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Abstract
This paper presents some formal results on learning. In particular, it concerns algorithms that learn

sets and functions from examples. We seek conditions necessary and suffident for learning over a range

of probabilistic models for such algorithms.



1. Introduction
This paper concerns algorithms that learn sets and functions from examples for them. The results

presented in this paper appeared in preliminary form in [Nafarajan, 1986; 1988]. The motivation behind

the study is a need to better understand the class of problems known as "concept learning problems" in

the Artificial Intelligence literature.

What follows is a brief definition of concept (or set) learning. Let £ be the (04) alphabet, r the set of

all strings on Z, and for any positive integer n, 2? the set of strings on L of length n. Let /denote a subset

of 2T and F a set of such subsets. An example for / is a pair (xj), *e £\ je L, such that xe / iff y=l.

Informally, a learning algorithm for F is an algorithm that does the following: given a sufficiently large

number of randomly chosen examples for any set / e F, the algorithm identifies a set g e Ft such that g

is a good approximation o f / (These notions will be formalized later.) The primary aim of this paper is to

study the relationship between the properties of F and the number of examples necessary and sufficient

for any learning algorithm tor it.

To place this paper in perspective: There are numerous papers on the concept learning problem in

the artificial intelligence literature. See [Michalski et at., 1983] for an excellent review. Much of this work

is not formal in approach. On the other hand, many formal studies of related problems were reported in

the inductive inference literature. See [Angiuin & Smith, 1983] for an excellent review. As it happened,

the wide gap between the basic assumptions of inductive inference on the one hand, and the needs of

the empiricists on the other, did not permit the formal work significant practical import. More recently,

[Valiant, 1984] introduced a new formal framework for the problem, with a view towards probabilistic

analysis. The framework appears to be of both theoretical and practical interest, and the results of this

paper are based on it and its variants. Related results appear in [Angiufn, 1987; Rivest & Schapire, 1987;

Berman & Roos, 1987; Laird, 1986; Keams et a!., 1986] amongst others. [Blumer et at., 1986] present an

independent development of some of the results presented in this paper, their proofs hinging on some

classical results in probability theory, while ours are mostly combinatorial in flavour.

We begin by describing a formal model of learning, our variant of the model first presented by

[Valiant, 1984]. Specifically, we define the notion of polynomial leamabtHty of sets in Section 2. We then

discuss the notion of asymptotic dimension of a family of concepts, ami use it to obtain necessary and

sufficient conditions for leamabiHty. In doing so, we give a general learning algorithm that turns out to be

surprisingly simple, though provably good. Section 3 deals with a slightly different learning model, one in

which the learner is required to learn with one-skied error, i.e., his approximation to the set to be teamed

must be conservative in that it is a subset of the set to be teamed. Section 4 deals with the time

complexity of learning, identifying necessary and sufficient conditions for efficient learning. Section 5

generalizes the teaming model to consider functions instead of sets, instead of sets. Notions of

asymptotic ieamabtlity and asymptotic dimension are defined in this setting ami necessary ana sufficient

conditions for teamabtlrty obtained. This requires us to prove a rather interesting combinatorial result

called the generalized shattering lemma. Finally, Section 6 deaSs with a non-asymptotic model of

teaming, where the division is between finite and infinite, rather than on asymptotic behaviour. In
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particular, we consider learning sets and functions on the reals, introducing the notion of finite-learnability.

We review the elegant results of [Blumer et ai., 1986] on conditions necessary and sufficient for

leamabirity in this setting. We then identify conditions necessary and sufficient for the finite-learnability of

functions on the reals.
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2. Feasible Learnability of Sets
We begin by describing our variant of the learning framework proposed by [Valiant, 1984].

Let I be the binary alphabet (0,1), Z* the set of all strings on X, and for any positive integer n, let
be the set of strings of length n or less in £*. A concept* f is any subset of I*. Associated with each
concept/is the membership functionf*2.~* {0,1}, such that/*(x)» l iff x e /. Unless otherwise required,
we will drop the superscript in/91 and use / t o refer both to the function and to the set. An example for a
concept is a pair (xy\ xelT.ye {0,1} such that y =/(x). A family of concepts F is any set of concepts on
E\ A learning algorithm (or more generally, a learning function) for the family F, is an algorithm that
attempts to infer approximations to a concept in F from examples for it. The algorithm has at its disposal
a subroutine EXAMPLE, which when called returns a randomly chosen example for the concept to be
learned. The example is chosen randomly according to an arbitrary and unknown probability distribution P
on 2T, in that the probability that a particular example (x/(x)) will be produced at any call of EXAMPLE is

Defn: Let / be a concept and n any positive integer. The projection fn of / on 271" is given by fn =

fnZT.

Defn: Let 5 be any set A sequence on S is simply a sequence of elements oi S. Sl denotes the set
of all sequences of length / on S, while X(S) denotes the set of ai! sequences of finite length on S.

Defn: Let/be a concept on 2T and P a probability distribution on IT. A sample of size / for/with

respect to P is a sequence of the form (X^JCJ)), {x^{x^))^.JixtJ{x^) where xv x^.., xt is a sequence of

elements of Z\ randomly and independently chosen according to P.

Defn: Let/and g be any two sets. The symmetric difference of /and gt denoted by/Ag, is defined

With these supporting definitions in hand, we present our main definition, intuitively, we will call a
family F feasibly learnable if it can be learned from polynomial^ few examples, polynomial in an error
parameter h and a length parameter n. The length parameter n controls the length of the strings the
concept is to be approximated on, and the error parameter h controls the error allowed in the learnt
approximation.

Defn: Formally, a family F is feasibly leamabie if there exists an algorithm2 A such that
(a) A takes as input two integers n and A, where n is the size parameter, and h is the error

parameter.

(h)A makes polynomial^ few calls of EXAMPLE, polynomial in n and A. EXAMPLE returns
examples for some/€ F, where the examples are chosen randomly ami independently according

'we us© to term corjcept instead of a set to oortionm wWi. t» a i fcW b t e ^ ^

stated otherwise, by "algorithm" we mean a tMt&fy representsible procedure, not necessity computable. That m, fte
procedure might use we^-defhed but non-computable functions m



to an arbitrary and unknown probability distribution P on I!**,

(c) For alt concepts/ € F and all probability distributions P on Z*-, with probability (1-l/A), A outputs
a concept ge F such that

Vh

Oefn: Let N be the set of natural numbers. The learning function *P:NxNxX(£*x{O,l})-*F

associated with a learning algorithm A is defined as follows.

Learning Function ¥
Input *, ̂ integers; C: sample;
begin

Run A on inputs njk\
In place of EXAMPLE, at the ̂  call of EXAMPLE by A,
give A (xtf;) as example.
Output A's output.
end

We now introduce a measure caied the dimension tor a family of concepts. Recall that we defined
the projection/B of/on I11 by/w » tfriF) Similarly, the projection Fm of the family F on Z* is given by Fn =

Defn: The (Mmemfcm (A a subfamily f^ demoted lv d& i ^ ) fe deined t^
iQFJalogjflFJ).

(Notation: For a set X, ffl denotes the cardinality, while for a string x, bd denotes the string length.)

Defn: Let ii:N-^N be a function of one variable, where N is the natural numbers. The asymptotic
dimension (or more simply the dimension) erf a family F is d(n) if <&»</;) = 8(^(n)). That is, there exists a
constant c such that

V n : dimiFJ £ d(n)

and dim(FJ > cd(n) infinitely often.

We denote the asymptotic dimension of a famfly F by dim(F). We say a family F is of polynomial
dimension if me asymptotic dimension of F is a polynomial in n.

With these definitions In hand, we can give our first result The resutt is a lemma concerning the
notion of shattering. LetFbeafamByof subsetscf set*. We say that F shatters a set S^X, if for every
Sj c 5 f there exists/e F ̂ 1^1 that/nS = Sv To mir krowtedge, this notion was first introduced by [Vapni<
& Chervonertcis, 19711.

We can now state our first result.

1 (Shattering LMIHW;) V Fm m erf cftroreion * then FH shatters a set of s
« Ate), w«y set shalened by F is of size at most *£
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Proof: First, we prove the upper bound. Suppose a set S is shattered by by Fn. Since there are 2151

distinct subsets of Fn, it follows from the definition of shattering that 2® <> \Fn\. Taking logarithms on both

sides of the inequality, we get 151 £ logQFJ) = d% which is as desired. To prove that the upper bound can

attained, simply let F be all possible subsets of some d strings in r*~.

We prove the lower bound part of the lemma through the following claim. A variant of the claim is

given by Vapnik & Chervonenkis (1971) amongst others.

Claim: Let x be any finite set and let H be a set of subsets of X. If k is the size of the largest subset

of X shattered by H, then

\H\ < (IXI+l)*

Proof: By induction on Kl, the size of X.

Basis: Clearly true for \X\ =1.

Induction: Assume the claim holds for 1X1 = m and prove true for m+l. Let 1X1 = m+l and let H be any

set of subsets of X. Also, let k be the size of the largest subset of X shattered by H. Pick any xe x and

partition X into two sets {x} and Y» X-{x}. Define Hx to be the set of all sets in H that are reflected about

x That is, for each set hx in Hx, there exists a set A € H such that h dffers from hx only in that h does not

include x. Formally,

Hx = {hx\ hx € H,3 h€ H.h*hx SMTd hx - *u{x}}.

Now define H2 = / / - / /^ Surely, the sets of / /2 can be distinguished on the elements of Y. That is, no

two sets of H2 can differ only on x, by virtue of our definition of Hv Hence, we can consider H2 as sets

defined on Y. Surely, H2 cannot shatter a set larger than the largest set shattered by H. Hence, H2

shatters a set no bigger than k. Since in £ /», by the inductive hypothesis we have \H2\ < (!7l+r/.

Now consider / / r By definitton, the sets of Hx are all distinct on Y. That is, for any two distinct sets

* l t ^ in i / l f AjnK ^ Z^^^- Suppose Hx shattered a set S c Yf IS! ^ L Then, // would shatter 5u{x}. But,
!«5o{xj!> it+1, which is impossible by assumption. Hence, Hx shatters a set of at most (&-1) elements in

r. By the inductive hypothesis, we have

s/fji <

Combining the two bounds, we have

» \H-HX\ + \HX\ - \H2\ + \HX\

(m+2)* £(1X1+1)*

Thus the claim is proved.*

Returning to the lemma, we see that if X is all strings of length n or less on the binary alphabet, txi

, By our claim, if the largest set shattered by Fm is of size k,



\Fn\
Hence, k Z log(lFJ)/logCZ*+l+l)

Since k must be an integer, we take the ceiling of the right-hand side of the last inequality. This

completes the proof of the lemma. •

We can now use this lemma to prove the main theorem of this section.

Theorem 1: A family F of concepts is feasibly learnable if and only if it is of polynomial dimension.

Proof: (If) Let F be of dimension d(n). The following is a learning algorithm for F, satisfying the

requirements of our definition of learnability.

Learning_Argortthm AX

Input: n, h
begin
call EXAMPLE H&mlFJlnil) + ln{h)) times.
let S be the set of examples seen.
pick any concept g in F consistent with S
output #.
end

We need to show that At does indeed satisfy our requirements. Note that Ax may not be

computable, but as noted earlier, this is not a difficulty. Let/be the concept to be learned. Since P is a

distribution on P1, EXAMPLE returns examples of /„. We require that with high probability, Ax should

output a concept g € Ft such that the probability that / and g differ is less than (I/A). Let Ch(j) be all

concepts in Fn that differ from/,, with probability greater than I/A. By definition, for any particular g such

that gK € Ch(f)t the probability that any call of EXAMPLE win produce an example consistent with g is

bounded by (1-1/A). Hence, the probability that m calls of EXAMPLE will produce examples all consistent

with g is bounded by (1-1/*)* Ami hence, the probabBity that m calls of EXAMPLE will produce examples

all consistent with any gn € Ch(f) is bounded by \Ck(f)Kl-l/hY". We wish to make m sufficiently large to

bound this probability by 1 fh.

K T ^ l - l / A r £ I/A.
But surely, \Ck(f)l <> IFJ £ 2̂ *>

Hence, we want

2**>(l-i/*r £ Vh
Taking natural logarithms on both sides of the inequality, we get

-m (
Or

m i
Heroe, f #dtn)fo(2Wn(k)) exarnpfes am drawn, the pmbabiiity thsi all the exam^es seen am consistent

with a concept that differs from the true concept by I/A or more, is bounded by t/A. Since, At (taws as
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many examples and outputs a concept consistent with the examples seen, with probability l-l/A, Ax will

output a concept that differs from the true concept with probability less than l/A. Hence, Ax does satisfy

our requirements. Clearly, if din) is a polynomial in n, the number of examples called by A1 is polynomial

in n, h and hence F is feasibly learnable.

(only if)

Now suppose that F is of super-polynomial dimension d(n) and yet F were feasibly learnable by an

algorithm A from (nh)k examples, for some fixed k. Let ¥ be the learning function corresponding to A.

Now pick n and h> 5 such that

By the shattering lemma, there exists a set S c I" such that ISI£ dim(F^I(n+\), and S is shattered by Frt.

Let Xle Sl denote the sequence xv x^..., xt and let/e Fn. Define the operator 8 as follows.

where $ »*¥fa h, (x^x^), {x^x^^x^x^)),
In words, S(/; X7, F̂) is the probability error in the concept output by A on seeing the sample {xl/(xl))1

(J t2^x2))--(x i^)) t o r / - L6* Gn ^Fnbe s u c h t h a t f o r e a c h 5i ^5 , there is exactly one ge Gn such that gnS
= 5r Such Grt must exist as Fn shatters S. Let ^ be the probability distribution that is uniform on S and
zero elsewhere.

Claim: Let / = (nh)*. Then for each /e Gw, and x*€ 5̂ , there exi^s unique g e Grt such that

^ l/A if and only if 5(g.X1,^) ^ 1/fc.

Proof: Let [X*} denote the set of strings occuring in X*, Le., {X*} = {̂ Ix occurs in x^}. By the

definition of Gn, for each /, X/, there exists unique g e gw » d i ttet/Ag * S-{X^}. Hence,

The last step follows from the fact that {X?} has at most half as many elements as 5, and p is uniform on

S. Since A£5, l/h ^ 1/5, at most one of the terms on the left can be smaller than (1/5), if the inequality is

to hold. Hence the claim. •

Since *¥ is a learning function for F, for each/€ Fn

(Notation: Pr{Y} derates the probability of event Y.)

Define the switch function 8:{true,false} -»M as follows. For any boolean-valued predicate fi,

MQ) m f 1* if G is true
t 0 otherwise

Now write



Substituting the above in the last inequality, we get,

V QWftfW * Vh)Pr[X*) Z (1-1/A)

Summing over Gn,

y y OW^T) > l/h)Prtx*} > y (]

Ripping the order of the sums,

X X ©(S^,^) ^ llh)PT{#) £ Y (1-1/A)

By the last Claim,

Hence, we have

f H feGn
Ripping the order of the sums again,

y
Which reduces to

which is impossft)te as A S 5.

The last contradiction implies that A cannot be a teaming algorithm for F as supposed and hence the
result.

This completes the proof .•
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3. Learning Sets with One-Sided Error
We now consider a learning framework in which the learner is only allowed to see positive examples

for the concept to be learned, and is required to be conservative in his approximation in that the concept

output by the learner must be a subset of the concept to be learnt Historically, this was the framework

first studied by [Valiant, 1984].

Let F be the family of concepts to be learned. EXAMPLE produces positive examples for some

concept/ e F. Specifically, EXAMPLE produces a string x € /. Let P be a probability distribution on £\

The probability that a string x e / i s produced by any call of EXAMPLE is the conditional probability given

by,
P(x)

xef

assuming the denominator is non-zero. If the denominator is zero, EXAMPLE never produces any

examples. We can now define leamability as we (fid earlier.

Defn: A family of concepts F is feasibly learnabfe with one-sided amr I there exists an algorithm A

such that
(a) A takes as inputs integers n and h, where n is the size parameter and k the error parameter.

(b) A makes polynomial^ few calls of EXAMPLE, polynomial in n and A. EXAMPLE returns positive
examples for some concept / € F, chosen according to an arbitrary and unknown probability
distribution P on 271-. -

(c) For all concepts/ e Fand all probability distributions P on 27*~, with probability (1-1//0, A outputs
ge F such that gdf and

T F(x) <k I/A.

Defn: We say a family of concepts F is well-ordered if for ail n, F n u0 is dosed under intersection.

With these definitions in hand, we state and prove the following theorem.

Theorem 2: A family F of concepts is feasibly leamable with one-skied error, if and only if It is of

polynomial dimension and is well-ordered.

Proof: (If) This direction of the proof begins with the following claim.

Claim: Let 5G2?*~ be any non-empty set such that there exists a concept g e Fm containing s. i.e.

gs Fmt and S<zg. If F is weH-ordered, there exists a teasf concept/to Fn containing g, i.e.,

V #e FM:

Proof: Let S c 2*~ be non-empty and let lf\J%-*) be the set of concepts in Fm containing 5. Now the

intersection of al these concepts /= {fir^n...}, is in Fm. To see this, notice that since FMu0 is closed

under Intersection,/€FMu0. B u t , / # 0 a s £ * 0 a n d S e / . Henoe,/€**„. •
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This allows us to write the following learning algorithm for F.

Learnlng_A!gorfthm A2

Input: n, h
begin
call EXAMPLE h(d(nyin(2) + /*(*)) times.
let S be the set of examples seen.
output any g in F such that gn is the least
concept in Fn containing S.
end

Let/be the concept to be learned. Since gn is the least concept consistent with S, surely, gn c /„-

Using arguments identical to those used in our proof of Theorem 1, we can show that with probability

greater than ( l - l / * ) f g will not differ from the concept to be learned with probability greater than i/h. This

completes the "if" direction of our proof.

(only I) Let F be feasWy learnable with one-sided error by an algorithm A.' Let us show that F is

well-ordered, i.e., for all n, FHu0 is closed under intersection. Suppose for some *, Fnu0 were not

closed under intersection, and that/, g were two concepts in Fnu0 such thai fng is not in Fn<j0. Now,

surely fng * 0, and hence fng is not in Fn. Place the probability distribution that is uniform on fng and

zero elsewhere on £"~, ami run the learning algorithm A for h » 2ft+i. At each call of EXAMPLE, a

randomly chosen element of fng win be returned. Since fng is not in F# A must fail to learn with

one-sided error. To see this, suppose that A outputs some concept eeF. Now, since A claims to learn

with one sided error, enof, if/were the concept to be learned. Similarly, enQgt since g could well be the

concept to be learned. Hence, enofng. But since fel/2**1, en must be fng, which contradicts the

assumption that fng is not in Fn. By arguments similar to those of our proof of Theorem 1, we can show

that F must be of polynomial dimension. An alternate proof is presented in [Natarajan, 1986]. Hence the

claim. •

This completes the proof. •

We now exhibit a curious property of the well-ordered families. Specifically, we show that each

concept (except the empty set) in a well-ordered family has a short and unique "signature".

For a weH ordered family F% define the operator Mnd?*~^ Fn as follows.

tea^/e FM such thai Sof, if such/exists

f n words, kj$) fe1^^^^^^ in Fm consistent wihS.

Proposition 1: Mm is Wempotefit, I.e.,

Proof: By the «teffr*kni of Af-t MJ$) :s the toast conc^t/e FM such that $of. Sumly, MJf) =/ and hence

the proposHon. *

IMJA) BM Mm(B) am both defined, then
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Mn(A) C MJB).

Proof: By the definition of Mn, B^Mn(B). Since A c^ , A^MJB). Hence, MH(A) ^Mn(B)t by Proposition

Proposition 3: For A, B c l * . if Mn(A) and Af^B) are defined,

MH(AKJB) = Mn(Mn(A)KjMn(B))

Proof: Since A ci^CA), 5 cMH(P)t AuB c Mn(/LJuMH(fi). Whence it follows from Proposition 2 that,
MH(AuB) c Mn(Mn(A)KjMn(B)). And then, since AcAuS, we have by Proposition 2

and similarly
MJB) C

Hence,
MJMuMJfl) c J
Applying Proposition 2 again, we get

Applying Proposition 1 to the right-hand side,
Mn{Mn(AyjMn(B)) c MJAKJB).

Hence, the proposition. •

With these supporting propositions in hand, we can show that every concept in F has a small

"signature-.

Proposition 4: If F is weM-ordered, then for every /e F ^ / * 0 there exists 5^2T", tsy < di

Proof: Let/ e Fn and let ^ be a set of minimum size such that/= MJJSj). Consider any two distinct

subsets Sv S2 of Sf We claim that Mn(S{) * Mn(S£. To prove this, we will assume the contrary and arrive

at a contradiction. Suppose Mn(Sx) » Mn($£ for Sx * S2. Without loss of generality, assume l^l < !52L

Now,

Sf* (SrS2)uS2

Applying Mn to both sides,

Applying Proposition 2 to the right-hand side, we get

Since Mn

Mn(S£ =
Applying Propositton 2 again,

But K S ^ U S ^ < isry,
which contradicts our assumption that Sfwas a set erf minimum size such that /a Mm(S^ H#ncef each

distinct subset of Sf corresponds to a distinct / e Fm. (Notice that we have really shown that Sf Is
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shattered by Fn.) Which in turn implies that

\FJ 2 2ty

or

Hence the proposition. •

Conversely, we can show that Propositbn 4 is tight in the following sense.

Proposition 5: If F is well-ordered, there exists/e FH such that

/= Mn(S) implies LSI

Proof: A simple counting argument There are at most 2"*x distinct examples. If every/€ Fn were

definable as the least concept containing some set of d examples, then

d M : ^ implying d

Hence, the proposition. •
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4. Time-Complexity Issues in Learning Sets
Thus far, we concerned ourselves with the information complexity of learning, i.e.,, the number of

examples required to learn. Another issue to be considered is the time-complexity of learning, i.e., the

time required to process the examples. In order to permit interesting measures of time-complexity, we

must specify the manner in which the learning algorithm identifies its approximation to the unknown

concept. In particular, we will require the learning algorithm to output a name of its approximation in

some predetermined naming scheme. To this end, we define the notion of an index for a family of

concepts.

In order for each concept in a family F to have a name of finite length, F would have to be at most

countably infinite. Assuming that the family F is countably infinite, we define an index of F to be a

function itF -» 2r such that

V / ^ € FJ * g implies I(f)rl(g) = 0.

For each/€ Fj(f) is the set of indices for/.

We are primarily interested in families mat can be learnt efficiently, i.e., in time polynomial in the

input parameters *, h and in the length of the shortest index for the concept to be learned. Analogous to

our definition of learnabilrty, we can now define polynomial-time leamability as follows. Essentially, a

family is polynomial-time leamable, if it is feasibly learnable by a polynomial-time algorithm.

Defn; A family of concepts F is polynomial-time learnable in an index / if there exists a deterministic

learning algorithm A such that
(a) A takes as input integers n and h.

(b) A runs in time polynomial in the error parameter K the length parameter n and in the length of
the shortest index in / for the concept to be learned /. A makes poiynomially few calls of
EXAMPLE, polynomial4 in n, h. EXAMPLE returns examples for/ chosen randomly according to
an arbitrary and unknown probability distribution P on I T .

(c) For all concepts / in F ami all probability distributions P on £"-, with probability (l-l//t) the
algorithm outputs an index ig e l(g) of a concept g in F such that

V*

We are interested in identifying the class of pairs (F, / ) , where F is a family of concepts and / is an

index for it, such that F is polynomial-time leamable in /. To this end, we define the following.

Defn: For a family F and index /, an ordering is a program that
(a) takes as input a set of examples S = {(xx j t ) , (x^j^-C**0^-) such that

xlti2,X5~. € 2T, and 3^3^ . € {0,1}.

(b) produces as output an index in / of a concept/ e F that is consistent with St if such exists, i.e.,
outputsiye / 0 f o r s o m e / € Fsuchthat

mmmtMf, we could pemitAto make as 'many calls of EXAMPLE as oossitle within its fme sound. Hits wl net change cur
discussion substatiaiy, In tm mtoBst of clanty w© wi net punua tife s^mm^m.
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Furthermore, if the ordering runs in time polynomial in the length of its input and the length of the

shortest such index, we say it is a polynomial-time ordering and F is polynomial-time orderable in /.

With these definitions in hand, we can state the following theorem.

Theorem 3: A family of concepts is polynomial-time learnable in an index / (1) if it is of polynomial

dimension and is polynomial-time orderable in /. (2) only if F is of polynomial dimension and is random

polynomial time orderable in/.5

Proof: (If) Let Q be a polynomial-time ordering for F in /. The following is a polynomial time learning

algorithm for F in / .

LeamIng_Aigortthm A3

Input: n, h
begin
cal EXAMPLE MdmFJ + W) times;
let s be the set of examples seen;
output 2(5);
end

Given Theorem 1, we know that A3 learns F, and only need bound its running time polynomial. Now,

Q runs in time polynomial in the size of its input and the length of the shortest index of any concept

consistent with S. Since the concept to be learned must be consistent with 5, surely Q runs in time

polynomial in A, h and in the length of the shortest index of the the concept to be learned. Hence, A3 runs

in time polynomial in n, h and in the length of the shortest index for the concept to be learned. Therefore,

F is polynomial-time leamabte in /.

(Only if) Assume that F is polynomial time Seamabie in an index / by an algorithm A. Since A calls for

polynotniaily few examples, F must be of polynomial dimension by Theorem 1. It remains to show that

there exists a randomized polynomial-time ordering forF. The following is such an ordering.

Ordering 0
Input: S:set of examples, ̂ integer;

begin
place the uniform djstn'bution on S;

run A an inputs n, *f and
on each cal of EXAM FLE by A
return a randomly chosen element of 5.
output the index output by A.
and

i a concept consistent with 5, whose index length is the shortest over all such concepts. Now,

with probabffity (1-l/A) A must output the index of a concept g that agrees with/with probability greater

at one that mam cmm cintng Ms cwnptftatiart



16

than ( l- l /A). Since the distribution is uniform and h > \S\, g must agree w i t h / o n every example in 5.

Hence with high probability, g is consistent with S. Furthermore, since A is a polynomial-time learning

algorithm for F, our ordering o is a randomized polynomial-time ordering for F in /. To see this, notice

that A runs in time polynomial in n and A, and /, the length of the shortest index o f / By our choice of *, it

follows that A runs in time polynomial in *, LSI and /. Hence, O runs in time polynomial in *, h and /, and is

a randomized polynomial-time ordering for F in /.

This completes the proof. •

We can state analogous results on the time-complexity of learning with one-sided error. Specifically,

an ordering for a well-ordered family would be an ordering as cfefined eariter with the exception that it

would produce the least concept consistent with the input. Also, we can modify our definition of

polynomial time leamability to allow only one-sided error. We can then state and prove the following.

Theorem 4: A family F is polynomial-time learnable with one-sided error; (1) if it is of polynomial

dimension, well-ordered and possesses a polynomial time ordering; (2) only if it is of polynomial

dimension, well-ordered and possesses a random polynomial time ordering.

Proof: A straightforward extension of earlier proofs. •
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5. Learning Functions
in the foregoing, we were concerned with learning approximations to concepts or sets. In the more

general setting, one may consider learning functions from 2T to r\ To do so, we must first modify our

definitions suitably and generalize our formulation of the problem.

Defn: We define a family of functions to be any set of functions from 2T to I*. For any fe Fn, the

projection/^:!*--*!* of/on Zn is given by

prefix of x, otherwise

Defn: The /^subfamily Fn of F is the projection of F on Xn, i.e,

The above two definitions are the analogues of the corresponding definitions for sets. The notion of

the projection/„ of a function/attempts to capture the behaviour of/on strings of length n. If for some

xe r^./Cx) is not of length at most n, it is truncated to n characters.

An example for a function/is a pair (xoO, x^y eV such that y =/fr). A learning algorithm (or more

precisely a learning function) for a family of functions is an algorithm that attempts to infer approximations

to functions in F from examples for it. The learning algorithm has at its disposal a subroutine EXAMPLE,

which at each call produces a randomly chosen example for the function to be learned. The examples

are chosen according to an arbitrary and unknown probability distribution p in that the probability that a

particular example {xj(x)) will be produced at any call is P(x).

As in the case of sets, we define leamability as follows.

Defn: A family erf functions F is feastoty leamable If there exists an algorithm A such that
(a) A takes as input integers n and K where n is the size parameter and h the error parameter.

{h)A makes polynomial few calls of EXAMPLE, polynomial in n and h. EXAMPLE returns
examples for some function/^ e Fn% chosen according to an arbitrary and unknown probability
distributions on

(c) For ail functions fm e Fn and ail probability distributions P on IT, with probability (1-1//*), A
outputs a a function ge F such that

Our defratJoft of dimension "m this setting is exactly the same as the one given earlier for concepts.

We ran now generalize the notion of shattering as follows.

Dtfti: Let F be a family of functions from a set X to a set r. We say F shatters a set $cX I there

exist two fyncifons/f$ € Fsuchthat
(a) for any sc SJ(s)*t(f).

(b) for al 5, c S, there exist e e F mxh thai e agrees with/on Sx and with g on SSX. s.e.f
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Vj e Sj :*(»=:/(s)

We can now generalize our shattering lemma for functions as follows.

Lemma 2 (Generalized Shattering Lemma): if Fn is of dimension 4 Fn shatters a set of size

ceiling(d/@n+3))). Also, every set shattered by Fn is of size at most d.

Proof: The upper bound part of the lemma can be proved exactly as the corresponding part of

Lemma 1. To see that this upper bound can be attained, we simply need to consider a family Fn of

{0,1} -valued functions.

The lower bound part of the lemma is proved through the following claim.

Claim: Let X and 7 be two finite sets and let H be a set of functions from X to 7. If k is the size of

the largest subset of X shattered by H, then

Proof: By induction on IXL

Basis; Clearly true for 1X1=1, for alt 171.

Induction: Assume true for 1Y1 = /, 171= m and prove true for 1X1 = /+l , 171 = m. Let X = (x^ J^ .. ., x{} and

subsetsH-otHasfollows.

Also, define the sets of functions HLj ami HQ as follows.

Now,

HI-lHy + iU^/r^i ^ Hy+

We seek bounds on the quantities on the right-hand side of the last inequality. By definition, the functions

In Ho am ail distinct on the m elements of X-ixJ. Furthermore, the largest set shattered in HQ must be of

cardinality no greater than k. Hence, we have by the inductive hypothesis,

Ami then, every #&. shatters a set of cardinally at most * - l , as othifwtee H would shatter a set of

cardinality greater than L Nmf skim the functions in H9 are a! dstinct on x - {xj)f we have by the

Inductive hypothesis,
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Combining the last three inequalities, we have

Which completes tfie poof of the daim. •

Returning to the *mm*.m*tomX-Y-ir,a**ml-M-1!»l. If k is the cardinality of the

tagest set in I?" shattered by /v we have by our daim,

Taking logarithms,

Hence, k £ 4/(3/t+3), which is as desired- •.

Using this lemma, we can prove the following theorem.

Theorem 5: A family of functions is feasfoly learnabte if and only if it is of polynomial dimension.

Proof: Similar to the proof of Theorem 1, except that we need use the generalized notion of

shattering and the corresponding generalized shattering lemma. •

Analogous to our development erf time-complexity considerations for concept learning, we define the

following.

For a family of functions F of countable cardinality, we define an index / to be a naming scheme for

the fundtona in FJn a sense identical to that for a famBy of concepts.

We say a family of functions F is polynomial-time leamable in an index /, if there exists a
aeterrnmistic Earning aigonthm .4 such that
{a) A takes as input integers n ami n.

(b| A runs in time pc^nomisi in the mm parameter A, the length parameter n and in the length of
ft* shortest Index in / for the function to be teamed / A makes polynomial^ few calls of
£XAMFt£f po^mmM in «. tu EXAMPLE rrturm example forfn chosen ranctomly according to
an arbitrary swd unhncwm prababity

(c) Rr a.i1 concepts / In F and aH pnbobHy ( l ^ t a ^ H ^ F on 271, with probability (1-l/A) the

We am Wtftsted fci ktotiyir^ tht dass of pafcs ( f f / ) , where F te a famity of concepts ami / is an

start To this end, we define the following.

Qit t :

fal t r im as input a set of msmplm S » {(xt^t)f (^ %)— ( W i M - L e t « ^ tt1© ̂ ^ t h of the
kmgast rt*^ among tht xi and |^
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(b) produces as output an index in / of a concept/ € F that is consistent with S, if such exists, i.e.,
outputs if € /(/) tor some/ € F such that

Furthermore, if the ordering runs in time polynomial in the length of its input and the length of the shortest

such index, we say it is a polynomial-time ordering and F is polynomial-time orderable in /.

With these definitions in hand, we can state the following theorem.

Theorem 6: A family of functions is polynomial-time leamable: (1) if it is of polynomial dimension

and polynomial-time orderable; (2) only if it is of polynomial dimension and is orderable in random

polynomial time.

Proof: Similar to that of Theorem 3. •
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6. Finite Learnability
Thus far we explored the asymptotic learnability of families of sets and functions, that is to say, we

considered the asymptotic variation of the number of examples needed for learning with increasing values

of the size parameter. We will now investigate a different notion of learnability, one that asks whether the

number of examples needed for learning is finite, Le, varies as a finite-valued function of the error

parameter, without regaid to the size parameter. We call this notion of leamability "finite learnabilrty" as

opposed to the notion of asymptotic learnability.

For the case of families of sets, [Blumer et at, 1986] present conditions necessary and sufficient for

finrte-leamability. Their elegant results rely on the powerful results in classical probability theory of

[Vapnik and Chervonenkis, 1971]. In the following we review their results briefly and then go on to

present leamability results for families of functions, relying in part on the same results of [Vapnik and

Chervonenkis, 1971].

Defn: Let F be a family of sets on R* where R is the set of reals and £ is a fixed natural number.

We say F is finitely learnabfe if there exists an algorithm A such that
(a) A takes as input integer h, the error parameter.

(b) A makes finitely many calls of EXAMPLE, although the exact number of calls may depend on A.
EXAMPLE returns examples for some function/in F, where the examples are chosen randomly

rding to an arbitrary and unknown probability distribution P on R.

(c) For all probability distributions P ami all functions/in F, with probability (1-1/A), A outputs geF

dP £ 1/k
}f*g

The following theorem is from [Blumer et al., 1986].

Theorem 7: [Blumer et ai., 1986] A family of sets F on R* is finitely leamable if and only if F shatters

only finite subsets of R*. ([Blumer et al., 1986] refer to the size of the largest set shattered by F as the

Vapnik-Chervonenkis dimension of the family F).

Let us now formalize the notion of finite leamabiiity of families of functions on the reals.

Defn: Let F be a family of functions from R* to R* where R is the set of reals and k is a fixed natural

number. We say F Is finitely leamable if there exists an algorithm A such that
(a) A takes as input integer A, the error parameter.

(b) A makes flniely many calls of EXAMPLE, although the exact number of calls may depend on h.
EXAMPLE returns examples for some function/in F, where the examples are chosen randomly
according to an arbitraiy ami unknown probability distribution P on R*

(c) For all probability distributions P and all functions/ in F, with probability (1-1/A), A outputs g€ F
such that

t P £ Vk

We need ttwfoicming support^ deffn«ion& Let/be a function from R* to R*. We defJne the graph

otf, denoted by gropMf), to be the set of ai examples for/. That is,
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graph(f) m {(xj)l y =/(*)}.

Clearly, grapMf) c R*xR*. Analogously, for a family of functions F, we define grapHF) to be the set of

graphs for the functions in F. That is,

graph(F) = {graph(f)\f € F} .

We now state the main theorem of this section. The theorem is not tight in the sense that the

necessary and sufficient conditions do not match. (In [Natarajan, 19881, a tight version of the theorem

was reported, on the basis of an incorrect proof.) Indeed, we will identify a finitely leamable family of

functions that sits in the gap between these conditions.

Theorem 8: A family of functions F from R* to R* is finitely learnable

(a) If there exists a bound on the size of the sets in R*xR* shattered by grapk(F). (simple shattering
as defined in Section 2.)

(b) Only if there exists a bound on the size of the sets in R* shattered by F. (Generalized shattering
as defined in Section 5.)

Proof: (If) This direction of the proof follows from the convergence results of [Vapnik and

Chervonenkis, 1971] exactly as shown in [Blumer et aL, 1986]. Essentially, the TP condition implies that

the family graphij) is finitely leamable. Whence it follows that the family F is finitely leamable.

(Only if) This direction of the proof is identical to the asymptotic case of Theorem 4, which in turn

followed the arguments of Theorem 1. •

While Theorem 8 is not tight, it appears that tightening it is a rather difficult task. Indeed we

conjecture that the "if" condition should match the "only if condition as stated below.

Conjecture: A family of functions F from R* to R* is finitely leamable if ami only if there exists a

bound on the size of the sets in R* shattered by F.

To give the reader a flavour of the difficulties involved in tightening Theorem 8, we give an example

of a family F of functions that lies in the gap between the necessary ami sufficient conditions of Theorem

8, Le

(a) F shatters sets of size at most one.

(b) grapWF) shatters arbitrarily large sets.

(c) F is finitely leamable.

Example: Let M be the natural numbers in binary representation. For any ae N, define the function

/a:N-»N as follows.

a, if the*1* bit of a is 1
0 otherwise

Define the family F as follows.
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Claim: F shatters sets of size at most one.

Proof: Suppose F shatters a set of size greater than one. Then F must shatter a set of size 2. Let

S * {ajb} be such a set. By definition, there exist three functions/ g9 e in F such \haif(a)*g(a),f(b)*g(b)

and e(a) **f(a\ e(b)« g(b). Since, fta)*g(a)t one of them must be zero and the other non-zero. Without

toss of generality, assume that yfo) is non-zero. Mow, by the definition of the functions in /\/(a) = *(a) * 0

implies that/= e. This contradicts the assumption that e(b)« g(b) * f{b)> and hence the claim. •

Claim: graph{F) shatters arbitrarily large sets.

Proof: Let Sl be any arbitrarily large but finite subset of N. Consider S = Sxx{0}. It is easy to see

that grapHF) shatters Sf as for any subset S2 of S, there exists a set/ e F such that /n 5 = s2. To see

this, notice that for any subset Sj of S, we can pick an integer ae N, such that/a n 5 = ^ Since S was

picked to be arbitrarily large, the claim is proved. •

Claim: F is finitely iearnable.

Proof: The following is a learning algorithm for F.

Learning Algorithm A4

Input h;

begin
call for «0#(ft) exanples.
If any of the examples seen is of the

then output f
else output/Q.

end

It is easy to stow that the probabilities work out for algorithm A above. Suppose the function to be

learned were/a, for some a#0. Then, if

dP £ I/A,

with probability (1—l/A), in hlogh examples there must be an example of the form (x,a). In which case, the

algorithm will output/^, implying that with probability (1-i/A), the algorithm learns the unknown function

exactly. Hence the claim. •

The interesting thing about the functions fet F is that each function (Mere from the 'base function/0 on

fHttfy i w i y jx*«s t and on ttiase poite, the vsAie of the function is the name of the function. Berm if

th» teaT*^ a^rWwn sees a non-zero value h sm example, i cm urA^jely Wentify the function be
teamed* •

Tins far. we cmmkimmi fwuHkm on real spaces, requiring that on a randomly chosen poirtv
Mgh 'prolMi»y tha iaamar's application sp«e exactly wih the function to be learned. TWs
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infinite precision arithmetic and hence is largely of technical interest. But then, if all the computations are

carried out only to some finite precision, Theorem 5 would apply directly. Alternatively, we could require

that the learned function approximate the target function with respect to some predetermined norm. In

the following, we consider the case of the square norm, for a single probability distribution P.

First, we limit the discussion to families of "normalized- functions. Let E(aJ>) denote the euclkJean

distance between any two points a and b. Let F:R*->R* be a family of functions such that for every fe F

and jce R* £(/(x),0*) ^ 1, where 0* is the origin \n R*. Then, we fix the probability distribution P.

Defn: We say that F is finitely learnable with respect to the square norm and a distribution p am R*
if there exists an algorithm A such that:
(a) A takes as input an integer /t, the error parameter.

(b)A makes finitely many calls of EXAMPLE, though the exact number may depend on h.
EXAMPLE returns examples for some function/in F, where the examples are chosen according
to the distribution P.

(c) For all functions/ € F, with probability /t, A ou^Hits a function g e F such that

Before we can state our result in this setting, we need the following defintkm, adapted from

[Benedeck and ttat, 1988].

Defn: For small positive 5: K&F is a 5-cover with respect to the square norm and distribution P if, for

any fe F there exists g€ K such that,

J.
Theorem 9: A family of functions is finitely iearnable with rescec: to the square norm and a

distrtoution Pt if and only »for all positive 8, there exists a ftniie 8-cowrfor F.

Proof: The details of the pioof are Identical to that of the main theorem of {Bemcfeek actd i l l ,

19881. A teaming algorithm' A for F can be described as toSoms: on Input A, A constructs an iik<mm oi F

of minimum size. A then calls for sufficiently many examples to p e m * I to fAdc on® erf the functions «n the

knot with sufficiently high confidence. •
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