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Abstract
Process optimization determines process parameters that maximize or minimize (optimize) so

aspect of a process (the obieciive function), while ensuring that the process operates wr
established limits. In this work a mathematical model that simulates heat flow and solidification
continuously cast steel strand is coupled with mathematical optimization techniques to predict opt
process parameters lor several aspects ol the continuous casting process The optimizations
constrained so that representative process constraints are enlorced A description ol the model
optimization method, and the means ol coupling are presented The tormulaiion ol obieciive tune
and constraints tor continuous casting ol billets and the predictions resulting iioni optimizing t
lormuiattons is also discussed



Introduction
The continuous casting process currently accounts for more than 50% of total world crude steel

production 1 Many applications require steel of a quality level only obtainable through continuous
casting The productivity of a continuous casting operation and the quality of the resulting product are
largely dependent on the casting parameters used during the casting process.2 The operating
parameters for the continuous casting process need to be chosen so that a predetermined balance
between productivity, product quality and operating costs is optimized. The selection of optimal
operating parameters becomes even more important as the use of direct charging of hot strands to
rolling operations becomes more prevalent. The temperature distribution and total heat content in the
strand must be closely controlled in order to roll high quality products.

The problem of selecting continuous casting process parameters that optimize some function ol
the caster operating state falls within the Iramework of problems known as constrained optimization
problems. We desire to optimize (maximize or minimize) an objective function (a function used to
determine if one operating state is more or less desirable than another), while ensuring that constraints
that represent physical limits on the process are obeyed. The casting process is represented by a
mathematical model, for reasons of cost and convenience and to allow the optimization process to
proceed to the optimal point by paths that may include infeasible states (operating states where one or
more of the process constraints are violated). In this work, only heat flow aspects of the continuous
casting process are considered, although extensions to stress/strain and other aspects can certainly be
made within the Iramework presented here. All of the objective and constraint functions are therefore
stated in terms of temperature fields and thermal behavior.

The relationships between the objective function, constraint values and process variables are
available only through the use of a numerical heat transfer simulation for a continuous caster. These
relationships are nonlinear, hence the optimization problem is a Non-Linear Program (NLP). An
optimization technique known as Successive Quadratic Programming3-4 (SOP) has been used in this
study to solve the constrained NLP problems. This technique was chosen because it typically requires
fewer function evaluations than other NLP methods5 and function evaluations (model simulations) have
been lound to be quite expensive in terms of both real time and computer time.

The SOP algorithm can be derived from a Newton-Raphson approach applied to the optimally
conditions for the nonlinear programming problem. Numerous applications of this method have been
made to chemical process optimization problems (see the paper by Biegler6 for a review) and currently
it is the algorithm of choice for solving moderately sized optimization problems based on
computationally intensive models. In addition, SOP has excellent constraint handling features and
requires only function and gradient information from the process model. Based on the implementation
of Biegler and Cuthrell7 the optimization algorithm is relatively straightforward to apply to general
purpose optimization problems with smooth objective and constraint functions.

Previous attempts at applying nonlinear constrained optimization techniques to continuous
casting processes have been lew In the work by Larrecq. et.al.2, a detailed list of process operation
and product quality constraints is presented. A gradient method is used to minimize a cost function
that represents violated constraints, at constant casting speed, and then the casiing speed is
manipulated manually until a maximum casting speed is found. Holappa. et.al.. have used a similar
method 8 Neither group has allowed the casting rate to be a variable in the optimization process even
though the casting rate has an extremely important effect on the temperature distribution and
metallurgical structure of the cast product.

The optimization system is comprised mainly of two parts, the model and the optimizer. These

are shown schematically in Figure 1 The model is further subdivided into a part that calculates the

temperature field in a continuous caster and a part that uses the resulting temperature field to calculate
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Figure 1: Schematic Representation ol Optimization System

Figure 2: Schematic Representation of Slice Modelling Technique
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the values of the objective and constraint functions. The optimizer is "primed" with initial values lor all
of the process parameters, and uses the model to calculate the objective function and the values of the
constraints New values for the process parameters are calculated by the optimizer on the basis of the
objective and constraint values returned by the model, and a new set of objective and constraints are
calculated. This is done iteratively. until a set of equations that describe the optimum point are
satisfied This modular approach, where the model is separated from the optimizer, allows us to easily
change models to reflect other phenomena that are considered important to the problem at hand.

Description and Verification of Models
A slice technique, similar to that used by Brimacombe9. Mizikar10 and Perkins and Irving11 was

used to model the temperature field in the continuously cast strand. Heat flow in a two dimensional,
iransverse slice moving with the strand was considered. Heat flow by conduction in the direction of
strand movement is small compared to the heat flow caused by bulk motion of the strand in this
direction, and can be safely ignored 12 The slice is shown schematically in Figure 2. By calculating
the time dependent temperature field in the transverse slice at sufficient positions during the withdrawal
of the strand, a three dimensional, steady state temperature field can be calculated for the entire
caster

The two dimensional, transient heal flow equation solved in this work is shown in equation (1).

x ox ()\ ay at

The position along the caster z is related to time i through the casting rate r, as shown in equation (2).

2 = n (2)

Boundary conditions and constraints are normally stated in terms of position, while the heat flow
equations are most easily formulated in terms of time. The thermal conductivity k, heat capacity c and
density p are allowed to be unrestricted functions of temperature. Convection in the liquid pool is
modelled by using an artificially high value for the thermal conductivity, nominally 5 times normal. The
effect of convection in the two phase region is modelled as a quadratic function of the fraction liquid as
shown in equation (3).

(1)

The heat of fusion is accounted for by letting Cp be a strongly varying function of temperature.

To facilitate solution of the nonlinear equations resulting from the discretization of equation (1),
the Kirchoff transformation was used.13 This transformation is shown in equation (4). Use of this
transformation removes the dependence of the thermal conductivity on temperature from the left side
of the equation, where it appeared within a gradient operator, and puts.all temperature dependencies
m one term on the right side of the equation, outside of any differential operators. The transformed
heat flow equation actually solved is shown in equation (5).

(4)

)!
Bt

(5)
Bx2 By2

The initial condition used to solve the heat flow equation is given by equation (6). This condition
sets the temperature at the beginning of the simulation to the pouring temperature.

•/U,v.0) = 7 tM
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In this work, symmetry across the centcrlmes of tho cast piece was assumed, hence equation (5)

was solved for only one quarter of the cast section. The boundary conditions applied along the

centertines of the strand are given by equations (7).

The boundary conditions in the mold have been modelled using several empirical equations

found in the literature, and a proprietary relationship developed by Inland Steel using an instrumented

mold. Inland Steel is a member of the Center for Iron and Steel Research at Carnegie Mellon

University. Since the examples in this study are based on an Inland Steel caster, the mold boundary

conditions used were the Inland Steel conditions. They are of the form shown in equations (8). where

the heat flux Q was from an experimentally determined table

-klL = Qy(z) @y-Y (R)

The spray zone boundary conditions are shown in equations (9), and are in terms of heat

transfer coefficients. No attempt has been made in this work to relate heat transfer coefficients to

water flow rates, nozzle type or spray chamber design These correlations have previously been

considered by Mizikar14 and Muller.15 Outside of the mold and spray chambers, radiant cooling has

been assumed, with boundary conditions given by equations (10).

-^__ = /? i(7-/ ( )) <©x = .V

-k — =h v(7-7 ( )) @y=Y (9)

(fpx^X

The equations have been solved using an alternate direction implicit finite difference scheme,
with iterations at each time step to recalculate and average the rapidly changing thermal properties in
the vicinity of the solidus and liquidus temperatures. We have found that iteration coupled with the
Kirchoff transformation has allowed us to take very large steps in time and reduced the computer time
required for accurate solution of these problems significantly.

The model has been verified against a model belonging to Inland Steel that is known to closely
represent one of their billet casters. The result of this comparison is shown in Figures 3 and 4. The
model has also been used to calculate the surface temperatures in a cast slab using the data from the
paper by Larrecq. et.al.2 In all cases the agreement has been quite satisfactory

Optimization Method
The general statement of a constrained optimization problem is given by:

Minimize f\p) (jj)

subject to
W = 0 /=l.2 /
gfpUO y = i . 2 . . . . y

where p is an n dimensional vector of variables that represent the process operating parameters. h(ji)
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Figure 4: Verification of Model Results • Surface Temperature

are / equality constraints. *</>) are J inequality constraints and ftp) is the objective function. The

Inequality constraints are active if *//,)=<> at the point P; they are inactive H gj(p)>0. The following

conditions are satisfied at the optimum point of a nonlinear, constrained function and are known as the

Kuhn-Tucker conditions:

02)

>= 1.2 7

«= I - /
> = i . 2 — y

^ y=1.2 y

L is the Lagrangian function, the coefficients v. are Lagrange multipliers that are applied to the equality

constraints, and the coefficients Uj are similar multipliers that apply to the inequality constraints. uf is

positive if constraint j can be active, otherwise it is zero.

The Kuhn-Tucker conditions lor optimally are solved using a Successive Quadratic

Programming technique. SQP approximates the Lagrangian function. L, in equation (12) at a trial point

with a quadratic polynomial. The constraints at the trial point are linearly approximated. The solution

to the approximate problem, with linear constraints, is easily found, using a pivoting strategy, tor

example. This solution is used as a new trial point for another iteration. The method stops when the

Kuhn-Tucker conditions are within a specked tolerance.

Gradients of the objective and constraint functions with respect to the process variables are

needed for the solution of the Kuhn-Tucker conditions These gradients have been obtained by

perturbation of the independent variables

Formulation of Optimization Problems
Four optimization problems have been solved in this work. The problems differ in the objective

functions used and the limiting value lor one of the constraints The first problem investigates

maximum withdrawal rates. Knowledge of the maximum withdrawal rate is needed to maximize caster

throughput. Caster scheduling for sequences of uninterrupted casts requires knowledge of both the

maximum and minimum casting rates possible and is discussed by Lally. Biegler and Henein.'6 The

second and third problem both determine minimum possible casting rates, using different maximum

values lor the reheat constraints. The fourth problem addresses maximizing the internal heat contem

of the cast strand in preparation for direct charging of the strand to a rolling mill. The variables in the

optimization lormulations have been restricted to the withdrawal rate />,. and settings lor the heat

transfer coefficients used in the secondary cooling system p2_n. The objective and constraint lunctions

have been formulated in terms of these variables and the 3 dimensional temperature field. 7'(x.v.:).

predicted Irom these variables

Objective Functions
The formulation of the objective function for the maximum casting rate is given in equation (13)

The standard form of a NLP is staled ' o as to minimize the objective function, hence to find a

maximum, we minimize the negative of tno objective function. No difficulties are introduced by making

the objective function a simple linear function of one of the variables

To find Hie minimum casting rate, the following objective function is used in the optimization problem

f t p ) ' - P i f U l
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The formulation of the objective for the maximum heat content problem is only slightly more

complicated, and is given by the integral In equation (15). This integral Is evaluated over the cross

sectional area of the strand at the strand cut off point and approximates the enthalpy of the strand at

this point.

05)

The same types of constraints were used in all the problems. The constraints were chosen to
represent both strand quality and the mechanical limitations of the machine. The constraints involved
bounds on the casting variables, and limits on shell thickness at the mold exit, metallurgical length,
surface temperature and surface reheating. Each type of constraint is formulated separately in the
following paragraphs.

Bounds
The simplest types of constraints to enforce are simple upper and tower bounds on the casting

variables. Mechanical considerations such as maximum and minimum motor speeds, water availability
and water pump capacity give rise to upper and tower bounds on the casting rate, and the heat transfer
coefficients for each spray zone. The formulation of these constraints is shown In equation (16).

(16)

Shell Thickness
The shell thickness at the end of the mold is required to be greater than some fixed distance

<^ . This requirement is used to prevent breakout conditions to be present in the optimal solutions
This constraint is calculated by first calculating the shell thicknesses at the end of the mold along both
transverse centerlines and constraining them to be greater than a fixed value, as in equation (17)

r5)£ (min *-*s.t

£ (min Y-y St.

Metallurgical Length
In each case discussed, the point of final solidification of the casting is required to be before the

unbending point of the curved strand. While this may not be a requirement for all casting operations. It
is a good example of the type of positional constraints that can be applied. It is stated in equation (18)
in a manner similar to the shell thickness constraint.

rs) (18)

occurs when the maximum and/or minimum surface temperatures abruptly change their locations from
one cooling zone to another. Switching of locations leads to discontinuities in the reheat constraint
gradients that are used to predict the locations of new trial points for the optimization procedure. Here,
if the gradient information is valid for only a limited range (because of the discontinuities), the
extrapolated predictions will be inaccurate and the optimization algorithm fails.

An alternative formulation of the reheat constraint was developed which removed these gradient
discontinuities from the problem. This treatment entailed writing several reheat constraints, in the
following manner. The temperature at the end of the mold and each zone end was recorded. Call
these temperatures f™. The highest temperature found In each zone was also recorded. Call these
temperatures 7^*". There are n,+l of these temperatures, where nt is the number of spray cooling
zones. The quantities shown in equation (19) were calculated, and all were required to be less than
the maximum reheat allowed. By requiring all to be less than the maximum allowed, it is obvious that
the greatest one will also be less than the maximum.

-7" i= 1.2,. . . (19)

Surface Temperature
The surface temperature is required to be less than a given value at all points of the simulation

after the mold exit. This constraint is used to ensure that the solid shell has sufficient strength to
contain the molten steel in the center. A separate constraint is used for each cooling zone i in order to
make the problem less ill behaved, as is done for the reheat constraints. The constraints are
calculated by finding the greatest temperature in each zone outside of the mold and requiring each to
be less than a fixed maximum, equation (20).

7 ^ ;> max 7 (O.K. z) 1 = 1 , 2 , . . . , , ,

1 = 1 . 2 . . . n (20)

Unbending Temperature
The surface temperature at the unbending point is also important, as a surface temperature

within the ductility trough can cause cracking during straightening. The surface temperature at the

unbending point is therefore required to be greater than the temperature that marks the onset of the

ductility trough. This constraint is stated in equation (21).

(21)

Surface Reheating

When the strand passes from a cooling zone with a high heat transfer rate to one with a lesser
heat transfer rate, the surface temperature of the strand increases. This is caused by a relaxation of
the large thermal gradients created during the high heat transfer period and subsequent accumulation
of enthalpy in the surface of the casting. This reheating effect must be limited, as it causes thermally
induced stresses that can result in cracking. Several authors have suggested how much reheating can
be tolerated.2-9

Originally, the amount of reheat was defined as the greatest difference between the maximum
surface temperature after the mold exit, and the minimum surface temperature that occurred prior to
the maximum temperature location This definition of reheat led to a nondifferentiable function that
was extremely ill behaved and worked very poorly within the optimization framework. The difficulty

Problem Solutions and Discussion
The geometry of the caster that was simulated in this work is summarized in Table I. The

simulated caster is based on a billet caster in operation at Inland Steel. It casts 17.75cm x 17.75cm
billets, using a 61cm mold. There are 4 spray cooling zones, with Independently controlled water
sprays. The process parameters chosen as optimization variables were the casting rate, pv and four
heat transfer coefficients. P2-Ps> that represent the effect of the cooling water sprays on the solidifying
strand in each of the four spray zones The casting rate is specified in units of m/s. and the heat
transfer coefficients in units of kJ/m2/sec/°C The thermal physical properties of the steel were chosen
to approximate a 1010 carbon steel and are shown in Table II.

The first problem that has been solved involved determining the maximum casting rate that the

caster could be operated at without violating any of the chosen constraints. The objective and
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Table I: Summary of Caster Geometry

section size
mold length
spray zone lengths

zone 1
zone 2
zone 3
zone 4

unbending point

17.75 x 17.75 cm
61 cm

9 cm
38 cm
183 cm
244 cm
20.0 m

Table II: Summary of Steel Thermal Physical Properties

solidus temperature
liquidus temperature
heat capacity
heat of fusion
thermal conductivity

solid
liquid

density
solid
liquid

emissivity

1477°C
1522°C
0.682 kJ/kg°C
272 kJ/kg

0.0366 kW/m
0.2622 kW/m (includes convection)

7400 kg/m3

7700 kg/m3

0.6

Table III: Summary of Optimization Results

problem number -

objective
p,m/s
p2 kJ/m^s/'C
p3 kJ/n^/sTC
p4 kJ/m^sTC
p5 kj/m?/src
iterations

Initial
>

0.0300m/s
0.0300
0.900
0.600
0.400
0.350

*

1

Rate Problems
Optimum

2

00326m/s 0.0252m/s
0.0326
0.903
0.603
0.417
0.325

4

0.0252
0.836
0.504
0.504
0.504

28

3

0.0201 m/s
0.0201
0642
0.563
0.454
0.310

31

Enthalpy Problem '
Initial

1147*C
0.0300
0.900
0.600
0.400
0.350

Optimum •
4 .

u

0 0300 ;
0 A3A

0 414 |
0295
0 189 T
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constraint functions used have been developed in previous sections. A concise statement of the

maximum rate problem is given In equation (22).

max -j

8.1.

I* Urn

(22)

Tne second and third problems involved finding the minimum rate at which the caster could be

operated. The formulation of the second problem is the same as the maximum rate problem except

equation (14) is used as the objective function, in the third problem, the value of the maximum allowed

reheat constraint has been relaxed slightly, from 175°C to 200°C. The fourth problem (the "maximum

enthalpy" problem) is somewhat different. Here /?, was fixed at 0.03 m/s and equation (15) substituted

lor the objective function. Reheat was limited to 175°C. The starting points and solutions to these

problems are summarized in Table III, and are discussed separately in the sections which follow.

Maximum Casting Rate

Initially the casting rate was set to 0.03 m/s. Representative values for the heat transfer
coefficients were also chosen. The solution of the maximum casting rate problem predicts that this
rate can be raised to 0.0326 m/s without violating any of the casting constraints. The solution yields
values of the operating parameters that will result in a rate increase of 8.7%. In this case it was found
that the binding, or limiting, constraint was the shell thickness constraint at the mold exit - any further
increases in casting rate would result in shell thicknesses that were less than the minimum. The
operating parameters p2_$ (the heat transfer coefficients) are not involved in calculating the shell
thickness at the mold exit, hence they are not uniquely determined. They could be further optimized
along the lines of the maximum enthalpy problem, H this were desired.

Minimum Casting Rate

The second and third problems calculated minimum feasible casting rates under two sets ol

reheat conditions. In the second problem the maximum reheat was limited to 175°C while in the third

problem this constraint was relaxed to 200°C The minimum casting rate problems were started from

the same initial point Again, the results are summarized in Table III. The second problem predicts a

minimum casting rate of 0.025 m/s. The binding constraints in this case are reheat constraints. At

certain points along the strand surtace, the temperature has increased by the maximum amount

allowed. This result provides the motivation lor relaxing the maximum reheat value in the third

problem. Resolving the problem with the relaxed constraint yields a minimum casting rate of 0.020

m/s. The binding constraint in this result is also a reheat constraint, but it occurs in a different cooling

zone than the previous result. It is common (and intuitive) for problems with relaxed constraints to
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move further in the direction of the optimum than problems with tighter constraints.

Maximum Enthalpy
During the solution of the maximum enthalpy problem, the casting rate was held fixed at 0.03

m/s. This was done to demonstrate the effect that the secondary cooling system has on the heat
content of the strand. The average temperature in the strand increased from 1147 °C at the starting
point, to 1196 °C at the optimal point. This is an increase in average temperature of approximately
50°C. The increase occurs without violating any of the preset casting constraints, and means that
strands can easily be produced with greater heat content. This extra heat is heat that will not have to
be supplied in a reheating furnace if the strand is scheduled for hot charging to the rolling mill. The
binding constraint in this case is the limit on the metallurgical length. If the secondary cooling is
reduced further in order to increase the average temperature, then the strand will not be fully solidified
at the unbending point.

Performance
The calculations were all performed on typical engineering workstation class computing

hardware*. This small, affordable, computing hardware was chosen to demonstrate that this type of
approach is feasible in a process control/design scenario. The optimization problems required
between 4 and 31 SOP iterations to reach the optimal points. The first problem required the least
iterations, while the third problem required the most This translates into CPU time requirements of
between 62 and 610 minutes respectively. The number of iterations required is a function of the shape
and smoothness of the objective and constraint functions, as well as the tolerance to which the
resulting equations must be satisfied. Each iteration required 6 model simulations (5 in the case of the
maximum enthalpy problem). The number of simulations for each iteration is a result of calculating the
necessary gradient information by perturbations. For each iteration a base point calculation and a
perturbation of each variable must be performed. Hence, it is essential that efficient models be used to
solve such optimization problems. The continuous casting model described requires approximately 2.5
CPU minutes to execute.

Figures 5 and 6 show the progress of the optimization procedure as a function of SQP iterations
for the maximum enthalpy problem. Results from the other problems are similar. In these figures, the
constraints have been normalized, and positive constraint values are allowable, while negative values
are not. The optimizer initially makes fast progress by taking large steps, and overshoots the
constraint limitations. In subsequent iterations the violated constraints are satisfied, and the optimizer
fine tunes the solution.

Sensitivity

An additional result of the optimization algorithm is calculation of the shadow prices associated
with the constraints. The shadow prices are measures of the sensitivity of the constraints to small
changes In the operating parameters. In effect, they are the derivatives of the constraint functions with
respect to the process parameters evaluated at the optimal point. They can be used to detect which
constraints are most sensitive to changes In the operating parameters, and how sensitive they are
This information is useful in determining how large a safety factor should be used when calculating
values for the constraints. For example, if the shell thickness constraint is extremely sensitive to
changes in the casting rate, it might be desirable to set the minimum shell thickness rather
conservatively to prevent small fluctuations in withdrawal speed from causing a breakout.

1300.0
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Figure 5: Objective Function Value as a Function of SOP Iterations. Problem 4
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Figure 6: Representative Constraint Function Values as a Function of SOP
Iterations. Problem 4
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Summary
A method for determining optimal process variables from specified objective functions, subject to

constraints on process operation, has been developed. The method uses a mathematical heat flow
model for process simulation. Objective and constraint functions are determined from a combination of
the process variables and the results of the simulation. The method has been used to solve several
example problems concerning the continuous casting of steel billets in an efficient manner on
engineering workstation computing hardware.

The developed method is extremely modular and flexible, hence It can easily be applied to
variations of these problems, or other problems, simply by changing the definitions of the objective and
constraint functions. Other casters can be simulated by changing modelling parameters. If the
process to be optimized is dependent on phenomena that are not fully described by a heat flow model,
other models (such as stress/strain models) can easily be substituted within this framework. The
method does not require a feasible starting point (a point where all of the constraints are satisfied) for
the optimization, hence the final predicted optima are insensitive to the initial estimate of the process
paramters.

This work is currently being extended to solve problems involving other casters, including slab
casters. This will further demonstrate the flexibility and usefulness of the approach. Extensions to
other casting operations, with different constraint sets, are also being developed. The method can be
used for solving design problems by using an objective that describes the desired design criteria, and
adding caster design variables to the optimization problem. It may also be possible to use this type ol
optimization technique as part of a real time control system for continuous casting and other plant
operations. This type of application will require accurate, high speed models to perform the
simulations, as well as alternate algorithms to determine the required gradient information. Solution of
the real time control problem will likely benefit from the higher performance computing machinery that
te constantly coming available. Also, parallel processing can be applied to the perturbation approach
for determining the gradients, as the simulations for each parameter perturbation are independent of
each other and can be calculated simultaneously.
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