parent: C CE

Goal: try_alt_loc3 Status: CE

Exited PROC: find_alt_locs...YES.

Located design unit CE 0 0 290 300

\

I

looatioas for d*sign unit- CX

Figure 3-30: Relocating unit CE

29

Generate arocrdmg :: Hist:ry_list: C

Predicates identified: p£ ;S

Seleot: <ID> (predicate fr:ir. current set)

(predicate net in current set)

Fiire new generation strategy) : p€

Passing generated locations :: :est_pro:s.

Uo locations are generated.

Backtracking to search for alternate locations.

Child i Parent: C CE

Seal: try_alt_locs Status: CE

Edited ?ROC: find_alt_l ocs ... YES.

•Located design unit CS 0 190 300 480

Generate according to Histcry_list: C

Predicates identified: p9 p6

Select: <ir> {predicate from current set)

(predicate not in current set)

F(ire new generation strategy) : p6

Passing generated locations to test_procs.

No locations are generated.

Backtracking to search for alternate locations.

Child & Parent: C CE

Goal: try_alt_locs Status: CS

Exited PROC: find alt Iocs...NO.

locations for d»»ign unit- C

Altarnat* locations for daaiga unit- CS

\
\

N
Unacceptable locations for d*«ign unit- C

Figure 3-31: Relocating units CE and C

During backtracking the HeGel tries to determine if the preceding unit- CE, has any alternate locations.

Note that CE, as shown in Fig.3-29, has alternate locations that are already ordered by distance between

CE and S. Once an alternate location is found. HeGeL assigns CE to the new location and updates data

regarding all the units assigned so far.

Next, HeGeL retrieves unit C from the history list, which is yet to be located. Once again, HeGeL attempts

to find possible locations for C without any success and backtracks as before. After going through a

similar cycle, HeGeL exhausts all alternate locations for CE without being able to locate C. At this point,

HeGeL backtracks one more level to the unit preceding CE, namely SE as shown in the next segment.

30

Child « Parent: CE SE

E:-:ite<S ?ROC: f ir.d_alt_l zzs . . . YES .

Deleting adjs.from ur.it: SE ref. : CE

Deleting asjs.fr^m ur.it: S r<=f.: SE

Mere than cr.e Icrati-r.s are possible.

1: 140 510 390 900

2: 0 650 3 90 90 0

Select a locatirn : 2

Located da si jr. unit SE 0 6 5C 3 90 900

Generate acccrding tc Kistrry_list: CE

Predicates identified: p4 ?5 c6

Select: <ID> (predicate frcm current set)

(predicate net in current set)

F(ire new generation strategy) : p4

Fassing generated locations to test_procs.

Goal: test_locs Status: p4 locating: CE

Located design unit CE 0 0 300 2 90

Generate according to Histcry__list: C

Predicates identified: p9 p6

Select: <ID> (predicate from current set)

(predicate not in current set)

F(ir« new generation strategy) : p<

Passing generated locations to test_procs.

Goal: test_iocs Status: p6 Locating: C

Located design unit C 0 290 390 650

1 2

X±t*mmf locations for daaign xiait- SB

Alt«zn*t* looationa for d*«ign unit- CB

' n
\ \

Xlt*rnat« locatioas for d*«ign unit- C

Figure 3-32: Relocating units SE, CE and C

When HeGeL backtracks to unit SE, it finds two alternate locations for SE. Once a location is selected for

SE, it is relocated and HeGeL updates data regarding all the units assigned so far. Next, HeGeL picks up

CE (the last unit to deassigned) and locates it as described earlier. This is followed by an attempt at

locating the next unit in the history list, i.e. C. This time HeGeL successfully locates the unit C and there

are no more units left in the history list that remain to be located.

31

Generate according :: Hist:ry_list:

Enter gen. strategy to select predicates,

finishing with 'end' : R and

Predicates identified: p8

-elect: <I^> (predicate from current set)

•predicate nrt in current set)

F'ire new generation strategy) : p8

Passing generated locations to test_procs.

al: test__lccs Status: po locating: R

re than one locations are possible.

30 9C'O 150 1050

0 90: 150 1C20

30 i:50 150 i:00

0 1050 150 1200

Select a location : 3

Located design unit R 0 1C50 150 1200

All units located. Finished ...!

3en.Cycle:<l>: S SE CE C R

Gen.Cyde:<2>: S SE CE C R

Search for another solution? [y, n]: a

No satisfied rules

Alternate location* for d*«ign unit- R

Final Solution

Figure 3-33: Locating unit R

After having located all the units in the history list HeGeL checks if any units specified in the design

problem remain to be located. Having found one, namely R, HeGeL goes through the generation and

testing cycle for R, finding four acceptable locations. Location #3 is selected for R which is first stretched

since a site boundary exists within the allowable stretching margin. Finally, the adjusted coordinates are

assigned to unit R. All the units are assigned and a successful solution has been found during this

episode and HeGeL is directed to stop.

32

4. Evaluation

The current version of HeGeL performs the task of space planning as envisaged. In comparison with

performance of the human designers recorded in our protocol experiments, it seems to approximate and

arrive at similar final solutions. It is appropriate to ask: (a) does HeGeL validate the paradigm for the

designers' behavior proposed earlier, (b) how well does HeGeL perform in terms of the kinds of solutions

developed, (c) how could HeGeL be made more efficient, and (d) is a production system model

appropriate.

4.1. Validity of the Paradigm

Based on the analysis of protocol experiments, a paradigm for the designers' behavior was proposed

earlier [Akin87]. According to the proposed paradigm, the design development process moves back and

forth between two phases: problem (re)structuring, when problem parameters are established or

transformed, and problem solving, when these parameters are satisfied in a design solution. HeGeL, was

developed in order to validate this paradigm.

The performance of HeGeL leads us to believe that the proposed paradigm is well-founded in its

fundamental assumption, namely that a designer has a vast amount of knowledge that is incrementally

brought to bear on spatial design problems. The paradigm organizes this incremental process as problem

(re)structuring and problem solving. HeGeL organizes these processes in terms of a universe of objects

and spaces, and predicates (relationships among objects) which are selectively instantiated and satisfied

in generation and testing of design alternatives until a successful solution is found. While the current

version of HeGeL validates the proposed paradigm, some additional issues concerning our methodology

need to be addressed before the paradigm can be accepted as a theoretical model of the design process.

First, the paradigm was developed based on analysis of protocol experiments of the subjects solving an

office layout problem. The paradigm and HeGeL both have been studied and evaluated in a very specific

problem context. With a degree of caution and reservation, we believe that the paradigm is general

enough to be applied to a wide spectrum of design problems. HeGeL, on the other hand, may not be as

general as the paradigm. The paradigm, being highly descriptive and abstract, is concerned with generic

concepts while HeGeL is developed to flesh out generic concepts in a specific design context.

Second, since HeGeL is modeled after the paradigm, a successful run of the computer program may not

seem to offer any substantial validation. Such a view is only partially correct. A descriptive paradigm is

composed of concepts whose precise character may or may not be fully evident a priori. In order to

explicate such concepts, they need to be examined under a number of similar situations and a consistent

and parsimonious interpretation established. While a descriptive paradigm presented in literal symbols

may suffice in specific cases, a computer implementation forces one to completely disambiguate such

concepts. A successful execution of the implementation demonstrates predictive power of the underlying

model within the limits of assumptions or interpretations incorporated in computational operations. To

illustrate, while initially posing the paradigm, we identified privacy as one of the predicates or

relationships. It was only when translating a concept like privacy into a computational operation that we

33

were forced to define a precise interpretation for it.

Third, HeGeL is automated to a specific degree of detail, e.g. structuring and restructuring phases are

partially interactive; HeGeL assigns only design units defined as furniture templates and not individual

furniture items; it works in a two-dimensional world consisting of rectangular objects; etc. Although not

fully implemented and hence serving only as possible avenues for further validation, in the following

sections, we discuss the role of spatial representation, a richer knowledge base and heuristics to

overcome some of these limitations.

4.2. Final Solutions
In most cases, HeGeL finds a final solution that is very close at a certain level of detail to the solution

developed by the subjects in our protocol experiments. As noted earlier (Sec.3.3.1), HeGeL primarily

develops solutions that are composed of design units defined as certain dimensional areas subject to

certain requirements. Subjects attend to this task and, in addition, also attend to assigning and

organizing individual furniture items in each of the design units. HeGeL, at present, is not capable of

assigning furniture items and hence does not reflect a finer degree of resolution in its solutions that would

otherwise be required. Currently, each design unit is defined in terms of a certain dimensional area by

associating each unit with alternate furniture patterns. This approach resembles the behavior of more

experienced designers who retrieve stored templates of design units from their experience (either in terms

of a collection of furniture items or an approximate area in which appropriate furniture items are then

located). Although this feature is lacking at the moment, it can be added as a separate collection of rules

to handle furniture assignment for each design unit in a fashion almost identical to the operations

implemented in HeGeL for assigning functional areas.

While such operations can accommodate most furniture placements as recorded in our protocols, a few

solutions developed by the human subjects pose some intricate problems regarding furniture placements

in a functional area. A major representational problem is dealing with some furniture items that are not

entirely stationary. To illustrate, a desk is more fixed than a chair that can be moved around in order to

open a desk drawer. It is such almost fluid spatial considerations that HeGeL is not equipped to deal with.

Another characteristic of some human designers observed in our protocols is an opportunistic tendency to

find purposes once a receiving space is generated in response to entirely different objectives. To

illustrate, some subjects used bookshelves to double as space dividers. Additionally, the back of the

shelves were assigned the role of pin-up surfaces for displaying drawings. Such post-facto assignment of

purposes to objects and spaces is more evident in case of experienced designers and this facet of design

expertise needs further investigation.

HeGeL is capable of developing solutions in which design units are either contiguous with each other or

attached with one or more site boundaries. This is a direct consequence of the underlying representation

and operations used, namely that possible locations for a design unit are projected from reference

vertices. For the specific task of designing an office layout, this approach does not cause any severe

limitations since the site area and the combined area of all the design units are roughly equal. On the

34

other hand, if HeGeL were to be given a problem with a more generous site area, it will still attempt to

pack design units adjacent to each other. If a design unit were to be placed but no specific relationship

were given, HeGeL at present cannot locate a unit as a free floating area not attached to any other unit.

This, however, is a case which is not of interest to us almost by definition since subjects generate

required relationships for given design units from memory almost independently of requirements called

out in the problem description. One possible solution to problems of this kind is anticipated in HeGel. By

modifying the tolerance values (30 cm, 10 cm, etc.) for stretching of functional areas layouts of HeGel can

be easily adapted to larger sites. This requires the parametric declaration of these values. Other

approaches to problems of this kind is to make representational distinctions between topological and

dimensional properties of design solutions and use an appropriate control strategy to make design

decisions. A number of such approaches are described by Steadman [Steadman83] and

Flemming [Flemming86].

Although HeGeL does utilize qualitative information about design units, e.g. attributes of boundaries

around each design unit, such information in its present form does not allow for more than simplistic

inferences. To illustrate, some subjects in our experiments, even if they were working with a two-

dimensional layout, categorically stated if a partition wail is intended to be going up all the way to the

ceiling or only upto a certain height, and if such a partition is intended to serve visual or acoustic

purposes. Once such decisions are made or intended, the subjects can select appropriate material for a

partition wall. At present, HeGeL does not have a rich knowledge base that would enable it to attend to

finer details of solutions.

4.3. Role of Heuristics
As noted previously, there are times when HeGeL is guided interactively. Three major stages are: (a)

initializing a set of active predicates, (b) selecting a generative predicate and (c) selecting a location from

a set of generated alternate locations. One additional situation that is not interactive but may be made

more purposeful is backtracking which currently employs simple chronological backtracking. Lastly, in

order to search for another solution after having found either one or none, HeGeL is presently guided by

the user to interactively restructure the problem parameters. The following discussion is concerned with

highlighting heuristic means by which a system like HeGeL can be made more purposeful and

substantially automated.

4.3.1. Initializing Active Predicates

As observed in [Akin87], more experienced architects rely on functional patterns- scenarios, retrieved

from their personal experience of having solved a variety of spatial problems. An hierarchical office or a

participatory office represent examples of such scenarios, and each scenario represents a set of

desirable relations among objects or spaces of interest. This is a heuristic strategy by which the

designers can impose a global structure on the design problem where none may be given a priori, and

thereby focus their attention in solving the problem. HeGeL currently handles atomic relationships in the

form of predicates. Although associating a set of predicates with a distinct WM element like a scenario

35

seems straight forward, a fundamental issue needs further exploration: is there a unique mapping

between a set of predicates and a scenario ? A scenario like an hierarchical office may be interpreted in

terms of the status hierarchy of the personnel to be accommodated in the office. An office layout that

reflects such a scenario may be achieved through spatial qualities of each functional area separately (e.g.

CE may have the most furnished office) or by other physical or visual cues that reflect differing status of

each functional area. For a variety of design problems, a unique mapping between a set of predicates

and a scenario may not be available, and it may be established only upon further study.

4.3.2. Selecting a Generative Predicate

Given a set of active predicates and a generation strategy, HeGeL identifies relevant predicates to

instantiate one as a generative constraint for a specific design unit. Currently, the generation strategy is

interactively specified in terms of a number of possibilities (Sec.3.4.3). A possible way to fully automate

this process is by using a heuristic planner that can propose either partial plans as the design develops or

a complete plan which is then executed. Such a plan may comprise of a ordered by priority sequence of

generation strategies. A few such heuristic design development strategies are:

1. Assign design units that are constrained by some existing site element (e.g. a door or a
window).

2. Assign design units in the decreasing order of number of predicates associated with each
unit.

3. If more than one design unit are competing for assignment, select the unit that is more
significant than others (and hence more inflexible).

4. Assign design units that are associated by a predicate with some other design unit already
located.

5. Assign design units not specifically related to any site elements or other design units.

Additionally, each predicate is concerned with a relation or an attribute associated with a specific design

unit. Each such relation or attribute may be given different weights. Such an approach may prove useful

for discriminating by priority among competing predicates associated with a design unit.

4.3.3. Selecting a Promising Location

HeGeL generates alternate locations for a design unit based on a predicate. At times, HeGeL, even after

applying all the test criteria pertinent to that design unit, comes up with more than one acceptable

location. One such situation is shown in Fig.4-1. HeGeL has found eight acceptable locations for S and,

at this point in time, HeGeL has no obvious way to further discriminate among these locations. The

subjects in our experiments sometimes reached similar situations; only they deliberated for a while on

possible locations and then selected one that looks most promising.

While we have not developed a general framework that accounts for such selectivity on the part of human

designers, some heuristic strategies more than others proved to be useful in our runs. Whenever HeGeL

came up with a number of acceptable locations, we selected one that seemed most promising and, at the

same time, we tried to literally reason why other locations do not look as promising. For example, in

Fig.4-1, we have eight acceptable locations for placing S. Location L5 can be adjusted to its left but

36

n
L1

L5

L3

-

L6

L7 L8

Figure 4-1 : Selecting a promising location

wastes a strip of area to its bottom. Locations labeled L3 and L4 can be dropped since both contain a

narrow strip of area towards the bottom that will be wasted, and area to the left is not sufficient for

accommodating any other design unit except R for which it is too large. Locations L1, L2, L6, and L7are

good enough to accommodate additional design units either to the left or to the right but not both, hence

wasteful towards one side and can be dropped from consideration. Thus location L8 seems to require the

least adjustment (i.e. enlargement to its left) without wasting any space towards the interior of the site. So

we can be relatively confident that location labeled LS, seems to be the most promising at this point in

time. Whether it actually turns out to be a fortunate or an unfortunate choice can be confirmed only later

on while assigning other design units. It should be noted that with an exhaustive backtracking

mechanism, HeGeL will eventually find a solution if one exists. The preceding heuristic strategies will

save not only time but also lend a sense of purpose to HeGeL Some heuristic strategies for selecting a

promising location from among many acceptable locations are given below:
1. Select a location that has least left-over area on all sides. Here the left-over is defined as a

strip of minimum dimension less than the least room dimension.

2. Select a location that requires least adjustment, i.e. least amount of stretching or shrinking
on all sides.

3. Select a location that leaves unassigned site area as compactly as possible.

4. Select a location that makes a continuous circulation path of minimum possible length when
design units are assigned contiguously.

5. Above four strategies should be interpreted in context of the given design problem and site
configuration (i.e. if a design is being developed on a site with a fixed envelope or none,
etc.).

37

4.3.4. Backtracking

One last component of HeGeL that could use some heuristic knowledge is backtracking mechanism. A

simple chronological backtracking suffices for a small design problem in which only a small number of

active predicates are involved. Once a larger problem is attempted or a large number of relationships are

specified in predicates, chronological backtracking may prove highly inefficient. Such inefficiency derives

from the fact that backtracking mechanism deassigns certain design units, each of which has to be

reassigned. Even if one design unit is not affected by another design unit, HeGeL currently deassigns that

unit because it does not have any notion of dependencies among assigned design units.

In Fig.4-2 and Fig.4-3, design units S and SEs are assigned in that order, generative constraints being

that S and Dm, and S and SEs should be directly accessible (i.e. adjacent) to each other. Subsequently,

when HeGeL tries to assign R so that it is directly accessible to S, it cannot generate any acceptable

locations since all such locations overlap with SEs (Fig.4-4) and backtracking mechanism starts up.

n
L1 L2

n \
L3

n j
L4

n
Figure 4-2: Acceptable locations for unit: S

n
L7

\

I n
\

L8

n \

Figure 4-3: Acceptable locations for unit: SEs

At present, HeGeL backtracks to find that the design unit located just preceding the current situation was

SEs, and that SEs has alternate locations (L7, L8, L9). Having found alternate locations, it will reassign

SEs from location L7 to L8 and then reattempt to find possible locations for R. As long as HeGeL

38

nL10

n

L11

I
i j

L12 L13

Figure 4-4: Unacceptable locations for unit: R

attempts to relocate SEs and R, it will not find any location that satisfies the requirements. Unless S itself

is relocated to an alternate location(L2 or L5), HeGeL will waste time in backtracking operation. This

implies that the heuristic strategy of selecting a location (in this case location L1 for unit S) such that there

is least left-over area on ail four sides, may not be truly effective in all situations. On the other hand,

backtracking mechanism may be made capable of passing precisely such feedback to the heuristic

knowledge base concerned with the selection of a promising location. Although it seems intuitively (or

rather visually) obvious to us, it is not entirely clear as to how such dependencies among and facts about

design units already assigned can be meaningfully stored and incorporated into the backtracking

mechanism.

4.3.5. Restructuring

Situations in which HeGeL cannot find a complete solution even after backtracking require restructuring

the design problem. Additionally, after successfully finding a solution, HeGeL may be directed to search

for another, possibly better solution. Both these situations involve modifying a few or all of the previously

asserted relationships or introducing additional ones. In the present version of HeGeL, predicates are

interactively changed by the user, in order to automate this process, extensive experimentation will be

required but a few heuristic strategies are suggested below.
1. Alter the furniture pattern associated with a design unit in order to alter the dimensions of a

design unit. Although this is a restricted and localized form of restructuring, when combined
with some of the following heuristic startegies, may make resolution of the design problem
easier. To illustrate, some subjects had difficulty organizing a conference room with respect
to the available area. They resolved this problem by reducing the seating capacity of C, i.e.
organizing the furniture of a design unit in response to the available area.

2. Take advantage of the flexibility offered by site elements. To illustrate, in our specific design
problem for an office layout, the given site has two doors. Depending on which door is
designated as being the primary entrance for the office, the resultant layout gets
substantially affected. Since the given site elements like doors, windows, etc. may not be
relocated, their potential impact on alternate ways of satisfying the relationships called for in
the design problem should be fully explored.

3. Situations in which the relationships mandate a topological configuration of spaces that
cannot be geometrically realized, try to combine spaces into a larger unit. This strategy is
useful in the sense that when two design units are combined into one area, there usually is
some savings in terms of aggregate circulation and thereby requires manipulation of a
smaller area than would be otherwise. Although HeGeL works in a rectilinear world, this
strategy may be more effective for systems which are capable of handling complex
polygons since a complex shape with less area may be more conducive to accommodating

39

individual furniture items than a rectangle of the same area.

4. When faced with conflicting relationships, relax one that is less important. If CE can either
be placed in a private office or have a private entrance but not both, then it may be better to
satify the latter as it involves a site element, e.g. a door, that is given and hence more
limiting while the relaxed relationship, e.g. privacy, can still be satified using one of the
following restructuring strategies.

5. Adopt alternate interpretations for satisfying a given relationship. To illustrate, when some
subjects in our experiments could not locate S and CE so that they are directly accessible
to each other, they suggested the use of intercom as a means to substitute for physical
proximity. Alternate interpretations may also be achieved by means of assigning multiple
purposes to given design elements. Some subjects used bookshelves to double as space
dividers, a strategy that is at once space saving as well as architecturally more exciting.

6. Use alternate scenarios for predicate selection. This involves high level restructuring of the
problem as it may drastically change the kind of solutions developed. Although the design
brief may already specify a scenario, designers usually develop alternate solutions based
on entirely different concepts in order to better understand the tradeoffs involved in various
solutions.

4.4. Appropriateness of Production Systems
HeGeL is developed as a production system in OPS83. A production system is organized around (a) a

global database called working memorrfWM) represented as WM elements{WME)t (b) a collection of

if-then rules, and (c) a conflict resolution strategy{CRS). WM elements resemble data structures in

procedural programming languages, and similarly the rules specify operations just as procedures and

functions. While in traditional procedural languages the sequence of operations is explicitly defined by the

sequence in which procedures and functions are encoded in the program, in the case of production

systems, the sequence of operations is determined by CRS.

One major benefit of using a production system model over procedural languages has been the ease with

which we could add knowledge to HeGeL in an incremental fashion. Initially we identified major

components of HeGeL; subsequently each component was fleshed out as a collection of rules. Whenever

we needed to add more rules, we had to only specify the contextual conditions in which a rule was to be

fired without requiring us to reorder the rule-base. CRS takes care of finding all potential rules for a given

context and also selecting the one rule that is to be fired. This enabled us to initially focus our attention on

externalizing domain specific knowledge. It proved extremely helpful in developing computational

operations for concepts like privacy for which a number of interpretations were possible but each

interpretation differed slightly from others in terms of either the conditions to be matched or the actions to

be carried out. Each new session with HeGeL, after adding a new interpretation (or a rule), demonstrated

if HeGeL had adequate knowledge to perform the required actions.

Such incremental development of the system is extremely easy with a production system model. A side

effect of such system development is that we developed a precise understanding of interactions among

the rules and the flow of execution. Once the rule base became large, sometimes HeGeL did not perform

as intended. This situation happens when a number of rules become potential candidates for execution in

a given set of conditions but there exist dependencies among such rules that have not yet been detected.

40

In such a situation, we introduced additional conditions to different rules so as to impose an ordering

through contextual specificity. This leads us to believe that the production system model is a good

vehicle with which to start for those applications in which a formal body of knowledge is not readily

available.

There are some other advantages of working in OPS83. Unlike interpreted programming languages (e.g.

Lisp), OPS83 programs are compiled and hence are faster to execute. Also, modular compilation

facilitates incremental program development. A substantial advantage in using OPS83 derives from the

use of functions and procedures embedded directly in the RHS of rules. This feature helped us to a great

extent in collapsing a number of rule-based expressions into a straight forward function or a procedure.

While the production system model has been useful to us for the development of HeGeL, one aspect of it

has sometimes turned out to be very bothersome and expensive. The use of WM elements facilitates

structuring certain domain information. This brings in restrictions peculiar to production systems. The WM

elements are not readily accessible nor can they be manipulated unless explicitly brought in as one of the

patterns on the LHS of rules. This results not only in lengthy code but also sometimes necessitates

introduction of artificial conditions to some rules in order to make them more specific.

In retrospect, a production system model seems beneficial for applications for which a formal body of

knowledge is not readily available. Once a production system is developed and most interactions of a

given problem are well understood, it may be more productive and efficient to switch to a procedural

programming language.

5. Conclusion
HeGel simulates behaviors of human designers in information processing terms. Human designers start

with a set of requirements stated in the given problem, which in this case is that of arranging a number of

functional spaces in a given envelope. They use procedural and declarative knowledge which they have

acquired through experience either as designers or users of such spaces in solving the problem.

Procedural knowledge deals with how to assign the resources of the designer to the task of producing

specific design results. The overall process consists of manipulating the design units in such a way that

constraints are used to generate alternative solutions and criteria are used to select from among them.

Whenever the selection of alternatives is not possible procedural knowledge is used to reformulate the

declarative knowledge so that selection becomes possible.

HeGel approaches the problem in a similar fashion. It starts with the same problem as human designers.

A set of design units and explicit relationships with respect to proximities and functional requirements are

predefined for HeGel. Using a simple generate and test strategy it produces alternative solutions using

some of the desired relationships and tests them against others which are not used in their generation.

Based on the ultimate number of relationships satisfied and functions allocated, HeGel can be directed

towards a modified set of relationships thus simulating the reformation function observed in humans.

41

In summary, HeGel is a simulation environment in which:

1. Solutions produced are like the solutions produced by subjects.

2. Knowledge used is derived from human protocols and resemble the facts and procedures
underlying human behavior.

3. Procedures observable in HeGel's behavior look like those of human subjects.

The purpose behind HeGel stems from a number of factors. One of the primary motivations is to show

that the information processing paradigm described as the interchange between problem solving and

problem structuring is sufficient to account for human behavior, at least in the context of the task studied.

Simulation in the computer is one of the standard techniques which helps in developing paradigms to

describe intuitive design accurately and formally.*

A second motivation is to extract generalizable principles underlying the paradigm proposed, especially

those related to predicates, solution generation, alternative testing, backtracking, restructuring, and so on.

In the simulated environment it is possible to measure the sensitivity of the designs to the various aspects

of the paradigm as programmed in HeGel. In the true sense the components of the paradigm can be

experimentally manipulated permitting an empirical examination of consequences of such manipulation.

Similarly, HeGel provides an experimental medium within which the problem structuring heuristics of the

designer can be calibrated, described, and illustrated.

In this iteration, the work has accomplished several ends. One result is that in its general form the

paradigm, as implemented through HeGel, is sufficient to show all instances of problem states generated

by the human subjects. A second result is that some of the patterns illustrated in HeGel's behavior stem

from generalizable rules regarding constraint based generate and test, backtracking, and problem

structuring. A third result shown by the work is that the simulation proves to be a useful experimental

medium. It allows the systematic testing of alternative search and problem structuring strategies and

calibrating their affect on the design solutions produced.

At the same time the work leaves a number of research questions unanswered. These provide

motivations for future work still to be undertaken. One obvious extension of the work is the systematic

manipulation of search and structuring strategies. The expected results of such an effort would be the

empirical derivation of the strategies which are most effective-either in terms of imitating humans or in

terms of accomplishing commensurate or even better results.

Another extension of the work would envision the full automation of updating procedures for problem

state during the backtracking phase. This would require keeping track of all minor adjustments to the

data base - i.e., shrinking and expanding of spaces. In this way, extraneous information left over from

earlier iterations would not have the potential of confounding later iterations.

Presently, HeGel has no facility to deal with furniture arrangements within each functional area once they

are allocated. In theory, furniture allocations can be dealt with in the identical way that the functional

zones are allocated. This envisions a hierarchic nesting of some of the procedures of HeGel, if not all of

42

them, in order to create a lower level of operations dealing with furniture exclusively.

Finally, it is our intention to automate problem specification strategies so that HeGel can restructure the

design problem as it works on it. This requires the codification of relevant heuristic rules through

systematic experimentations with HeGel's problem structuring function, which is at this time fully manual.

By correlating these rules with the effectiveness of the resulting designs it would be possible to formally

describe problem structuring strategies that can improve over the performance of human designers.

43

References

[Akin78] Akin,O.
How do architects design?
In Latombe, J-C. (editor), Artificial Intelligence and Pattern Recognition in Computer-

Aided Design. North-Holland, New York, 1978.

[Akin86a] Akin, Omer.
A Formalism for Problem Restructuring and Resolution in Design.
Planning and Design 13:223-232, 1986.

[Akin86b] Akin.O, Chen.C. Dave,B. and Pithavadian.S.
A Schematic Representation of the Designers' Logic.
In Proceedings of the International Joint Conference on CAD and Robotics in

Architecture and Construction. Marseilles, 1986.

[Akin86c] Akin.O.
Psychology of Architectural Design.
Pion Limited, London, 1986.

[Akin87] Akin.O., Dave.B. and Pithavadian,P.
A Paradigm for Problem Structuring in Design.
IFIP Conference MIT.
October, 1987

[Baykan84] Baykan.C.
Heuristic Methods for Structuring Architectural Design Problems.
Unpublished manuscript.
1984

[Baylor71] Baylor,G.W.,Jr.
A treatise on the Mind's-eye: An Empirical Investigation of Visual Mental Imagery.
PhD thesis, Dept. of Psyhology, Carnegie-Mellon University, Pittsburgh, 1971.

[Eastman70] Eastman.C.
On the analysis of intuitive design processes.
In Moore.G.T. (editor), Emerging Methods in Environmental Design and Planning. MIT

Press, Cambridge, 1972.

[Flemming86] Flemming.U.
On the representation and generation of loosley packed arrangements of rectangles.
Environment and Planning B: Planning and Design 13:189-205, 1986.

[Forgy85] Forgy,C.L
The OPS83 User's Manual
Production System Technologies, Inc., Pittsburgh, 1885.

[Foz73] Foz,A.
Observations on Designer Behavior in the Parti.
DMS-DRS Journal: Design Research & Methods 7(4):320-323, 1973.

[Freeman71] Freeman,P.A., Newell.A.
A model for functional reasoning in design.
In Proceedings of the Second International Joint Computer Conference on Artificial

Intelligence, pages 621-640. British Computer Society, London, 1971.

[Friedland85] Friedland.P.
Introduction: Special Section on Architectures for Knowledge-Based Systems.
Communications of the ACM 28(9):902-903, September, 1985.

44

[Moran70] Moran.T.P.
A model of a multilingual designer.
In Moore.G.T. (editor), Emerging Methods in Environmental Design and Planning. MIT

Press, Cambridge, 1972.

[Reitman64] Reitman.W.R.
Heuristic decision procedures, open constraints and structure of ill-defined problems.
In Shelly.M.W. and Bryan,G.L (editors), Human Judgements and Optimaiity John

Wiley, New York, 1964.

[Simon73J Simon,H.
Structure of III Structured Problems.
Artificial Intelligence 4(3-4): 181 -201, 1973.

[Steadman83] Steadman.J.P.
Architectural Morphology.
Pion Limited, London, 1983.

[Wright83] Wright,J. and Fox.M.
SRU1.5 User manual
1.5 edition, The Robotics Institute, Carnegie-Mellon University, Pittsburgh, 1983.

