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ABSTRACT
This paper discusses an implementation of the Outer-Approximation/Equality-Relaxation

algorithm for solving MINLP problems that arise in process systems engineering. The computer

code DICOPT has been developed utilizing state-of-the-art optimization tools and a powerful

modelling language. Computational experience in solving fifteen MINLP problems with

DICOPT is reported. Applications include design of batch processes, structural flowsheet

optimization, planning, flexibility, and reliability problems. Results show that DICOPT provides

a very efficient tool for solving MINLP problems.



INTRODUCTION
Many optimization models for design and operation of process systems require the treatment

of both continuous and discrete (mainly 0-1) variables. The presence of nonlinearities in the

models gives rise to mixed-integer nonlinear programming (MINLP) problems, which in the past

have proved to be very expensive and difficult to solve. It is shown in this paper, however, that

this situation has undergone a considerable change and that reliable and efficient algorithms now

exist

The development of the Outer-Approximation (OA) algorithm by Duran and Grossmann

(1986a), its extension with the Equality-Relaxation (OA/ER) strategy by Kocis and Grossmann

(1987a), coupled with advances in nonlinear program (NLP) solvers (e.g. MINOS, Murtagh and

Saunders, 1985) and mixed-integer linear program (MILP) solvers (e.g. MPSX, IBM, 1979), has

led to the capability of solving MINLP problems quite efficiently. These algorithms and

techniques have been implemented in the computer program DICOPT (Discrete Continuous

OPTimizer) that features as interface the modelling language GAMS (General Algebraic

Modelling System, Kendrick and Meeraus, 1985) which greatly facilitates the algebraic

formulation of MINLP problems.

Computational results are reported on fifteen MINLP problems that have been solved with

DICOPT. These include applications to design of batch processes, structural flowsheet

optimization, planning, flexibility, and reliability design. Computer times on an IBM-3090/600

are typically of the order of only 2-100 seconds for problems with up to 60 0-1 variables and 410

variables and constraints.

This paper also briefly discusses a number of points that arise from this study and that seem to

be rather unique to MINLP problems. The points include the effect that different modelling

schemes have not only on the algorithm's efficiency but also on the global optimality of the

solution, the role of convexity in the quality of the predicted bounds, and aspects of computer

implementation that have to do with the use of different optimizers. Future directions are also

briefly discussed.



OUTER-APPROXIMATION/EQUALITY-RELAXATION ALGORITHM
The OA/ER algorithm addresses MINLP problems of the general form:

z =min cTy+f(x)

s.t. h(x)=0

g(x)<0

Ax=a (MINLP)

By+Cx<d

x e X= {x|x e Rn,xL<x <xu}

In the above formulation the binary variables y appear linearly, while nonlinearities are involved

in the continuous variables x in the functions f(x), h(x), and g(x). The OA/ER algorithm,

however, is not necessarily restricted to problems with this structure. MINLP problems which

contain nonlinear functions in y can also be solved with the OA/ER algorithm as will be

discussed later in the paper.

The OA/ER algorithm can be classified as a decomposition scheme in which the continuous

optimization and the discrete optimization are performed separately. The continuous

optimization is performed through NLP subproblems that arise for fixed choices of y in problem

(MINLP). The discrete optimization is performed via an MILP master problem which is a linear

approximation to (MINLP), The iterative bounding procedure in the OA/ER algorithm is

described below and the steps are formally stated in Appendix A.

Initially, an iteration counter K is set to 1 and the binary variables are selected and temporarily

fixed at yK yielding the following NLP subproblem:



z(yK)=min cTyK+f(x)

s.t. h(x)=O

g(x)<0 (NLPK)

Ax=a

C x ^ d - B y *

xeX

The solution to this NLP subproblem provides an upper bound on the optimum objective

function of (MINLP) and the optimal values for the continuous variables xK in (NLPK).

Linear approximations to the nonlinear functions in (MINLP) are then derived at the solution

point xK and the binary variables are freed yielding the MILP master problem (MK) (see

Appendix B). Note that this master problem includes linearizations for the previous and current

NLP solution points xk, k=l,2,...K. Also, the linearizations for nonlinear equations are relaxed

as inequalities through the sign of the lagrange multipliers. The discrete optimization is

performed through this master problem to select values for the binary variables yK + 1 which

minimize the objective function in the linearized space. The optimal objective function value of

the master problem provides a lower bound on the solution to problem (MINLP). If this lower

bound is less that the upper bound from the NLP subproblem then the binary variables are fixed

at yK + 1 and the resulting NLP subproblem is solved. The solution of NLP subproblems and

MILP master problems is continued until the lower bound exceeds the best upper bound. At this

point the optimal objective function value of (MINLP) is the minimum objective function of all

NLP subproblems solved and the optimal solution point is the corresponding point x* , y*.

Since the NLP subproblem may not have a feasible solution for the particular choice of yK , it

is often convenient to introduce a non-negative slack variable u for constraint violations and a

large scalar p. The objective function and inequality constraints in (NLPK) are replaced in a

modified formulation (SNLPK) as follows:

a) Objective function- z(yK)=min cTyK+f(x) + pw

b) Nonlinear inequalities- g(x) < u

c) Linear mixed inequalities- Cx<d-By^ + u



In this way, if a feasible solution to problem (NLPK) exists then the slack variable u will be

zero and formulation (SNLPK) reduces to that of (NLPK). If a feasible solution does not exist,

then the objective function in (SNLPK) will produce continuous variables xK that minimize the

violation of the inequality constraints.

The assumption that the binary variables y appear linearly in problem (MINLP) can be relaxed

in the OA/ER algorithm. MINLP formulations containing nonlinear terms in y, \|/(y), or

nonlinear functions of both x and y, <l>(x,y), can be treated through reformulation to yield a

problem which is linear in y. This can be done simply by defining new continuous variables x1 =

y, so that \|/(y) and <(>(x,y) can be formulated as nonlinear functions of continuous variables V(xx)

and (Ĵ XjX1). The additional equations x1 = y are then linear in y. This, however, is equivalent to

treating y(y) and <|>(x,y) directly as nonlinear functions which are linearized in x,y at the NLP

subproblem solution points xk,yk, k=l,2,...K, to define the master problem.

It should be noted that the OA/ER is not the only method available for solving MINLP

problems. Branch and bound techniques can be applied to MINLP problems as well as the

Generalized Benders Decomposition (GBD) (Benders, 1962, Geoffrion, 1972). The latter is an

iterative bounding algorithm which is similar to OA/ER except that its master problem is based

on a dual representation of the NLP subproblems, and generally predicts weak lower bounds as

compared to the OA/ER algorithm. The disadvantage of both branch and bound and GBD is that

these methods typically require the solution of many NLP subproblems during the search for the

optimal solution (see Duran and Grossmann, 1986a). The OA/ER algorithm was developed to

minimize the number of NLP subproblems to be solved since this is often the bottleneck in

MINLP problems. Among other methods that are currently under development for solving

MINLP problems is the feasibility technique by Mawengkang and Murtagh (1986).

DICOPT
As mentioned in the previous section, the OA/ER algorithm involves the alternating solution

of NLP subproblems and MILP master problems. This algorithm has been implemented in the

computer code DICOPT. MINOS (version 5.0 or 5.1) is used to solve the NLP subproblems and

MPSX or ZOOM/XMP (Marsten, 1986) is used to solve the MILP master problems. A

simplified flowchart of DICOPT is shown in Figure 1.

First the algebraic formulation of the MINLP problem is supplied to GAMS which creates the



formulation in a format recognizable to the NLP code (e.g. MINOS) and generates analytical

gradients. The user must supply the initial values for the binary variables y1 and also a starting

point for the continuous variables x which MINOS uses in solving the subproblem (NLP1).

The NLP solver is then called and returns a solution having one of three status conditions,

optimal, infeasible, or unbounded* If the NLP subproblem is unbounded then the original

MINLP problem is also unbounded and the OA/ER algorithm terminates. An infeasible status

means that either the NLP subproblem is infeasible or that due to the starting point supplied to

the solver, the problem appeared to be infeasible. Recall that the formulation (SNLPK) can be

used to avoid infeasibility due to inequality constraints and thus produce a point which satisfies

the equality constraints while minimizing the violation of the inequalities. This is important

when applying the equality-relaxation procedure because lagrange multipliers are required at a

point which satisfies the nonlinear equalities in order to relax these equations to inequalities (see

Kocis and Grossmann, 1987a).

The third possibility is that the optimal (or at least locally optimal) solution to subproblem

(NLPK) was found. In this case, the upper bound on the solution to (MINLP) is updated as the

minimum of the current upper bound and the objective function value from the NLP subproblem.

Following the NLP subproblem a call is made to a program which formulates the MILP master

problem. The master problem contains all linear constraints from (MINLP), an accumulation of

linear approximations at previous iterations of the nonlinear constraints in (MINLP), and a set of

integer cuts which eliminate from consideration the previously analyzed points yk, k=l,2,..K. If

the NLP subproblem solution is optimal or feasible with respect to the nonlinear equality

constraints then first-order linearizations derived at xK,yK are included in the master problem.

(Since gradient information is required by the NLP solver, this information is available for

deriving the linearizations.) However, if for a given yK the resulting NLP subproblem has no

point xK which satisfies the nonlinear equations, then the linear approximations are not added to

the MILP formulation. The introduction of the integer cut will insure that the solution to the

next master problem yK + 1 is different from yK.

Having formulated the master problem, the next task in DICOPT is to call the appropriate

MILP package. The MILP solver returns either the optimal integer solution (or an integer

solution satisfying the specified tolerances) or an infeasible solution. If the status returned by the



MILP solver is the optimal integer solution, the objective function value then provides a lower

bound on the solution to (MINLP). If the master problem is infeasible or the predicted lower

bound is greater than the current upper bound, then the OA/ER algorithm terminates and the

optimal solution to (MINLP) has the objective function value of the current upper bound and the

optimal solution point given by the corresponding NLP subproblem solution x* , y*.

For the case when the lower bound from the master problem is less than the current upper

bound, the binary variables y are temporarily fixed at the optimal value yK+1 from the master

problem defining the next NLP subproblem. The optimal values of the continuous variables x

from the master problem are used as the starting point for the next NLP subproblem meaning

that the user is required to supply a starting point for only the first NLP subproblem. Since the

linearizations are accumulated as iterations proceed, the MILP master problem provides an

increasingly good approximation to the original MINLP. Hence, the quality of the starting points

supplied through the master problem increases making the subsequent NLP subproblems easier

to solve. Thus, the MILP master problem in the OA/ER algorithm not only predicts strong lower

bounds, but it also provides excellent initial guesses for the NLP subproblems.

The main components in DICOPT include GAMS, an NLP solver, an MILP solver, the code

which formulates the master problem, and a control program which determines the flow between

these four components. Efficiency and portability have been built into the computer

implementation of DICOPT. Sparse matrix techniques as well as dynamic memory capabilities

in GAMS are used to generate the linearizations in the MILP master problem.

Currently, versions of DICOPT exist for IBM mainframes (CMS), VAX (VMS), and IBM-PC

(DOS). Since MINOS and ZOOM/XMP are written in FORTRAN, they are available on these

three systems. However, MPSX is available only for IBM mainframes. The code which

formulates the master problem and the code which performs the necessary logic were written in

FORTRAN. The command files, which are very small, are written in REXX for IBM/CMS,

DCL for VAX/VMS, and BAT for IBM-PC/DOS. It should be noted that due to the robustness

and efficiency of MPSX, the IBM version is the most suitable for large scale MINLP problems.

To illustrate the use of the modelling language GAMS in DICOPT the algebraic formulation of

a batch process design problem is given in Appendix C. Note the use of indexed sets which

allows for a very compact problem formulation. In the solve statement given in the last line of



the Appendix C listing, the command MIDNLP stands for the use of the OA/ER algorithm for

solving the MINLP problem. Also, note that in DICOPT the user need not be concerned with the

details of the MINLP algorithm (e.g. supplying the master problem formulation) as is the case of

APROS developed by Paules and Floudas (1987). Here all the steps of the particular MINLP

algorithm (OA/ER or GBD) must be supplied in the GAMS input file.

COMPUTATIONAL RESULTS
DICOPT, as implemented on the IBM/CMS system, has been tested on fifteen MINLP

problems. A summary of problem size and computational results on an DBM-3090/600 (Cornell

Theory Center) is given in Table L

Problem REAC corresponds to the selection of a two reactor configuration, while problems

PLAN and EX3 are small planning examples where discrete choices are made pertaining to

candidate processes for producing a set of desired final products, CAP1 and CAP2 are examples

of the pure-integer quadratic programming formulation of the capital budgeting problem (Kettani

and Oral, 1987). Problem EX4 addresses the optimal positioning of a new product in a

multiattribute space (Duran and Grossmann, 1986a). REL is a reliability optimization problem

from Henley and Kumamoto (1985) and FLEX is an MINLP formulation of the flexibility

problem of a heat exchanger network through the active set strategy of Grossmann and Floudas

(1987). BATCH5 through BATCH12 correspond to optimal design problems for multiproduct

batch plants (see Kocis and Grossmann, 1987b) and problem TFY involves the retrofit design of

heat exchanger networks. Finally, the problem FLOW is an example of a structural flowsheet

optimization problem (see Kocis and Grossmann, 1987b). The detailed formulations are given in

Kocis (1988) and are available upon request from the authors.

As shown in Table I, the size of the MINLP problems ranges from 2 to 60 0-1 variables, 0 to

410 continuous variables, and 1 to 421 constraints. Note that problem FLOW involves 140

nonlinear equations and problem EX4 25 nonlinear inequalities. The remaining problems exhibit

fewer nonlinearities in the objective function or constraints. As can be seen, all the problems,

except for the last one, required less than 30 seconds of CPU-time for solving both the NLP

subproblems and MILP master problems. The time for the total overhead was always

substantially less that the CPU-time for optimization. Also, the results in this table indicate that

between 2 and 4 iterations are typically required.



From the results in Table I, it is clear that the performance of the OA/ER in DICOPT

algorithm is quite impressive considering both the size and complexity of the different test

problems. Note that although the MILP master problems often require more CPU-time than the

NLP subproblems (especially when few nonlinearities are present), they have the important role

of not only reducing the number of iterations, but also to make the solution of subsequent NLP

subproblems easier to solve by supplying good initial points. In fact, in all these problems, once

the first NLP problem converged there was no difficulty in subsequent iterations. Finally, the

results show that in problem FLOW, which involves complex NLP subproblems due to the large

number of nonlinearities, the MILP master problems require much less time that the NLP

subproblems.

Another important point related to computational experience is the numerical solution of the

MILP master problems. Since the constraints in the master problem are derived from

linearizations, there is a tendency for the magnitude of the coefficients to cover a wide range of

values making the numerical stability of the MILP solver important. Computational experience

has indicated that MPSX outperforms ZOOM/XMP in solving the master problems both in

efficiency and reliability. Results in Table II indicate that MPSX is more suitable for solving the

MILP master problems as the size of the MINLP problem increases.

In addition to the problems reported in Table I, the OA/ER algorithm has been applied to the

design of gas pipelines (Duran and Grossmann, 1986b), retrofit design of batch processes

(Vaselenak et al, 1987), and the structural flowsheet optimization with heat integration (Kocis

and Grossmann, 1987a). In all these problems the OA/ER algorithm required between 2 and 5

iterations. Effective use of the OA/ER algorithm in chemical engineering applications has also

been recently confirmed by other researchers. Floudas and Paules (1987) developed an MINLP

formulation for the synthesis of heat integrated distillation sequences. With the OA/ER algorithm

they were able to solve the resulting convex MINLP problem in 3 to 6 iterations. Harsh (1987)

developed a mixed-integer programming approach to the retrofit design of existing plants. He

successfully implemented the OA algorithm in the commercial process simulator FLOWTRAN

and performed a retrofit design study of an ammonia plant in only 2 iterations.



EXTENSIONS
The OA/ER algorithm is guaranteed to find the global optimum of MINLP problems that

involve convex objective function and inequalities, and quasiconvex relaxed equations. A

difficulty, however, that may be encountered in MINLP problems is the presence of

nonconvexities. In the OA/ER algorithm, nonconvexities can cause problems in two ways.

First, since the procedure involves the solution of NLP subproblems, the presence of

nonconvexities leads to the potential for local solutions in the subproblem (NLPK). The global

optimization of nonconvex NLP problems is an difficult task and rigorous algorithms currently

do not exist

The second difficulty that nonconvexities can lead to occurs in the MILP master problem of

the OA/ER algorithm. The rigorous guarantee of the global optimum to (MINLP) is based on

the master problem providing a valid lower bound on the optimal objective function value.

However, when nonconvexities are present, the linearizations in the master problem may not

necessarily provide valid outer approximations to the nonlinear feasible region. Therefore, the

lower bounds predicted by the MILP master may not be valid lower bounds and the global

optimum can be cut off (see Kocis and Grossmann, 1987b).

In some special problems, nonconvexities can eliminated through convexifying

transformations (e.g. log transformations as in Duran and Grossmann, 1986b). However, the

identification of nonconvexities is often nontrivial for complex models and even if the

nonconvexities are detected it is not always possible to convexity the problem. Thus, there is a

need for a procedure which addresses the difficulty that nonconvexities cause in the MILP

master problem.

The important point to take note of is that convexity in the nonlinear functions is a sufficient

condition to guarantee the global optimum. When these conditions are not satisfied the OA/ER

algorithm may or may not obtain the global optimum solution. However, computational

experience by the authors has shown that in a good number of cases the OA/ER algorithm will

find the global optimum solution for nonconvex MINLP problems. This would then suggest that

a suitable strategy to tackle these problems is to solve them in two phases as has been suggested

recently by Kocis and Grossmann (1987b). In the first phase the OA/ER algorithm is applied in

its original form but with special local and global tests for the identification of nonconvex

functions that may cause the global solution to be missed. If nonconvexities are not detected the
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search is terminated. Otherwise, one proceeds to a second phase where linearizations are

systematically modified in a new master problem so as to try to yield valid outer-approximations.

Here the search is terminated at the point when no further improvements are found in the NLP

subproblems.

The main advantage of the two-phase algorithm is that it can systematically and intelligently

make use of all information from phase I to automatically identify nonconvexities in the MINLP

problem that could prevent the OA/ER algorithm from finding the global optimum solution.

However, no rigorous guarantee on global optimality can be given since no special structure on

the functions has been assumed to guarantee validity of the modified outer-approximations and

uniqueness of the solutions of the NLP subproblems. Finally, it is interesting to note that when

nonconvexities are not involved in the MINLP, the strategy will be able to automatically identify

this situation and terminate at phase I with the global optimum. The two-phase strategy has been

recently implemented in DICOPT and tested successfully with several nonconvex test problems

(see Kocis and Grossmann, 1987b) where the global optimum was found in 24 out of 28 cases as

seen in Table HI.

Another interesting aspect is the effect that the model formulation of the MINLP can have on

the OA/ER algorithm. The effect can be seen both in the NLP subproblem stage and the MELP

master problem. Firstly, different algebraic formulations can have a great impact on the

efficiency of the NLP solver. For instance, an NLP solver may find it difficult to find even a

feasible solution for one NLP formulation, while for an equivalent formulation it may find the

optimal solution very quickly. The latter will typically be the case when all the variables are

properly bounded and scaled and the constraints are written in mostly linear form. Model

formulation can also influence the quality of the lower bounds predicted by the MILP master

problem. For example, in the linearization of some nonlinear functions (e.g. bilinearities), terms

may vanish when variables take zero values and as a result, substantially cut into the feasible

region. By redefining variables and setting non-zero lower bounds, one can often avoid these

difficulties. However, the modelling of MINLP problems still remains an area that is not very

well understood. This is currently a subject of our research work and will be reported in a future

paper.
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CONCLUSIONS
While in the recent past, the solution of MINLP problems was regarded as a very difficult and

expensive task, this situation has undergone a considerable change. The combination of recent

developments in MINLP algorithms (e.g. Outer-Approximation algorithm and its extension with

the Equality-Relaxation algorithm) along with the improved efficiency of NLP and MILP solvers

and increased computing power has led to the capability to solve large scale mixed-integer

nonlinear programming problems as was shown in this paper with the computer code DICOPT.

Furthermore, the availability of modelling languages, such as GAMS, provides model builders

with a powerful tool which allows for compact representation of large problem formulations of

mixed-integer optimization models. Although there are still some unresolved issues, the ability

to routinely perform MINLP calculations in process systems engineering (e.g. structural

flowsheet optimization) is now at hand.
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Appendix A. Equality-Relaxation Algorithm
Based on the nonlinear programming subproblem (NLPK) and the MELP master problem

(MK) presented in Appendix B, the steps in the outer-approximation/equality relaxation

algorithm can be stated as follows (it is assumed that the NLP subproblems in Step 2 have a

feasible solution):

Step 1 Select initial binary assignment y1, set K=l.

Initialize lower and upper bounds, z^-

+lifXf>0 *=l,2,...r

Step 2 Solve (NLPk) for fixed yK yielding z(yK), xK, and XK.

If z(yK)<Zjj, then set y*=yK, x*=xK, and Zu=z(yK).

Define the diagonal matrix TK as:

where ^f are the associated optimal lagrange multipliers for the nonlinear

equations hj(x)=O, i=l,2...r, in the subproblem (NLPk).

Step 3 Derive at xK the linear approximations for f(x), h(x), and g(x), and set up the

master program given by problem (MK) (see Appendix B). The linear

coefficients and right hand side constants in (MK) are then given by:

w* = Vf(x*)r w* = Vf(x*)r [x*] - f(x*)

S* = Vg(x*)r s* = Vg(x*)r [x*] - g(x*)

Step 4 Solve the master program (MK):

[a] If a feasible solution yK+1 exists with objective value

set K=K+1, go to Step 2.

[b] If z£^ zy or no feasible solution exists, stop.

Optimal solution is Zy at y*,x*.
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Appendix B. MILP Master Problem (MK)

zf=mm cry+u

S.t.

k=l,2...K

Ax=a

By+Cx<d

cry

y e {0,1 }m n {integer cuts}K

(MK)

where z£ is the predicted lower bound at iteration K, ji is the largest linear approximation to

the nonlinear objective function, and the integer cuts correspond to constraints which eliminate

the assignments of binary variables analyzed at the previous K iterations:

i 6 B* i €

where for any integer combination yk, the index sets are such that Bk={j:yj^=l} and N^ljty^K)}.

The lower bound z p 1 of the constraint on cTy+n is introduced to expedite the solution of the

MILP.
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Appendix C. Illustration of GAMS Modelling Language in DICOPT

$TITLE BATCH PROCESSING PROBLEM la.

* MINLP FORMULATION OF EXAMPLE PROBLEM FROM:
* Grossmann, I.E. and Sargent, R.W.H. , 1979.
* Ind. Eng. Chem. Process Des. Dev. , 18: 343-348.

SETS

SCALAR

I
J
K

H
ALPHA

PRODUCTS
STAGES
BINARY VARIABLES

/ A , B
/ 1 * 3
/ 1 * 2

PARAMETERS Q(I)

HORIZON TIME (HRS) / 6000.
COST COEFFICIENT FOR UNITS / 250.

PRODUCTION RATE OF PRODUCT I
A = 200000. , B = 100000.

YCOEFF(K) COEFFICIENTS IN EQUATION: UNITS
1 = 1 , 2 = 2

/
/
/

/
/

TABLE SIZE FACTOR FOR PRODUCT I IN STAGE J

A
B

1
2.
4.

2
3.
6.

3
4.
3.

TABLE PROCESSING TIME OF PRODUCT I IN STAGE J

A
B

1
8

16

2
20.
4.

3
8
4

VARIABLES Y(K,J) BINARY VARIABLE DENOTING UNIT EXISTENCE
V(J) VOLUME OF STAGE J
B(I) BATCH SIZE OF PRODUCT I
TL(I) CYCLE TIME OF PRODUCT I
N(J) NUMBER OF UNIT IN PARALLEL STAGE J
COST TOTAL COST OF BATCH PROCESSING UNITS ;

BINARY VARIABLES Y(K,J)
POSITIVE VARIABLES V(J) , , TL(I) , N(J)

EQUATIONS VOL(I,J) CALCULATE VOLUME OF STAGE J
CYCLE(I,J) CALCULATE CYCLE TIME OF PRODUCT I
TIME TIME CONSTRAINT
UNITS(J) NUMBER OF PROCESSING UNITS PER STAGE
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OBJ OBJECTIVE FUNCTION DEFINITION

VOL(I, J) . .
CYCLE(I, J) .
TIME..
UNITS(J)..
OBJ. .

V(J)
N(J) * TL(I)
SUM(I , Q
N(J) =E=
COST =E=

=G= T(I,J)
* TL(I) / B(I) ) =L= H

1. + SUM(K , YCOEFF(K) * Y(K, J) )
ALPHA * SUM(J , N(J) * V(J) ** 0.6)

* BOUNDS
V.LO(J)
V.UP(J)
N.LO(J)
N.UP(J)

SECTION
= 250.
= 2500.
= 1.
= 3.

PARAMETERS

TLLOW(I)
TLUPP(I)

TLLOW(I)
TLUPP(I)
BLOW (I)
BUPP(I)
= SMAX(J,
- SMAX(J,

LOWER BOUND ON TL(I)
UPPER BOUND ON TL(I)
LOWER BOUND ON B(I)
UPPER BOUND ON B(I)

T(I,J) / N.UP(J) )

BLOW(I) = Q(I) * ( SMAX(J, T(I,J) / N.UP(J)) ) / H
BUPP(I) = MIN( Q(I) , SMIN(J , V.UP(J) / S(I,J) ) )

TL.LO(I)
TL.UP(I)
B.LO(I)
B.UP(I)

TLLOW(I)
TLUPP(I)
BLOW(I)
BUPP(I)

* INITIAL POINT SELECTED FOR BINARY VARIABLES
Y.L(K,J) = 0

Y.L('1V3') = 1

* INITIAL POINT PROVIDED TO NLP SOLVER
N.L(J) = 1. + SUM( K , YCOEFF(K) *
B.L(I) = ( B.LO(I) + B.UP(I) ) / 2.
V.L(J) = SMAX(I , S(I,J) * B.L(I) )
TL.L(I) = SMAX(J , T(I,J) / N.L(J) )

MODEL BATCH / ALL / ;
Y.FX(K,J) = Y.L(K,J)
SOLVE BATCH USING MIDNLP MINIMIZING COST

Y.L(K,J) )
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Figure 1. OA/ER Implementation in DICOPT
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Table I. Computational Results

Problem

REAC

PLAN

FLEX

CAP1

CAP2

EX3

REL

EX4

TFY

BATCH5

BATCH8A

BATCH8B

BATCH8C

BATCH12

FLOW

Binary
Variables

2

3

4

4

10

8

12

25

14

24

40

40

40

60

9

Cont.
Variables

8

7

12

0

0

25

48

5

34

22

32

32

32

40

410

Constr.

6

8

15

1

4

30

77

30

53

73

141

141

141

217

421

Nonlin-1

earities

(L.2,0)

(LAO)

(LAO)

(N.0,0)

(N.0,0)

(L.5,0)

(N.8,0)

(N.0,25)

0U8.O)

(NAD

(NAD

(N,0,D

(NAD

(NAD

(L.14Q.0)

Iterations

2

2

3

4

3

3

3

3

2

4

4

7

9

3

3

Total
Time2

1.4

1.4

2.3

2.5

2.0

2.5

7.3

8.2

2.8

5.4

10.4

17.3

24.4

9.8

105.5

Solver
Times3

0.2/1.2

0.2/1.2

0.4/1.9

0.3/2.2

0.2/1.8

0.4/2.1

1.1/6.2

1.4/6.8

0.9/1.9

1.0/4.4

1.6/8.8

3.6/13.7

5.2/19.2

1.8/8.0

96.95 / 8.5f

^objective function:L-linear, N-nonlinear, equalities , inequalities)

^PU-seconds, IBM-3090/600

3NLP subproblems:MINOS / MILP master problems:MPSX



Table n. Comparison of MPSX Versus ZOOM in Solving MILP Master Problem

Problem CPU-time1 CPU-time2 Ratio3

PLAN

EX3

EX4

BATCH5

BATCH8A 10.41(1.56,8.85) 39.31(1.58,37.73) 4.26

1.41 (0.19,1.22)

2.52(0.41,2.11)

8.20 (1.41,6.79)

5.36 (0.99.4.37)

0.52 (0.15,0.37)

1.95 (0.43,1.52)

57.28 (1.43.55.854)

17.59 (1.00.16.59)

0.30

0.72

8.23

3.80

!CPU seconds, IBM-3090/600: Total (NLP subproblem - MINOS5.1, MILP Master problem - MPSX)

2CPU seconds, IBM-3090/600: Total (NLP subproblem - MINOS5.1, MILP Master problem - ZOOM)

3Ratio of ZOOM/MPSX

4Solver error encountered with ZOOM at final iteration



Table III. Computational Results with Nonconvex MINLP Problems

Problem Binary Continuous Initial Points Global Optimum
Variables Variables Tested Found

CAP1 4 0 8 8

EX3 3 2 8 7

BATCH 12 22 10 7

FLOW 9 410 2 2


