
Abstract

This paper explores a new direction in the formal theory of learning - learning in the sense of

improving computational efficiency as opposed to concept learning in the sense of Valiant. Specifically,

the paper concerns algorithms that leam to solve problems from sample instances of the problems. We

develop a general framework for such learning and study the framework over two distinct random sources

of sample instances. The first source provides sample instances together with their solutions, while the

second source provides unsolved instances or "exercises". We prove two theorems identifying conditions

sufficient for learning over the two sources, our proofs being constructive in that they exhibit learning

algorithms. To illustrate the scope of our results, we discuss their application to a program that learns to

solve restricted classes of symbolic integrals.

Ubrsrire

1. Introduction

In [1], Valiant introduced a rich framework for the analysis of algorithms that learn to approximate

sets from randomly chosen elements within and without the sets. This framework and its extensions has

been analyzed by a number of authors, [2, 3, 4, 5] amongst others. In this paper, we present a new

framework concerning algorithms that learn to solve problems approximately, instances. Early steps in

this direction were taken in [4]. In a sense, this can be viewed as learning to improve computational

efficiency as opposed to concept learning in the sense of Valiant. We believe that this is an important

new direction in the formal theory of learning.

Consider the problem of symbolic integration. Given the definition of the problem and a standard

table of integrals, we have complete information on how to solve the problem. Yet, although we are

capable of solving instances of symbolic integration immediately, we are by no means efficient in our

methods. It appears that we need to examine sample instances, study solutions to these instances, and

based on these solutions build up a set of heuristics that will enable us to solve the problem fast. In this

sense, the learning process has helped improve our computational efficiency. Similarly, given some other

problem, say Rubik's cube, and the instructions concerning its solution, we would like to become

proficient at it just as quickly. In essence, we would like to behave in the following manner: given the

specification of a problem, we quickly learn to be efficient at solving the problem. Stated more abstractly:

Consider a class of problems, such that each problem in the class is known to possess an efficient

algorithm. We are interested in a meta-algorithm for the class - an algorithm that takes as input the

specification of a problem drawn from the class as well as sample instances of the problem, and produces

as output an efficient algorithm for the problem. As we will see, the sample instances play a crucial role in

the process, as in their absence, constructing an algorithm for the input problem can be computationally

intractable. In this paper, we are interested in examining learning in the aforementioned sense.

Specifically, we inquire into the conditions under which such learning is possible. Our methods of

analysis are probabilistic in flavour, akin to those of Valiant [1].

In Section 2, we present a formal definition of the learning framework. The framework formalizes

learning in the above sense, demanding that the learner learn to solve a problem, given a source of

randomly chosen solved instances of the problem. We prove a theorem identifying conditions sufficient to

allow such learning. In Section 3, we consider an application of our theorem to a restricted version of

symbolic integration. In particular, we show how to construct an algorithm that is capable of learning to

solve such restricted classes of integrals from randomly chosen examples. In Section 4, we change the

source of sanple instances to one that provides unsolved instances that are chosen in a random but

slightly benevolent manner. Specifically, rather than present the learning algorithm with randomly chosen

solved instances of the problem, the learning algorithm is only allowed randomly chosen "exercises" on

the problem - unsolved instances of the problem, chosen according to a probability distribution measuring

their importance to the learner. This is very much the same as the exercises in a work-book, such as one

might find at the end of a book dealing with say symbolic integration or differential equations. We are

Carn<
Pittsbur

able to prove that the condit ions sufficient for learning f rom solved instances are suff icient for learning

here as wel l . The proof is constructive in that we give a genera l learning a lgor i thm that learns by solving

the exercises, solving them in order of least difficult to most difficult. This t heo rem const i tutes our main

result.

2. Learning From Solved Instances

Let 2 be the {0,1} boolean alphabet.

Defn: A problem D is the pair (G, 0), where
(a)The goaIG:l*-> {0,1} is function from Z* to (0,1) computable in polynomial time.

(b)<9 is a finite set of operators [ov ov.,.} where each o^V^V is a function computable in
polynomial time.

A specification of a problem D = (G,0) is a set of programs for G and O that run in polynomial time.

Defn: We say an instance x e I* of a problem D =(G,6>) is solvable if there exists a sequence of

operators a such that G(q(x)) = 1. The sequence a is a solution sequence for x. The sequence length of

a solution sequence is the number of operator applications in ft, i.e., the length of a = |a|. Unless

demanded by context, we use the term length to refer to the sequence length of a solution sequence. A

solution sequence a is optimal lor xti its length is as short as that of any solution sequence for x.

Defn: Let a = P\P-j>i-Pt be a solution sequence to x, where the pi are operators in o. We say x,

Pi(*), Pt-iPfa)-» are steps in the solution of x and that pt(x), Pt_xpt(x),... are intermediate steps in the

solution of x. The step-length of 0 with respect to x is the maximum of {W, \pt(x)\9 \Pt_xpt(x)\,....}, i.e., it is

the length of the longest instance encountered in using a to solve x.

Defn: An algorithm for a problem D is a program that takes as input a string xe 1* and produces as

output a solution sequence for xf if such exists.

A family of problems M Is simply any set of problems. We are interested in an algorithm that Is

useful over a family of problems, in that it Is capable of leaming to solve any of the problems in the family.

To this end, we define the notion of a meta-algorfthrn for a famiiv. Loosely speaking, a meta-algorithmiot

a family M is an algorithm that takes as input the specification of a problem D in M and attempts to

construct an algorithm for £X -Givers the scope of our definition of a family of problems, it is easy to see

that the task of the meta-aigorithoi will be MP-hard for most non-trivial families. See [4]. This is true, even

i we guarantee that every pmbfem in the family has a polynomial-time algorithm - the difficulty lies in

finding such an algorithm, given the specification of the problem. In order to reduce this complexity and

thereby aid the- meta-algorithm in Is task, we provide the meta-algorithm with sample instances of the

problem specified in Is input Specificaify, we consider two distinct sources of such sample instances,

one providing the meta-algorithm with randomly chosen solved instances, and the other providing

unsolved instances that are randomly chosen, although in a slightly more benevolent manner than the

first source. The first source is the simpler to analyze and will be the subject of the remainder of this

section. The second source is considered in Section 4.

We place at the disposal of the mera-algorithm a subroutine INSTANCE which acts as a random

source of solved instances. We may view INSTANCE as a black box with a button, such that at each

push of the button, INSTANCE outputs a randomly chosen solved instance of the input problem D.

Specifically, at each call, INSTANCE returns a pair (x,o). The string xe V is randomly drawn according to

an arbitrary and unknown probability distribution P on I*. The operator sequence a is a randomly chosen

optimal solution sequence for x, being the null-sequence if x is not solvable or if x is solved as it is. By

randomly chosen, we mean that at any stage in the solution of x, the next operator used by INSTANCE is

picked randomly from among those that are useful. In order to make this precise, we need the following

definition.

Defn: Let D=(G,O) be a problem. For each operator oe O, consider the set

U(o) = [x\ 3 an optimal solution of the form <y-o iotx]

We call U(o) the projection of oy and U{D) = {U(o)\o e D) the projections of D,

For any x in I* , let Ox be the set of operators useful on x, i.e.,

Ox= {o\oe <9,x€ U(o)}.

When solving x, the first operator used by INSTANCE is picked at random from Ox. Specifically, if there

are p operators in Ox, each is picked with probability 1/p1. Similarly, the second operator is picked at

random from O , where y is the result of applying the first operator to x. And so on.

With these definitions in hand, we attempt to make precise our notion of a meta-algorithm. In

essence, a meta-algorithm A for a family of problems M will take as input an error parameter h and the

specification of a problem D in M. A will then compute for time polynomial in various parameters and

output a program H that efficiently approximates an algorithm for D. By this we mean that we mean that

H will behave like an algorithm for D with probability (l-l//z). A formal definition follows.

Defn: An algorithm A is a meta-algorithm for a family of problems M if there exists an integer k such

that

(a)A takes as input an integer h and the specification of a problem D e M. Let I be the string length
of this input.

(b)A may call INSTANCE. INSTANCE returns examples for Df chosen according to some unknown
distribution P over r. Let n be the longest step-length and m the longest sequence length of the
solutions so provided by INSTANCE. For inputs of length n, let t(n) be the sum of the running

1 Jt» sufficient If each is picked with probability at least Vpoiyiml where n =uri and poty{*) denotes a polynomial in m.

times of the programs in the specification of D. A computes in time (lhmt(n))k, i.e., in time
polynomial in the length of its input /, the error parameter h and the time required to evaluate the
programs in the specification of D on the examples seen. A may be a randomized algorithm.

(c)For all De M and all distributions P over IT, with probability (l- l / / i) A outputs a (possibly
randomized) program H that runs in time t{n)k on inputs of length n and approximates an algorithm
forD in the sense that

X ^W < l/A
X € S

where S = [x\ H fails on x}

Since H may be randomized, by M// fails on xM, we mean that H fails to solve x with probability
greater than 1/2, although x is solvable.

We now inquire into the conditions under which a family of problems posseses a meta-algorithm.

Theorem 1 identifies conditions sufficient to guarantee the existence of a meta-algorithm. Necessary

conditions appear to be much harder to obtain, perhaps requiring a greater understanding of learning with

"advice" as explored in [4]. The statement and proof of Theorem 1 are based on previous results on

learning sets with one-sided error [3]. These results are reviewed briefly in Appendix A. We refer the

unfamiliar reader to that section before proceeding to the theorem.

Theorem 1: A family of problems M possesses a meta-algorithm if there exists a family of sets F

such that

(a)F contains the projections of every problem D in M.

(b)F is polynomial-time leamable with one-sided error. (See Appendix A for details.)

Proof: (sketch) For a given problem D, if we can test membership in the projections of D efficiently,

then we can construct an efficient algorithm forD. The following is such an algorithm.

Input x: string;
begin

0 <- null-sequence;
White G(x)# ldo

pick o € 0 such that x € U(o);
if ro such exists* haft; —x is not solvable—
x 4 - o(x);

end
output c as solution for x;

end
The key idea In the proof is as follows: Given a problem D, the meta-algorithm will construct

approximations to the projections of D using the solved instances, ft will then substitute these

approximations in the above algorithm to- obtain an approximate algorithm for D. If the conditions of the

theorem are satisfied, this can be carried out In random polynomial-time, yielding a good approximation of

analgofthmfor£>.

The rest of the proof tteafe with the details, -ipecifically, we will exhibit a meta-algorithm for M. We

need the following definition. Let D be a problem in A/. We define the quantity lD(n) to be the set of ail

instances in D that possess optimal solutions of step-length less than n.

lD(n) = [xbc has an optimal solution in D of step-length at most n]

When the problem D is clear from the context, we will simply write /(/i). Also, for 5e (0,1) define the

quantity n6 as the least integer n such that

P(x) > 1-8
:e I(n

That is, n5 is the least integer such that the probability of occurrence of an optimal solution of step-length

greater than n§ is less than 5. In what follows, we will arrange for the meta-algorithm to learn

approximations to the projections of D that are good for strings of length ns or less, for a value of 5 that

will be appropriately chosen.

Let F be a family as in the statement of the theorem. By Theorem A of Appendix A, F must possess

a polynomial-time ordering Q. We use Q to construct a meta-algorithm A for M as shown below. The

algorithm uses Q to construct good approximations for the projections of D and then uses these

projections to build an algorithm for D.

Meta-Algorithm A1

Input h,D=(G,O)
Let F be of dimension d(n)\
Let <9 = {0-I/= l..£};
Let S(ox),..S(ok)t V(ox),..V(od be sets, initially empty;
begin
Section 1:
—This section estimates nlJ3h with confidence (1-1/3/0
call INSTANCE 3h-log(3h) times.
Let n be the longest step-length amongst those seen.
Section 2:
—This section generates examples for projections —
repeat 3h(kd{n))+log(3h)) times

call INSTANCE to obtain (x,a);
Jet a be the sequence ox ox ...ox ;

S{ox) < - S (o x x ^ r X i

end
Section 3:
—This section constructs approximations of projections-
repeat /=ijfc times

if Q is randomized, repeat to confidence of l-l/3/i;
end
Section 4:
Output the following as an approximate algorithm for£>
Algorithm H
input x: string;
begin

0 <r- null-sequence;
While G(x) * I do

x

if Ox is empty then halt
else pick o in Ox uniformly randomly.

end
output 0 as solution for x;

end

end

We nmv ' ^ K W that the above Is indeed a meta-algorthm for M. Consider Section 1 of the algorithm.

We need to- slxw that drawing 3h»k>g(3k) instances will prcxloce a step-length m such that nmh < n. For

any sitigfe cai of INSTANCE, the probability of a step-length of less than nmh occurring is (1-1/3/*) by

definition. In i calls of INSTANCE, the probability of all the step-lengths being less than nlr3h is hence

(I-l/3*;tl We only need pick i such that

S Ifih

Which inequality is satisfied by choosing r = 3h-log(3h).

We will consider Sections 2, 3, and 4 of the algorithm simultaneously. With respect to strings of

length n or less, each set V{o) can be chosen in \Fn\ ways in Section 3 of the algorithm. Hence, the

number of distinct algorithms that can be constructed in Section 4 is \Fn\
k. Let S be the set of algorithms

so constructive. If n > nl/3h, at least one of these algorithms will approximate an algorithm for D within

1/3*. This is because the statement of the theorem demands that F contains the projections of D. Now,

the aim of Sections 2 and 3 is to eliminate those algorithms in S that are bad approximations. Consider

algorithms in S that do not approximate an algorithm for D within l/3h. Call such algorithms HbadH. The

probability that a particular bad algorithm will correctly solve a randomly chosen instance is (1-1/3*), and

the probability that the algorithm will correctly solve all of r randomly chosen instances is (l - l /3*) r . The

probability that any bad algorithm in S will correctly solve r random instances is at most LSI(l-l/3*)r. To

eliminate all bad algorithms in S with confidence (1-1/3*), we only need to make the above quantity less

than 1/3*. That is,

lS\(l-\/3h)r < 1/3*

Since, 151 < IF/ and \Fn\ < 2d{-m\ we have,

2**0(i-i/3A)' < 1/3*
or
r > 3h(kd(m) + logQh)).

This is exactly the number of instances employed by Sections 2 and 3 to eliminate the bad algorithms in

S. Since Sections 1, 2 and 3 are each carried out to a confidence of (1-1/3*), the overall confidence is

(l-l//z). Furthermore, the elimination of bad algorithms from S constructs an algorithm that approximates

an algorithm for D within (2/3*). This is so because the best approximation within S need only be within

1/3* owing to our choice of m, and the elimination process will construct an algorithm within 1/3* of this

best algorithm.

in all, with probability (1-1/*) the meta-algorithm constructs an algorithm for the input problem D that

is within 2/3* in accuracy. Hence, A is a meta-algorithm for M and the theorem is proved. •

3. An Application to Symbolic Integration

In this section we discuss an application of Theorem 1 to the domain of symbolic integration. There

have been reports in the Al literature of programs that learn to carry out restricted forms of symbolic

integration. See [6] for instance. We will show how this can be achieved by a straightforward application

of Theorem 1.

Consider the class of integrals that can be solved 'by the following standard integrals.

J
J

/I+l

sinxdx = -o^x

cosxdx = -jz/a

^ j g(x)dx

J
J
J

ud(v) = uv -

Suppose we wish to construct an algorithm that can solve this class of integrals.

Consider the following grammar r.

prob —> exp var I d(exp)

exp -> term fterm + «pj Term - e;cp I term / term I

term ightarrow p—term I p-term * term

p-term —> c0/trt var I - term I trig power prob! e:cp

power —* var ** term

trig -> SIN var I COS var

const -» / « / ! a I Jfc

var ~» x 13? 12

z/if rightarrow II2!3l4I5tel7I8}9I0

This grammar generates a superset of the strings that will be seen as input to the integration algorithm.

Let a be any sentential form in the grammar r. Define L(a) to be the set of strings derivable in r from a.

That is,

£{a)= {xfa -» r x}.

Let F he the family of all such sets, i.e.,

F = {L(a)f a is a sentential form in r) .

It is easy to see that F Is polynomial-time leamable with one sided error. To do so, we only need

invoke Theorem A of Appendix A and check that (a) F is closed under intersection. We show the

equivalent condition J3] that for any set of strings, there exists a leas f sentential form that generates

them. By toast, we mean t'hat any other sentential form that generates these strings will be a super set of

the least sentential form. To see this, given a set of strings we can efficiently compute the least sentential

toon that generates them as follows. Construct the parse trees for these strings in r, and then march up

these parse trees siimiftan«xisJy to pick off points common to all of them. Since the parse trees are

unique in r, the claim follows, (b) F posseses a polynomial-time ordering. Indeed, we will exhibit a

deterministic linear time ordering for F, For any set of strings, compute the least sentential form that

generates them as described above, Qme we have this least sentential form, it is a simple matter to

output a program that recognizes strings that can be generated from it. (c) Since the number of sentential

forms of length n is at most cn for some constant c, F is of dimension n-log(c).

We now hope that F contains the projections of all the standard integrals listed earlier. (To be

honest, it does contain them.) We can then invoke the meta-algorithm of Theorem 1, and provide it with

randomly chosen solved instances of these integrals. By Theorem 1, the output of the meta-algorithm will

indeed be a good algorithm for the class of integrals in question. Tadepalli, in [4] implemented this

algorithm and verified this to be the case.

4. Learning From Exercises

In the foregoing, we considered a model of learning wherein the external agent INSTANCE provided

solved instances of the problem of interest. In this section, we consider a model of learning wherein the

external agent provides unsolved instances of the problem of interest, although these instances are

chosen a little more carefully than in the previous model. The unsolved instances are exercises, in much

the same sense as those that may be found at the end of a text book on symbolic integration. Note that

the exercises in the back of the book are not representative of the "natural" distribution of problem

instances, but are chosen to reinforce the techniques required to solve them. In this section, we formalize

the notion of learning from exercises and prove a theorem similar to that of Theorem 1.

We now replace the routine INSTANCE of the previous section with a routine EX. The key idea is to

provide the learning algorithm with a source of unsolved instances of varying difficulty. This will permit

the learning algorithm to consider increasingly difficult instances, improving its capabilities as it

progresses. Let P be a probability distribution on 2T, and let INSTANCE be defined according to P as

described earlier. We can best describe EX in terms of INSTANCE, as shown below. In essence, EX

takes as argument an integer / and returns an instance x such that the optimal solution of x has length /.

The probability that a particular instance x will be returned by any call of EX is the probability that x will be

used in a solution by INSTANCE. This is a measure of the importance of knowing how to solve x, with

respect to the natural distribution P.

function EX(/)
begin

call INSTANCE to obtain (x,a);
If lal < /, output the null instance.
else
let a = a ^ , where k^l = /
OUtpUt CTjO).

end

We now define the notion of a meta-algorithm for a family of problems in this setting. This definition

is largely identical to that of Section 2, except for the use of EX instead of INSTANCE.

10

Defn: An algorithm A Is a meta-afgorithm for a family of problems M if there exists an integer k such
that

(a)A takes as input integer h and the specification of a problem D e M. Let / be the string length ofthis input.

(b)A may call EX. EX returns instances of D drawn according to some unknown distribution P over
X*. Let n be the least integer such that all the instances so produced by EX are in I(n)t and let m
be the largest integer used as argument to EX. For inputs of length n, let the sum of the running
times of the programs in the specification of D be t(n). A computes for time less than (lhmt(n))k,
i.e., in time polynomial in the length of its input /, the error parameter h, the length m of the optimal
solutions of the instances seen, and the time required to evaluate the programs in the
specification of D on the instances seen. A may be a randomized algorithm.

(c)For all De M and all distributions P over I*, with probability (1-1/A) A outputs a (possibly
randomized) program H that runs in time (t(r))k on inputs of length r and approximates an
algorithm forD in the sense that

xe S
whereS={xl //fails onx)

Since H may be randomized, by 7/ fails on x", we mean that H fails to solve x with probabilitygreater than 1/2, although x is solvable.

We now inquire into the conditions under which a family of problems possesses a meta-algorithm in

this model. As it happens, the theorem we prove for this model is identical in its statement to Theorem 1

Theorem 2: A family of problems M possesses a meta-algorithm if there exists a family of sefsf
such that

(a)F contains the projections of every problem D in M.

(b)F is polynomial-time leamable with one-sided error (See Appendix A for details.)

Note that this pertains to the model wherein the meta-algorithm seeks unsolved instances from
EXERCISE.

Proof: (Sketch) The key idea in this proof is similar to that of Theorem 1 - the meta-algorithm
constructs approximations to the projections of D. The catch is that it must provide solutions to the
instances on its own. To do so, the meta-algorithm iteratively learns to solve problems with increasingly
longer solution sequences. Specifically, the meta-algorithm first learns to solve problems with solution
sequences of length one. Knowing how to solve problems with solution sequences of length /, it learns to
solve problems with solutions of length i+ i . In order to describe such an algorithm, we need the following
definition.

Dtfn: ForD e M ami 8e (0,1) define the quantity ma to be the least integer such that

where S = I Ac has a solution of length m o r less in D}.

11

Meta-Algorlthm A^
input hyD=(G,O)
Let F be of dimension d{n)\
LetO= {^.lz= l.Jfc};
Let 5(o1),...5(^), V(ox),..V(o$ be sets, initially empty;
begin
Section 1:
let a = l/4/z.
Estimate m>ma to a confidence of (1-a).
Let £ = \l(2hm2).
Estimate n>nz to a confidence of (1-e).
Substitute the null sets for the V(o)'s in the algorithm of Section 3
to obtain the algorithm Ho.
Section 2:
for/= 1,2, ...jn do

pick r, such that r//n(r) > l/z(kd(n) + //i(l/e)) +/n(l/e)
call EX(/) r times
let £ be the set of instances so obtained;
for each o G O and each xe E do

run / / M on o(x), repeating to a confidence of (1-E
if / / M solves <9(x) in / - I steps then

od
for each o e O do

^) = Q(5(6));
if (2 is randomized, repeat to confidence of (1-e)

od
construct the algorithm of section 3 using the newly computed values of
the V(o)'s. Call this algorithm Hv

od

Section 3:
Algorithm H
input x: string;
begin

a f~ null-sequence ;
While G(x) * 1 do

letOx= {obce V(o)};
if Ox is empty then halt and repon failure.
else pick o in Ox uniformly randomly.
X <r- O(x)l

end
output a as solution forx;

end

Output Hm as an approximate algorithm for D
end

We will prove the above meta-algorithm correct in stages. First we consider Section 1. The

estimation here is to be done exactly as in Section 1 of Meta-AIgorithm 1, and the corresponding proof

holds.

12

We now consider Sections 2 and 3 simultanousiy. We proceed by induction, with the following being

our inductive hypothesis. To simpify the proof, let us assume that our estimate n for nE is to a confidence

of unity. We will account for this at a later stage.

Inductive Hypothesis: In any run of the meta algorithm, with probability (l-e)4/

£/>,(*) > (1-e)' eqn(l)
xe S

where 5 = [x\Hl is correct2 on x) and Pl is the conditional distribution given by

= Pr{x is produced by any call of EX(/) \xe Kn)}.

Basis: For / = 0: Ho produces the empty sequence as solution for the set [x\y G(x) = 1} and fails on

ail other inputs. Hence £ X € s P0(x) = 1, and the inductive hypothesis is satisfied for / =0.

Induction: Assume that the inductive hypothesis is true for (M) and prove true for /.

Let S£o), 5M(0), V/o), vM(tf) represent the sets S(o) and v<n) for operator o at the end of iterations /

and M respectively of the outer for loop in the meta-algorithm. Now, consider the following algorithm.

Algorithm Hv

Input*: string;
begin

let Ox={olx e V£o)}\
If Ox is empty then halt and report failure.
else pick o in Ox uniformly randomly.

x <- o(x).
r u n / / M onx
if HImml solves x with solution a

output ao and halt.
else report failure.
end

H* Is different from Ht in that ft uses the v/s for deciding only on the first operator in the solution of

an input instance x After that I runs / / w . By the Inductive hypothesis, / / M can be as inaccurate as

{\-z)K Hence, if cannot do better than that. The important thing is that it is possible to choose the

Vfoys from F so that this accuracy is attained. To see this, recall that F contains the projection of 0 - the

U(<QYS. Ami choosing V(a)« U(o) for each o will satisfy our demands. Furthermore, since the probability

distribution Pl is non-zero only on instances of length n (and the null instance), it follows that we coefd psi

as well pick v(o) = Uioysn*. TTiat is, we could pick v(o) from Fw rather than from F.

%y ths we mam tM Hi sdv» x wiifi f«>batelity z 1/2 if x is solvable

13

We will now show how to construct good approximations to the [/(o)nln's so that the inductive

hypothesis may stand. Consider //*. For a given / / M , there are \Fn\ ways to choose each of the k sets

Vjte), and hence there are at most I / 7 / choices for /T. Call a choice "bad" if it does not satisfy eqn(i) of

the inductive hypothesis. We wish to eliminate the bad choices. To do so, we will call EX(/)f so that if our

current choice is bad, EX(/) will produce a witness to this with high probability. That is, EX(/) will produce

an instance x such that x is not in Vfo) for any o, and yet there exists oi such that ofa) can be solved by

/ / M in / - l steps. Now, at any call of EX(/), given that the call resulted in an instance x e /(n), the

probability that a bad choice of H* will be correct on the instance produced is at most (l - t / . If we make s

calls of EX(/), given that all of them resulted in instances from /(*), the probability that a bad choice of H*

will be correct on all s instances is at most (1-e/5. Hence, the probability that any bad choice of H" will be

correct on all s instances is bounded by (l-e)k|FJ*>. We choose s so that the probability of the above

event is at most e. That is, we choose 5 so that

(l - e / ' l F / < e.

It certainly suffices to pick s to satisfy

s > l/(z)(kd(n) + //i(l/e))f where d(n) is the dimension of F.

But by our choice of *, the probability that any call of EX(/) will result in an instance from /(n) is only (l-e.

Hence, we will call EX(/) t times, for some t>s so that with probability (l-e), these * calls will result in at

least s instances from l(n). A simple Chernoff estimate yields that if t should satisfy t/ln(t) > $+/*(l/e).

Such a choice would imply that with probability (l-e)2, we have eliminated the bad choices for//*, i.e, with

probability (l-e)2, H* satisfies eqn(1), given that / / w satisfies eqn(1).

We also have to account for verifying these witnesses. That is, given an instance x, for each

operator 0, we must run / / M on o(x). Since / / M is randomized, it has a certain probability of failure and

this must be accounted for. To do so, we run H^x sufficiently many times so that our confidence in the

result is (l-e/*r). This will require 0{ln{ktlz)) repetitions. Since we must run H^X on kt inputs, our

simultaneous confidence in the results of all the kt computations is (l-e/fcr)^ which is bounded by (l-e).

Finally, we note that picking a candidate V(o) from Fn is done with the ordering Q, which may be

randomized. We carry out this computation to a confidence of (l-e/&) for each operator O, leading to a

confidence of (l-e/k)k> (l-e) for all the k operators. Combining the above estimates with the result of the

last paragraph, we conclude that with probability (l-e)4, //* satisfies eqn(1), given that / / M satisfies

eqn(1). By the inductive hypothesis, / / M satisfies eqn(1) with probability (l - e) 4 (M l Therefore, /T

satisfies eqn(1) with probability

Then, since Sw(o) c $1(0) for each 0, it follows from the definitions of Appendix A^hat V^x(o) c

This directly implies that the set of instances solved by /T is a subset of the set of problems solved by Ht

Therefore, Hi satisfies the inductive hypothesis as well.

3Condttion (b) of the definition of ordering Q, Appencix A.

14

We now seek to bound the error of Hm with respect to the natural distribution P. Specifically, we

seek a lower bound on the following quantity.

m

where Sm = {x\Hm is correct on x).

Let N be the set of instances that are not solvable.

N= [x\x\s not solvable}.

We define the following sets, parametric in /, with respect to Ht.

Xl = {x\x€ /(n), optimal solution of x has / steps, Ht solves x]

Yi = {xioptimal solution of x has fewer than / steps or* is not solvable}.

Z/ = {xioptimal solution of x has more than / steps}.

Also, for an instance x, define the event B(x) as follows.

B(x) = [x is an intermediate step in the solution produced by INSTANCE}

Now consider the sum £x € . s Pfx). We can decompose this sum as follows.

£ cPfr) = y ?(r)+ £ Pr[B(x)}+ Y />(*).

Sn the above, c is a normalization factor to account for the fact that Pl is conditional on those instances

that are in l(n). By our choice of n>nE, (recall that we are still under the assumptkDn that our estimate of

n£is of confidence unity), this normalization factor satisfies c < (1-e). To see this, simply note that

X W ^ I~£
S by the definition of ne. By the definitions of fl(r). \i arKl Z/,

Pr{B(x)} < Y P(x) eqn(2)

Therefore,

X€ L j XG It

Summing TV - cP}(x) over I = 0,l,2..jn and substituting eqn (3) in the ai-rn (m-l) times we obtain

Using ecy^2) to replace the second term on the right, we get

Bui by our ctDice of m, with probability (IHX), XX€ Z ^ X) ^ a - Therefore we can rewrite our Inequality

thus, to told with probability (l-e).

ic Si

Now. by the inductive hypothesis, with probability (l-e)4'

15

xeS,
Hence,

Noting that eqn(4) and eqn(5) hold with probability (1-a) and probability (l-e)4m respectively, we can

substitute eqn(5) in eqn(4) to write: With probability (l-e)4m(l-a)
l=m

cm(\-Z)m < ^ I />(x) + a + (m-l) + £ P(x) eqn(6)
l=0xeXl

Grouping the first and last terms on the right hand side and substituting c > (1-e), we get,

)m-a-(m-l) eqn{l)
xeS

Where S = [x\Hm is correct on x}. We desire the quantity on the right hand side to be greater than (l-l/A).

Simplifying, we find that e < l/(2hm2) suffices.

Finally, we estimate our confidence that eqn(7) holds. Under the assumption that our estimate n for

nE was to unit confidence, we obtained the confidence estimate of (l-aXl-e)4"1 as noted with eqn(6).

Since the confidence in our estimate of nz is only (l-e), the overall confidence that eqn(7) holds is

(l-e)4™*2). We n e e d t0 check whether our choice of e < l/(2km2) is sufficient to ensure that this

confidence level exceeds (l - l / / i) . As it happens, this is the case.

We have therefore proved that A is indeed a meta-algorithm for M. •

5. Conclusion

This paper explored a new direction in the formal theory learning - algorithms that learn to solve

problems from sample instances of the problems. Two random sources of sample instances are

considered, one providing solved instances and the other providing unsolved instances or exercises. For

both sources, general theorems are proved identifying conditions sufficient to permit learning. To

illustrate the scope of these results, the are applied to the construction of an algorithm that learns to

perform a restricted versions of symbolic integration.

6. References

f1] Valiant, L.G., nA Theory of the LeamableM
s Symposium on Theory of Computing, 1984.

f2J Blumer, A., Ehrenfeucht, A., Haussler, D., and Wasrouth, M. .Teaming Geometric Concepts and the
Vapnik-Chervonenkis Dimension", Symposium on Theory of Computing, 1986,

16

[3] Natarajan, B.K., "On Learning Boolean Functions", Symposium on Theory of Computing, 1987.

[4] Natarajan, B.K., and Tadepalli, P., , "Two New Frameworks for Learning", Int. Conf on Machine
Learning, 1988.

[5] Kearns, M.f Li, M., Pitt, L., and Valiant, L.G., "On Learning Boolean Formulae", Symposium on Theory
of Computing11, 1987.

[6] Mitchell, T.M., Keller, R., Kedar-Cabelli, S., Machine Learning, VoM, 1986.

Appendix A

This section reviews some necessary definitions and results on learning families of sets with one-

sided error as presented in [3].

Let/denote a subset of I* and F be a family (a set) of such sets.

Defn: A family of set F is polynomial-time leamable with one-sided error if there exists an algorithm

A and an integer k such that

(a)A takes as input integer h, the error parameter.

(b)A may call EXAMPLE, where EXAMPLE returns randomly drawn elements of some set / in F.
These elements are drawn according to an arbitrary and unknown probability distribution P o n /
A computes in time (hf)k, where / is the length of the longest example produced by EXAMPLE. A
may be randomized.

(c)For all/ in F and all probability distributions P on these sets/ with probability (1-l/A) A outputs a
program C that runs in time rf on inputs of length n and accepts a set g in F such that g<~f and

f-g} < I/A.

Defn: Le t / c £*• For natural number n, the induced set/ r t is defined by/ r t = {xlxe / \x\<n).

Similarly Fn = [fje F}.

Defn: The dimension of a family F is d(n) if for all n, IFnI < 2* w . if d(n) is a polynomial in nt we say F

is of polynomial dimension.

Defn: An algorithm Q is said to be a polynomial-time ordering for family F if there exists an integer k

such that

(a)fi takes as input a set of strings S. Q outputs a program1 C such that C accepts a set / in Ff S c /•
Also, for all $ in F, S c * impBes/ c *-

(b)Both Q anj C run in (possibly randomized) time /* on inputs of length I.

Theorem A: A family F is polynomial-time learnabie with one-sided error if and only if F is of

17

polynomial dimension, F is closed under intersection, and F possesses a polynomial-time ordering.

Proof: See [3] for details. •

