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Abstract

This report describes progress in research on an autonomous robot for planetary exploration
performed during 1988 at the Robotics Institute, Carnegie Mellon University. This report begins
with an introduction, summary of achievements, and lists of personnel and publications. It also
includes several papers resulting from this research.

This research is primarily sponsored by the National Aeronautics and Space Administration.
Portions of this research are also supported by the National Science Foundation and the Defense
Advanced Research Projects Agency.

The research program includes a broad agenda in the development of an autonomous mobile
robot. In the year covered by this report, we addressed four major topics:

Configuration: We configured the Ambler (acronym for Autonomous MoBiLe Exploration
Robot) as a walking robot to overcome the shortcomings exhibited by existing wheeled and
walking robot mechanisms. The fundamental advantage of the Ambler configuration—which
has implications for efficiency, mechanism modeling, and control simplicity—is that actuators
for body support are independent of those for propulsion; a subset of the planar joints propel the
body, and the vertical actuators support and level the body over terrain.

Perception: To characterize local scene geometry, we developed several different techniques
for constructing elevation maps from range images provided by a scanning laser range finder.
Further, we developed techniques to (1) evaluate elevation map regions as footfall locations, (2)
match elevation maps, and (3) extract topographic terrain features from elevation maps (peak,
pit, ridge, valley, etc).

Planning: We developed innovative gaits that exploit the novel ability of the Ambler to
recover a trailing leg past a leading leg to achieve productive locomotion and flexibility in
selection of footfalls.

System Integration: We developed and partially implemented a centralized task control
architecture to integrate the perception, planning, and control algorithms. We experimented with
integrated systems on two separate testbeds. For the first testbed, we designed and fabricated
one full-scale leg of the proposed walking vehicle. We demonstrated single-leg motion with
simplified perception, planning, and control modules. Further leg testing has provided results on
mechanical and structural integrity, leg recovery planning, foot slippage, and power consumption.
The second testbed is a simple wheeled mobile manipulator. We developed algorithms for
combining perception, locomotion, and manipulation to control the robot in an indoor laboratory
to collect simple objects. This work allows us to research complex planning and control issues
in parallel with developing the Ambier mechanism. '




Introduction

This report reviews progress during 1988 at the Robotics Institute, Carnegie Mellon University,
on research sponsored by NASA titled “Autonomous Planetary Rover.” This report begins with
an overview and a summary of achievements. It then lists the members of the research group
supported by, or directly related to the contract, and their publications. Finally, it includes four
detailed papers representative of specific areas of research.

Overview

The CMU program to develop an Earth-based prototype of an autonomous planetary rover is
organized around three teams that are developing the locomotion, perception, and plannming
subsystems (figure 1). A joint task is to integrate the three subsystems into an experimental
robot system. We will use this system for evaluating, demonstrating, and validating the concepts
and technologies developed in the program.

The technical objectives of the research include the following:

e To develop and demonstrate an autonomous Earth-based mobile robot that can survive,
explore, and sample in rugged, natural terrains analogous to those of Mars.

¢ To provide detailed, local representations and broad, 3-D descriptions of rugged, unknown
terrain by exploiting diverse sensors and data sources.

¢ To demonstrate robot autonomy through a planning and task control architecture that
incorporates robot goals, intentions, actions, exceptions, and safeguards.

One of the major accomplishments of 1988 is the configuration of the legged vehicle sketched
in figure 2. This unprecedented walking robot provides locomotion over rugged terrain that
wheeled vehicles can not negotiate easily, and promises to be simpler to control and more
reliable than other walkers without orthogonal legs. Another major accomplishment of 1988 is
the construction and utilization of the experimental system hardware shown in figure 3. This
full-scale testbed not only accelerates the development and testing of perception, planning, and
control algorithms, but also focuses the integration efforts required to create a coherent robotic
system from component research results.

Our overall objectives for the coming year are (1) to develop the hardware for a multi-legged
walking robot, (2) to continue integrating the locomotion, perception, and planning subsystems,
and (3) to continue developing the technological basis required for a fully integrated robot system.
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Accomplishments

This section describes the key accomplishments of the research in the time period from January
1988 to December 1988.

Configuration We configured the Ambler (acronym for Autonomous MoBile Exploration
Robot) as a walking robot to overcome the shortcomings exhibited by existing wheeled and
walking robot mechanisms. Walking is especially suited for autonomous locomotion as effi-
ciency is theoretically high, motions are predictable, incremental, and assessable, and motions
can be used to position and orient body-mounted sampling equipment. We converged on legged
locomotion since wheeled and tracked mechanisms exhibited limited traversability and often un-
predictable body motions. We rejected hybrid locomotion and manipulator-assisted mechanisms
(e.g., “strong arms”) because of planning and control complexity, and the significant cost of
weight, scale, and power required for the additional mechanisms.

The fundamental advantage of the Ambler configuration—which has implications for ef-
ficiency, mechanism modeling, and control simplicity—is that actuators for body support are
independent of those for propulsion; a subset of the planar joints propel the body, and the ver-
tical actuators support and level the body over terrain. The Ambler is capable of overlapping
gaits where rear legs recover past forward supporting legs. These overlapping gaits mean fewer
foot placements with advantages of reduced demand on perception and planning, and significant
energy savings due to reduction of the number of foot-terrain interactions. Any functional leg
can reposition itself to substitute for any failed leg, thus significantly enhancing mechanism
redundancy.

Mechanism Model We formulated a functional model of legged locomotion on natural terrain
for use in model-based control schemes, simulation studies, and design evaluations. The model
considers closed chains, non-conservative compliance at the foot-soil interface, full non-linear
dynamic response, and solution techniques for both forward and inverse dynamic calculations.
The forward dynamics are solvable as singular systems of differential equatons. Substimtion
of difference expressions convert the inverse dynamics to a form that is solved by Newton’s
method.

Perception using Elevation Maps To characterize local scene geometry, we developed several
different techniques for transforming range images into elevation maps. The range images are
acquired by a scanning laser range finder developed by the Environmental Institute of Michigan.
Simulations showed one of them—the Locus Method—i0 be extremely robust to sensor noise
and least sensitive to surface orientation. We demonstrated the method with ERIM images of
rough terrain acquired at a construction site; the resulting elevation maps accurately capture



the scene. We also developed techniques for smoothing and interpolating elevation maps, and
evaluating elevation map regions as footfall locations.

Perception of Terrain Features We identified topographic terrain features (peaks, pits, ridges,
valleys, etc) to extract from elevation maps for the purpose of terrain typing. These features
appear to be more relevant for sampling operations and less relevant for navigation and locomo-
ton.

Walk Planning We developed innovative gaits that exploit the novel ability of our proposed
walking vehicle to recover a trailing leg past a leading leg to achieve productive locomotion
and flexibility in selection of footfalls. We developed a criterion that ensures stability of a
six-legged walker, even in the event of spontaneous failure of any leg. The resulting gaits
provide the benefits of periodicity in that they exhibit regular sequence and timing, but allow
foot placements over generous regions, which is essential in irregular terrain. In addition, they
should require fewer footfalls per unit advance, thus improving efficiency.

Architectures We completed initial studies of several possible planning and control archi-
tectures, including those with explicit goals for both the world state and processing, multiple
controllers with varying competences plus a mediatnon mechanism, “reactive” systems, “sub-
sumption” systems, dynamic hierarchical systems, and blackboard systems. We converged on a
centralized task control architecture, and have implemented a preliminary version.

Single Leg Testbed We designed and fabricated a full-scale single-leg testbed. It incorporates
an actuator to simulate body motion so that propulsion and leg recovery can be accurately studied.
It includes different types of terrain so that foot contacts and slippage can be thoroughly evaluated.
A range sensor mounted above the leg is used to build terrain maps and select footfall areas.
The leg testing program has provided results on mechanical and structural integrity, leg recovery
planning, foot slippage, and power consumption.

Mobile Manipulator Testbed This testbed is based on a modified commercially available
mobile robot with arm. We have configured it with a video camera mounted in the ceiling of
lab and three sonar sensors on the robot (one fixed, one rotating, one on wrist of gripper). This
testbed supports development of our task control architecture, and future experiments with error
detection and recovery, planning of sensor positioning, and studies of large-delay teleoperation.

We developed computer programs enabling the mobile manipulator to recognize, locate,
navigate to, plan paths to, and manipulate a small set of fixed objects in the mobile manipulator
testbed. We developed these programs to obtain experience with issues such as integratng
perception, planning, plan execution, and error detecion. They have also raised issues such as




interactions between locomotion and manipulation planning, and determining which sensors and
data resolutions are most useful for various subtasks.

System Integration We incorporated preliminary integration efforts into configuration and de-
sign of the proposed robot, as decisions were made about cooperation among electromechanisms,
sensing, modeling, planning, control, and human interaction. We demonstrated single-leg motion
with perception, planning, and control modules coordinated by the task control architecture.

Personnel

Directly supported by the project, or doing related and contributing research:

Faculty: Martial Hebert, Takeo Kanade, Eric Krotkov, Tom Mitchell, Reid Simmons, Chuck
Thorpe, William Whittaker.

Staff: Purushothaman Balakumar, Mike Blackwell, Kevin Dowling, Christopher Fedor, Regis
Hoffman, Ralph Hyre, Chelva Kumar, Clark MacDonald, Jim Moody, Henning Pangels.

Visiting Scientists: Claude Caillas.

Graduate Students: John Bares, Lonnie Chrisman, Joe Hirsch, In So Kweon, Long-Ji Lin,
Swami Mahalingam, Dave Manko, Mike Murawski, Peter Nagy, Marc Ringuette, Dave Wetter-

green.

Undergraduate Students: Chrs Ivory, Nina Koros, Andy Phillips, Bruce Thompson, Rob
Yohe, Kurt Zimmerman.
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An Autonomous Rover for Exploring Mars

John Bares Martial Hebert Takeo Kanade
Eric Krotkov Tom Mitchell Reid Simmons  William Whittaker

The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

We present an overview of a comprehensive research program, begun in 1987, to design
and build an autonomous intelligent machine to undertake an exploratory prospecting mission
on Mars. We are not attempting to satisfy all constraints on the system that would be flown
to Mars; we are building a prototype and testing it on full-scale Mars-like terrain. The
research focuses on the central robotics issues of locomotion, perception, planning, control,
and sample manipulation; the article describes how we confront the issues not faced by
laboratory robots and explains our system designs. An unprecedented walking robot provides
locomotion over terrain that wheeled vehicles cannot negotiate easily; its six legs are stacked
coaxially, permitting each to rotate fully about the body. The perception system constructs
and matches multiple-resolution maps of rugged terrain and discrete objects using diverse
sensors; we present a detailed example of how it builds elevation maps from a sequence of
laser rangefinder views. A centralized planning and control architecture smoothly integrates
different performance level planners and provides for flexibility in the detection and handling
of unexpected contingencies. We present a preliminary discussion of sampling tasks and
requirements; we propose simple, task-specific tools to acquire samples of Martian materials
by cutting, coring, scooping, and raking.

Notice: To appear in Special Issue of Computer Magazine on Autonomous Intelligent Ma-
chines, June 1989.
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1 Introduction

For centuries, people have been fascinated by Mars, one of our nearest planetary neighbors.
There has been much speculation, in science and science fiction, about what lies on and under
the surface of the Red Planet. Despite considerable study, our knowledge remains very limited.
Orbitng vehicles cannot examine internal features, and stationary vehicles, like the three Soviet
and two US landers, miss what is over the horizon, atop mountains, and in ravines.

Active exploration of Mars could answer many questions about the nature and origins of our
solar system. Sending astronauts or remotely controlled vehicles are possibilities, but a manned
Mars expedition is highly unlikely within the near future, and conventional teleoperation is
impractical for such a mission because of the long signal time to Mars (up to 45 minutes for a
round trip at the speed of light). A more promising approach is NASA’s current plan to launch
a “Mars rover and sample return” mission in 1996, involving an unmanned prospector and a
vehicle to return collected samples to Earth [6]. The broad objectives in exploring Mars are
to observe and gather materials representative of the planet’s geophysical, meteorological, and
biological conditions, and to return a variegated selection of samples. The mission could last
two years, during which the rover might traverse hundreds of kilometers. Since the payload of
the return vehicle is limited, the mission requires a sophisticated on-site system that can explore,
assay, evaluate, and select.

In October 1987 we initiated a research program that addresses the core robotics challenges of
designing a roving explorer capable of operating with minimal external guidance. This research
is needed to confront issues not faced by laboratory robots, to identify and formulate the difficult
problems in autonomous exploration, and to generate the insights, principles, and techniques for
their solution. We are not attempting to satisfy all constraints on the system that would be flown
to Mars (e.g., space-qualified processors). Instead, we are building a prototype legged rover
(called the Ambler') and testing it on full-scale, Mars-like terrain.

To undertake a prospecting mission on the Martian surface, we must extend existing robotic
technology. Because a Mars-roving system is beyond the reach of timely aid from Earth, it must
exhibit extreme self-reliance. The rover must be able to navigate, explore, and sample within its
abilities, and to know, moreover, what tasks do and do not lie within its capabilities. Particular
issues critical to autonomous planetary exploration include robust rough terrain navigation, ca-
pable locomotion, sample acquisition, perception, self-awareness, task autonomy, safeguarding,
and system integration. While semi-autonomous and tele-assisted systems may be practical for
some tasks [11], our research strategy is to strive for full autonomy wherever possible, and to
have the rover decide when to ask for missing information.

In this article, we present an overview of our research program, focusing on the core areas
of locomotion, perception, planning, and sampling. Since the program is less than one year old,

! Ambler is an acronym for Autonomous MoBiLe Exploration Robot.
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this article aims to identify issues and approaches and to describe work in progress, rather than
to report results. While our exposition concentrates on a Mars mission, we expect many of the
technologies to be applicable both to other planetary bodies and to terrestrial concerns such as
hazardous waste assessment and remediation, ocean floor exploration, and mining.

2 Exploring Mars

Our current data on the Martian landscape indicates that an explorer would encounter a wide
variety of terrain features, including a canyon 4800 km long by 7 km deep, a mountain 27 km
high, and numerous sand dunes, rock fields, and craters. For example, figure 1 illustrates the
barren, rugged terrain viewed by the Viking 2 lander.

The following hypothetical scenario illustrates some of the challenges the rover must meet
in actively exploring such terrain: The rover is instructed to obtain core samples from a rock
outcrop several kilometers away. Using an area map at 10-meter resolution provided by an
orbiter, the rover plans a path to the rock face which skirts a small crater that lies on the direct
route. As it traverses the path, the rover uses cameras and rangefinders to survey the immediate
region, building a geometric map that reveals a large boulder field like that in figure 1. The
rover uses this local map to select where to place its feet and how to move its legs in order to
walk safely through the meter-high boulders.

A team of Earth-based scientists monitors the rover’s progress in a time frame that lags
behind the action. In data transmitted as the rover approached the outcrop, they notice a vertical
formation apparently containing several strata. The team deems it desirable to obtain a sample
from each layer, and relays this information to the rover, which charts a course to the indicated

Close to the rock wall the rover encounters a sandy, rocky incline. The rover judges the
smecpnesstobewcﬂwiﬂﬁnitscapabﬂiﬁes,andpmceedsmcﬁmbupthcslopc. As feet sink in
sandy areas, attitude control systems reflexively alter leg length to maintain a level body and
ensure stability. Noting the surface’s wmble feamm the rover alters its planned trajectory to
avoid similar areas of potentially treachero

Once in position, the perception system constmcts a2 high-resolution model that reveals four
distinctly colored layers. The rover then chooses points centered in each band, orients itself,
deploys a core drill to extract core sections, and stores them for delivery to the return vehicle.

This scenario illustrates many of the issues important for a planetary explorer — autonomous
locomotion and sampling, navigation over a wide range of terrains, multi-sensory percepton,
percepton at multiple levels of resolution, both long-range planning and reactive planning for
contingencies, and awareness of the rover’s own capabilities and limitations. It also points
some of the goals for and constraints on a rover design. In the next sections, we summarize
some of the most important constraints, and describe how locomotion, perception, planning, and

12



sampling systems can satisfy these constraints.

3 Locomotion

The rover locomotion system must safely transport the vehicle over vast expanses of the ir-
regular Martian terrain. Perhaps the most important design criteria for the locomotion system
is traversability: it must be able to navigate over extremely rugged terrain. Specifically, it is
desirable that the rover be capable of traversing a one meter step, negotiating a 60 per cent
slope, and maintaining an average velocity of approximately 1 km/day®. Autonomous operation
places additional traversability constraints, namely, that the locomotor be capable of incremental
three-dimensional motions that are predictable and reversible. The ability to move incrementally
in any direction greatly simplifies path planning in rugged terrain since the mechanism places
few constraints on the planners. Predictable motion, knowing that the locomotor will move as
commanded, is the basis for safe and reliable traversal of difficult terrain. Finally, the ability
to reverse any motion sequence at any time is important to all vehicles that venture into the
unknown.

Energy efficiency poses an additional design constraint, because total on-board power gen-
eration is expected to be less than 1 kw. As the dominant energy consumer the locomotion
mechanism must be extremely efficient. Another design consideration is that the locomotion
mechanism must provide a stable platform both for sensors and sample acquisition tools.

These design criteria admit a wide variety of possible locomotion candidates, including
mechanisms that roll, walk, combine rolling and walking, or perform so-called hybrid locomotion
[12]. Rolling machines have wheels (or tracks) in continuous support contact with the terrain
and propel themselves by generating traction forces parallel to the terrain surface. They are the
predominant form of locomotion for most manned vehicles and unmanned robots. As a result,
their control and performance trade-offs are well-understood. Walkers suspend themselves over
the terrain on discrete contact points and maintain principally vertical contact forces throughout
propulsion; this allows more tractable models of terrain interaction than are possible for wheels.
In addition, walking mechanisms isolate the robot’s body from the underlying terrain and can
propel the body along a smooth trajectory independent of surface irregularities.

After comparing these candidates, we selected legged locomotion because of its superior
rough terrain traversability characteristics, theoretical efficiency, and its ability to keep sensors
and sampling equipment steady and stable. A thorough trade-off analysis of locomotion mech-
anisms with respect to these constraints appears in [1].

The Ambler design [1] consists of six legs stacked coaxially at their shoulder joints (see
figures 2,3). Each leg is mounted at a different elevaton on the central axis of the body and

2These specifications, although somewhat arbitrary, refiect plausible assumptions about the mission and the scale
of objects on the Martian surface.
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can rotate fully around the body. Each leg (figure 4) consists of two revolute joints (shoulder
and elbow) that move in a horizontal plane to position the leg, and a prismatic joint at the end
of the elbow link that effects a vertical “telescoping” motion to extend or retract the foot. Thus,
the locomotor has 18 degrees of freedom. The planar “reach” (combined length of shoulder and
elbow links) of a leg is 2.5 m and vertical “stroke” (telescopic distance) is 1 m. The average
overall height of the Ambler is approximately 3.5 m, and its nominal width is approximately 3
m. With these dimensions, the Ambler can step over obstacles 1 m high while maintaining a
level body trajectory — we know of no other robot that can perform nearly as well.

The Ambler body, a 1 m diameter cylinder situated below the leg stack, will contain equip-
ment for power generation, computing, sample analysis, and scientific instrumentaton. Sample
acquisition tools may be mounted beside or under the body (see section 6, ff.). Communication
equipment (not shown in figure 3) can be mounted either above the leg stack or in the body. Per-
ception sensors, which currently include a laser rangefinder and color cameras, will be mounted
above the leg stack where they have larger fields of view; other high-resolution sensors may be
placed under the body or directly on the legs.

This configuration possesses a number of benefits. First, the long legs isolate the body and
sensors from terrain roughness. This is an advantage for perception; since the body remains level
and at the same altitude, sensor observations are aligned with each other over time much more
than they would be on a rolling vehicle. Second, decoupling the vertical and horizontal joints
simplifies walk planning and motion control by reducing complex six-dimensional problems to
smaller ones. Third, sampling tools under the body have a clear view of and close proximity
to the terrain that they must access, and can be positioned and oriented by moving the body,
reducing the number of degrees of freedom required for sampling equipment.

In operation, the Ambler will walk over rugged terrain much as one poles a raft floating on
water over a rough lake bottom. The six vertical actuators in the Ambler’s legs level the body
over terrain, while the planar joints propel the body. As the body advances, one leg at a time
moves ahead of the walker, munhﬁkcthﬁpclcisreplawdaheadoftheraft. A unique result
of the stacked leg configuration is that gaits where rear legs recover past forward supporting
legs are possible. Figuishowsancxmnp&eafsmhanweﬂappmggmL Overlapping gaits
require fewer foot placements, savmgmgybecwseoffcwermdzfmmanms, and reducing
demands on perception and

Winlcmvmmgoml&g,ﬂmﬁveoﬁn&legsmmpmtth&body The stabihtyofthcsmncc

laximized by maintaining the center of gravity inside a “conservative support polygon.”
Inside this region, the vehicle remains stable even if one (and possibly more) ofthelegsocases
to the vehicle, either due to failure or slippage.

Experience with existing walking mechanisms [5] suggests that they are difficult to coordinate
due to their complexity, suffer large energy losses due to actuator conflict, and can be unreliable
upon failure of one or more legs. We designed the Ambler to overcome each of these three
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problems.

Unlike other walkers, the Ambler’s actuator groups for body support and propulsion are
orthogonal; a subset of the planar joints propel the body, while the vertical actuators support
and level the body. The Ambler can level itself without propelling and propel without leveling,
exhibiting no power coupling between the two motions. A subset of the planar joints is sufficient
to propel the body in position (x.y) and heading o, because the planar mechanism (12 links)
is a determinate system. Any three of the twelve shoulder and elbow actuators can be used
to propel the body, with the remaining nine planar actuators declutched or back-driven®. Since
the planar mechanism is determinate (three actuators provide three degrees of body freedom),
actuator conflict and the ensuing energy losses are eliminated. Planar dynamic response can also
be completely modeled for use in motion control of the mechanism. A one-dimensional terrain
interaction model suffices for solution of the vertical foot forces. Equilibrium, stability margin,
forces, and energy cost are readily computable from these mechanism and terrain models, which
among other benefits, permits torque and power minimization during propulsion.

The Ambler locomotor configuration is a dramatic improvement in reliability over conven-
tional walking mechanisms. Since the legs are stacked above the body and can rotate by 2=
about their shoulder joints, any leg can operate in any body sector. Thus, any functional leg
can repositon itself to substitute for any failed leg, and three legs would have to fail to cause
immobilization.

In summary, the Ambler is an unprecedented walking mechanism that satisfies the constraints
of traversability, efficiency, and stability imposed by the rugged Martian surface and mission
requirements. Its unique design avoids problems faced by other walkers, and qualifies it for the
aggressive exploration task it faces.

4 Perception

The Ambler needs timely and detailed perception to plan effective locomotive and sampling
strategies, monitor their execution, and safeguard against hazards such as tipover or environ-
mental change. These capabilities require appropriate and efficient data representations for terrain
(e.g., geometry, soil type) and objects (e.g., size, shape). The perception system’s task is to build
and maintain these representations — of the terrain, its properties, and discrete objects — which
we call rerrain maps.

While orbiters and Earth-based controllers can assist the mission, they cannot provide the
perceptual basis for navigation or sampling tasks. Maps produced by orbiters will not have
sufficient resolution for sampling or mobility in very rough terrain — even the highest resolutions
currently envisioned will yield maps with only meter-scale resolution. Due to communication

*However, combinations of three elbow actuators cannot provide body heading. Furthermore, mechanism sin-
gularities exist for which cerntain shoulder and elbow actuators require infinite torques.
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delay, Earth-based interpretation of sensor data would drastically limit the rover’s speed even
over the most benign terrain. Thus, the Ambler itself must have the sensing and perception
capabilities to build the detailed terrain maps and object descriptions needed for local motion
and sampling.

Perceiving and mapping rugged, outdoor terrain poses significant challenges. Current ma-
chine perception techniques can be applied with some success to man-made, structured, indoor
scenes. Unlike industrial systems, the rover will have little need to recognize or describe regular
geometric shapes, and cannot capitalize on the powerful constraints (e.g., symmetry, smooth-
ness, constant illumination) presently utilized to perceive worlds consisting of blocks and origami
pieces. New techniques must be developed to construct maps of the natural, unstructured, outdoor
environment of Mars.

Building and maintaining those maps raises several issues: 1) representation of data at
different levels of resolution; 2) construction of maps and descriptions from different sensors;
and 3) efficient use of the maps. The following three sections describe how the perception

system addresses these issues.

4.1 Representations

The perception system must provide an environmental representation that is appropriate for a
wide variety of tasks, each with different requirements. For example, locomotion and sampling
require detailed, local representations, while navigation and mission planning demand broad,
global descriptions. To accommodate these diverse needs in a uniform fashion we have selected
a hierarchical representation scheme which describes terrain and objects at varying levels of
resolution.

According to the needs of different tasks, it is natural (but not necessary) that the resolutions
differ by orders of magnitude: pebble-size units on the order of 1 cm may be appropriate for
performing fine sampling operations; foot-size units on the order of 10 cm might be well-suited
for locomotion control; vehicle-size units on the order of 1 m may be natural for navigation and
short-range path planning. Figure 7 illustrates this idea for three specific levels of resolution.
The first two rows of the figure suggest how a map (called the global map because it is created
from orbiter images) at 10 m scale could be used to plan a 1 km route (perhaps a day’s journey).
The third row of the figure shows how the global map relates to a local map at 1 m scale. The
fourth row suggests first how the 1 m scale map could be used to plan a 10 m path, and then
how a 10 cm scale map (see inset) could be used to select footfall locations within a 1 m region.

In addition to making available information at appropriate scales, the multi-resolution rep-
resentation affords several computational advantages. For functions applicable only at certain
resolutions it reduces the amount of data that must be accessed. Functions applicable at all
resolutions may be evaluated more efficiently by processing all resolution levels in a coarse w0
fine manner, or by processing only those levels containing useful information.
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At each level of resolution we describe the environment in two ways: on a geometric grid,
and as object descriptions. Together these comprise a terrain map at one scale.

We define an elevation map on a regular grid. Each grid square records information about
the terrain in that area, for instance, its elevation above a reference “ground” plane (see fig-
ure 8). Other terrain attributes include the following: the uncertainty of the estimated elevation;
roughness; slope; labels indicating whether the terrain is unknown (has never been observed)
or occluded (currently not observed because it lies in a shadow cast by another object); miner-
alogical composition; and a measure of traversability derived from slope, roughness, and other
properties.

Object descriptions include the size, shape, and location of particular objects such as a
boulder; symbolic descriptions of terrain such as hill, valley, saddle, and ridge that may be
useful for identifying promising sample sites; paths the vehicle has followed; locations that have
been sampled; and viewpoints from which observations have been made.

4.2 Constructing Terrain Maps

Constructing terrain maps requires sensing and interpretation, ranging from low-level data col-
lection to high-level scene modeling. This section first focuses on the lowest level of abstraction:
sensors and signals. Next it describes an intermediate level of abstraction, concentrating on local
surface geometry and local material properties, and then sketches the highest level of objects
and semantic interpretations.

Sensors

Single-sensor, single-algorithm systems are severely limited in their ability to resolve ambigu-
ites, to identify spurious information, and to detect errors or failure. These shortcomings are
not a product of the sensors or algorithms employed, they are an unavoidable consequence of
attemptng to make global decisions based on incomplete and underconstrained information. One
way to circumvent the limitations of a single sensor is to use multiple sensors. By combining
(“fusing™) information from many different sources, it is possible to reduce the uncertainty and
ambiguity inherent in making decisions based on only a single information source. We will
equip the Ambler with a battery of different sensors (even using the vehicle itself as a sensor)
to collect multi-spectral data and to allow sensor fusion.

Currently, our primary sensor is a scanning laser rangefinder that measures both reflectance
and range. It has two disadvantages: its moving parts are vulnerable to failure; and since the
scanner actively transmits signals, it requires more power than do passive imaging systems.
However, we find that its virtues — directly measuring the environment’s three-dimensional
structure — easily outweigh its defects; compared to reconstructon of depth from muldple
two-dimensional images (e.g., stereo, motion), it imposes a far smaller computational burden,
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and eliminates the errors that inevitably arise in solving the correspondence problem. We have
developed an explicit probabilistic model of the uncertainty on this sensor’s readings, according
to which the measured range errors are normally distributed with standard deviation proportional
to the square of measured range.

In the near future we will also use a pair of color cameras in order to determine material
properties from color and texture, for long-range viewing, and for stereo viewing to back up the
rangefinder and to aid mission controllers on Earth. In later stages of our research we plan to
incorporate proximity sensors that detect imminent collisions with obstacles, an inertial reference
sensor, inclinometers, tactile sensors on sampling tools, and other imaging devices.

Interpreting the raw sensor measurements cannot begin until the devices are calibrated and
their signals corrected. Calibration involves relating the sensor measurements to a known quantity
(e.g., the dimensions of a leg or the reflectance of a reference pattern) or to each other (e.g.,
the geometric relationship‘ of cameras to rangefinder). Periodically, using well-known techniques
[8], the rover must recalibrate the devices as they bounce and shake out of alignment. Correction
involves detecting and eliminating corrupt signals (e.g., images acquired with the camera pointed
at the sun), and filtering noisy signals.

Surface geometry

Once calibrated and corrected, the perception system can interpret sensor signals at higher levels
of abstraction. To give an example of this important operation, we will consider the interpretation
of rangefinder signals in terms of local surface geometry (interested readers can find details in
[3]). This involves creating an elevation map from a range image, computing its geometric
attributes, matching it to another elevation map, and merging the two maps to form a composite
map.

A simple method to create the elevation map is to refer each range measurement to a reference
grid representing the ground plane by applying a coordinate transformation determined during
calibration. This approach is limited since it cannot compute the elevation estimate of a point
that is not a grid point without resampling. We have developed an algorithm overcomes this
difficulty by first computing in the image space the locations where rays transmitted by the sensor
strike the terrain, and then referring the intersection points and an estimate of their uncertainty
to a reference grid of arbitrary resolution.

We have implemented algorithms to compute geometric attributes of the surface defined by
the elevation map, including surface normal, principal surface curvatures, shadowed areas, and
elevation uncertainty. Slope and roughness can be calculated by identifying the best planar fit to
the surface: slope can be determined from the plane’s parameters; roughness can be derived by
examining the fit residual. We are investigating techniques to estimate surface roughness that
compute the fractal dimension of the set of surface points.

So far, the characterization of surface geometry derives from a single range image acquired at
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one fixed location. Merging elevation maps from successive viewpoints allows the construction of
a composite map that can be more complete, by including previously occluded regions, and more
accurate, by decreasing the uncertainty of past measurements. Further, determining the geometric
relationship between the viewpoints provides a measure of the vehicle displacement which can
be used to supplement position measurements from dead reckoning and inertial references. We
have developed a two-stage algorithm to determine the correspondence between two elevation
maps. The first stage matches a sparse set of geometric features extracted from the two maps
using hypothesis prediction and verification; its output is the estimated rigid transformation T
relating the two sets of features. The second stage takes T as an initial estimate and refines it by
gradient descent, iteratively minimizing an error functional defined over all the data points in the
two maps. Once we know T, we can apply it to merge maps; figure 9 illustrates an example of
a composite elevation map constructed by merging four rangefinder views of the rugged terrain
at a construction site. In addition to computing composite elevation maps, we can apply the
algorithm to the problem of registering local maps with global maps (figure 7).

Material properties

The mobility of the Ambler will be determined not only by the geometry of surfaces but also
by their material properties. To characterize a surface as sand, rock, volcanic ash, or talus is a
formidable task, requiring a variety of information sources. Although we have not yet formulated
solutions to this problem, we have identified three approaches. First, the perception system can
apply statistical pattern recognition and sensor fusion techniques to classify materials based on
complementary information such as color, visual texture, and surface roughness measures derived
from range and color images. Second, it might apply reasoning techniques to infer a lower bound
for particle cohesion from a measured surface’s maximum slope and some geological knowledge.
Third, the perception system need not be limited to passively interpreting data; it can actively
use the Ambler vehicle itself as a sensor to determine soil cohesion and friction parameters either
directly, by measuring leg joint torques while walking, or indirectly, by comparing the soil in its
footprints to nearby soil.

Object identification

Interpreting sensor signals at the highest level of abstraction, in terms of objects and their
semantics, is a very important capability. For example, ices condensing during the cold Martian
night may evaporate before scientists on Earth can notice them and direct the rover to collect
them — they must be discovered and analyzed ir situ. To do this, we hope to build special-
purpose object identification routines. To extend these to the point where they can 1) idenufy
“unusual” or “interesting” objects, perhaps on the basis of color, texmre, or context, and 2)
provide the basis for autonomous decisions to collect a sample, is well beyond the state of the
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art. Studying these problems of semantic object identification have high priority on our future
research agenda.

4.3 Using Terrain Maps

Once maps and descriptions of the world have been constructed, the perception system must
support and facilitate their use. It will provide multiple access mechanisms to its data repre-
sentations, including at least the following: efficiently answering a single query, perhaps by
evaluating a spatial hash function; receiving an interrupt, for instance a request for particular
data; and continuous output streaming, to be used in actuator control loops.

The terrain maps will be used for a variety of tasks. For locomotion, the Ambler will access
elevation maps to select footfall locations that can both accommodate its feet and support its mass.
It will also compute intersections between elevation maps and planned trajectories to ensure that
its body and legs avoid obstacles. For navigation, the Ambler will use the elevaton maps to
plan paths and routes. Further, it will use the elevation maps to localize itself by matching them
to global maps, and combine this information with position estimates from dead reckoning and
inertial references. For sample acquisition, the Ambler will use both elevation maps and object
descriptions: the former to identify promising sampling sites based on topographic features; the
latter to identify objects to be sampled, determine approach directions, and select control regimes
(e.g., force, position).

To summarize, the perception system provides detailed, local representations and broad,
three-dimensional descriptions of rugged terrain and irregular objects, represented as eleva-
tion maps and discrete objects. It exploits diverse sensors and data sources to construct the
multiple-resolution terrain maps the Ambler needs to to plan and act in the unfamiliar Martian
environment.

5 Planning and Control

An autonomous planetary explorer needs to exhibit a wide range of behaviors. In particular, it
must be able to navigate over a wide variety of terrain features, and to acquire many different
types of samples. In addition, it must be able to detect and recover from errors in its plans,
and must monitor for contingencies arising both externally (e.g., dust storms) and intemally (e.g.
excessive power usage). The robot should also choose plans that are “desirable,” e.g., those that
have a low degree of risk, high degree of reliability, and high benefit to the overall mission.
Our goal is to construct a general robot planning and control architecture that facilitates the
achievement of these tasks. Consideraton of the tasks indicates that the architecrure should
address three major issues: 1) integration of different planners, each potendally using differ-
ent representatons and algorithms, 2) flexibility in handling contingencies, plan failures, and
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unexpected situations, and 3) self-awareness of the robot’s own capabilities and limitations.

The architecture we are developing addresses each of these issues. Integration of different
planners will be facilitated by using a standardized declarative language to communicate between
modules. Flexibility is achieved through the use of a centralized control module that will handle
interrupts from environmental monitors and the scheduling of resources. The control module will
also maintain dependency information between planning modules to facilitate error recovery and
explanation. Issues of self-awareness will be handled using decision modules to perform such
tasks as reasoning about available resources, the expected reliability and expense of a proposed
plan, and the expected benefit and time criticality of achieving a given goal.

The core of the architecture is a centralized control module (see figure 10). The control
module receives queries and goal requests from planning modules and routes them to be han-
dled by applicable query or planning modules. Queries, which are used to access intemnal and
external sensing data, are routed in a first-in, first-served manner, and the answer to the query
is routed back to the requesting module. Goal requests are kept on a prioritized goal agenda,
and are handled as the necessary resources become available. Prioritization, handled by decision
modules, is based on the type of goal and on the current external and internal environment of
the robot.

This general architecture can be used to control a wide varety of specific hierarchies of
planning modules. For example, figure 11 illustrates part of our current design for a locomotion
planner that integrates body and leg motions. Each box in figure 11 is a planning module, and
the arrows represent the control and data flow handled by the architecture. The walk planner
takes a three-dimensional ribbon and outputs a senes of straight-line subgoals to be traversed.
The footfall-selection-area planner (FSAP) and the footfall-location-optimization planner (FLOP)
together plan where to place a foot, and the leg-recovery planner (LRP) decides how to move the
leg from its current position to achieve the foot-placement goal while avoiding obstacles such
as rocks and other legs. In parallel, the body-trajectory planner (BTP) decides how to move the
body along the heading given by the walk planner. Its output is combined with the LRP’s to
coordinate movement of all joints, which is then sent to the walking-motion-manager to control
the actuators.

Besides queries and goal requests, planning modules can also issue constraints, which are
treated as advice that other modules can use to restrict their search for acceptable plans. For
example, the BTP needs to constrain the FLOP, since body position helps determine the limits
on the extension of the recovering leg (see figure 11). Also, a sampling planner might issue the
constraint “avoid region X,” which would then be used by the walk planner to eliminate region
X from consideration for possible footfall placements.

When a planning module fails to generate an acceptable plan, it issues a failure that de-
scribes why the goal cannot be achieved. Decision modules are used to analyze the failures
and to recommend appropriate action, such as reinvoking the planner with additional constraints,
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reinvoking a higher level planner, or using another planner that can achieve the same goal. For
example, if the FLOP fails to find an acceptable area to place the foot within a given region,
the architecture would reinvoke the walk planner to produce a new footfall area, adding the
constraint to avoid that region. '

A central feature of the architecture is the distributed nature of its problem solving. Planning,
query, and decision modules can all run as separate processes and even on separate machines.
Using ideas developed in the NavLab project [10], communication between modules will be
transparent to the module writer, so the system can be easily reconfigured. The control module
will use its knowledge of available computational and physical resources to schedule and allocate
the achievement of different goals. One departure from the centralized control scheme, taken
for efficiency reasons, is that query modules will have direct, high-bandwidth connections to the
local terrain map and other perceptual information.

Although our aim is autonomous behavior, we realize that the Ambler will never have enough
knowledge to cope with all possible situations. It is important for humans to be able to intervene
and teleoperate the Ambler when the situation warrants. To this end, we are designing the control
architecture to accept human input at any level of the planning hierarchy. We want to enable
humans to override the goals and constraints produced by planning modules, re-prioritize the
goal agenda, and override the responses of query and decision modules. These facilities will
also be very beneficial during our research, since we will easily be able to substwmte human
input for as-yet-unwritten modules.

A major advantage of our proposed architecture is that it enables us to experiment easily with
different control schemes. The openness of the architecture does not enforce a rigid discipline for
constructing a robot, but does offer many tools for facilitating the construction and integration
of a planetary explorer. The following three sections expand on how this architecture addresses
the issues raised above of integration, flexibility, and self-awareness.

5.1 Integration

To achieve even basic competence as a planetary explorer, the Ambler will have to perform a
wide variety of tasks. For example, to achieve the goal “walk over to Rock31 and check for
ice on its nndersurface,” the robot needs the ability to plan a route to Rock31, plan and execute
individual steps, including leg and body movements, position itself over the rock, grasp the rock,
sense the presence of ice, etc.

For practical reasons of efficiency and ease of implementation, the planners for these different
tasks need different algorithms and representations. For example, mission planning tasks typically
need to be done before many relevant environmental features become known. Such tasks can be
handled using largely qualitative, symbolic planning techniques (e.g., [7]). On the other hand,
planning individual footfalls is a very constrained problem, and is more naturally solved using
geometric and numeric algorithms.
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Since each of the planning modules incorporate different representations and different as-
sumptions about the world, a magor problem is enabling the different planners to communicate
effectively with one another We plan to handle this integration problem by designing a stan-
dardized, declarative language for describing goals and perceptual queries. For example, the
god input to the leg-recovery planner consists of the desired (X,Y,Z) point to place the foot, the
time interval during which it should be achieved, and constraints on the maximum and minimum
allowable change to body height. The communication language is being developed by analyzing
the control and data flow for the preliminary specifications of the Ambler and for the existing
NavLab autonomous vehicle [10].

The use of a standard language enables implementors to agree on the interfaces between
modules before actually implementing the modules themselves. Not only does this enable im-
plementors to treat other modules as "black boxes," but it also enables modules to be substituted
for one another in a transparent manner. When the control architecture receives a request to
achieve atask (subgoal or query), it will have tables describing which modules are applicable
for the given task. Modules for the same task can be easily substituted by changing the mapping
tables. In addition, if more than one module can handle a given task, decision modules will
be used to choose which one to use in the current context based on their range of expertise,
computational and physical resource requirements, and expected reliability.

Another important integration issue is the handling of multiple tasks. The control architecture
will maintain a list of active goals and a prioritized agenda of pending goals, and will monitor
through perception when to start and stop attending to its goals. Prioritization of goals will be
done dynamically, based on a cost/benefit analysis taking into account the current environment
and past actions. For example, while in general it may be more beneficial to obtain sedimentary
rather than volcanic samples, if a volcanic sample is nearer the Ambler might prefer to get it
first, especialy if it already has several sedimentary samples.

Since our architecture enables several tasks to be executed concurrently, it needs to deal
with conflicts over resources. For example, the plans for moving the body and recovering leg
both constrain vertical movement of the body. Our architecture will support two methods for
satisfying potentialy conflicting constraints. One method is to have the planners describe the
allowable constraints and have a separate module resolve the constraints. This method is used
by the joint-movement planner in figure 11). Alternatively, one module can produce constraints
that are used by another module to restrict its actions, the method used by the body-trajectory
planner to limit the FLOP'S choice footfall location based on the planned trgjectory of the body.

52 Flexibility

If the world were certain, static and benign, a robot could function with the simple control
scheme of pre-planning and blindly executing the resulting plan. Unfbxtanately, Mars, and the
world in general, is uncertain, dynamic and potentially hostile. To provide autonomous behavior,

23



a robot must react flexibly to changes in its environment. Such changes may indicate that a plan
is failing (anticipated uncertainty), in which case it must be revised, or they may indicate that
some unexpected situation has arisen (unanticipated uncertainty), in which case it may be more
important to achieve a different set of goals.

While the robot must attend to its sensors to detect the necessary environmental changes,
practically, the robot cannot perceive all the information present at all times. Instead, it must
focus on those aspects deemed to be most important. To this end, the control architecture will
provide the facility to construct monitors that check on specific conditions. A monitor will
specify the condition it is monitoring, the time interval over which the monitoring is to take
place, the frequency to monitor, its priority for resolving resource conflicts, and what to do if
the condition is found to be true.

A crucial problem is when and what aspects need to be monitored. We view this as a
problem of reducing uncertainty in a plan. As time passes and actions occur, uncertainty in the
robot’s predicted state of the world grows, until at some point a threshold is crossed where the
uncertainty exceeds the risk the robot is willing to take that its actions will succeed. This is the
point where a perceptual request should be inserted into the plan, where the type of uncertainty
indicates what to focus on. For example, suppose the robot plans several footfalls in advance
based on its current terrain map. As footfalls are executed, the positional uncertainty of the robot
grows. The robot can minimize sensing operations by checking the footfall area only when the
region of positional uncertainty grows large enough to overlap with an object in the terrain map.

Noticing unexpected sitnations and detecting plan errors is only part of the problem. As
important is handling the situation in an intelligent manner. For unexpected situadons, this
means deciding whether to pursue other goals and, if so, how to smoothly suspend actvites
for the currently active goals. For plan errors, this means repairing the plan without necessarily

The robot will handle both these contingent situations by reasoning about dependencies
recorded when plans are constructed. Simply, the architecture will maintain dependency links
between the inputs and outputs of a module, indicating that the decision to produce the outputs
was influenced by the content of the inputs. To suspend active goals, the architecture would
trace forward through the dependencies to find all subgoals, monitors, and perceptual queries
that must be suspended as well.

When plan errors arise, the architecture will trace back through the dependencies to find the
modules that depended on information that is no longer valid. The robot would then suspend the
part of the plan that depends on the faulty information and replan from that point on [9]. This
increases the performance of the robot since it does not have to replan from scratch every tme
an error is detected — it can reuse unaffected pordons of plans, namely, those portions that do
not depend on the faulty information.

Further uses of dependency informadon include creating explanations for human observers
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that describe why a particular decision was made, and in doing explanation-based learning [4]
to aid the robot in avoiding similar errors in the future. Although these areas are outside the
current scope of the project, the availability of suitable dependency information increases the
ease with which they can be incorporated into future versions of our architecture.

5.3 Self-Awareness

Robots on Earth can be closely monitored to prevent them from performing useless or dangerous
actions. For a planetary exploration robot, however, the very long signal propagation time forces
responsibility upon the robot for choosing acceptable actions. To make intelligent decisions about
what actions to take and what goals to pursue, the robot needs knowledge of its own resources,
capabilities, and limitations in order to reason about the costs and benefits relative to other
opportunities.

Costs can be measured in terms of resources used (e.g., power and time), reliability of the
plan (risk), and uncertainty. Benefits of achieving a goal can be determined both by the goal’s
a priori desirability and by its marginal utility, since the benefits of achieving some goals (e.g.,
retrieving volcanic rocks) decrease the more they are achieved.

Decision modules will be implemented to perform cost/benefit analyses both for achieving a
goal and for using a given planning modules to construct a plan for the goal. Given the goal of
retrieving an object, for example, a decision module might estimate the cost of achieving it as
function of the object’s expected weight, its distance from the Ambler, and the expected terrain
type separating the Ambler and the object. The goal’s benefits might be computed as a function
of the object’s type, the number of like objects already retrieved, and possibly the likelihood of
finding other valuable objects in its vicinity. Although initially we will use numeric measures of
costs and benefits, we are also considering the use of qualitative preference measures in situations
where accurate numeric measures cannot be obtained.

An additional cost that must be considered is the planning tme itself. For time-critical
operations, the robot must stop planning and execute the actions before it is too late. Thus, the
robot needs to be aware of the deadlines for its goals, the expected time to execute its plans, and
the expected time and reliability of its planning modules [2]. We are currently pursuing designs
that enable the robot to reason in an efficient way about its own computational resources.

Reasoning about uncertainty in the robot’s actions and its model of the world is also quite
important. In the previous section we argued that explicit models of the uncertainty in the robot’s
actions could be used to reduce the amount of perception needed. Models of uncertainty can
also be used in choosing amongst different plans to achieve the same goal. A plan with a high
degree of uncertainty might be less desirable than one that is longer but more certain to succeed.

Reasoning about uncertainty can also be used to determine when to “phone home™ for help.
If the degree of uncertainty in a plan and its expected cost are both very high, the robot has
good reason to reduce the uncertainty before venturing out on a high-risk mission. If the robot
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cannot use its perception to reduce that uncertainty sufficiently, it should request assistance from
Earth in deciding whether to proceed with the plan.

In sum, explicitly representing and reasoning about the robot’s capabilities and limitations
should help it to act autonomously in an intelligent manner, avoiding undue risk and maximizing

limited resources.

6 Sampling

The primary scientific purpose of the Mars mission is to acquire samples of the Martian terrain,
to analyze them, and to return selected samples to Earth* NASA hopes to acquire some 200
samples over a two year mission, an order of magnitude more than the Viking lander acquired
during the two years it was functional. Scientists are interested in acquiring samples from a wide
variety of materials, ranging from unweathered igneous rocks, sediments, and drift matenal, to
soil, salts, and ices. The samples must be chosen with great care, however, since only about
5-10 kg is expected to be returned to Earth. A typical sample set might consist of several soil
cores 1-2 m long, multiple rock cores 1-2 cm long, 5-10 soil scoops, about 100 fragments of
unweathered pebble-sized rock (0.2-2 cm), and 20 fragments of weathered rock larger than 2
The sampling task for the Ambler differs in several ways from those most commonly ad-
dressed in robotics manipulation research. First, the samples will consist of granular material
irregularly shaped solids. Thus, few of the models, tactics, or effectors used by current
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encounter in performing its particular task, we can design the mechanism to survive unpredictable
but expected contingencies, such as hitting a rock while coring a soil sample.

A third advantage of multiple tools is that the range of tasks from coarse- to fine-grained can
be accommodated using tools scaled to meet different requirements. For example, a soil-scooper
needs to be larger and less powerful, while a rock-corer needs to be smaller and more powerful.
Tools can be sized and mounted to take advantage of their power, stability, and perceptual
requirements. This enables a tool’s work envelope, rigidity, and payload to be maximized while
minimizing weight and power requirements. A fourth advantage is reliability. If a general-
purpose six degree of freedom manipulator fails, then all sampling tasks reliant on it cannot take
place; if a task-specific tool fails, then only one sampling task cannot be performed.

A disadvantage of using multiple tools is that the combination might not be flexible enough
to handle all possible tasks. An important area for research is to identify the range of devices
needed to perform the various tasks expected to be encountered during the mission. We are also
exploring alternatives for mounting the tools. One possibility is to mount them on the body and
rotate the body to position and orient the tools, much like the turret tool-heads used in current
CNC machines. Another, not mutually exclusive, alternanve is to mount some tools on the
Ambler’s legs to increase stability and visibility of the sample surface (see figure 6).

Although sampling research will focus primarily on tooling configuration issues, the unique
nature of the task also impacts perception and planning. Perceiving and modeling in three
dimensions is complicated by the irregular nature of small-scale Martian terrain features (pebbles
and surface textures). A related difficulty is predicting and modeling the destructive effects of
tools on the environment — chipping off fragments from rocks changes their shape, digging pits
adds new features to the terrain.

Another difficulty is that the manipulation actions can obscure perception of the sample.
For example, scooping soil to dig a pit might stir up enough dust to hide the surface from a
camera. We need to consider special types and positions of sensors to overcome such problems.
A special case is soil coring, where traditional sensors are useless since they cannot penetrate
the soil. In this case, we might use non-imaging techniques, such as measuring soil resistivity
from dnll torque, to gain some understanding of the sub-surface features.

On the planning side, the sampling tasks needed by the rover are all characterized by being
highly unpredictable. One cannot predict when a soil corer will strike an underground rock,
how a rock will fragment when struck, or where the pieces will land. Thus, even more so
than for navigation, planning for sampling tasks must be highly reactive. In particular, control
for functions in which sensor information is limited (e.g., clearing, digging, and rummaging)
must be force- or impedance-based rather than position-based, and must react immediately to
unexpected changes in force to prevent damage to the tools.

Planning techniques must also be developed to provide for a stable sampling plarform. The
legs and body must be positioned to maximize the leverage applied by the tools and to prevent
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the forces exerted from causing the Ambler to slip or topple.

Planners can exploit the coarse-to-fine range of available tools for planning sampling tasks.
1t is likely that hierarchical strategies will be more flexible than strategies that rely on a single
manipulator technique. For example, if the mission is to retrieve an underground sample from a
given region, one could imagine drilling a sample core to gain some understanding of the region
before attempting to dig a pit from which to obtain a sample from the side of the pit wall.

As should be evident from the above discussions, we currently have more questons than
answers about how to perform sampling tasks on Mars. Our philosophy for these problems, and
for the mission in general, is to expose the difficulties and constraints inherent in the task and to
use that understanding to drive the design of our mechanical, perceptual, and planning systems.

7 Current Status

Although simulations are often useful abstractions of the problems an autonomous robot will
face, they are never as revealing as the actual mechanism. Our philosophy is to embed our
ideas in working mechanisms that operate in natural environments. While we build the six-
legged vehicle described in this article, we are testing our locomotion, perception, planning, and
sampling ideas on two testbeds, both of which are currently operational.

The first testbed is a one-legged version of the Ambler. Its purpose is to begin integrating
the component technologies into a single complete but simplified system that can demonstrate
single-leg “walking” using a few frames of range data, simple walk planning, and simple emror
Tecovery. Afuﬂ—scaleleghasbecnhﬁhmdmmacarﬁagethmmve&samngmﬂsm
the ceiling to simulate body motion. A scanning laser mgc T iS mmmmd above the bg
mmvmedmfmhnl&ngmnmap& U!mﬁm w‘n‘-us “sandbo>
d:fﬁmwltypm and obstacles. A rudimentary ve: s
Wc are also usmg this 1 1to stmdy foot 4-»w N rac

pmcnocwcavmgdnnnglcgmwvmy
mmmmmamaﬂyavmm(aﬁcm%m m%)mecmu&m

to eaqﬂmc m ﬁm oombamng namgatmm, sample

mhasahmmarandah&ada ar, ammhavc added anaddﬂlmal sonar on II§
wrist. In addition, we have mounted a camera in the ceiling of our lab to give the Hero a global
overhead view. Cumently, the Hero plans paths to objects using its vision system and, once
in the vicinity of an object, uses its sonars to locate and grasp the object. The Hero currenty
picks up and deposits plastic cups and cans. Soon we expect it to retrieve printer output and ©
schedule the achievement of multiple, conflicting goals.
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8 Summary

Constraints inherent in the task of autonomously exploring another planet have driven our design
of the locomotion, perception, and planning systems for a Mars rover. In particular, the task
demands a system that efficiently and reliably navigates over rough terrain, robustly perceives
rugged terrain and irregularly shaped objects, and exhibits extreme self-reliance in achieving a
multitude of tasks. We have incorporated all of these constraints into our design for the Ambler.

We designed the proposed six-legged walking machine to be very efficient in the type of
rocky and sandy terrain expected on the Martian surface. The use of six legs enhances reliability
by adding redundancy to the design. Unlike previous walkers, the Ambler should be fairly easy
to control due to the decision to decouple vertical (foot) movements from horizontal (elbow and
shoulder) movements. For sampling tasks, these constraints indicate the use of many simple,
specialized tools, which are more robust and simpler to operate than a general aim and hand
mechanism.

To achieve robust perception we employ multiple sensors, each geared to particular sets
of tasks: visual data from an orbiter may be used (if available) to plan globa routes; laser
rangefinder data will be used to plan steps and local paths, cameras mounted on the Ambler's
body will be used for selecting and guiding the acquisition of samples. To achieve efficient
perception that is appropriate for different tasks we employ multiple-resolution representations:
elevation maps describing the shape and properties of the terrain surfaces, complex object de-
scriptions for discrete objects.

For planning and control, the need for self-reliance and the uncertain nature of the Martian
terrain argue for a centralized control architecture to integrate new capabilities easily and to
handle contingencies flexibly. The proposed architecture enables low-level procedural planners
to be combined with high-level symbolic planners, using a common symbolic language of goals,
queries, and constraints. Handling contingencies and plan failures is facilitated by maintaining
a dynamically prioritized goal agenda and by recording dependencies between modules.

The most important requirement of aplanetary rover is ahigh degree of autonomy. Thisis due
both to the long signal time from Earth to Mars, and to limited bandwidth communication which
makes it difficult for Earth-based observers to completely understand the robot's environment.
The issue of autonomy is only partly addressed by having robust on-board perception and high
levels of competence in the planners — the rover must also be aware of its own capabilities
and limitations. The rover must be able to reason about the uncertainty in its models of the
environment and the reliability of its effectors in planning a course of action thai is within
acceptable levels of risk. The rover must take its physical and computational resources into
consideration in scheduling tasks. And, ultimately, the robot must know when it does not have
enough knowledge and when it needs to get assistance from Earth.

By pursuing these issues of locomotion, perception, planning, and sampling in the context of
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a robot that operates on another planet, we hope to gain a greater understanding of the problems
and solutions necessary to take intelligent machines to Mars and beyond.
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Figure 2: Sketch of Ambler
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Figure 5. Overlapping Gait
As the walker advances, the recovering leg (drawn darker) overlaps the two right side supporting
legs (dashed line). Depending on aleg's location on the central stack, some weaving around

supporting legs may be necessary for it to recover past forward legs.
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Figure 6: Leg-Mounted Sampling Tool
This is a somewhat fanciful artist’s conception. The leg should be vertical, and the “arm” holding
the drill should be less articulated.
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Figure 8: Elevation Map Structure
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Figure 9: Example of Elevation Map
This figure is an example of a composite elevation map constructed by merging four rangefinder
views of the rugged terrain at a construction site. The grid size is 10 cm.
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1. Introduction

Space programs are targeting manned exploration of Mars; however, manned missions elude financial
and technical feasibility. Mobile, perceptive robots hold the prospect to explore Mars on behalf of man.
The challenge motivates a robot with unprecedented ability for the autonomous, self-reliant exploration of
rugged, barren terrains. This paper presents the configuration for such a robot.

A robot configuration is the comprehensive functional design from which detailed design and
production of a prototype robot system follow. Configuration is the critical milestone of successful robot
development. The configuration and eventually the design of an autonomous robot are driven by the
functional specification of the task. Functional specifications are generally implied by the task statement or
derived from subjective consideration of the end solution requirements. Functional specifications evolve

to satisfy the needs of configuration and design.

The scope of configuration of an autonomous exploring robot is comprehensive, incorporating
mechanisms, computing and control hardware, and processes for perception, planning and action. The
process of perception acquires, interprets and models sensor data about the environment. Planning
operates on this model to prescribe robot motions toward accomplishing goals. With a consideration for

robot self-preservation, the action process implements planned motions.

In this paper we discuss configuration of a robot, the AMBLER!, for autonomous exploration of the
rugged terrain of Mars. We first give an overview of the AMBLER, with attention to mechanisms and
processes for perception, planning and action. The AMBLER configuration is then justified from the task
functional specifications and competing needs of interacting subsystems.

I AMBLER is an acronym for Autonomous, MoBiLe, Exploration Robot, meaning one that moves about from place to
place at an easy walk with a sauntering gait.

43




2. Mars Exploration

Mars has more Earth-like features than any other body in the solar system. Mars is geologically
mtemstmg, featuring volcanos, canyons and dry river beds. It provides the opportunity to learn how
geology is affected by pressure, gravity and temperature conditions different than on Earth. An
exploration robot can collect various samples and perform on-site analysis of environmentally sensitive
materials (e.g., ice). It can also document geology, including lava flows, rock, glaciers and river valleys.

Mars Rover/Sample Retum (MRSR)(!] is a NASA mission to fly a mobile robot to Mars to conduct
scientific and sampling activities. After a 2-year traversal of several hundred kilometers the robot will find
and dock with another spacecraft that will shuttle the samples back to Earth. Severe limitations on the
sample payload that can be returned to Earth require a sophisticated, Mars-based exploration, sample |
evaluation, selection and preservation program. The total quantity of sarnp es expected to be returned is |
only 10's of kgs. All the intellectual and technical resources of the Earth's scientific community can be |
brought to bear on the retumed samples. The samples (e.g., pebbles, rock chips, cores, drillings) will |
provide direct information on the composition of the planet's crust, mantle and core, and on geologic and |
climatic history. The broad objectives of MRSR are thus to gather as much scientific information as
mssﬂ:kmdtommm%mmﬂxgmﬂymdsmlmgdmmﬂs

The half-hour signal delay in round-trip telemetry from Earth to Mars precludes teleoperated (human-
removed) control due to the extremely slow progress that would resuit and forces robot autonomy.
Autonomous operation implies that the robot is able to operate in isolation without failure, damage or
entrapment with only occasional input from a human overseer. Exploration differs significantly from
operations in conditions that are known or predictable. By nature, exploration defies preplanning, at least
mthemmofthclocdenvnonmem,aoamszmwessmlwsheavﬂyug:ﬁns abilities to perceive its
Memdmmndxngmvuom,phnmdummmmdm -reliance is the single most

mponmmmrmmmnmmmﬁgmanofmmmstexPIOMmmbotAny
chbﬂxmmgmummmksmmmmfamm
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Barren terrains, whether terrestrial or planetary, are all rugged natural surfaces devoid of structured
content like buildings or trees; they are vast landscapes of rock, soil and ice. The surface of Mars is
dominated by diffuse, granular media and irregularly shaped, solid natural forms. In comparison, the
surface of the Earth's Moon is quite smooth and firm. The absence of vegetation, man-made structures
and animate objects on barren terrains significantly influences autonomous robots because, on one hand,
they need not cope with the variety of associated impediments to sensing and motion; on the other hand, a
robot cannot rely on easily identified features like trees or fixed structures as landmarks for navigation
aids. Of interest are terrain attributes such as geometry and material mechanics that directly influence
locomotion, sampling and self-preservation.

A robot configuration is the functional design that derives from the specification of the robot's
environment and purpose. For the barren, rugged terrains of Mars, a configuration is forced to address
three-dimensional, irregular morphology and mechanical terrain behavior. The purpose of exploration
requires that the configuration incorporate mechanisms to traverse rugged terrain, make observations and
gather samples. The inability to preplan tasks and trajectories requires that the motions of an exploratory
mechanism decouple to simple, assessable (easy to measure) actions. These motion primitives must be
power efficient and power expenditure must be modeled, costed and controlled by the configuration.
Autonomy and self-reliance require that primitive motion and interaction models be robust and tractable.
The robot must have abilities for self-diagnosis, contingency action and safeguards beyond any precedent.

3. AMBLER: An Autonomous Robot for Mars Exploration

This section overviews the AMBLER, a robot configuration to autonomously explore the rugged
surface of Mars. The AMBLER [Fig-2], a six-legged walking robot, perceives and models terrain, and
plans and executes tasks and motions; it is unmanned, self-contained and power efficient. A predominant
philosophy underlying the AMBLER configuration and its operation is extreme self-reliance, manifested
primarily by highly predictable mechanisms and conservatism at all levels of planning.

The AMBLER uses a laser range scanner to gather local terrain data. This data from varied view
perspectives, sensor types, resolutions and times is processed to generate an elevation map, an effective
representation for rugged terrain. The elevation map is a grid plane that is conceptually fixed to the terrain
and is indexed or "scrolled” ahead occasionally as the vehicle moves through the terrain. Each grid point
contains data such as terrain elevation and compliance. Grid points may also contain derived attributes
such as terrain slope and curvature. Multiple images are merged onto the elevation map, accounting for
error in robot motion, sensor noise and incomplete sensor coverage. Data confidence increases as new

data supports prior readings.

Continuously updated robot state models include world position, position with respect to the eleyation
map, joint positions and sensor orientations. Some state representations such as world position have an
associated uncertainty. Given the local terrain map, robot state models and other on- and offboard mputs,
AMBLER planning decides what actions will further progress.

Several different planners formulate behavior of the AMBLER from navigation on the Martian surface to
selecting foot placements and sampling motions. Conceptually, one set of planners determines "task”
plans; the second set plans "motion sequences” that forward the desired task intentions. Throughout
planning, competing objectives must be considered including energy expenditure, stability and rate of
progress. In a simple example, a task planner first denotes a locomotion task of travel to a distant terrain
point. Several levels of motion planners then determine a sequence of body, leg and foot motions that will
attain the desired goal while adhering to a given stability margin and maximum energy level. Motion
sequences (trajectories) resulting from motion planning are backsolved to motion primitives and queued
for execution by the mechanisrn. Conditions expected to occur in the course of execution are anticipated
by planning for use in monitoring the acceptability of the resulting AMBLER actions. It is necessary that
planners preclude tipover at all costs, as it is unlikely that fragile sensors and antennas could survive the
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impact of such an event. One method of providing this safeguard is to plan so that no action will be taken
without some caution for the unexpected.

The AMBLER locomotion mechanism has six legs to isolate the body from terrain and to efficiently
propel the body. Each leg has two revolute motions in the horizontal plane that position the leg over the
terrain, and a vertical telescoping motion that extends the foot into contact on the ground. Each AMBLER
leg is mounted at a different elevation on the central axis of the body and can rotate fully around the body.
The vertical links in the AMBLER's legs level the body over terrain in the manner of a raft floating on water
over a rough lake bottom. Propulsion of the level body, which requires only several of the planar revolute
motions, is analogous to poling the raft. As legs reach the limit of their stroke, they are replaced ahead of
the walker much like the pole is replaced abead of the raft.

Fig-2: The AMBLER

‘While the AMBLER can vary its height and width to compact, its average overall height, from ground to
theropofﬂaekgnack,n~35mnﬁmnnﬂwalhngwxdthns~3m. The AMBLER can cross 1 m
obstacles while maintaining a level body attitude. The laser range sensor used to build the terrain elevation
mapsmmadabovethelegs&wkfmagoodmwofmm. Communication equipment and scientific
sensors are also mounted above the leg stack.

The AMBLER body, a 1 m dia. cylinder situated below the leg stack, contains power generation,
mputation, sampling equipment and scientific instrumentation. Scientific observation and sampling
/cxplontbcbemﬁtsof‘posmonmgmdmmthmmebodymononsmpmwdc Since the body
mmmﬁmmmdcsnedsmzplm!ocanom only light, short sampling motions (e.g., drills, small
grasping implements) need to be appended to the underside of the body. Doing so reduces the number of
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sampling motions and the associated needs for volume, payload, power and control. The result, including
body motion, is a manipulator chain from largc-to-small and from coarse-to-fine motions. ngh resolution
terrain sensors are configured under the body in a down-looking manner in support of underbody
sampling equipment. Because of their large size and long reach, legs might also be used to house and
position additional sampling and scientific equipment. For instance, due to the long length of a 1 m core
drill assembly, mounting the mechanism on the vertical axis of a leg appears beneficial.

The AMBLER computing system operates processes for perception, planning, motion control,
communication and health monitoring. 32-bit processors configured on a common backplane are the core
of the computing system. The computing system configuration includes the ability to remotely program,
debug and test algorithms. Where response to asynchronous external events is critical to the survival of
the robot, the configuration is streamlined to enable timely throughput.

AMBLER software is object-centered; that is, software objects (sections of code that perform a specific
task) are viewed as functional units that receive and send data/commands directly from/to other objects.
The computing system permits human interaction with most objects. Ultimately, human input will be in
the form of occasional task objectives, though during development of the prototype system, continuous
teleoperation and direct motion control (e.g., servo-level) are likely.

4. Description of the AMBLER Configuration

A configuration is a complete functional design that directly generates a detailed design and ultimately a
physical robot. Configuration of a Mars explorer must thoroughly consider the elements of perception,
planning, action, computation and infrastructure. The objective is to work from functional specifications
to configure elements that are compatible, complementary and contribute to a composite functional
capability. A configuration must take full advantage of elemental technologies and at times go beyond to
forge the technologies into a needed functionality or performance. The key to a successful configuration is
proliferation of inter-elemental complements.

This section presents the content of major AMBLER subsystems including local terrain perception,
motion planning and locomotion mechanism. The scope of this paper precludes the treatment of other
subsystems including intermediate and global perception, task planning, motion control, science/sampling,
computing hardware, health monitoring, communication and infrastructure.

4.1. Local Terrain Perception

Detailed, timely information about terrain geometry and composition is generated by the AMBLER
explorer. Local perception builds and maintains descriptions of terrain surrounding the robot in support of
planning for locomotion, self-preservation and autonomous sampling. Geometric information about the
terrain (e.g., surface location, slope, curvature) is used by the AMBLER to generate motion plans. This
section discusses the terrain representation and how it is built from range data.

Terrain Sensing

Range sensors are the preferred sensing mode for building local terrain models. Range data directly
measures geometry, which is the principal content of local terrain models. Passive vision ranging
techniques (e.g., stereo), though power efficient, are ineffective in segregating the weathered geological
materials of Mars. Soils, sands and geologies of Mars appear rather the same to a camera. This blandness
disempowers traditional techmqms of passive vision that rely on distinctions of color or intensity. In such
barren terrains, passive vision must consider second order cues like interpretation of shadows and spectral
surface reflection.

The AMBLER will employ a two-axis laser range scanner. The approximate field of view is a 60° cone
emanating from the scanner. Assuming a 3.5 m mounting height (top of AMBLER leg stack) and steep
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downlooking angle, resolution for the first 5 m is expected to be 3-5 cm and decrease to ~30 cm at the
scanning limit of 15-20 m. These resolutions and relative ranges fulfill the various modeling requirements
for locomotion and science/sampling. In addition to range, the scanner provides a surface reflectance
reading that can be an indicator of surface material.

L aser range scanners require power for ranging and for scanning. In the interest of power economy, a
possible class of range sensor might forego the luxury of two-axis scanning, using robot progress or
appendage motions to accumulate complete terrain coverage. For example, a conical shroud of range data
might be acquired with asingle, narrow-beam laser ranger and asingle rotary scan motion. Deployed high
cm amast, such a sensor would cut out a dense locus of range data on awave front that moves with the
robot, relying on accumulation techniques to build and retain afull terrain model.

Terrain Representation

The foremost content of aterrain representation is the accurate geometric model of the highly irregular
surfaces common to ragged terrains. While geometry isthe single most important feature, other terrain
attributes including material type and compliance are required in the representation for assessing robot-
environrnent interaction.

The terrain model must clearly identify areas that haven't been sensed because they are out of scanning
range (unknown) or shadowed by aterrain feature (occluded). Knowledge that aregion is hidden from or
beyond sensor view is important to arobot that explores. The representation must merge sensor images
from different vehicle positions and view perspectives to enhance quality and infill unknown and occluded
areas. Finally, costly datatransforms to change reference frame or data form should be minimized.

Surface patch representations have successfully modeled die "uneven” terrains navigated by the CMU
NavLabPl Surface patch representations model a surface as amosaic of many smooth connected areas or
patches - the (tensity and size of which depends on local surface roughness. The process of building a
surface patch representation requires image segmentation, calculation of surface normals and curvature,
and finally, fitting of planes or quadrics* An immediate drawback is that computational regquirements
increase significantly with terrain roughness (many more approximating surfaces are required).
Furthermore, the walking locomotion planner requires terrain elevation to select foot placements - another
approximation is therefore required to backsolve elevation from apatch representation.

Cell Models

Cell representations subdivide athree-dimensional region into large numbers of small cells, and sensed
attributes such asrange and color are accumulated into these cells with attention to noise and uncertainty.
Cell models can be efficiently post-processed to derive geometric features such as slope and curvature. A
3-D cell model subdivides tbe local world into equally-sized cubes; cubes on or below the terrain surface
Me label ed “occupied*** and cubes above the terrain are labeled "empty*. Otter terrain attributes such as
color and compliance can also be fagged to acube. Cubes are sometimes termed "buckets"' because their
data representations conventionally hold any number of attributes and corresponding uncertainty values,
An elevation map is a 2.5-O cell model where each grid point is a bucket containing, at minimum, an

dtevatiotivaiie.

The cell model is auniform means of consolidating data from various types, resolutions and view
perspectives of sensors over temporal and motion histories. Cells can accumulate information about
tenain color, geometry and material ~tributes like friction angles, density and cohesion, all of which are
Important to robots in fugged terrain. Because of their inherent ability to model irregular surfaces, cell
representations are wek suited to represent the detail of amorphous shapes typical of the ragged Mars

terrain.

Cell models reairsively subdivide volumesto arbitrarily fine grain size. At any resolution, data can be
accumulated into or accessed from the model. By averaging data values or interpolating between data

48




points, resolution in any region of a cell model can be increased or decreased to suit the needs of planning.
~ This innate ability of cell models to collapse from coarse resolution to fine resolution in a local region
supports, in a consistent context, the diverse grains of planning from traveling a valley to grasping a
pebble.

Cell models are ideal representations for casting notions of emptiness, occupancy and invisibility. In
rugged terrains where boulders may occlude important portions of a scene, information about what is
visible generates the dual information of what is invisible. Cells with unknown or occluded values are
flagged to enable straightforward detection by planners.

If a majority of terrain points have only a single elevation value, as is the case with barren terrains,
2.5-D cell models are more computationally efficient than 3-D cell representations. A 2.5-D cell model is
especially amenable to planning AMBLER locomotion as selection of foot placements reduces to planar
searches under constraints such as maximum elevation and slope. Similar benefits of the 2.5-D
representation are predicted for planning sampling motions. A drawback of the 2.5-D representation is
that it is difficult to represent terrain points with multiple elevations (e.g., vertical and overhanging
surfaces). It is, however, possible to detect and flag the occurrence of such areas in an elevation map.

2.5-D elevation maps can either be generated from 3-D cell models by tracing up cube columns and
concatenating columns when the terrain surface is reached(3] or constructed directly from range data. To
minimize data manipulation we chose the second approach, that is, to build a 2.5-D cell model directly
from sensed range values. The result is that raw sensor data is processed minimally to build the elevation

map.

Local Terrain Map (LTM)

The AMBLER elevation map, termed the Local Terrain Map [Fig-3], is approximately 30 x 30 m and is
divided into sections of high and low resolution: ~5 cm resolution for the first 5 m and ~30 cm resolution -
for the next 25 m. The Local Terrain Map (LTM) is conceptually tied to a terrain position in the vehicle
locale; the AMBLER moves with respect to the LTM. The LTM is occasionally moved ahead (scrolled)
and re-correlated to the vehicle position to eliminate accumulated error due to vehicle locomotion error.
Map grid points contain various types of information including elevation, uncertainty, compliance, color,
derived terrain features such as slope and curvature, and flags denoting unknown and occluded areas. As
each new frame of range data is taken it is merged to the LTM.

The local terrain map is "site-fixed" to a terrain position in the locale of the vehicle. To build a quality
representation of the local terrain, the map must merge several range images. There is a choice to fix the
map either to the vehicle (e.g., body-centered) or to a point on the terrain (site-fixed). Implementing the
former means that new images are directly merged to the map without transformation, but the map must be
advanced continuously as the body moves. The latter requires that each new image is transformed to the
site coordinates of the map and merged and that the map is scrolled forward only occasionally. -

Based on relative sizes between sensor footprint (scan area) and the LTM, each new range image
contributes roughly 20% new information to the map. Therefore, keeping the body-centered map current
(i.e., moving it with the body) would require approximately 5 times as many transformation computations
as the altemative of transforming the new image back to the site coordinate frame. Depending on vehicle
movement, a data transform in either case could mean 3 translations and 3 rotations for each grid element.
Beyond computational efficiency, a site-fixed map also seems appropriate when the AMBLER is to map a
prospective sampling area; a single site-fixed terrain map could accurately hold sensory data for an
extended period of mapping activity and small vehicle motions.
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Fig-3: Local Terrain Map[4]

When merging a new range image to the map, the match can be performed "blindly” by incorporating
only dead-reckoning (internal motion assessment) information from the locomotor. Depending on the
reckoning accuracy of the locomotor — the AMBLER is predicted to be very accurate — blind matching could
introduce error into the LTM. H so, a high-resolution matching algorithm (e.g., iconic) can be used, at the
expense of significant computational burden, to determine a nearly exact match. In either case, the LTM

and current vehicle position can be occasionally re-correlated by scrolling the map.

Because of its scale relative to the terrain features expected on Mars, itispossiblcthattbeAMBLER
locomotor will be able to traverse a majority of the intended terrain with straight-line body motion.
Additional benefits accrue for special instances when the robot moves in rectilinear motion consistent with
the axes of the site-fixed LTM; the costly 6-degree-of-freedom (DOF) transformation required to merge a
new image is reduced to a fast 1-DOF transform.

4.2. Motion Planning

Robotic exploration of the barren unknown terrain of Mars defies detailed preplanning, so an
exploration robot must generate its own motion commands, execute them and respond to the resulting
lemgmmggedmmmprmnsas:gmﬁwndcpmﬁommbmﬂmmngtodﬂeby

requinng rig consideration of the three-dimensionality of terrain, mechanism interactions with the
wtmnmdmﬁuplecmnpetmgobjecnmmdzsmmmdamgycxpmdmmmdmmmnnnchmmm
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stability. In addition, planning must provide safeguards and respond to contingencies — such as weak soil
conditions — that inevitably befall an unmanned agent.

This section discusses configuration of the AMBLER motion planning subsystem. Planners that supply
task objectives to motion planners are not discussed; these are viewed to operate at slow rates and their
function may be fulfilled in part by human input from Earth. Similarly, the real-time planning level (e.g.,
reflex response to unexpected foot-terrain collision) is not discussed as it is very specific to the final design
of associated mechanisms and computing hardware.

Motion planning inputs task prescriptions and generates motion sequences that when executed perform
the task as desired. The challenge for a barren terrain robot is to autonomously generate and model plan
primitives considering the physics of environmental interaction, consequences of actions and the multiple,
competing purposes of a mission. Motion planning generates admissible options, models them, then
searches to elect those which avoid pitfalls and forward mission intentions. We foresee the existence of
motion planners for AMBLER walk planning and sampling planning.

Functional specifications for the AMBLER motion planners include:

o Implement task-level commands: Motion planning must take occasional task prescriptions and
generate motion sequences that will safely execute the task. Typical task commands might be [move
North 10 m], or {find and retrieve 10 cm dia. rock]. Output sequences (trajectories) of position
and/or force should include any required actuator state information (e.g., clutched, braked).

e Incorporate relevant physics: Task prescriptions will include constraints that are to be satisfied, such
as stability margin, torque and power usage. Motion planners must therefore model all physics
relevant to a proposed motion.

e Predict confidence of intended motions: Uncertainty from terrain and state models must be
incorporated into motion planning such that planners can estimate the relative risk of an action before
its implementation. Under normal operating conditions, moves with excessive risk must be rejected.

» Plan geometrically and quasi-statically: Assuming that the mechanism is capable of progress without
resorting to dynamic moves, motion sequences should be geometry-based instead of temporal. This
permits maximum flexibility for motion executors to pick and modify execution rates and command
halts at any point during a motion sequence without worry of dynamic destabilization.

» Maximize resistance to destabilization: Plarming must give the largest possible margin for execution
error or unexpected event (e.g., failure of a soil slope). For instance, a self-reliant cxplorer that must
remain upright should not rely on critical stabilizing support from an untested terrain contact. The
ability to adhere to this specification is, however, quite mechanism-dependent; a rigid-chassis rolling
machine has no inherent ability to choose or test its impending terrain contacts.

e Provide acceptable limits with output motions: Trajectories that are planned for execution must have
acceptability margins, where applicable. During execution, exceeding a limit indicates a condition
other than predicted by planning and may warrant halting, assessing state and replanning. Providing
a limit on motor torque for a given motor trajectory is an example; if torque exceeds this value during
execution of the trajectory, motion is halted. .

e Incorporate blind mode: Motion planners must have the ability to plan task execution without input
from local terrain perception. Operation in this mode assumes the use of internal position, force and
Pproximity-type sensing. While the resulting progress would be extremely slow, it could mean the
success of the Mars mission.

Configuration of a motion planner that is responsive to these functional specifications is very
mechanism specific; that is, little of the motion planner can be configured without knowledge of the
mechanism configuration. However, it is possible to put forth a general framework for motion planning
that upholds the functional specifications.

Robot and terrain mechanics can be posed using classical techniques such as analytic energy
functionals. There is significant advantage, however, to posing both of these in approximate, discrete
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models that are amenable to postulating and evaluating discrete states of Tobot-terrain interaction. Once a
model of a mechanism exists, planning for such interactions becomes a cycle of enumeration, modeling
and evaluation. This cycle gcnerahz.cs to planning schemes for selecting route, specifying body positions,

choosing foot placements and sampling in rugged terrains. The distinctions of planning for one function
versus another lie only in the specifics of motion primitive, mechanism model and applicable cost penalty.

For example, planning a body move for a walker might consider increments of three-dimensional motion
as primitives, an energy functional as a mechanism model and energy expenditure as the cost function.

Alternately, planning for a foot placement might use increments of downward motion as primitives, robot-
terrain compliance as a model and robot stability as a penalty function.

The AMBLER walk_planner is now briefly overviewed. A thorough presentation and discussion of the
walk_planner can be found in [5]. The planner determines foot placement locations in the terrain and
calculates corresponding body and recovering leg motions to advance the vehicle safely along a
commanded heading.

A significant portion of the walk_planner selects foot placements. Once foot placements are
determined, the cycle of enumeration, modeling and evaluation for body motions is based on the following
considerations (in approximate decreasing order of priority):

 the body must remain continuously stable even if any single leg fails to provide support due to a
mechanical failure or failure of the underlying terrain,

* no part of the walker should collide with the terrain (only permissible terrain contacts are axial foot
placements),

* body progress along the desired heading should be maximized, and

* joints torques and energy expenditure should be maintained below given thresholds.

Once foot placements and body motions have been determined, recovering leg trajectories are planned
to avoid other supporting legs and terrain obstructions, and such that the foot properly contacts the terrain
(axial direction only). Finally, the body motion and recovering leg trajectories along with expected peak
torque values are output to a walking motion executor.

4.3. Locomotion Mechanism

motion mechanism propels the robot over the terrain and implements
specifications fmﬂ:cMmsexplmcxlooo:mummechmmmm

whﬂcwmdmésclf-dmnagcmdmwwm&c The chanism mus!

mmmmmmdmpampummplmmgmmmimﬁ@mm e

1 m/min.

» Energy efficiency: Total on-board power generation is expected to be less than 1 kw. Asthc
dominant energy consumer in this minimal energy system, the locomotion mechanism must be
extremely power efficient.

. Tkree-dxmmwml motion: The ism must be able to directly execute three-dimensional
. Without this ability, alcwelofphmmgmmqumedmdecomposcdesmdmmm(cg,
movekﬁlm)mascnesofpunnssibiclocorwmn-mﬂoﬁopamﬂclpm*kmg ‘

e Predictable and assessable motion: It must be straightforward to model the locomotion mechanism
and relevant terrain geometry/mechanics from which motion can be accurately predicted.
Furthermore, an estimate of subtended motion mast be assessable to fairly high accuracy.

 Incremental, reversible motion: The locomotor must move in conservative increments such that a halt

command can be immediately responded to without worry of preempting a dynamic move in
progress. This ability permits reversal of any series of incremental moves, very useful for an

exploratory machine that by nature moves into the unknown.
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* Reliability: The locomotive mechanism must be mechanically simple. Furthermore, the mechanism
must endure long-term environmental exposure. and wear resulting from traversal of rugged terrain.

* Payload isolation and reaction: The locomotion mechanism must isolate most of the scientific payload
from topology of the rugged terrain. The locomotor must be able to execute small incremental moves
for fine positioning of science and sampling equipment. Finally, the locomotor must provide reaction
for sampling equipment (e.g., core drill, soil scoop).

» Teleoperability: Given that occasional operator intervention is foregone, and that the Earth-Mars
signal delay is significant, the locomotor should be easy to teleoperate.

Possible locomotion candidates include mechanisms that roll, walk, or combine rolling and walking
for so-called hybrid locomotion. (Track laying mechanisms are grouped here with rolling mechanisms
because tracks are in continuous terrain contact and are analogous to large wheels.) Any locomotion
mechanism must support itself on the terrain and provide a propulsive force for motion. The fundamental
differences between rolling and walking mechanisms are the means by which support and propulsion are
provided. Wheeled machines have rollers in continuous support contact with the terrain and propel
themselves by generating traction forces parallel to the terrain surface. Alternately, walkers suspend
themselves over the terrain on discrete vertical contact points and maintain principally vertical contact
forces throughout propulsion.

Wheeled Locomotion

Wheeled mechanisms are the predominant form of locomotion for most manned vehicles and
unmanned robots. As a result, wheeled mechanisms and their control are well understood. Reliability,
weight and performance tnde—oﬁs are also well understood. However, for the following reasons,
wheeled mechanisms are not suited to the needs of an autonomous robot for exploration of the rugged
Martian terrain:

e Traversability is limited. The need for continuous wheel contact limits the ability of a wheeled
locomotor in rugged, discontinuous terrain.

o Energy efficiency is low. Wheeled mechanisms undergo continuous nonlinear energy losses in
rugged and soft terrains due to slippage, shear and bulldozing. Furthermore, as the body rises and
falls to trace terrain topology, non-conservative work is expended due to losses in the mechanism and
mechanism-terrain interactions.

e Mechanical complexity precludes three-dimensional motion. Wheeled mechanisms that can subtend
dnudmnnamﬂbodymonmmlanvemﬁwmmm@mmanyemamforommw
steering and suspension. The complexity of such a mechanism exceeds that of some walking
mechanisms without providing similar rugged terrain performance.

e Unable to accurately predict and assess motion. Due to surface contact constraints, wheel
compliance, three-dimensionality of rugged terrains and mechanism indeterminacy, detailed terrain-
interaction models are intractable for wheel contact through difficult terrain. The consequences of a
motion command in such a terrain are therefore unpredictable. Dead-reckoning, the ability of a
locomotor to self-perceive incremental motion, is error-prone in mild terrains and worsens as the
terrain becomes rugged, soft, discontinuous, or slippery.

s Incremental, reversible motions are unlikely. Most wheeled mechanisms are not quasi-static; some
moves are dynamic and may not be reversible. For instance, when a wheeled machine drives over a
ledge, tip-down is usually dynamic. Depending on its configuration and relative power, the machine
may not be able to reverse the tip-down to retrace its path.

» Teleoperation is easy: As long as wheel diameter overwhelms the scale of terrain features, wheeled
locomotors are inherently straightforward to teleoperate. However, as terrain features become
confronting, complex moves (e.g., parallel parking type move to translate sideways) become more

teleoperation.

ﬂeqmmandthussxgmﬁcanﬁycmnp
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Legged Locomotion

Walking mechanisms isolate the robot's body from the underlying terrain and propel the body
independent of terrain details; thus walking mechanisms body-terrain isolate. Whereas wheels
continuously contact the terrain, walking is a series of discrete terrain contacts. Foot contact forces for
body support and propulsion are principally vertical, thus allowing more tractable models of terrain
interaction than are possible for wheels.

‘Walking mechanisms provide the attributes required for the Mars explorer locomotion mechanism:

e Traversability is excellent. A walking mechanism chooses its foot placements to avoid rather than
confront terrain difficulties. Furthermore, the body can be positioned relative to the ground contact
points to maximize stability against tipover at all times.

* Energy efficiency is theoretically high. As a walker traverses rough terrain, the body is maintained at
a fairly constant orientation and elevation with respect to gravity xcsultmg in great power savings.
More importantly, the power losses to terrain can be minimized by discrete foot placements.

e Motion is three-dimensional. Walking mechanisms achieve three-dimensional body motions
regardless of underlying terrain topology.

» Motion can be predicted and assessed. While easier and more tractable for some walking
configurations than others, walkers are able to model and monitor motions rigorously. This is mainly
due to the predominantly one-dimensional nature of foot/terrain interactions.

e Motions are incremental and reversible. Assuming a quasi-static walker (i.e., more than 4 legs and a
slow rate ofprogress) locomotion can be separated into discrete increments, and moves can be
undone by "playing back™ the incremental commands.

* Motions are extensible. A benefit of a walking mechanism to scientific observation and sampling is
that body-mounted payloads can be positioned (hovered) over a region of interest using leg motions.
Legs can also be utilized as sampling manipulators.

 Teleoperation is difficult. Teleoperation of a walking mechanism requires a "coordination” function
ﬁxattakcssmxpkpysuckmm for Cartesian or polar referenced body moves and calculates required
leg motions. Additionally, the operator must consider stability, select new foot placements, plan foot
recovery mctm and monitor body clearance.

L ninacy maxmmdsmukqplclegsandmonms Coordmanondxﬁcumzsthhﬂ:mccmnp
mechmmlmdtommrcmﬂwgwhmhwcwmsfmhrgtmgylosm The reliability of a
umudwﬂwmdueatyrdmdmkgcmmdkgcmﬁgmmmmwy Existing walkers are
m ~mmbﬂ1mdafﬁ:rmcﬁﬂmofomormm'ckgs The AMBLER locomotor configuration
€1CO! ‘ thatemdemplcmtedwa&emtodatc complcxityof
1ti0] ummd,mhamgmrgylomsmdmdnndmcyfm ontinued function after loss of some

AMBLER Locomotor
\MBLER kg[Fig-ﬂcamstsoftwomtmylm&s(should&r elbow), which move in a horizontal
mdmmmdthe "planar” links. A prismatic vertical actuator is appended to the end of the elbow
TheAMBm‘ motion mechanism consists of six legs stacked coaxially at their shoulder joints.
mmwgrwpsfmmwk bodysuppoﬂmdpropulswnmomwgonal a subset of the planar
yom&spmpc!ﬂmbody and the vertical actuators and level the body over terrain. With all feet

rting load and vertical actuators locked, the cmﬂedbymatmgmymmofthzu
actuators. The remaining nine planar actuators are declutched or backdriven. The AMBLER can level

phmr

mdfwxﬂmnmopeﬂmgmdpmpdmﬂmmkvelmg and exhibits no power coupling between the two
motions. A strength of the AMBLER configuration, therefore, is its ability to efficiently and simply enact
planar moves transverse to gravity and elevation moves along the gravity vector.
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Fig-4: AMBLER Leg

Decoupled AMBLER body propulsion and body leveling enables decoupled formulation? of the planar
and vertical mechanism models. Theplanar mechanism is determinant and can be solved very quickly in a
closed-form. A one-dimensional terrain interaction model suffices for solution of the vertical foot for ces.
Equilibrium, stability margin, forces and energy cost are readily assessable from these mechanism and
terrain models. Such accurate prediction per mits torque and power minimization during propulsion. The
AMBLER leg design thus enables a tractable control model and eliminates energy losses due to actuator

conflict.

Internal assessment of incremental motion, termed "dead reckoning", is critical for an autonomous
machine. Asthe AMBLER propels, all undriven planar actuators assess incremental motion. AMBLER
dead-reckoning should thus be superior to other walkers, as redundant reckoning information is available
from many undnven actuators.

Decoupled propulsion in the horizontal plane allows corresponding simplifications in representatlon
and planning for the AMBLER. Since foot placements into the terrain are alwaysvertical " punctures’, a
2.5-D terrain feature model (elevation map) is appropriate for selecting foot placements. SpeC|f|caIIy,
planning afoot placement reducesto a search in the elevation map for a suitable location that will forward
progress while maintaining a desired stability margin and maximum power level. Once the desired
- location has been selected, the foot is positioned over the terrain contact point and the vertical actuator
- tdescopesto contact the foot on theterrain. It is our experience” that per ception can comume 90% -of the
~ computing capacity of an autonomous mobile vehicle. The AMBLER leg design and foot placement scheme
holds promise to reduce the perception. bottleneck, as nearly raw elevation data suffices for selectlng

*acceptable foot placements.

Leg Stack and Body Configuration

A fundamental locomotion configuration decision " sacked'* all legs on a central shoulder axis [Fig-5]
instead of 3 legs each on twin, side-by-side stacks. With the height of the planar leg section about 20 cm,
asingle 6 leg sack is—L12 m in height and thetwin stack ~0-6 m. Motivations for the twin stack beyond
height rtauction included simplification of wiring and dust sealing at die shoulders of each leg.

2 The decoupled £crraulaton isfateedonthe asym s & M ladaadh T O evebed ShraBLER joeyoocted to
generate idilmly low foot shearing fences thes the assimptioQ is considered valid far amtforisy of temk conditions®
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The best configuration proved to be the single stack, the major reasons for which follow. While the
twin stack does reduce overall vehicle height, constraints on vehicle height are unsettled from the
standpoint of the Mars mission. Whereas propelling the body with the single stack configuration is
identical to positioning a four-bar (determinant) linkage, the twin stack configuration increases it to a five-
bar linkage (the fifth link connects the centers of the two stacks). Since a five-bar linkage is mdctermmate,
the only way to preserve the determinacy of planar AMBLER moves would be to lock one of the joints,
thus removing a link. The twin stack configuration would thus place the added burden on walk planning
to lock certain joints for determinant planar body motion. Additionally, some means to lock or brake the
Jjoints would have to be mechanically incorporated.

‘m-—

3m—t+— -

Fig-5: AMBLER Leg Stack

A further benefit of the single stack leg configuration is redundancy — the ability to operate any leg in
any body sector dramatically improves the reliability of the AMBLER over conventional walking
mechanisms. Any functional leg can reposition itself to substitute for any failed leg. Three legs would
have to fail to cause immobilization. Resorting to the twin-stack would roughly halve the redundancy
potential of the AMBLER as legs would only be able to functionally replace other legs in the same stack.

With the single stack configuration, the vertical actuator on the uppermost leg is roughly 1 m longer
than the vertical actuator of the lowest leg. This extra length is utilized by adding stroke to the upper legs.
Leg stroke varies from ~1 m on the shortest leg to ~2 m on the tallest. The added leg strokes provide more
plmmmgopmmfoﬁevelbodymouondmmgsteepmﬂdmbmg(m trail legs with longer strokes) and
traversal of maswnhdecpholcsoum(m.,plwekgsthhlongerstmkﬁmhoks shown in Fig-5).

A unique result of the stacked leg configuration [Fig-5] is that gaits where rear legs recover pasr
forward supporting legs are ideally possible. These overlapping gaits mean fewer foot placements with
advantages of reduced demand on perception and planning, and significant energy savings due to
reduction of the number of foot-terrain interactions. An example is shown in Figure-6; as the walker
advances, the recovering leg (shown in bold with dashed trajectory) overlaps the two right side supporting
legs. Depending on a leg's location on the central stack, some weaving around supporting legs may be
necessary for it to recover past forward legs.




Fig-6: Overlapping Gait (plan view)

The body, containing science and ling equipment, computing, power and communication
gystems, is suspended below the leg stack. ing the body below the leg stack has multiple benefits:
The vehicle center of gravity is significantly lowered. Scientific sensors and sampling equipment mounted

m:tbcbdyhmmobmmddomudmmncws The body can be lowered to the ground (body
grounding) to enhance vehicle stability and rigidity for high reaction sampling tasks such as deep coring.

Leg Drivetrain Configuration

It is possible to degenerate AMBLER walking to an infinite sequence of led primitive
movements. Each cycle consists of a foot lift, shoulder rotate, elbow rotate, foot lower lockandbody
propulsion. Body propulsion can be further decoupled to a sequential actuation/braking of any three
planar motions. The mechanical implication is that the entire 18-DOF AMBLER could be operated from a
single gearmotor with a series of clutches, brakes and drivetrain components to direct torque to any of the
18 joints. 'Iheodm'exuumxsammumhpm Any number of gearmotors between 1-18 could
be configured to drive the AMBLER locomotor.

The most significant factors influencing this decision concemned overall reliability, power efficiency,
mdnnyhcatmstowaﬂ:phmmg AnyonwnhkssthanlSrsp!acesaddmm
g to select proper clutch/brake states to properly direct torque from shared

mmm CmﬁMmMpmmmdwmmmmmm“mdmm
mplaced through the shoulders were ruled out due to the mechanica mmlnuqumed&om:fzrhrgc
Wwbﬂcsﬂlmm nechanically straightforward solution configured a
single shared gearmoto: mmeof&eplmlmhofwdxhg,mmmddmchmgwmm
mqmwmyoueofthethmebgmm However, the configuration was deemed una ‘
oordinated joint schemes amvemxghg@mumengcwﬂmpmym@mm
ignificant power losses and reduced system reliability of

! ledmn&ngkmmconﬁgmdnmhkgpmtm

During body propulsion only a sabset of the planar joints are driven; the balance are non-powered. As
a non-powered joint is moved, its gearmotor is backdriven. Alternately, a clutch can be added to the

output of the gearmotor to decouple the gearmotor from the joint during the non-powered state.
Bmkdnmgdmmmﬂnwedfmachmhﬂe@p&mgombmmmmmﬁmthe
propelling gearmotors. Backdriving also eliminates the control task, albeit fairly simple, of
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engaging/disengaging clutches to select the desired propulsion gearmotors. Compounding the decision
was that clutch power draw and severity of gearmotor backdriving torque cannot be accurately predicted.
For these reasons, the mechanically simpler solution of backdriving was chosen.

5. Conclusion

The Mars Rover/Sample Return mission aspires to send an unmanned robot to the distant planet for a
several year mission during which it will traverse hundreds of kilometers and conduct a variety of
scientific activities. The AMBLER is a robot configuration to meet the challenge. The scope of the AMBLER
configuration includes hardware, software and processes for perception, planning and action. The

configuration is the basis for continuing detailed design and production of the prototype walker.

Local terrain perception, motion planning and locomotion subsystems combine to form the core of the
AMBLER robot. The synergy between these subsystems is essential to the success of the prototype
system. Many AMBLER subsystems were not discussed in detail, mcludmg intermediate and global

perception, task planning, motion control, science/sampling, computing hardware, health monitoring,
communication and infrastructure. Conﬁguranon of each of these subsystems is also critical to the
functxozng AMBLER, and their configuration is completed, though the scope of this paper precluded

A new generation of mobile, perceptive robots is needed to explore and work in natural terrains on
behalf of man. The challenge motivates a class of robot with unprecedented ability for autonomous
operations in environments characterized by rugged terrain, soft soils and harsh meteorological conditions,
such as the surface of Mars. Beyond an immediate relevance to planetary exploration, these robots will
evolve for duty in Earth applications like military reconnaissance. Successors to these exploratory robots
will excavate, mine, and till the barren terrains of Earth and the planets. Exploration is invaluable as a
precursor to more aggressive robot functions that forcefully modify their environments, and in the case of
planetary exploration, as precursors to man's presence. :
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Abstract

This paper reports on a case study in autonomous robot exploration. In particular, we describe a working
mobile manipulator robot that explores our laboratory to identify and collect cups. This system is a first
step toward our research goal of developing an architecture for robust robot planning, control, adaptation,
error monitoring, error recovery, and interaction with users. We describe the current system, lessons
learned from our earlier failures, organizing principles employed in the current system, and limits to the
current approach. We also discuss the implications of this work for a more robust robot control
architecture which is presently under development.
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1. Introduction

We report on a case study in autonomous robot exploration. In particular, we describe a working
mobile manipulator robot that explores our laboratory in search of cups. This system is a first step toward
our research goal of developing a robust architecture for robot exploration tasks, covering planning,
control, error monitoring and recovery, adaptation, and communication with users. It is also intended as a
testbed for better understanding the task of semi-autonomous robot exploration and sample collection.
The robot exploration task is of specific interest to us, given a related effort to develop a prototype robot
to explore the surface of Mars to collect geological samples [1]. This testbed is thus intended both to help
explore characteristics of the Mars Rover task, and as a general carrier for a broad range of research on
autonomous intelligent robots.

The robot exploration task considered here is one in which a mobile robot with an attached manipulator
explores an area using vision and sonar sensors in order to locate and identify cups. When a cup-like
object is located, the robot navigates to it and uses more detailed sensing to determine whether it is truly
a cup, and if so what type. It then picks up the cup, travels to a box, deposits the cup, and looks for
additional cups to collect.

This task raises a humber of general Issues that must be addressed for exploration tasks, as well as
specific issues that must be addressed in the Mars Rover scenario. These include:
* Path planning and navigation

 Observing and identifying encountered objects

* Integrating locomotion with manipulation and perception.

» Maintaining background goals.(e.g., battery charge level) while pursuing the current goal
(e.g., pick up the object).

* Detecting errors (e.g., the cup was not grasped correctly) and recovering from them.

« Communicating and collaborating with a remote human for guidance in dealing with difficult
tasks.

Our present system deals well with some of the above issues, and poorty with others. The
implemented system autonomously locates cups, navigates to them, picks them up, and deposits them in
a bin. However, it does not presently manage multiple goals, deal well with unexpected contingencies, or
collaborate with humans.

This paper describes the current system, lessons learned from our earlier failures, organizing principles
employed in the current system, and limits to the current approach. We also discuss what we have
learned from this work regarding specific problems that must be addressed by the architecture currently
under design. Section 2 describes in greater detail the hardware setup, task, and approach taken for this
exploration task. Section 3 characterizes the performance of the system, including interesting failures
which it has exhibited. Finally, section 4 characterizes lessons teamed from this case study, and
Implications for the design of more robust architectures for robot planning and control
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2. System Description

2.1. The Robot Testbed
Figure 2-1: A Modified Hero 2000 Robot

The robot used is a commercially available wheeled robot with arm (the Heath/Zenith Hero 2000), as
shown in figure 2-1. The robot is located in a laboratory in which a ceiling-mounted black and white
television camera is able to view the entire room through a fisheye lens. Figure 2-2 provides a view of the
room as seen through this ceiling camera. The Heath robot comes with two standard sonar sensors: a
rotating sonar on the top of the robot which completes a 360 degree sweep in a little over a second, plus
a second sonar fixed to the base of the robot and pointing forward. In addition, we have added a third
sonar to the hand of the robot. Since this third sonar is located on the hand of the robot, it can be
repositioned relative to the robot body. We have found that this capability is important for smooth
integration of manipulation and locomotion operations. The cost of this setup is approximately $15,000
(in addition to the cost of the Sun workstation).!

The robot contains an onboard microcomputer (based on an Intel 8086) which executes all primitive
motion and sensing commands. It communicates with a Sun workstation running C and Lisp programs.
Communication between the robot and Sun may be via either a radio link at 600 baud, or an RS232 cable

’MmmmmmmmmmmbrMmemMmommamWw laboratonies.
interested parues shouid contact the authors.
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Figure 2-2: Overhead View of Laboratory as Seen by Robot

at 9600 baud. In practice, we have found the 600 baud radio link constitutes a communications
bottleneck, and therefore frequently utilize the more awkward but faster RS232 tethered connection.
Table 2-1 summarizes the sensor, effector, and computational characteristics of the robot testbed.

2.2. The Task and Approach

As stated earlier, the robot task is to collect cups into a container in the corner of the lab. The top-level
procedure used by the system to accomplish this task is described in table 2-2. Below we discuss in
additional detail each of the steps in this high-level plan.

Locate robot, potential cups, and obstacles. The system begins by examining the visual image
from the ceiling camera to locate regions that correspond to potential cups, the robot, and other
obstacles. The image is thresholded and regions extracted by the Phoenix program [5]. The robot region
is located based on searching a window within the visual field, centered around the curmrent expected
location of the robot. Within this window, the robot region is identified based on a simple model of the
properties of its region in the visual field. Potential cup regions are identified by searching the entire
visual field for regions whose size and shape match those of cups. Since the resolution of this image is
fairly coarse (approximately 1 inch per pixel), and since a simple thresholded black and white image is
used, it is possible for the system to identify non-cup regions (e.g., sneakers worn by lab residents) as
potential cups. In figure 2-2, it is possible to see several cup-sized regions in the image. The robot will
navigate to each of these regions, using its sonar to explore each in tumn. Those which it eventually
determines are not cups are remembered as such, in order to avoid examining them repeatedly.
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Table 2-1: Robot Testbed Summary

Effectors:

Heath/Zenith Mobile Robot with Arm

Torso rotates relative to base

Arm mounted on torso

Zero degree turning radius

Locomotion precision in laboratory environment returns robot to
within a few inches of initial position when commanded to
navigate a 10 foot square

Sensors:
Overhead (ceiling-mounted) camera
Obtains 2D visual regions across entire lab
Approximately 1 inch resolution

Forward-pointing sonar on robot base
(all sonars have range 4-127 inches, distance resolution .5 inch,
uncertainty cone 15 degrees)

Rotating sonar on robot head
360 degree sweep in 15 degree increments in 2 seconds

Movable sonar fixed to robot hand can be repositioned relative to body
Battery charge level sensor

Rotating light intensity sensor on robot head

Computation:
Speech synthesizer and microprocessor onboard
Radio link (600 baud) or RS232 cable (3600 baud) to Sun workstation
A MATROX frame-grabber board on the Sun is used to digitize images
Generalized Image Library is used to create, maintain, and access image files [3].

Navigate to vicinity of target object. Cnce a target object is located, a path is planned from the
current robot position to the vicinity of the object. A path consists of a sequence of straight line segments
and zero-radius turns. The path planning algorithm models the room as a grid of robot-diameter-sized
grid elements, and utilizes Dijkstra’s shortest path algorithm to compute an initial path. in choosing this
path, the system takes into account (1) proximity of obstacle regions, (2) total path distance, and (3)
number of vertices in the path. It then optimizes the path by adjusting each vertex in the initial path, using
local information to minimize the cost of the path segments on both sides of that vertex. The basic idea
behind our algorithm is grid search and path relaxation proposed in [8]. Figure 2-3 shows an interpreted
version of the image from figure 2-2, along with a path planned by the system to reach a potential cup
region and a uncertainty cone{see below). Here, the brightened line shows the final computed path, while
the dimmer line is the original path before optimization.

Cnce a path is completely planned, the robot begins to follow it. At certain intervals the robot stops,
uses the ceiling camera to determine its progress, and updates its path accordingly. The system utilizes
an expiicit model of sensor and control uncertainty to determine how far the robot may safely proceed
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Do until no potential target objects remain:

Locate robot, potential target objects, and obstacles within visual field
Find visual regions
Identify those with appropriate features
Navigate to vicinity of target
Plan obstacle-free path to vicinity
Move along path, monitoring with vision
Approach and identify target
Use sonar to locate nearest object in appropriate direction
Servo using sonar until target centered at 0 degrees, 6.5 inches ahead
Classify object as non-cup or specific type of cup
Grasp cup, based on identified cup type
Make final approach to grasping position
Move arm and gripper to grasp cup
Use top sonar to determine whether arm successfully grasped object
Configure arm and body for safe travel
Navigate to container
Crient to center container in front of robot
Deposit cup in container

Table 2-2: Top-Level Cup Exploration Procedure

Figure 2-3: Interpreted Overhead View With Planned Path and Uncertainty Cone

_ A ‘
< R o ST

along its path before a new visual check is required. A covariance matrix representation [7] of uncertainty
is used. Robot location and orientation are caiculated by merging information from both dead reckoning
and vision. The system introduces a new sensing operation when uncertainties in sensing and control
have grown to the extent that either (1) collisions with obstacles are possible, {2) the uncertainty modeler
is unable to model uncertainty accurately, or (3) the visual recognition routines which utilize strong
expectations about robot location do not have strong enough expectations to operate reliably.

Wi

By modifying an old path, the path planner can efficiently adapt to small environmental changes, such
as the robot wandering slightly off the planned path, new obstacles appearing, and old ones
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disappearing.
Figure 2-4: Sonar Data Obtained by Wrist Sonar Observing a Cup
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The data in angle-distance pairs is:
(=25 31) (-20 32) (-15 32.5) (-10 7) (-5 Kb
(0 6.5) (5 6.5) (10 7) (15 7.5) (20 24.5) (25 24).

m&umtakanwhiletwobmamsplamdohthnbackgroundofthacup.

Approach and identify target. Navigation under the direction of vision is able to place the robot within
several inches of its desired location. In order to successfully grasp an object, however, the relative
position of the robot and object must be controlled with significantly greater precision (on the order of an
inch or less). Thus, once the robot reaches the vicinity of the target object, it utilizes its sonar to locate
itself more precisely relative to the target object and to classify it. Figure 2-1 shows the pose which the
robot assumes in order to utilize its wrist sonar to detect the location and dimensions of the object. The
wmtasmtatedﬁomsﬂeﬁasmmmmsweap irectly ahead and detect the object. This sweep
provides a one-dimensional horizontal array of sonar data giving distance readings as a function of wrist
amgdae nge&AstmsaWsﬁoimmmwﬂmhandmarwhenebsewmgawpmtms
fashion. Simple thresholding, edge finding, and region finding routines are then used to process this
ie-dimensional the object in the sonar fieid of view.

locate

‘Once the object is located in the sonar field, its distance and orientation are used to compute robot
comotion commands to bring the object to 0 degrees (plus or minus 2 degrees) amasm{pmm
m.ﬁmymmdmmﬁmwm To overcome sensing and control errors, this procedure i
mamdaftmm locomotion commands are executed until the sonar detects the object at the desired
Mmem1m3mmmme Once in position, the
ohrem wm am height are measured (in degrees of wrist motion} to identify the object as either (a) an
dard-sized styrofoam coffee cup, (b} an upright Roy-Rogers Big Chiller cup, or (c} neither.

srasp object. If the object is identified as cne of the two known types of cups, then it is grasped by a
procedure specific to that object. The grasping operation itself does not use sensory feedback to guide
the hand--ail the sensing work is performed during the precise positioning of the robot during its approach
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to the object. With this reliability in positioning, it is fairly rare for the grasping operation to fail. Note that
the lack of a need for sensing here is due in part to the fact that the object shape and dimensions are
know a priori, and to the predictability of the physics of interaction between the gripper and object. If one
were to attempt picking up a rock of unknown size and shape half buried in the sand, significant sensing
would most likely be essential to monitor the details of the manipulation operation.

Once the grasp action is completed, the robot raises its hand so that the object which it is (presumably)
holding may be detected by the head sonar. This check allows the system to verify the success of the
grasping operation. If it instead detects failure, then the system labels the corresponding visual region as
a "fools-cup" and subsequently avoids it. No attempt is presently made to replan or recover from
manipulation errors, though this is a topic we intend to pursue in the future.

Navigate to container and deposit cup. Once a cup has been successfully obtained, it is tucked in to
protect the arm during travel, and a path is planned to the container. The cup is then deposited, and once
again the system looks for a new cup to collect.

3. System Performance

The system described above is fairly successful at locating and collecting cups. We estimate that it
succeeds approximately 80-90% of the time in finding, retrieving, and depositing cups that are placed on
the floor away from the perimeter of the room in unobstructed view of the camera. It typically requires on
the order of 5 minutes to locate a candidate cup, navigate to it, pick it up, and drop it off in the container
(when communicating via the 9600 baud tether). Approximately half of this time is spent navigating to the
cup and later to the container to drop it off. The other half is spent near the cup, refining the relative
position of the robot and cup, identifying the object, and grasping it. The overall time increases by a
factor of three when using the 600 baud radio link, indicating that when the radio link is used the system
bottleneck is the low baud rate communication link which must pass commands from the Sun to the robot,
and sensor data from the robot back to the Sun.

Since many of the most interesting lessons we have learned arise from observing failures of the
system, we summarize several of these encountered failures in table 3-1. The point to notice about these
failures is that they typically arise either because of lack of appropriate sensing (e.g., the collision of the
hand against the table when picking up a cup under the table edge), outright errors in sensing (e.g., when
the short cup is not found by the sonar), or because of our lack of imagination in anticipating the many
possible interactions between subparts of the procedure (e.g., that after picking up the cup, the robot
would refuse to move because the vision system saw the cup held in front of the robot as an obstacle!).

Perhaps some of these errors could have been avoided had we originally included more sensing on the
robot's part or more imagination on our own. However, the nature of unengineered environments is that
they provide a continual source of novel and unanticipated contexts, interactions and errors (e.g., a cup
found beneath the edge of the table, a second cup positioned unfortunately near the target cup so that it
is run over). It seems unlikely that one can expect to anticipate all possible interactions and novel
gtuations in advance.

Given that such unanticipated events are bound to occur, and given that the system cannot afford to
sense everything that goes on in the environment, an important question is exactly what needs to be
sensed at a minimum to assure basic survival of the robot, and what kinds of sensors and sensor
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Table 3-1: Typical System Failures and Causes or Repairs

Vision system fails to find robot.

» This can happen when the robot region overlaps another visual region. This is usually not
fatal, since the system then uses the expected robot location (based on dead reckoning) in
place of observed location, and proceeds.

Misses container when it deposits cup.

e This can occur due to sensing efror in the visual determination of the robot orientation
relative to the container. This could be overcome by more tedious servoing with the sonar to
center the robot in front of container to some desired tolerance.

Robot fails to dock successfully with battery charger.

 This is due to the fact that we initially underestimated the tolerance of the docking element to
error in the robot position, and overestimated the sensor error involved in using the sonar to
position the robot relative to the docking element. As a result, the system refuses to dock
because it believes it is not positioned precisely enough relative to the docking element,
despite the fact that it is! This failure is interesting in that it is a direct consequence of the
difficulty of estimating sensor and control errors in advance.

Runs over other cups when trying to grasp one of them
» This is because approach and grasp routines do not watch out for obstacles.

Execution monitoring causes failure if person walks through field, and is seen as an obstacle
» This is because system does not distinguish moving from non-moving objects.

Finds non-cup objects (e.g., sneakers) which appear visually to be cups.
« These are generally identified as non-cups upon closer examination. But they can resuit in
considerable wasted time.

Time was wasted conducting sonar sweeps at needlessly detailed resolution while positioning robot
relative to cup.

» This is due to the fact that we could not accurately know in advance how fine-grained the
sonar sensing should be (i.e., collect a reading every 2, 5, or 10 degrees). Once we
experimented and determined that we had chosen an overy conservative value, we
decreased the resolution to increase efficiency without increasing the error rate.

Arm collides with table after picking up cup that is under edge of table.

» This occurs when the robot raises its hand to use the head sonar to determine whether it has
successfully grasped the cup. Due to failure to check hand trajectory for collisions.

Robot unable to navigate to container, because grasped cup is now seen by vision system as an
obstacle in front of robot(!)

« This was repaired by having the robot hold the cup behind itself. Vision still sees the cup as
an obstacle, but now it is behind the robot.

placements simplify the processing of this sensor data. As an example of a reasonable sensing strategy,
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consider that by implementing arm motions so that the (movable) wrist sonar is pointed in the direction of
the arm sweep, it is possible to use this sonar sensor as a proximity sensor to detect unanticipated
collisions before they occur. This strategy would allow the system to avoid damaging itself even when
unanticipated situations arise, such as raising the cup from beneath the table. Once this sensed
condition were detected, it could be used as a trigger to attempt to explain and recover from the failure.

4. Lessons from The Case Study

This section summarizes organizing characteristics of the current system, discusses the impact of
uncertainties on the task, and suggests capabilities that we intend to incorporate in future extensions to
the current system.

4.1. Characteristics of the Prototype System

« Few general-purpose approaches were heeded. Although the general problem of
planning arm trajectories and grasping motions is very difficult, we found little need for such
methods. Instead, we defined a simple, fixed, blind grasping routine, determined the context
in which it would succeed (i.e., the relative position and orientation of the cup and the
tolerance to error in this relative position), and then designed the remainder of the system to
assure that the robot would position itself so that this specialized routine would succeed.
Thus, the system gets away with simple, specialized grasping at the cost of stronger
demands on the routines that must position the robot relative to the cup. A similar situation
holds for the problem of object identification. Classifying object identity from an arbitrary
distance and vantage point is a computationally demanding task, which is avoided in this
case by servoing to a known vantage point before attempting to identify the object?. The
acceptability of such specialized procedures for grasping and object identification suggests
that solutions to general problems can sometimes be found by embedding specialized
methods inside larger procedures that assure these procedures are only invoked within
specialized contexts. This system organization involving collections of coupled, but
specialized, routines is similar to that advocated in [2]. The one major case in which general
purpose planning is used in the system is in the path planning component. We see no way
to avoid the need for such general-purpose solutions in this case.

» Explicit reasoning about sensor and control uncertainty allows intelligent utilization of
expensive sensing operations. The first implementation of the system monitored the robot
navigation by employing a visual check at each vertex of the robot’s path. This was
subsequently replaced by a strategy that selects appropriate sensing operations based on a
model of the vision sensing and robot motion uncertainties as well as the positions of
obstacles. This shift resulted in both a significant speedup/reduction in the number of vision
operations typically performed, and an increase in reliability of navigation in cluttered
environments.

+ Both low-level and high-level sensor features used in decision making. The sensor
data is generally interpreted in terms of features at differing levels of abstraction. For
example, a sonar data sweep gives rise to a one-dimensional array of distance versus angle
readings. This array is interpreted to find progressively higher level features such as sonar
edges, regions, region widths, and object identities. We found it useful for the decision-
making procedures of the robot to utilize ail of these levels of interpreted data in various
contexts. For example, raw sonar readings are used to determine whether the cup is in the
robot’s hand, whereas sonar edges are used to decide on the object height, and region

2Note the fact that the cup is a cylindrical object ailows cleanly separating object identification from positioning the robot at a
known vantage point relative to the object. It would be interesting to extend this approach to objects that lack this cylindrical
symmetry.
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widths are used to determine the object diameter. This suggests that it will be important for
the perception module of our new architecture to allow access to sensor data at multiple
levels of abstraction.

« Multiple coordinate frames found useful. We also found it useful for the system to reason
in differing coordinate frames. The world-centered coordinate frame is used for path-
planning and navigation tracking, whereas a wrist-oriented coordinate frame is used to
describe the expected dimensions of the known types of cups (since this is the coordinate
frame in which the raw sensor data is produced). We also found it easiest to use the wrist
coordinate frame to describe the desired and observed position of the cup relative to the
robot. Converting to the world-coordinate frame in this case introduces needless
computation and rounding errors (though it is possible that doing so would make it easier to
avoid obstacles whose positions are described in the world coordinate frame).

» Communications bottieneck indicates that computational complexity is relatively low.
The fact that the 600 baud radio link causes a very significant siowdown in the overall system
is an indication that the processing demands of this task are relatively smalil compared to
communication demands. Of course it is not clear that this would continue to be the case in
less structured environments, or as the system is scaled up to handle more sensors, or to
respond to dangerous situations in reai time.

4.2, Pervasive Uncertainty

The robot faces many types of uncertainty. It lacks a perfect description of its world, becaus:
sensors cannot completely observe the worid. In addition, it lacks a perfect characterization of the eﬁec%s
of its actions, so that even if it had a perfect characterization of its world it (and we) would have difficulty
constructing perfect plans in advance of executing them. These are commonly cited difficulties of real-
world robaotics problems.

One type of uncertainty that has been especially important in the development of this system is our
own uncertainty about the sensor and control errors of the robot. For example, when developing the
routine to position the robot in front of the cup, we did not know what resoiution to use for the sonar
sweep (i.e., should the robot scan from -45 to 45 degrees in 1 degree increments, or something else).
We also did not know how precisely the robot would have to be positioned relfative to the cup (0 degrees
and 6 inches, plus or minus what error tolerance?). In fact, we simply picked numbers for these
parameters, and then tested the system. If it failed to successiully grasp the cup, we increased the
sensor resolution or the positioning tolerance. If it succeeded but operated too slowly, then we decreased
these parameters. The point is that correct values for these parameters are impossible to derive in
advance, unless one knows in detail the sonar reflectance properties of the object, the spread in the
sonar signal as it travels, the tolerance of the gripping action to errors in relative position, etc. We did not
know these facts, but found it fairly simple o guess some initial parameter vaiues and then increase or
decrease as needed.

This has significant implications for the feasibility of automatic planning by the robot to deal with new
situations {consider something as simple as planning to pick up a new type of cup). We believe it may be
easier for such automatic planning to proceed by selecting and then adapting parameter values through
experience, just as we found ourselves doing, rather than attempting to plan correctly all parameter
values based on a dstailed analysis of the physics and modeis of sensor and control errors {as
suggested, for example, in [4]). We intend to explore this type of robot learning in the future.
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4.3. Target Capabilities for the Task Control Architecture

We are presently reimplementing an extended version of the prototype system within a more principled
architecture that is intended to increase the robustness of the system [6]. In particular, we intend to this
architecture to provide new capabilities including:

« Reacting to a changing worid. If the system is attempting to reach a cup and the cup tips
over, or someone picks it up, or a new obstacle appears in its path, the robot should react
appropriately to these changes in its world. To do so requires at a minimum the sensing
capability and focus of sensor attention to detect such changes. But it also requires
determining an appropriate response in an appropriate time frame, while gracefully
discontinuing the current activity of the robot. Qur new architectur~ is intended to support
such reactive abilities by maintaining dependencies between sensed data and current goals
and subgoals. Such dependencies will be used to determine which, if any, current goals or
beliefs should be revised in the face of changing sensor data.

Supporting multiple goals. The current system has no explicit goals. though implicitly its
procedures cause it to appear to exhibit goal-directed behavior. A realistic system should
have multiple explicit goals (e.g., "maintain the battery charge", "obtain cups", "avoid
obstacles"). We intend for our architecture to support such multiple goals, and to be able to
switch among them as appropriate. For instance, if the robot is approaching a cup and finds
that its battery charge is becoming dangerously low, it should suspend its attempts to
achieve the "obtain cup" goal in order to attend to the higher priority "recharge battery" goal,
and then later resume the interrupted activity.

Temporarily overriding or undoing achieved goals. Once the system has multiple goals,
then subtle interactions can occur. For example, if the robot is carrying the cup to the
container and encounters an impassable field of obstacles, then it might need to put the cup
down and use its hand to clear its path of obstacles. Afterwards, it should pick up the cup
and continue to pursue its original goal. This type of overriding and undoing a partially
achieved goal (putting down the cup which has already been successfully grasped) and later
resuming, is typical of the kind of goal interactions we believe our architecture must support.

Detecting and recovering from errors. The present system is able to detect some types of
errors {(e.g., to determine that it failed to grasp the cup). We intend for our architecture to
support more complete error detection as well as reasoning about how to recover from
certain types of errors. For example, if it is determined that the system failed to pick up the
cup, the system should attempt to characterize why (e.g., it was not a cup, but only a round
piece of paper on the floor; or the cup was tipped over during the grasping operation), and to
replan accordingly. General error detection and recovery is extremely difficult, but we believe
that all dangerous errors must at least be detected and dealt with to assure the survival goal
of the robot is maintained. Beyond that, we also intend to explore recovering from certain
errors in a fashion that allows the original goal to be effectively achieved.

Collaborating with remote human advisor. We desire for our system to communicate with
a remote human advisor/commander in order to obtain new commands and to obtain advice
about how to deal with difficult situations that arise in pursuing its goals. This is an especially
important issue in the context of the Mars Rover project, in which such collaboration must
occur under the constraint of large time delays. Here, the usual methods of human
teleoperation do not work well. Instead, the robot must play a much greater role in deciding
when intervention is needed and what information to send to the human to allow him/her to
help make the decision. In the context of the current testbed, we intend to study such issues
by allowing the robot to communicate with a person in another room. For example, if the
robot finds that it has failed to place the cup correctly in the container, then it may decide (a)
to try again, (b) to ask for assistance and send appropriate information regarding the current
situation and plausible cause of the error, or (c) to do both in parallel.
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Feature-based matching methods, which compute the motion by finding correspondences between features,
have been successful in structured eavironment (e.g., indoor navigation) [10,15,18,7,1,24]. These motion
estimation methods, however, have limited successes for outdoor navigation , since extracting reliable features
and finding correspondences are more difficult in rugged terrain environment. Recent work [23] introduces
a method, based on a smooth surface assumption, for determining observer motion from sparse range data
without assuming comrespondence. Smooth surface assumption, however, may not be applicable for rugged
terrain.

In this paper, we introduce an iconic matching method to optimally compute the motion which does not
require any correspondences or smooth surface assumptions. The iconic method presented in this paper work
directly on the two sets of data points, P! and P* by minimizing a cost function of the form F(T(P2),P!)
where T(P?) is the set of points from view 2 transformed by a displacement T. The cost is designed so that
its minimum corresponds to a "best” estimate of T in some sense. The minimization of F leads to an iterative
gradient-like algorithm. Although less popular, iconic techniques have been successfully applied to incremental
depth estimation [18,17] and map matching [23,9]. Feature-based matching approach is used to compute an
initial estimation of the motion which is important for fast convergence in our gradient descent optimization
technique. The high curvature points are viewpoint-independent features that can be used for matching. We
extract the high curvature points from both images of principal curvature. We group the extracted points
into regions, then classify each region as point feature, line, or region, according to its size, clongation, and
curvature distribution. We find the corresponding regions and compute the motion.
sonars, passive sterco, and laser range finders. In this paper, we focus on perception algorithms for range
sensors that provide 3-D data directly by active sensing. Using such sensors has the advantage of climinating

In this paper, we first describe the range sensor that we used in this work. Even though we tested
our algorithm on one specific range sensor, we believe that the sensor characteristics are fairly typical of a
wide range of sensors [4]. We explain the Locus Method which converts range images to elevation maps,
and introduce uncertainty model for clevation maps taking into account the shape of sensor noise and the
characteristics of the Locus Method. We demonstrate the performance of this algorithm by comparing it with
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traditional algorithms on test range images with different noise levels. We examine a couple of applications of
elevation maps. Then, we introduce two matching algorithms: iconic and feature-based matching algorithms.
These matching algorithms are tested and demonstrated on real range images of outdoor scene and synthetic
range images.

2 ACTIVE RANGE SENSING

The basic principle of active sensing techniques is to observe the reflection of a reference signal (sonar, laser,
radar..etc.) produced by an object in the environment in order to compute the distance between the sensor and
that object.

Active sensors are attractive to mobile robots researchers for two main reasons: first, they provide range
data without the computation overhead associated with conventional passive techniques such as stereo vision,
which is important in time critical applications such as obstacle detection. Second, it is largely insensitive
to outside illumination conditions, simplifying considerably the image analysis problem. This is especially
important for images of outdoor scenes in which illumination cannot be controlled or predicted. In addition,
active range finding technology has developed to the extent that makes it realistic to consider it as part of
practical mobile robot implementations in the short term [4].

The range sensor we used is a time-of-flight laser range finder developed by the Environmental Research
Institute of Michigan (ERIM). The basic principle of the sensor is to measure the difference of phase between
a laser beam and its reflection from the scene [25]. A two-mirror scanning system allows the beam to be
directed anywhere within a 30° x 80° field of view. The data produced by the ERIM sensor is a 64 x 256
range image, the range is coded on eight bits from zero to 64 feet, which corresponds to a range resolution
of three inches. All measurements are all relative since the sensor measures differences of phase. That is, a
range value is known modulo 64 feet. We have adjusted the sensor so that the range value 0 corresponds to
the mirrors for all the images presented in this report. A first order approximation of the standard deviation
of the range noise, o is given by [13]:

o —i 2.1

coséd

The proportionality factor in this equation depends on the characteristics of the laser transmitter, the outside
illumination, and the reflectance p of the surface which is assumed constant across the footprint in this first
order approximation. Figure 2 shows a range image of an outdoor scene.

The position of a point in a given coordinate system can be derived from the measured range and the
direction of the beam at that point. The cartesian coordinates of a point measured by the range sensor are

given by the equations®:

x = Dsin8 2.2)
y = Dcos¢cosf
z = Dsin¢cosh

where ¢ and 8 are the vertical and horizontal scanning angles of the beam direction corresponding to row
and column position in the image. Figurc 3 shows an overhead view of the scene of Figure 2, the coordinates
of the points are computed using Eg. (2.3).

2Note that the reference coordinate system is not the same as in [12] for consistency reasons
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Figure 2: Range image

Figure 3: Overhead view

3 TERRAIN REPRESENTATIONS

The main task of 3-D vision in a mobile robot system is to provide sufficient information to the path planner
so that the vehicle can be safely steered through its environment. In the case of outdoor navigation, the task
is to convert a range image into a representation of the terrain. We use the word "terrain” in a very loose
sense in that we mean both the ground surface and the objects that may appear in natural environments (e.g.
rocks). In this Section we discuss the techniques that we have implemented for Mars Rover systems. We
first introduce the concept of the elevation map as a basis for terrain representations and its relationship with
different path planning techniques.

3.1 The elevation map as the data structure for terrain representation

Even though the format of the range data is an image, this may not be the most suitable structuring of the
data for extracting information. For example, a standard representation in 3-D vision for manipulation is to
view a range image as a set of data points measured on a surface of the equation z = f(x,y) where the x— and
y—axes are parallel to the axis of the image and z is the measured depth. This choice of axis is natural since
the image plane is usually parallel to the plane of the scene. In our case, however, the "natural” reference
plane is not the image plane but is the ground plane. In this context, "ground plane” refers to a plane that is
horizontal with respect to the vehicle or to the gravity vector. The representation z = f(x, y) is then the usual
concept of an elevation map. To transform the data points into an elevation map is useful only if one has a
way to access them. The most common approach is to discretize the (x,y) plane into a grid. Each grid cell
(x:,;) is the trace of a vertical column in space, its field. All the data that falls within a cell’s field is stored
in that cell.

Although the elevation map is a natural concept for terrain representations, it exhibits a number of problems
due to the conversion of a regularly sampled image to 2 different reference plane [13]. Although we propose
solutions to these problems in Section 3.1, it is important to keep them in mind while we investigate other
terrain representations. The first problem is the sampling problem: Since we perform some kind of image
warping, the distribution of data points in the elevation map is not uniform, and as a result conventional
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image processing algorithms cannot be applied directly to the map. There are two ways to get around the
sampling problem: We can either use a base structure that is not a regularly spaced grid, such as a Delaunay
triangulation of the data points [19], or we can interpolate between data points to build a dense elevation map.
The former solution is not very practical because of the complex algorithms required to access data points
and their neighborhoods. We describe an implementation of the latter approach in Section 3.1. A second
problem with elevation maps is the representation of the range shadows created by some objects. Since no
information is available within the shadowed regions of the map, we must represent them separately so that
no interpolation takes place across them and no "phantom" features are reported to the path planner. Finally,
we have 10 convert the noise on the original measurements into a measure of uncertainty on the z value at
cach grid point (x,y). This conversion is difficult due to the fact that the sensor’s uncertainty is most naturally
represented with respect to the direction of measurement and therefore spreads across a whole region in the
elevation map.

The elevation map derived directly from the sensor is sparse and noisy, especially at greater distances from
the sensor. Many applications, however, need a dense and accurate high resolution map. One way to derive
such a map is to interpolate between the data points using some mathematical approximation of the surface
between data points. The models that can be used include linear, quadratic, or bicubic surfaces [19]. Another
approach is to fit a surface globally under some smoothness assumptions. This approach includes the family
of regularization algorithms [6]. ‘

Two problems arise with both interpolation approaches: They make priori assumptions on the local shape
of the terrain which may not be valid (e.g. in the case of very rough terrain), and they do not take into
account the image formation process since they are generic techniques independent of the origin of the data.
In addition, the interpolation approaches depend heavily on the resolution and position of the reference grid.
For example, they cannot compute an estimate of the elevation at an (x,y) position that is not a grid point
without resampling the grid. We propose an alternative, the locus algorithm [13], that uses a model of the
sensor and provides interpolation at arbitrary resolution without making any assumptions on the terrain shape
other than the continuity of the surface.

3.1.1 The Locus algorithm for the optimal interpolation of terrain maps

The problem of finding the elevation z of a point (x,y) is equivalent to computing the intersection of the surface
observed by the sensor and the vertical line passing through (x,y). The basic idea of the locus algorithm is to
convert the latter formulation into a problem in image space (Figure 4). A vertical line is a curve in image
space, the locus, whose equation as a function of ¢ is:

b +x2 . 33)

D = D)=\
G4)

xcos ¢
Yy

where ¢, 6, and D are defined as in Section 2. Equation (3.4) was derived by inverting Equation (2.3),
and assuming x and y constant. Similarly, the range image can be viewed as a surface D = I(¢,0) in ¢.9,
D space. The problem is then to find the intersection, if it exists, between a curve parameterized by ¢
and a discrete surface. Since the surface is known only from a sample of data, the intersection cannot be
computed analytically. Instead, we have to scarch along the curve for the intersection point. The search
proceeds in two stages: We first locate the two scanlines of the range image, ¢; and ¢, between which the
intersection must be located, that s the two consecutive scanlines such that, Diff(¢1) = Di(é1) - Ié1,8én)
and Diff(¢2) = Di(¢1) — I(¢, B1(¢2)) have opposite signs, where 8(¢) is the image column that is the closest
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to 6/(¢). We then apply a binary search between ¢; and ¢,. The search stops when the difference between
the two angles ¢» and @a+1, Where Diff(¢a) and Diff(¢a+1) have opposite signs, is lower than a threshold .
Since there are no pixels between ¢ and ¢,, we have to perform a local quadratic interpolation of the image
in order to compute 6)(¢) and D;(¢) for $1 < ¢ < ¢2. The control points for the interpolation are the four
pixels that surround the intersection point. The final result is a value ¢ that is converted to an elevation value
by applying Equation (2.3) to ¢, 6)(¢), Di(¢). The resolution of the elevation is controlled by the choice of the
parameter .

Figure 4: algorithm for elevation maps

The locus algorithm enables us to evaluate the clevation at any point since we do not assume the existence
of a grid. The uncertainty in the elevation can be approximated by a Gaussian distribution [13].

Figure 5 shows the result of applying the locus algorithm on range images of uneven terrain, in this case
a construction site. The Figure shows the original range image and the elevation map displayed as an isoplot
surface. The centers of the grid cells are ten centimeters apart in the (x,y) plane.

%mm&u@bmdﬁmhmdam@!mcmﬁcmofamﬂhmmw

generalization allows us to build maps using any reference plane instead of being restricted to the (x,y)
p&m%mrmponmwbm,fmmpk.ﬂxms(gy)p&mcmwmmemymrA
line in space is defined by a point & = [uy, 4y, 4]’ and a unit vector v = [vy, ¥y, v;]’. Such a line is parameterized
in A by the relation p = u + Av if p is a point on the line. A general line is still a curve in image space that
can be parameterized in ¢ if we assume that the line is not parallel to the (x,y) plane. The equation of the
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Figure 5. The locus algorithm on range images

curve becomes,
Di$) = \J(zA(@)+ Uk + (V(<P)+ g + (e A($) + e
o
0P = arcn 22Dl 3.5)
Hytan ¢ — i,
AP - V; — Vytan ¢

We can then compute the intersection between the curve and the image surface by using the same adgorithm
as before except that we have to use Equation (3.5) instead of Equation (3.4).

The representation of the line by the pair (u, v) is not optimal since it uses six parameters while only four
parameters are needed to represent alinein space. For example, this can be troublesome if we want to compute
the Jacobian of the intersection point with respect to the parameters of die line. A better dternative {14] is to
represent the line by its dopesinx and y and by its intersection with the plane 2= 0 (See [21] for acomplete
survey of 3-D line representations). The equation of the line then becomes:

XN az+p (3.6)
y=bz+g
We can till me Equation (3*5) to compute the locus because we can switdi betwesa the {a, b,p, ) md (u,v)
representations [13].
U




3.1.3 Evaluating the locus algorithm

We evaluate the locus algorithm by comparing its performance with the traditional interpolation algorithms on
a set of synthesized range images of simple scenes. The simplest scenes are planes at various orientations.
Furthermore, we add some range noise in order to evaluate the robustness of the approach in the presence of
noise. The performances of the algorithms are evaluated by using the mean square error:

Ta i — B
N
where k; is the true elevation value and }; is the estimated elevation. Figure 6 plots E for the locus algorithm
and the naive interpolation as a function of the slope of the observed plane and the noise level. This result
shows that the locus algorithm is more stable with respect to surface orientation and noise level than-the other
algorithm. This is due to the fact that we perform the mtczpolanon in image space instead of first converting

the data points into the elevation map.

E= 3.7

x, xx : Locus method
0, 00 : Elevation GNC
method

X,0: S/N ratio 1000
XX, 00 : S/N ratio 100

10 20 30 40 tilt angle
(degrees)

Figure 6: Evaluation of the locus algorithm on synthesized images

the&cnammayhavzmyshapewxfhmthe boundaries @t‘ﬂ«w shadows.
bcmooMyMpolmdrfmappiwdmclocm m
s situations for the robot if a path crosses one oﬁ'thcmgc shadows. A simpl
regions in the raw clevation map, which are the projection of |
mgmmdoawmmmcmefﬂnm
ve: Thssxse@em&ymﬁmm&ﬂmmmm
mamnnwm:hmﬁhc distribution afdm s is very sparse. It is possible to mod

; as algorithm so that it takes into account the shadow areas. ‘I‘hcbmcﬂaammm:mg;
S| ,mnmmmdudmgudgcmmc imag, An&,y)mmmmmha,

intersects the image at a pixel that lies on such an edge (Figure 7).

‘ detecting the edges in the range by using a standard & !
algorithm bmnxﬂowsusmmmcmsmmyofmcedgudm
W&mmmummgdmcmgzma&dczﬁm When we apply the
locus algorithm we can then record the fact that the locus of a given location intersects the image at an edge
pixel. Such map locations are grouped into regions that are the reported range shadows. Figure 8 shows an
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Figure 11: Local features from a high resolution elevation map

elevation map. The Figure shows that while some features correspond merely to local extrema of the surface,
some such as the edges of the decp gully are characteristic features of the scene. This type of feature extraction
plays an important role in Section 4 for combining multiple maps computed by the locus algorithm.

4 COMBINING MULTIPLE TERRAIN MAPS

We have so far addressed the problem of building a representation of the environment from sensor data
collected at one fixed location. In the case of mobile robots, however, we have to deal with a stream of
images taken along the vehicle’s path. First of all, merging representations from successive viewpoints will
produce a map with more information and better resolution than any of the individual maps. Another reason
why merging maps increases the resolution of the resulting representation concemns the fact that the resolution
of an elevation map is significantly better at close range. By merging maps, we can increase the resolution of
the parts of the elevation map that were originally measured at a distance from the vehicle.

The second motivation for merging maps is that the of the vehicle at any given time is uncertain.
Even when using expensive positioning systems, we have to assume that the robot’s idea of its position in
the world will degrade in the course of a long mission. One way to solve this problem is to compute the
position with respect to features observed in the world instead of a fixed coordinate system [22,18]. That
requires the identification and fusion of common features between successive observations in order to estimate
the displacement of the vehicle.

In the terrain matching problem, there are two possible approaches: feature-based or iconic matching. In
feature-based matching, we first have 1o extract two sets of features (F}) and (F7) from the two views 10 be
matched, and to find correspondences between features, (FL,F2) that are globally consistent. We can then
compute the displacement between the two views from the parameters of the features, and finally merge them
into one common map. Although this is the standard approach to object recognition problems [5], it has also
been widely used for map matching for mobile robots [10,15,18,7,1,24]. In contrast, iconic approaches work
directly on the two sets of data points, P! and P? by minimizing a cost function of the form F(T(P?), P')
where T(P?) is the set of points from view 2 transformed by a displacement T. The cost is designed so that
its minimum corresponds to a "best" estimate of T in some sense. The minimization of F leads 10 an iterative
gradient-like algorithm. Although less popular, iconic techniques have been successfully applied to incremental
depth estimation [18,17] and map matching [23,9). We describe in detail the feature-based and iconic stages
in the next three sections.

82




Figure 7: Detecting range shadows

overhead view of an elevation map computed by the locus algorithm, the white points are the shadow points,
the gray level of the other points is proportional to their uncertainty as computed in the previous Section.

mWﬁmﬁwwmmmkmwm@MMdmmm As
an example of an application '~hmmmmmmmm
problem of perception mawm[m Oneof&ummm’bﬁimsof perception for a legged
vehicle is to provide a terrain description that enables the system to determine whether a given foot placement,
mfwg{’d&hm.mmmwmdaﬂnmdmmmmmminmhmibcmﬁm
of Mars.
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Contact area

Figure 9: Footfall support area

A foot is modeled by a flat disk of diameter 30 cms. The basic criterion for footfall selection is to
select a footfall area with the maximum support area which is defined as the contact area between the foot
and the terrain as shown in Figure 9. Another constraint for footfall selection is that the amount of energy
necessary to penetrate the ground in order to achieve sufficient support area must be minimized. The energy
is proportional to the depth of the foot in the ground. The support area is estimated by counting the number
of map points within the circumference of the disk that are above the plane of the foot. This is where the
resolution requirement originates because the computation of the support area makes sense only if the resolution
of the map is significantly smaller than the diameter of the foot. Given a minimum allowed support area, Smin,
and the high resolution terrain map, we can find the optimal footfall position within a given terrain area: First,
we want to find possible flat areas by computing surface normals for each footfall area in a specified footfall
selection area. Footfalls with a high surface normal are climinated. The surface normal analysis, however,
will not be sufficient for optimal footfall selection. Second, the support area is computed for the remaining
positions. The optimal footfall position is the one for which the maximum elevation, h,p that realizes the
minimum SUpport area Smix is the maximum across the set of possible footfall positions. Figure 10 shows a
plot of the surface area with respect to the elevation from which A, can be computed.

S\mﬂ‘
A —F/

D

®  Distance traveled along
“m‘mﬂ‘ dm’ 'm
Figure 10: Support area versus elevation

3.1.6 Extracting local features from an elevation map

The high resolution map enables us to extract very local features, such as points of high surface curvature. The
local features that we extract are based on the magnitude of the two principal curvatures of the terrain surface.
The curvatures are computed as in [20] by first smoothing the map, and then computing the derivatives of the
surface for solving the first fundamental form. Points of high curvature correspond to edges of the terrain,
such as the edges of a valley, or to sharp terrain features such as hills, or holes. In any case, the high curvature
points are viewpoint-independent features that can be used for maiching. We extract the high curvature points
from both images of principal curvature. chrmxpthccmaﬁedpointstgims.Mclassifycmhmgim
as point feature, line, or region, according 10 its size, clongation, and curvature distribution. Figure 11 slmws
thcmmtypcsoflocalfcatumdcwcwdonthcmapofﬁgumSmpcﬁmposcdinbinckovcrtb:ongmal
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4.1 Feature-based matching

Let Fj and Fj be two sets of features extracted from two images, I\ and h. We want to find a trandormation
fand a st of pairs Ct = (F},FJy) such that Fj, « 7(F*), where 7T(F) denotes the transformed by T of a feature
F. The features can be any of those discussed in the previous Sections. points or lines from the local feature
extractor, obstaclesrepresented by a ground polygon, or terrain patches represented by their surface eguation
and their polygonal boundaries.

We obtain a set of possible matchings, each of which is a set of pairs S= (F’\,Fj*:)i between the two sets
of features. Since we evaluated T amply by combining components in the course of the search, we have to
evaluate T for each 5in order to get an accurate etimate. T is estimated by minimizing an error function of
the form: Co

E=)"d&F} - T(FL)) (4.8)
k

The digance d(.) used in Equation (4,8) depends on the type of the features involved. The matching S
that realizes the minimum E is reported as the final match between the two maps while the corresponding
displacement T isreported as the best estimate-of the displacement between the two maps.

Feature-based matching is applied to esimate the digplacement for the iconic matching of high resolution
maps. The primitives used for the matching are the high -curvature points and lines described in Section 3.1.6.
The initial matches are based on the gmilarity of the length of the lines and the smilarity of the curvature
grength of the points. The search among candidate matches proceeds as described in Section 4.1. Since we
have dense élevation at our digposal in this case, we can evaluate a candidate displacement over the entire
map by summing up the squared differences between points in one map and points in the transonned map.
Figure 12 shows the result of the feature matching in a case in which the maps are sparated by a very large
displacement. The top image shows the superiinpostion of the contours and features of the two maps using
the egimated displacement , while the bottom image shows the correspondences between the point and line
features in the two maps. The lower map istrandormed by T with respect to the lower right map. The lower
left display shows the area that is common between the two maps after the displacement.

Figure 12: Matching maps using local features




4.2 Iconic matching from elevation maps

The general idea of the iconic matching algorithm is to find the displacement T between two elevation maps
from two different range images that minimizes an error function computed over the entire combined elevation
map. The error function E measures how well the first map and the transformed of the second map by T
do agree. The easiest formulation for E is the sum of the squared differences between the elevation at a
location in the first map and the elevation at the same location computed from the second map using T. To
be consistent with the earlier formulation of the locus algorithm, the elevation at any point of the first map
is actually the intersection of a line containing this point with the range image. We need some additional
notations to formally define E: R and ¢ denote the rotation and translation parts of T respectively, f:(u, v) is
the function that maps a line in space described by a point and a unit vector to a point in by the generalized
locus algorithm of Section 3.1.2 applied to image i. We have then:

E=Y_ |lIfiw,v) - g@,v, DI (4.9)

where g(u,v,T) is the intersection of the transformed of the line (u,v) by T with image 2 expressed in the
coordinate system of image 1 (Figure 13). The summation in Equation (4.9) is taken over all the locations
(4, v) in the first map where both fi(u, v) and g(u, v, T) are defined. The lines (i, v) in the first map are parallel
to the z-axis. In other words:

gu,v,T) =T 1/, V) =RAW V) +1 (4.10)

where T-! = (R,7) = (R™!,—R~'7) is the inverse transformation of T, and (/,V) = (Ru+ #,Rv) is the
transformed of the line (4,v). This Equation demonstrates one of the reasons why the locus algorithm is
powerful: in order to compute f2(Ru + z,Rv) we can apply directly the locus algorithm, whereas we would
have to do some interpolation or resampling if we were using conventional grid-based techniques. We can also
at this point fully justify the formulation of the generalized locus algorithm in Section 3.1.2: The transformed
line (&, V) can be anywhere in space in the coordinate system of image 2, even though the original line (i, v)
is parallel to the z-axis, necessitating the generalized locus algorithm to compute f(«/, V).

lg— Line (u,v)

Figure 13: Principle of the iconic matching algorithm

We now have to find the displacement T for which E is minimum. Ifv = (e, 8,7,k ty 1.} is the 6-vector of
parameters of T, where the first three components are the rotation angles and the last three are the components
of the translation vector, then E reaches a minimum when:

OE @.11

==0
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Assuming an initial estimate Tp, such a minimum can be found by an iterative gradient descent of the
form:

. 8E .
(32 U Sl 24
=v'+k=—(V") 4.12)
where v is the estimate of v at itcmion i. From Equation (4.9), the derivative of E can be computed by:
OE
5 =22 (A ) - gy, 7)) (u v,T) (4.13)
From Equanon (4.10), we get the dcnvanvc of g:
ar
(u, v,D= R'-‘Zfi(u V)+— sz(x/,\/)+5 4.14)

Thc dcrxvatwcs appearing in the last two components in Equation (4.14) are the derivatives of the trans-
formation with respect to its parameters which can be computed analytically. The last step to compute the
derivative of g(u,v,T) is therefore to compute the derivative of (&, V') with respect to v. We could write
the derivative with respect to each component v; of v by applying the chain rule directly:

5)’2 oh o ofh &
(l/ V)= Pu 50 l+ T 81/1 (4.15)

Equancm (4.15) leads however to instabilities in the gradient algorithm because, as we pointed out in
Section 3.1.2, the (u,V) representation is an ambiguous representation of lines in space. We need to use a
non ambiguous representation in order to correctly compute the derivative. Since we can use interchange-
ably the (u,v) representation and the unambiguous (a,b,p, q) representation, we can correctly compute the
derivative [13].

In the actual implementation of the matching algorithm, the points at which the elevation is computed
in the first map are distributed on a square grid of ten centimeters resolution. The lines (u, V) are therefore
vertical and pass through the centers of the grid cells. E is normalized by the number of points since the
overlap region between the two maps is not known in advance. We first compute the fi(u,v) for the entire
grid for image 1, and then apply directly the gradient descent algorithm described above. The iterations stop
cither when the variation of error AE is small enough, or when E itself is small enough. Since the matching
is computationally expensive, we compute E over an eight by eight meter window in the first image. The last
test ensures that we do not keep iterating if the error is smaller than what can be reasonably achieved given
the characteristics of the sensor. Figure 14 shows the result of combining three high resolution elevation maps.
Thzdisplacmbetwmmapsmmmgthcmcmawhmgalgomhm. The maps are actually
combined by replacing the elevation fj(u, v) by the combinati

ofitafs (4.16)
o1+02

where o1 and o3 are the uncertainty values. The resulting mean error in elevation is lower than ten centimeters.

‘We computed the initial To by using the local feature matching of Section 4.1. This estimate is sufficient to

ensure the convergence to the true value. This is important because the gradient descent algorithm converges

towards a local minimum, and it is therefore important to show that Ty is close to the minimum. Table 1

shows the converged and initial values of the v;'s by the iterative matching algorithm for matching two
maps separated by a very large displacement as shown in Figure 12. In this experiment, the initial estimate is
obtained by feature-based matching method described in Section 4.1 and the gradient descent algorithm needed
approximately 30 iterations to converge to the minimum. Since the ground truth cannot be obtained, we do
not know the absolute accuracy of those motion parameters. However, from the fact that the elevation RMS
error is about 6 cm, the iconic matching method combined with feature-based matching is very satisfactory
for our application in rugged terrain.
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Initial values Converged values
Translation (cm) (-108.9, -125.0, 0.0) | (-191.26, -119.265, -19.56
Rotation (degree) (0.0, 0.0, 29.5917) | (1.93, 051566, 31.114)

RMS Error (cm/pixel) 81.03 592

Table 1: Results for computing motion parameters

5 CONCLUSION

In this paper, we have introduced a new method (Locus) to convert range images to elevation maps. This
method is used to develop an uncertainty model and an algorithm for representing vertical objects in elevation
maps. We have demonstrated the applicability of elevation maps to the footfall selection of a legged vehicle.
An iterative iconic matching technique without assuming any correspondence or smooth surface assumptions
is developed to compute the optimal motion. This motion estimate is then used to obtain a composite terrain
map by merging multiple range images. We have demonstrated these algorithms on real range images of
outdoor scenes. The results suggest that elevation maps are in general an appropriate terrain representation
and our iconic matching method is useful for rugged terrain environments.

Many issues still remain to be investigated. First of all, we must define a uniform way of representing
and combining the uncertainties in the terrain maps. Currently, the uncertainty models depend heavily on
the type of sensor used and on the level at which the terrain is represented. Funthermore, the displacements
between terrain maps are known only up to a certain level of uncertainty. This level of uncertainty must be
evaluated and updated through the matching of maps, whether iconic or feature-based. We have tackled the
terrain representation problems mainly from a geometrical point of view.

A natural extension of this work is to use the 3-D terrain representations to identify known objects in the
scene. Another application along these lines is to usc the terrain maps to identify objects of interest, such as
terrain regions for sampling tasks for a planetary explorer [16]. Although we have performed some preliminary
experiments in that respect [11,2], extracting semantic information from terrain representations remains a major
research area for outdoor mobile robots.
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Perception for Rugged Terrain '
In So Kweon, Martial Hebert, Takeo Kanade

The Robotics Institute, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh PA 15213

ABSTRACT

To perform planetary exploration without bhuman supervision, a complete autonomous robot must be able
1o model its environment and locate itself while exploring its surroundings. To this end, estimating motion
between sensor views and merging the views into a coherent map are two important problems. In this paper,
we present a 3-D perception system for building a geometrical description of rugged terrain environments
from range data. We propose an intermediate representation consisting of an elevation map that includes an
explicit representation of uncertainty and labeling of the occluded regions. We present an algorithm, called
the Locus method, to convert range image to an elevation map. An uncertainty model based on this algorithm
is developed. Based on this elevation map and the Locus method, we proposc a terrain matching algorithm
which does not assume any correspondences between range images. The algorithm consists of two stages:
First, a feature-based matching algorithm computes an initial transform. Second, an iconic terrain matching
algorithm that minimizes the correlation between two range images is applied to merge multiple range images
into a uniform representation. We present terrain modeling results on real range images of rugged terrain.

1 INTRODUCTION

Exploration of the rugged terrain of Mars without human supervision requires a vehicle capable of both
navigation and sampling. To navigate it must perceive its environment, plan a path through a model of the
environment and maintain knowledge of its position. These requirements necessitate 2 system of pel ception
dmﬂcd3-D‘geancuimldwcﬁpﬁonsisacﬁﬁcaltechniqm for safe navigation and sampling in the unstructurc

rugged environment of Mars. A legged locomotor, such as the AMBLER [2] (shown in Figure 1), is dependen

upon accurate 3-D knowledge of the terrain for reliable foot placement and leg recovery. Therefo 3-D
pcrccpﬁmisamcm&tycompmofthcAMBLERsyacm.hmispapﬂ,wcdismm 2in modeling and
mpmmmﬂmissucsformgged' Tai i nstruct detailed local
terrain maps from a laser rangefinder.

E]zvmmapsmbemwpomdwbcmwﬁecﬁw P! n method: 2  cleval !
‘resentation is used for cross-country navigation [8]. Asada [1] used elevation map for fusing range
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