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Abstract 

There are computer programs that use the same flow of control when run on different inputs. This 
redundancy in their program execution traces can be exploited by preserving suitably abstracted call-
graphs for subsequent reuse. We introduce a new programming transformation Call-Graph Caching 
(CGC) which partially evaluates the control flow of sets of such programs into a network formed from their 
call-graphs. CGC can automatically generate efficient state-saving structure-sharing incremental 
algorithms from simple program specifications. As an example, we show how a straightforward, 
inefficient LISP program for conjunctive match is automatically transformed into the RETE network 
algorithm. Simple and understandable changes to elegant functional (and other) programs are 
automatically translated by CGC into new efficient incremental network algorithms; this abstraction 
mechanism is shown for a class of conjunctive matching algorithms. We establish criteria for the 
appropriate application of CGC to other Al methods, such as chart parsing, consistency maintenance, and 
analogical reasoning. Detailed pedagogical examples are also presented. 

publication was supported in part by grant R29 LM 04707 from the National Library of Medicine. 
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1 . Introduction 
Caching is a general efficiency mechanism for exploiting redundancy in computation by reusing 

previously computed information [3,21]. For example, Al systems often cache problem solving 

experience learned over time, or knowledge, as a set of programs. Intelligent interactive systems apply 

this program set over repeated cycles of interaction with external data input. We define as persistent 

those intelligent interactive systems that apply all knowledge to all data on every cycle. Straightforward 

implementations of persistent systems are often inefficient, since only some programs in the knowledge 

base are relevant each cycle, and potentially reusable intermediate computations are discarded. 

We have identified a key source of computational redundancy: a program's flow of control, or 

"call-graph" 1 structure. This control-flow redundancy can be exploited by caching call-graphs. 

In this paper, we shall: 

1. Present a new program transformation Call-Graph Caching (CGC) that partially evaluates 
and then reuses a program's control structure. We 

a. Provide applicability conditions for the use of CGC. 

b. Present a working prototype EVAL' which performs partial evaluation of LISP 
programs into call-graphs. 

c. Show how CGC helps in the conceptual and implementational derivation of efficient 
state-saving structure-sharing incremental network algorithms. 

d. Illustrate how CGC exploits the fixed call-graph structure to reverse the flow of 
computation: data can flow up the call-graph, instead of always moving top-down 
from the program. Thus program execution can be driven from incremental changes 
in input data, instead of being rigidly preset. 

2. We demonstrate the utility of CGC by: 

a. Using CGC to transform a simple, inefficient LISP program for conjunctive matching 
into the classic RETE match algorithm [8]. This also demonstrates the use of our 
automatic transformation prototype EVAL. 

b. Showing other applications of CGC in Al , such as indicating how small changes in 
our conjunctive match LISP program can mechanically generate alternative network 
join topologies. Such transformations enable researchers to spend minutes 
modifying short functional programs, instead of months engaged in low-level 
network programming. 

c. Suggesting that CGC is uniquely suited to Al , in that it potentially increases the 
efficiency of persistent knowledge-based systems. 

After introducing the CGC transformation (Section 2), we show how to transform matching programs into 

RETE networks (Section 3). We then present a number of other uses of CGC in Al (Section 4). An 

extended pedagogical development of CGC on several very simple programs is given in Appendix A. 

1A call-graph [25] Is a trace of an executing program's flow of procedural control. With recursive languages like LISP this is the 
explicit tree of a program's dynamic procedure calls. 
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2. Call-Graph Caching 
Call-graph caching is a program transformation from arbitrary programs 2 into network programs. After 

defining our notion of "program" (Section 2.1), and establishing what "network programs" are (Section 

2.2), we motivate how the control flow of a program can be cached into a network (Section 2.3). We then 

present the mechanics of the transformation (Section 2.4), and give a sample implementation (Section 

2.5). 

2.1. Programs 
Programming languages provide control and data constructs for writing programs [20]. For example, 

L ISPs control mechanism is depth-first recursion, while its principal data (and code 3 ) constructs are 

symbols and lists. At a finer grain, there is also the evaluator which glues the control and data together 

(e.g., L ISPs EVAL program), and the distinctions between data/code organization, local data, and input 

data. To execute a program in a language, the control mechanism traverses the program's data 

organization, applying the evaluator to local and input data. For example, LISP recursively traverses a 

program's code tree, applying EVAL to the tree node's lambda expressions and arguments. In presenting 

Call-Graph Caching, we shall largely focus on the coarser-grained control and data language features. 

2.2. Network Programs 
Network-based programs may be considered to be members of a simple programming language. The 

common data construct is a network, or directed acyclic 4 graph (DAG). The control mechanism for these 

networks is Partial Order enumeration, usually implemented with some version of topological sorting [13]. 

Partial Order enumeration of a DAG assures that every node is visited exactly once: after each of its 

predecessors have been visited. We term this class of programs NETWORK. 

Within the overall DAG-structured data organization of NETWORK programs, there is the finer level of 

local node and input data. DAG nodes may contain memory for both active data (executable code) and 

passive information. The passive memory has two parts, a short-term buffer and a longer-term store, the 

use of which is shown below. Input data is usually acted on by a node's code, in the context of the local 

memory state; the result of these computations on input data is often stored in the node's memory. 

NETWORK programs are very efficient, with overhead at most linear in |DAG|, the number of nodes and 

edges [12]. Propagating from all the leavfes, and keeping newly computed values in nodes' buffer 

memory, topological sorting assures that each node is recomputed exactly once [19]. If changes are 

2Our initial focus in Sections 2 and 3 is on functional-style LISP programs. In Section 4 we look at other programming language 
styles, such as rules. 

3ln this paper, we shall consider a program's code to be part of its language's data organization, rather than part of any control 
construct. 

4Graphs with cycles can also form the data component, as long as these cycles are broken at run time; i.e., the graph acts like a 
DAG. 
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made to only a subset of DAG leaves, using the store memory (which persists between change cycles) 

the computation need only be propagated to the transitive closure DAG subset AFFECTED, |AFFECTED| 

< |DAG|. This produces state-saving incremental algorithms that perform minimal recomputation, 

directed from just the changes to their input. 5 

The price for this efficiency is inflexible control structure: NETWORK program DAGs have the restricted 

form of basic blocks [2]. Despite this limitation, NETWORK finds extensive application. Efficient 

incremental spreadsheets use the algorithm sketched above. Conjunctive matching programs are often 

cast in network form for efficiency. Other potential applications include the representation of dependency 

relations, multiple inheritance, consistency maintenance reasoning [6], and incremental attribute grammar 

evaluation [22]. 

2.3. Cach ing Control F low 

Let P(t,u) be a program in some language, having arguments t and u. Suppose that P's control structure 

is independent of u. Then partial evaluation [10] of P(t,u) with respect to some fixed t 0 will yield a new 

program P'(u) of one argument having a unique call-graph. 

An interactive program's input either depends on external factors, or is independent of external 

interactions. Now suppose that program P(t,u) is interactive, and its argument t is independent of external 

factors. Then P'(u) 

1. completely characterizes P(t,u)'s interactions with the external environment, and 

2. has a unique call-graph. 

We define an interactive program P(t,u) to be basic when t is independent of external factors, and P's 
control structure is independent of u. 

P'(u) has a unique call-graph which can be cached as a NETWORK program for later reuse. This is 

accomplished by providing the call-graph nodes with memory (completing the data component), and then 

inverting the flow of control from top-down to bottom-up. Partial Order traversal supplies the new control 

component. The new NETWORK program is operationally equivalent to P. As illustrated in Figure 2-1, 

the call-graph network has captured all the control and much of the data structuring of the original 

program. 

2.4. T h e Transformat ion 

We describe the Call-Graph Caching (CGC) transformation in several loosely coupled steps. The first 

step assembles the call-graph from its subgraph components (Section 2.4.1). The second collects a set 

of call-graphs into a network (Section 2.4.2). The resulting cached call-graph network structure is used 

(and reused) as a data cache (Section 2.4.3). Appendix A presents simple examples of these steps. 

5Further efficiency gains are possible by restricting the DAG traversal to the subgraph influencing only select node computations. 
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Program • Network 

input u 

Figure 2 - 1 : Compiling control into a network. 

2.4.1. Building fhe Call-Graph 

Control-Flow Caching is an algorithm which builds the call-graph of a program on some input. The 

construction takes as 

• input either 

1 . the compile-time text of a program, together with its partial input, or 

2. the run-time program executing on its complete input, and 

• outputs the call-graph of that program. 

The procedure employs an auxilliary data structure, the Control-Flow Cache, which is used in the 

assembly of the final call-graph structure. There is also an optional argument specifying the key 

execution steps to cast into graph nodes. 

Control-flow caching proceeds as three separate steps. First, with a program, (partial) input, and a set of 

the key steps to abstract 6, a trace is formed of the program's execution. Each node in the resulting 

call-graph represents one (key) step in the program's trace. The actual formation of the call-graph is 

facilitated by specific control-flow cache management strategies. One such strategy is the above 

abstraction mechanism of recording only the "key" steps as nodes. Another strategy, used in chart 

parsing [27], is exploiting the constraints posted in the control-flow cache to help reduce the executing 

6This user-definable set ranges from the empty set to all possible steps. 
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program's computation, i.e., dynamic programming. Yet another, say for a LISP program, would be to 

passively cache the succession of execution branches into a full call tree. Regardless of the specific 

strategies, the resulting call-graph captures (in space) the program's execution over time, as shown in 

Figure 2-2, step 1. 

( 1 ) ( 2 ) ( 3 ) 

Figure 2-2: Control-Flow caching: assembling the call-graph. 

Program P(t,u) has thus far been evaluated on input t 0 , with the partially evaluated P'(u) preserved as a 

call-graph. The second step of Control-Flow Caching connects the external input u to the program's 

graph. As shown in Figure 2-2, step 2, the resulting call-graph of the complete program is a DAG 7 . 

The third step operationalizes the call-graph into a usable data structure. For example, graph nodes can 

be augmented with the requisite buffer and store memory with a system-specific representation. 

At this point, saving and reusing just this single call-graph provides a fully functional state-saving 

incremental NETWORK program. Directing input u through the graph in a Partial Order enumeration, and 

using the node memories as a data cache, will efficiently perform the computations of P(t 0,u). 

2.4.2. Collecting Call-Graphs 

The Call-Graph Caching transformation is completed by collecting a set of P(t 0,u) call-graphs, for a variety 

of P's and t 0 ' s . This set is called the Call-Graph Cache, and, like other caches, usually employs efficient 

cache management strategies. For example, spreadsheets and conjunctive matchers exploit common 

shared structure, and merge the call-graphs into a single connected network. In allocating the often 

limited resource of space, another common strategy is to perform a cost/benefit analysis, determining 

which call-graphs stay in the cache, and which are removed. 

7This is because the caching of the program's execution over time breaks (i.e., unravels) any cycles present in the flow of control. 
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2.4.3. Using the Call-Graph Cache 
After building the call-graphs of (P(tj,u) | i<s 1} and collecting them into a call-graph cache, the resulting 

network is used (and reused) as a data cache. Values or sets of values of u propagate bottom-up 

through the network, employing the "buffer memory within each propagation cycle, and "store" memory 

between cycles. For efficiency and correctness, the network traversal control mechanism is Partial Order 

enumeration (implemented with a topological sort). This completes the transformation of a finite set of 

basic programs (in any programming language) into an efficient state-saving NETWORK program. 

2.5. An Implementation 
To demonstrate the workability of Call-Graph Caching, we implemented in Common LISP a simple partial 

evaluator EVAL', which transforms a large class of LISP programs into their corresponding call-graphs. 

The input to EVAL* is the symbolic LISP expression representing "P(t 0 ,u)M , for some P and t 0 , and a set of 

labels denoting the key execution steps to cache. The output is a call-graph, where each node specifies 

• the label of the node type; 

• a lambda expression containing all the information required to execute the node's 
computation when applied to the values of its immediate predecessor nodes; 

• recursively, the nodes of its immediate predecessors. 

EVAL' performs the following computations: 

1. Arrive at (the label of) a key node (i.e., LISP function or symbol) to be abstracted. 

2. Perform EVAL* on the unevaluated arguments to the function. 

3. Substitute these values into the function, and then execute EVAL' on the LISP function's 
code tree. 

This delayed evaluation is done recursively, caching the control structure into a call-graph. The call-

graph's nodes abstract out the set of labelled functions, preserving the local code and data required for 

later execution. 

We have also developed a variety of network structure-sharing programs for the merging of call-graphs. 

To execute these Cached Call-Graph networks as programs, we have a toolkit for general efficient Partial 

Order network traversal. 

3. RETE Networks: An Example of Call-Graph Caching 
RETE matching [9] is a state-saving structure-sharing incremental algorithm used in OPS-5 [7] and other 

production systems [14] for conjunctively matching many patterns against many objects. Because it 

provides excellent average-case behavior for an important NP-hard Al problem, it has been extensively 

studied and varied. It is also a good example of the Call-Graph Caching program transformation, 

illustrating nontrivial usage of the Control-Flow Cache and the Call-Graph Cache. 
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3 .1 . Rule Matching 
Forward-chaining Rule Systems (or "production systems", such as OPS-5) are programming languages 

with match as their control element. Program data is organized into a set of rules, having left-hand-side 

(LHS) tests and RHS actions. External input (often called ''working memory") comes from a slowly 

varying set D of data objects. If a ruie's tests match objects, the rule becomes a candidate for firing; 

when executed, its actions serve to modify D. 

Following common practice, we fix the form of the rules' LHSs to be a set of conjunctive patterns, each 

pattern containing tests restricting the set of matchable objects. An instantiation of a rule having n LHS 

patterns is an n-tuple of objects satisfying the rule patterns' tests. On every interaction cycle, the rule 

evaluator must try to match each rule against all possible combinations of objects in D, forming its set of 

instantiations 

{insteDn\ Vteste Rule, test(inst)}, 

where D n is DxDx...xD, n times. Letting TEST be the set of allowable tests, and TESTS be its power set 

2 T E S T , Match may be described as a function which filters the set of possible instantiations D n into those 

satisfying some tests in TESTS, 

MatCh'(TESTS,DxDxD..£>) -+DxDxD..D. 

Since all patterns are matched against all objects, we may rewrite Match in the more convenient form 

MatCh(TESTS,D) -> DxDxD..£>, 

which applies a set of tests to a set of objects, producing a filtered set of n-tuple instantiations. 

Production systems are persistent, in that they 

1. maintain their knowledge in a finite set of experientially derived programs (the rule set), and 

2. apply all programs to all available data on each interactive cycle. 

They are also inefficient Consider just one rule having n patterns matching against only two data 

objects- the set of candidate instantiations D n grows exponentially in n. In fact, conjunctive rule matching 

is NP-hard[15]. Generally, however, only a small fraction of the object set changes each cycle. So 

instead of rigidly applying ail rule programs to the data, perhaps the incremental changes to data should 

drive the matching computation. 

For each rule program in the rule set specifying some tests in TESTS, /Wa/c/?(tests,D) is the 

computationally expensive subprogram. Observe that with 

P = Match, t = tests, and u = D, 

1. t is independent of the external data input D, and 

2. the conjunctive matcher P(t,u) is programmable so that P's control is independent of u (e.g., 
Section 3.2). 

Therefore P is basic, and Call-Graph Caching will generate an efficient state-saving structure-sharing 
incremental Matching algorithm. 
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3.2. T ransforming Rule Matching into R E T E Networks 

We now illustrate the use of Call-Graph Caching by generating the RETE network from a simple 

functional programming specification of the matching function. We first write down the functional program 

(Section 3.2.1), then transform each match program into its unique call-graph (Section 3.2.2), and finally 

merge these call-graph units into a RETE network (Section 3.2.3). Section 3.2.4 summarizes the RETE 

construction, and the network's processing of data objects. 

3.2.1. Rule Matching as LISP Programs 
A rule specifies a fixed set of tests T 0 for its match component. The conjunctive match program 

Match(TQtD) can be formulated so that its control is independent of working memory D. We now write 

such a filter Match as a functional-style LISP program. 

For efficiency on a serial processor, we first impose a fixed ordering on the rules' patterns. Each test 

examines one or more objects in a candidate n-tuple € D n ; these objects are now ordered by the pattern 

ordering. We now order the test set: associate to each test the number of the last object it examines, 

and arrange the tests with respect to this index. For efficiency, the match is performed by a conditional 

AND, testing a candidate n-tuple against the first test subset, then the second, and so on through the n * 

Within the k*" test subset, k < n, the tests may be further grouped into two classes: 

A. alpha tests on a single object e D, and 

B. beta tests on more than one object, i.e., k-tuples € D k . 

There are many ways to write the LISP code for this simple filter (e.g., as one function, iteratively, 

recursively, etc.). While the CGC transformation is independent of programming style, for clarity, we 

present Match using linear recursion. 
;;; Match the rule's tests against the data, 
(define match (tests data) 

(beta-join 
(first tests) 
(second tests) 
data)) 

;;; Joins together the cross product of preceding 
;;; sift and join sets with a filtering beta test, 
(define beta-join (A B D) 

(if (null A) 
' < 0 > 
(filter (first B) 

(cross-product 
(alpha-sift (first A) D) 
(beta-join (rest A) (rest B) D))))) 

;;; Sifts out objects with a filtering alpha test, 
(define alpha-sift (A D) 

(filter A D)) 

Match takes a preordered set of tests, and a set of data objects as its arguments. The key interesting 

function is beta-join, which merges the simple alpha-sift filter with further recursive calls to beta-join\ this 

produces a linearly recursive call-graph. Note how the tests in match's tests argument are deposited 
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locally at each level of filtering, and that no control decisions are made using the data argument. 

The auxilliary functions filter and cross-product may be defined, for instance, as: 
;;; FILTER removes elements of the SET not satisfying TEST, 
(define filter (test set) 

(remove-if-not test set)) 
;;; CROSS-PRODUCT augments the (k-1)-tuples of set Y with the 
;;; elements of set X, forming the cross product k-tuples. 
(define cross-product (set-X set-Y) 

(mapcan #'(lambda (y) 
(mapcar #'(lambda (x) 

(cons x y)) 
set-X)) 

set-Y)) 

3.2.2. Building the Call-Graph 

STEP 1. For any rule r, calling EVAL' on mafc/7(tests r,D) with the set of labels {match, alpha-sift, beta-

join} will save the calling structure of the rule's tests. The control-flow cache is used with the functional 

program match to store to the growing call tree. As shown in Figure 3-1 A, the call-graph has a linear 

spine, with the appropriate tests localized at each node. 

( A ) ( B ) ( C ) ( D ) 
© # O _ 
SIFT JOIN 

Figure 3 -1 : Call-Graph Caching a linearly recursive conjunctive matcher. 

STEP 2. In Figure 3-1 B, the free input variable data is attached to the call-graph as an input source, 
turning the call tree into a DAG. 

STEP 3. The graph structure of this single rule's match component can now be completed. Memory for 

the intra-cycle buffer and the inter-cycle store (and other information) can be specialized into a specific 

graph representation. This call-graph can be reused as a bottom-up NETWORK filtering program. In 

Figure 3-1 C, the domains of the filtered objects are shown. 

9 



Using the buffer memory, Partial Order traversal of the call-graph from the data computes the filtered 

instantiation subset of D n . If the nodes' longer-term store memories are initially loaded with D (and then 

continually updated), only changes to the object set AD are needed for computing further instantiations. 

That is, the call-graph is a state-saving data-driven incremental NETWORK program for computing the 

state of a single rule's match. 

This is not surprising: Figure 3-1 D shows that the RETE network beta join topology is isomorphic to the 

Match call-graph. The (empirically less important) RETE alpha discrimination network is easily added to 

this picture by substituting tail recursive alpha-test and alpha-memory functions for for the alpha-sift filter. 

We have generated these (and other) call-graphs by applying our prototype EVAL' (see Section 2.5) to 

various functional match programs; the resulting call-graphs are readily inserted into preexisting OPS-

style production systems. 

3.2.3. Collecting Call-Graphs 
A rule system is comprised of a finite setoi rules; we therefore form the corresponding set of call-graphs, 

one for each rule's match component. This set is the Call-Graph Cache. One cache management 

strategy for conserving cache space (with some associated speedup) is to merge the call-graph DAGs 

into one connected network. The matcher's behavior is unchanged if, proceeding from the data input 

source, nodes are merged based on prefix sharing of tests. A succession of call-graphs merging into a 

common beta-join node trie [1] is depicted in Figure 3-2. 

SIFT JOIN 

Figure 3-2: Trie-based merging of call-graphs in the Call-Graph Cache. 

The alpha sift trie, and the full RETE network having both alpha and beta tries, are shown in Figure 3-3. 
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O alpha-test 

alpha-memory 

beta-join 

Figure 3-3: The alpha trie; the full RETE network. 

3.2.4. Using the Call-Graph Cache 

Partial Order traversal of the RETE network will perform the match of the rule set (cached as a shared set 

of call-graphs) against working memory input D. The intracycle "buffer and intercycle "store" memories at 

each node are used as a data cache to preserve the partial match computations (within and between) 

each cycle. 

This completes the construction of the RETE network algorithm. 

1. We started from an easily specified, though inefficient, set of functional programs. 

2. Using an auxilliary control-flow cache, partial evaluation of the basic program match(T0,D) 
produced a call-graph which cached match\D)'s control flow. This call-graph was usable as 
an incremental data-driven state-saving NETWORK program which could cache the input 
data as intermediate matching results. 

3. The Call-Graph Cache merged the individual call-graphs in order to conserve space, and 
achieve some speedup. This was done by test sharing: nodes with common test prefixes 
were combined to form a single trie data structure. 

3.3. Al ternate Join Topolog ies 

Call-Graph Caching generates more than RETE networks: one application is the generation of families of 

efficient conjunctive matchers. By making simple variations in match's LISP specification, and changing 

which key function names are cached into call-graph nodes, many different join topologies can be 

designed, easily specified, and automatically constructed. Also, there are other Call-Graph Cache 

merging strategies besides trie-based prefix sharing. 

The RETE example was described above: a linearly structured call graph. One known alternative 

approach is to not cache the beta join nodes [16]. Another is to structure the call graph as binary 

11 



tree [24,18], reducing the iong linear chains problematic in RETE. We are currently exploring and 

assessing a variety of new join topologies using CGC as a rapid prototyping tool. These topologies can 

be custom tailored to task-specific requirements, such as learning or parallelism [11]. 

4. Other Uses 
We are investigating other uses of CGC in Al . We describe the application of Control-Flow Caching 

(Section 4.1) and the complete Call-Graph Caching transformation (Section 4.2) to several problems. We 

then examine (Section 4.3) ways of weakening the definition of basic programs to increase the 

applicability of CGC. Section 4.4 concludes with some observations on future research in Al and software 

engineering using the CGC transformation. 

4.1 . Control-Flow Caching 
The control-flow cache is an auxilliary data structure that assists in the construction of a program's explicit 

call-graph. It may simply record the unraveling of an execution tree over time, as in the RETE example, 

or take a more active role, such as enabling constraint-directed dynamic programming. For example, in 

efficient context-free parsing [27], each graph node represents an individual firing of a grammar 

production; the control-flow cache (or "chart") records past firings to constrain future ones. 

Letting the graph nodes represent a rule firing, the call-graph resulting from a rule system's problem 

solving instance. forms a trace of the rules' executions. This record (DAG) of the rule and data 

dependencies may then undergo Consistency Maintenance analysis [6] to explore various alternative 

reasoning scenarios. Here, the call-graph forms a NETWORK program exploiting its data cache; ground 

instance (data) changes can be incrementally propagated in Partial Order DAG traversals. 

4.2. Call-Graph Caching 
Persistent processes maintain their knowledge in a program cache; this cache is augmented or modified 

as the knowledge changes over time. When the cached programs have call-graphs with sufficient 

redundancy (e.g., are basiti), the knowledge may be compiled into an efficient Call-Graph Cache network. 

For example, consider the rule trace discussed above: DAGs representing arbitrary rule execution are 

not likely to share similar morphology, and, therefore, they are not usually cached as networks. Rather, 

such call-graphs are abstracted into networks having a single inner node (or chunk) using EBG [17, 26] or 

some other execution trace generalization method. These reformed networks have sufficient 

operationally to then be reused in the program cache, resulting in potential efficiency improvements. (In 

some systems [14], they may be compiled into RETE networks at a lower level of abstraction for further 

efficiency gains.) 

There are many common persistent processes comprised of basic programs. For example, a (multiple) 

inheritance network will be automatically generated as the cached call-graph set from the process of 

successive subset classification on some input set. As another example, window systems may be 

thought of as caching an inefficient "painter's algorithm" redisplay execution into a call-graph based on 
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the in-front-of relation, 

of window redisplay. 
Efficiencies accrue since, in general, the data inside the windows is independent 

4.3 . Extensions 

CGC is applicable when persistent interactive intelligent systems are comprised of basic programs. Since 

not all programs are basic, we consider how to use CGC under weaker assumptions. 

As in Section 2.3, let P'(u) be a partially evaluated program. P'(u) need not have a unique call-graph for 

CGC to be useful. As long as its set of call-graphs is manageable, some caching strategy could succeed. 

For instance, P'(u) might have only a small finite number of call-graphs. Alternatively, a skewed 

distribution of P'(u)'s call-graphs could probabilistically ensure manageability. Extending the RETE match 

example, when disjunction (i.e., choice) is introduced into primarily conjunctive rules, there is still much 

redundancy in control flow. Though weaker, this redundancy is effectively exploited in RETE-based 

OPS-5 via copying and conflict resolution. 

Another approach is to only use part of the CGC method. For example, with script-based plans [23] and 

case-based reasoning, the graph is used for recognition and generation, but not as a data cache. 

Similarly, derivational analogy [5] preserves a call-graph to assist with future problem solving; 

transformational analogy [4] goes further in abstracting this call-graph into a more useful form. While both 

methods exploit control-flow redundancy in problem solving to cache control, neither currently caches the 

data state. 

4.4. Future W o r k 

The CGC transformation lets us reexamine many network algorithms as partially evaluated programs 

which have their call-graphs preserved. Further, as with RETE, it may be the case that reformulation of 

the network into a new program in some appropriate language leads to clearer specification of the 

algorithm. Since NETWORK-like efficiency is guaranteed by the CGC transformation, improvements can 

then be effected in the abstracted programming language, rather than in the low-level NETWORK 

language. 

Conversely, given a clear specification of a set of programs in some language, when control-flow 

redundancy is present (whether guaranteed by the "basic" property, or simply empirically observed) CGC 

becomes another route for improving performance. Possibilities include: 

1. Refining classic state-saving incremental network algorithms where call-graph redundancy 
has already been observed. 

2. Reexamining inefficient Al architectures for reusable redundancy in control-flow. 

3. Developing new and efficient persistent interactive processes by starting from precise, 
inefficient programs that have sufficient control-flow redundancy for the CGC transformation 
to succeed. 
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5. Conclusion 
We have observed that repeated executions of programs may exhibit redundancy in their flow of control, 

and that program call-graphs provide an operational representation of that control. We therefore 

proposed that the call-graphs of certain programs executing on (partial) input be preserved for later reuse. 

When cached, control flow can be reversed on the fixed call-graph structure; this leads to efficient 

incremental algorithms responding to changes in input data. 

As an example, we applied the method to a simple, but inefficient LISP program for pattern/object 

matching; the transformation produced the RETE match algorithm. Strong and weak criteria were 

provided for when other algorithms could be transformed into their efficient incremental network 

counterparts. 
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APPENDIX 

A. Motivating Examples 
This appendix illustrates successive examples of evaluating polynomials in a spreadsheet-style network. 

These examples are selected for their extreme simplicity in demonstrating the transformation of programs 

into networks, and are presented solely for pedagogical purposes. 

CGC transforms the control and data of a program P in some language into a new NETWORK program 

P\ The control of P' is Partial Order enumeration, and its data component is a network built from the 

control and data execution of P. The particular programming language L we use in these examples is 

functional-style LISP specification. The control mechanism of L is recursive function application, and L's 

data is comprised of symbols, lists, lambda expressions, and the like. The CGC transformation can be 

effected at 

• run time by EBG-like capture and generalization of program execution traces, or 

• compile time by partial evaluation of P on some input. 

Our examples demonstrate the compile-time transformation. 

The specific task we will develop by the end of the fifth example is evaluating a non-changing set of 

multivariate polynomials over slowly varying sets of variable values. This could be used, for example, in 

repeatedly computing some property (say, the minimum value) of the polynomial set over iterative cycles 

of minor changes to the set of possible variable values. 

The CGC transformation is possible for this specific polynomial evaluation task because: 

1. Polynomials (and other formulas) are basic programs. That is, they can be evaluated as 
basic blocks of expressions, hence have a natural DAG representation. 

2. Repeatedly applying a non-changing set of polynomial programs to sets of values is a 
persistent process. 

This redundancy of program control flow (basic property), coupled with redundancy in which programs are 

selected for execution (persistent property), suffices for the workability in this case of the program-to-

network CGC transformation. Since the value sets will be slowly varying, there will be enough 

redundancy in program evaluation for noticeable efficiency gains. 

The mechanism of this program-to-network transformation is to build, collect, and use cached call-graphs. 

Bui ld With aid of an auxilliary Control-Flow Cache, the developing call-graph of the 
executing program is saved as it processes its (partial) input. The nodes of the 
call-graph are formed from the key function names designated for being abstracted 
out; other computation is abstracted away by lambda abstraction. This call-graph 
may then undergo further processing. 

Collect The call-graphs are collected into a Call-Graph Cache network. Some sharing or 
merging of call-graphs may be performed. 
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Use The Call-Graph Cache network is then used as a data cache for bottom-up data-
driven evaluation of the programs. 

Section A.1 presents the call-graph building process in great detail, while Section A.2 shows how call-

graph collections can be merged into tries. Similarly, Section A.3 stresses building call-graphs with the 

control-flow cache, while Section A.4 emphasizes structure sharing in call-graph collections. Section A.5 

elaborates the use of the network of partially evaluated programs as a data cache. 

A.1 . Power Functions - x k 

Our first function computes a number x to some power, i.e., x k . The definition of power is: 

power(k,x) = 1, k=0, 
x * power(k-l,x), otherwise. 

Power can be programmed iteratively, recursively, as an in-line program (for fixed k), with rules, with 

frame-based demons, etc.: the CGC tranformation does not depend on programming style. For 
elegance, we use a simple tail recursive LISP function 8 : 

(define power (k x) 
(if (zerop k) 

1 
(* x 

(power (1- k) x)))) 

Abstraction is a key idea in CGC. The programs that are selected for caching are abstracted out 

(highlighted) into explicit graph nodes. The remaining programs are abstracted away (hidden) into 

procedures attached to the graph nodes. At execution time, this lambda abstraction at each node binds 

values for its arguments from the node's immediate local predecessors. 

Suppose we wanted to transform power(2,x) (the squaring function) into a network, where the featured 

nodes were of type power. Figure A.1-1 traces through the transformation of the partial program call 

(power 2 x ) , highlighting power, into an equivalent node of type power. We first evaluate the control 

flow one step: since k=2 is greater than 0, we reach the else-clause of power's if statement, (* x 
(power l x) ) . As illustrated, this expression has a natural representation as an expression tree rooted 

at "*" . Now all data (program code is considered to be data here), except the input x and the featured 

program power, are abstracted into the lambda expression 

(lambda (L R) (* L R)). 
Here "L" denotes the left argument receiving data from the node's left predecessor, the input node x, 
while "R" denotes the right argument, with data from the right (as yet unevaluated) predecessor (power 
l x ) . The highlighted program power becomes an explicit node to which this lambda abstraction is 

attached. Evaluating this node's code, with its arguments bound to the values of its predecessor nodes 

(see below), will effect a bottom-up computation of power equivalent to the original top-down LISP 

specification. 

8The expression ( 1 - k) decrements k, performing the subtraction (- k l ) . 

16 



(power 2 x) (* x (power 1 x)) 

Power 
(lambda (L R) 

(* L R)) 

x (power 1 x) x (power 1 x) 

Figure A.1-1 : Transforming one step of a program call into a graph node. 

Continuing this recording of program control execution decisions, step-by-step we build up a call-graph 

(Figure A.1-2). The graph is finite exactly when a program terminates; here, when k attains the value 0, 

the then-clause returns the constant 1. This terminating then-clause produces the second node type in 

power(2,x)'s call-graph. We term the auxilliary storage used in caching the developing call-graph's 

control flow the Control-Flow Cache. 

(power 2 x) •A* 
x (power 1 x) 

POWER, 
node 

(lambda (L R) 
r L R)) 

P O W E R - 1 ^ (lambda () 1), 

node ^ ^ i . e . , constant = 1. 

Node Types 

(power 0 x) 

Figure A.1-2: Building a call-graph by caching control flow. 

Figure A. 1-3 depicts the reversal of control flow. 
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1. The call-graph is created top-down by caching the control flow of the program executing on 

partial input. 
2. Sharing of the common, control-independent input is exploited, and the functional program's 

call-tree is converted into a DAG. This provides a common entry point for input data. 

3. The control-flow direction is reversed to bottom-up data-driven computation. 

input x input x 

( 1 ) ( 2 ) ( 3 ) 
Figure A.1-3: Reversing the control-flow direction. 

The completed call-graph can now be used as a NETWORK program to compute x 2 . Figure A. 1-4 shows 

the partial order control structure used to evaluate the network data structure starting from the input node 

value x=3. By NETWORK'S partial order semantics, a node cannot be evaluated until all its immediate 

predecessors have been. Therefore, the top node (x 2) waits for the middle node (x 1) to evaluate first. 

With the middle node's left input x equal to 3, and its right power-1 node returning the constant 1, the 

environment is {L=3, R=1}. Applying the lambda-expression code (lambda (L R ) ( * L R ) ) in this 

environment computes the value 3. In the second evaluation step, the input value of 3 is multiplied with 

the middle node's computed value 3 to yield 9, the value of 3 2 . 

A.2. Sets of Power Functions 
The preceding Section showed how redundancy in control-flow could be cached. In this Section, we 

examine how redundancy in which programs are selected for execution can be exploited by caching. 

Suppose we wanted to repeatedly compute the functions {x 2 , x 3 } for different values of x. Collecting the 

two call-graphs of the corresponding programs into a set, we could evaluate the functions using two 

separate networks (Figure A.2-1). 

Thus far, our Call-Graph Cache has helped in potentially reducing the space and time requirements of the 

power computation. With some additional processing, however, the cache can effect even greater 

efficiencies. By allowing the two call-graphs to share common structure, they can be merged into a single 

network (Figure A.2-2). This reduces the network size in the cache, and eliminates the redundant 

computation of x 2 . 
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o 

= 3 = 1 

Figure A.1-4: Using the call-graph NETWORK program to compute 3 2 . 

x 

Figure A.2-1 : Networks for x 2 and x 3 . 

The merge strategy employed in this example may be viewed as the trie-based sharing of common 

prefixes. Since the entire x 2 network is a prefix subgraph of x 3 , the final computation for x 3 may simply be 
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Figure A.2-2: Merging the call-graphs into a single network, 

appended to x 2*s network. The example readily generalizes to arbitrary sets of programs {x k | ke I}, 

where I is a finite index set of natural numbers. 

A.3. Polynomial Functions 
Consider the evaluation of a polynomial in x on some value. It may be computed by taking the inner 

product of a set of coefficients with a set of powers of x, e.g., 

(a b c) • (x 2 x 1 x°) . 
Since the set of powers depends solely on the variable x, a polynomial can be computed from a list of 

coefficients C and the value of x: 
poly(C,x) = 0 , if C is empty; 

otherwise: 
[ head(C) * power(length(C)-1,x) ] + poly(tail(C),x). 

For example, ax 2 +-bx + c is recursively computed by: 
poly(<a,b rc>,x) 

= a*power(2,x) + poly(<b c>,x) 
= a*power(2,x) + b*power(l,x) + poly(<c>,x) 
= a*power(2,x) + b*power(l,x) + c*power(0,x) + poly(<>,x) 
= a*power(2,x) + b*power(l,x) + empower ( 0 , x) + 0 . 

A functional-style LISP program computing poly with any set of coefficients C is: 

(define poly (C x) 
(if (null C) 

0 
(+ (* (first C) 

(power (1- (length C)) x)) 
(poly (rest C) x)))) 

Suppose, however, that we wanted to compute only a particular polynomial. Then we could pre-compile 

the coefficients into a new polynomial evaluation program. One way of accomplishing this automatically 
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is by using CGC to transform the above LISP program into a partially evaluated NETWORK program. 

Control-flow caching of poly(<a,b,c>,x) produces the call-graph of Figure A.3-1. The highlighted 

programs poly and power are represented by explicit nodes. The other functions are abstracted away 

into lambda expressions such as (A, ( L R ) ( + ( * L a) R ) ) , corresponding to the expression call-

tree in Figure A.3-1. These lambda abstractions are procedurally attached to the different node types, 

also shown in Figure A.3-1. 

a x 2 + b x + c 

POWER 
^ ( l a m b d a (L R) 
w r l kr)) 

POLY 

•
(lambda (L R) 

(+ (* L constant) 
BD 

P O W E R - 1 

^ 1 

P O L Y - 0 

0 

Figure A .3 -1 : The cached control-flow of po/y(<a,b,c>,x), highlighting poly and power. 

Intelligent management of the Control-Flow Cache can now process the call-graph of Figure A.3-1. Note 

that each node in the main spine of poly type nodes depends on a separate chain computing x k . As in 

Section A.2, these individual chains can be merged into a common shared structure. The resulting (more 

space and time efficient) processed call-graph network is shown in Figure A.3-2. 

A.4. Sets of Polynomial Functions 
The previous Section focused on building and processing call-graphs with the Control-Flow Cache. We 
now discuss strategies for collecting sets of call-graphs for efficient later reuse, i.e., the Call-Graph 
Cache. 

Suppose we wanted to repeatedly compute sets of polynomials on different values of x. We could simply 

compute each polynomial as a separate network, capitalizing only on the efficiency gains of the preceding 

Sections. However, if there is redundancy in the call-graphs, structure sharing may yield further time and 
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a x 2 +bx+c 

x 

Figure A.3-2: Control-Flow Cache processing to improve the call-graph's efficiency, 

space improvements. For example, suppose that starting with the call-graph of ax 2+bx+c (Figure A.3-2), 

we added the call-graph of another polynomial: dx+c. Since the two call-graphs share a common prefix 

subgraph, they can be merged into the more compact graph representation of Figure A.4-1. Adding the 

call-graph of e x 2 + bx + c to the Call-Graph Cache, and again using trie-like sharing of common prefix 

structure, adds the single poly node (and two edges) to the network (Figure A.4-2). 

{ a x 2 + b x + c , dx+c} 

Figure A .4 -1 : Exploiting common prefix subgraph structure: adding dx+c. 

A.5. Multivariate Polynomials 
The preceding four Sections gave examples of exploiting redundancy in program control-flow and use to 

build (Control-Flow Cache) and collect (Call-Graph Cache) call-graphs. This Section gives examples of 

how the resulting network can be used as a Data Cache to perform incremental computation. The 
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2 

Figure A.4-2: Further trie-like merging in the Call-Graph Cache network, 

efficiency gains are greatest when only a small fraction of input data (hence data and partial computations 

cached in the network) changes each cycle. 

Suppose we wanted to compute polynomials in more than one variable. Consider polynomials of the two 

variables 9 x and y. Previously we had partially evaluated the polynomial program P(C,x) into P' c(x). Now 

we shall partially evaluate the multivariate polynomial program P(C,x,D,y) into P ' C i D (x ,y) F o r simplicity, 

consider the case when P' has the form L(x) + R(y); Figure A.5-1 shows a typical resulting call-graph. We 

now focus on the input values of x and y that may propagate through this network. 

If x and y are ordinary values (say, numbers), then the network's data memory (buffer and store) will 

contain such values at every node. What if the value of x changes, but the value of y does not? Then 

propagation (and associated computation) will only traverse the left subgraph L(x); R(y) will not be 

recomputed. That is, the call-graph saves state between the cycles of input value changes. The network 

is thus an implementation of an incremental algorithm that responds to the changes in data, and avoids 

unnecessary recomputation. 

An interesting case is when x and y each denote sets of values. For example, the set S x might equal 

{3,4,7}, while S y contained different numbers. Computing L(x)+R(y) then entails calculating the sum of 

every pair in the cartesian product S x xS y . For example, if S x and S y each had 1,000 members, then 

1,000,000 additions would be performed. 

Changing S x , with S y remaining constant, does not change the overall computational complexity 

9While CGC works with arbitrarily complex multivariate polynomials, for pedagogy we consider only simpler forms. 
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L(x) + R(y) 

y 

Figure A.5-1 : The call-graph of simple multivariate polynomial program. 

0 ( |S x xS y | ) , since each of the new x's must be added to each of old y's. However, when only a small 

fraction of S x or S y change each cycle, the stored state of the network's data cache can lead to great 

efficiency gains. The amount of required incremental recomputation is then just 0 ( lAS^Syl + |S x xAS y | ) . 

For example, if |AS X| - |AS y | - 10, and |S X | - |S y | - 1000, then (10x1000)x2, or 20,000, recomputations 

are required, only 2 % of the full 1,000,000. 
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