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1. Introduction 

According to the progress of VLSI technologies, it becomes important to establish new logic design 
methodologies which make us possible to verify correctness of logic design. Logic simulations do 
not meet this requirement because it cannot guarantee correctness of design in general. As one of 
the formal approaches to this goal, temporal logic[10] is now widely studied in many research field 
such as concurrent process and hardware design verification because it can be used for reasoning 
about event sequences. 

Some practical design verification systems have been developed using temporal logic. Uehara et 
al. developed a DDL verifier[ll] and Fujita et al. implemented a verification system in Prolog[6] 
by using traditional temporal logic. Clarke and Emerson proposed a new temporal logic called 
computation tree logic (CTL)[4], which combines both linear time and branching time temporal 
logic, and developed a CTL model checker[5] which runs linear in both size of specification and 
Kripke model. 

We cannot characterize, however, a finite state machine completely by using these temporal logic 
because of their lack of expressive power; they cannot express regular set which is equivalent to 
finite state machine. In order to extend expressive power of temporal logic, Wolper et al. introduced 
temporal operators associated with right linear grammar and/or Biichi automata [13,14]. In order 
to describe specifications in their logic, however, it is necessary to design automata which satisfies 
specification in a sense. Thus it is easy to make same error both in specifications and its design. 
Furthermore, their approach to design verification is based on inclusion problems of two automata 
by extracting automata from specifications[12], and it is not easy to find out cause of design error 
from the verification result. Moszkowski proposed more powerful temporal logic named interval 
temporal logic (ITL)[9], but satisfiability problem of ITL is undecidable. Therefore, it is difficult to 
use ITL as a basis of logic design verification. 

Considering above stated problems, regular temporal logic (RTL) which is expressively equivalent 
to regular set has been proposed by Hiraishi et al. [7]. The logic used here as a basis of design 
verification of sequential machines is a sub-class of RTL and is named e-free regular temporal logic 

*On leave from Department of Information Science, Kyoto University, Kyoto 606, Japan. 
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(e-free RTL). It is a linear time temporal logic and its expressive power is shown to be equivalent 
to e-free regular set. Unlike the traditional temporal logic, however, its semantics is defined along 
finite sequences of states. If we assume that specifications are given in terms of relations between 
input and output signals of a machine to be designed, specifications for any finite state machine 
can be written in 6-free RTL because possible input-output sequences of a finite machine can be 
characterized as a regular set. 

As for a method of design verification, model checking approach, which has been also used in 
[5], is adopted in this paper. Although the model checking problem of e-free RTL is shown to be 
non-elementary, an efficient model checking algorithm of €-free RTL which is still linear in the size of 
structure model is proposed. The 6-free RTL model checking algorithm treats 6-free RTL formulas of 
specifications directly without converting them into automata. It successively generates 6-free RTL 
formulas which should be hold at next time on a given state machine something like a tabular 
method[l0,13] used for satisfiability problem of temporal logic. If it detects some design error, 
it is more easy to reason about the cause of errors from 6-free RTL formula which fails to hold. 
Furthermore, an 6-free RTL model checker based on the proposed algorithm has been implemented 
and several sequential machines with medium size of states have been verified by the 6-free RTL 
model checker in reasonable time. 

This paper is organized as follows: Section 2. introduces syntax and semantics of 6-free RTL 
and shows its expressive power. Section 3. discusses verification methods and introduces structure 
models and defines truth value of 6-free RTL on structure models. In Section 4. derivative of 
6-free RTL formula is defined and its characteristics are shown. The derivation is the basic operation 
in model checking algorithm and it generates 6-free RTL formula which should hold at next time 
on a structure model. Section 5. describes a model checking algorithm and its order is shown 
to be linear in the size of structure model. Section 6. discusses the complexity of 6-free RTL 
model checking problem and its complexity is proved to be non-elementary. Section 7. explains 
the characteristics of the 6-free RTL model checker. Examples of design verification are also given 
and they show that the 6-free RTL model checker is useful from practical point of view. Section 8. 
concludes this paper with summarizing the results and giving future problems. 

2. 6-free Regular Temporal Logic 

2.1. Syntax and Semantics 

6-free regular temporal logic (6-free RTL) is a linear time temporal logic. It contains 3 temporal 
operators: 'ON <:N a n <l '[[]'• These operators intuitively represent 'next time', 'concatenation', 
and 'repeat' respectively. 

Let AP be a set of atomic propositions. 6-free RTL formulas are defined inductively as follows: 

• If p G AP, then p is an 6-free RTL formula. 

• If 77 is an 6-free RTL formula, then so are (-177), (O7?)? (ED7?)-
• If 7/ and f are 6-free RTL formulas, then so are (77 V f) and ( 7 7 : f). 

Semantics of 6-free RTL is defined based on a linear time model. However, it manipulates only 

2 



( J e ) — h J T ) — h @ «• Q ^ Q — • » Q 

p is true at this state. 
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77 is true along this sequence. 
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77 is false along this sequence. 

( 2 ) <r h ( ^ ) 

<r ( g p ) — ^ T ) — ^ 2 ) — » -

Either 77 or £ is true along this sequence. 

(3)er|=(77VO 

<t ( g o ) — ^ T ) — K f g ) ~ ^ " " 

I f is true along this sequence. 
77 is true along this sequence. 

( 5 ) < r M T . O 

<r ( g o ) — ^ T ) — — - j K f g ) 

77 is true along these sequences. 

(6) * N ( G » 

Figure 1: Intuitive Meaning of Logical Connectives 

finite sequence of states while traditional linear time temporal logic manipulates infinite sequence 
of states. We define the semantics of 6-free RTL with respect to a linear model M = (E, J) , where 

• E is a finite set of states. 

• J : E —• 2AP is an interpretation function that labels each state with a set of atomic propo­
sitions true in that state. 

Let a = sqSi... sn € E* be a finite sequence of states. a(i) will denote the ith state in the 
sequence a (i.e. a(i) = si). \a\ will denote the length of the sequence a (i.e. \a\ = n + 1 ) . In the 
case that \cr\ > i, a1 will denote the suffix sub-sequence of cr starting at Si (i.e. a% = S{... sn and 
a0 = a). 

M,a |= 77 denotes that a formula 77 holds along sequence a in linear model M. In the following 
we sometimes omit M and just write as a \= 77 if there is no confusion. Let p be an atomic 
proposition and 77 and f be formulas. The relation |= is defined inductively as follows: 

1 . 

2 . 

3 . 
4 . 
5 . 
6 . 

<7^p iff pel(a(0)). 
a | = (-.77) iff a | £ 77. 

a | = (77 V f) iff a | = 77 or a |= £. 
a \= ( O ) # M > 2 and a 1 (= 77. 

<t | = (77:^) iff there exist <7i,<72 € E* such that a = 0*102, 0*1 |= »7» and 02 |= £. 
cr |= (|T]77) iff there exists <7; € E* such that a = G\#2 ---v™ and <rt- |= 77 

( 1 < i < m < \ti\). 
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An e-free RTL formula 77 is said to be satisfiable iff (if and only if) there exist some linear model 
M = (E, J) and some sequence a 6 such that M, <r |= 77. 

Intuitive meaning of each logical connective for a sequence of states a = s o ^ i . . . sn are shown 
in Figure 1. 4 V and 'V' represent Boolean negation and disjunction respectively. O 7 ? means that 
77 holds along the sequence starting from the next state. 77 : £ means that 77 holds along the first 
half of the sequence and f holds along the latter half of the sequence. [7] 77 means that 77 holds 
repeatedly. 

We will also use the following abbreviations in writing e-free RTL formulas. 

• 77 = £ « ((77 = * 0 a n ) ) • * 7 ® £ d = K n s O ) 

• y T

 d ^ ( 1 | V (-.17)) • V p d = ( - . V r ) 

'A', '=>•', ' = ' , and represent Boolean conjunction, implication, equivalence, and exclusive-or 
respectively. 'Vy' and 'VpJ represent tautology and invalid formula respectively. Unary operators 

'0\ T O ' ^ a v e higher precedence than binary operators 'V ' , 4 A ' , * = V © ' a n ( i ' : When 
there is no ambiguity, we usually omit parenthesis and ' ) ' . 

2.2. E x p r e s s i v e P o w e r 

e-free RTL can express various properties of sequences. For example, a set of sequences whose 
length are exactly 1 can be expressed by 

LEN1 d= VT = -t(VT:VT) . 

O77 which denotes that 77 holds at some point in a sequence and CI77 which denotes that 77 holds at 
every point in a sequence can be defined as follow: 

• O77 7 7 V ( V x : t 7 ) • Dt7 = ^ -1O-177 = 77 A -i(Vj>: -177) . 

The property that p is true at the first state and it is also true thereafter at every other state in 
a sequence, which cannot be expressed by traditional linear temporal logic [13], can be expressed 
as follows: 

(p A LEN1) V Q ] ( p A OLEN1) V ( Q ] ( p A OLENl): LENl) . 

Furthermore, although we use 3 temporal operators in the definition of e-free RTL, the temporal 
operator ' O ' *s redundant. QT) can be expressed as 

0 7 = LEN1:T]= ^(Vt:Vt):T). 

Next, we discuss relationship between an c-free regular set and a set of sequences of states which 
can be expressed by a e-free RTL formula, where an e-free regular set is a regular set which does 
not contain null string e. Let L^J(TJ) be a set of sequences over S along which 77 holds with respect 
to the linear model ( £ , / ) . More precisely, Lxj(rj) = {cr\a G Y$,a (= 77}. If there is no confusion, 
we abbreviate L^J(T)) as ¿ ( 7 7 ) . £e,/(*?) can be obtained as follows: 
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1 
spec 

def 
= px = (p2 = O^Pz) 
def = ^pzAD(rjVLENl) 

Sample I/O Sequence z : 
z : 

0 0 1 0 1 1 1 0 0 1 
0 0 0 1 1 0 1 0 0 0 

Figure 2: Specification of T Flipflop 

• £ e , j ( p ) 

• LzAv v 0 

= {s\s ex,Pei(s)}x* 

= X E f / ( l ? ) l i E f / ( 0 

¿ £ , / ( 0 ) = S X S J ( r / ) 

On the other hand, for any 6-free regular set R over £ , the corresponding €-free RTL formula 
F{R) such that LJ;J(F(R)) = i? can be constructed inductively by introducing corresponding 
atomic proposition ps for each state 5 g S (I(s) = {p 5}) as follows: 

F(Ri + R2) 
VF 

F(R1)VF(R2) 
• F(s) = p3ALENl 
• F(RtR2) = F(R1):F(R2) 

Note that any e-free regular set over S can be generated by applications of i*ra0n('-f-'), concate­
nation, and daffgerCt') operators over the alphabet S and an empty set <f>. Therefore, we obtain 
the following theorem. 

Theorem 1 The expressive power of e-free RTL is equivalent to e-free regular set. 

3. Design Verification of Sequential Machines 

In this section we discuss how to verify design of sequential machines. Let us consider verification of 
a deterministic sequential machine with n binary input signals X = {x\, x2,... , x n } and m binary 
output signals Z = {zi, z2,... ,zm}. 

We assume its specification is given in terms of possible input-output sequences of a machine 
to be designed. More precisely, a possible input-output sequence is a finite sequence p over 2 X u Z 

such that X{ € p(k) iff xt- = 1 at the fcth input and Zj 6 p(k) iff Zj = 1 at the fcth output 
(1 < i < n, 1 < j < m, and 0 < k < \p\). Because the machine to be designed should have 
only finite number of states, the set of possible input-output sequences can be characterized as an 
e-free regular set. 

Let pXi and pZj be atomic propositions associated with input signal x* and output signal ZJ 
respectively such that pXi is true iff xt- = 1 and pZj is true iff Zj = 1. Then it is guaranteed by 

5 



0 

1 
Moore Type T Flipflop 

1 0 

Mealy Type T Flipflop 

Figure 3: Two Designs of T Flipflop 

Theorem 1 that there always exist an e-free RTL formula spec which express the specification (i.e. 
the set of possible input-output sequences). 

Figure 2 shows a specification spec of T flipflop written in e-free RTL. We assume that the 
output z is 0 at initial. The output z changes its value iff the previous input x is 1. Since this 
property of T flipflop is meaningless for a time sequence whose length is 1, LEN1 is used in spec 
so that spec ignores non-existing next state at the last time of a time period under consideration. 

We also assume that the result of design is given in the form of either a Moore machine or a 
Mealy machine (see Figure 3). Then the verification problem becomes to check if spec holds for all 
possible input-output sequences of the designed machine. 

In order to treat possible input-output sequences more easily, we define a structure model of 
e-free RTL. K = (E, J, R, Eo) is called a structure model of €-free RTL, where 

• (E, J) is a linear model of e-free RTL. 

• j R C E x E i s a binary relation on E and denotes the possible transitions between states. 

• Eo C E is a set of initial states. 

A structure model is a kind of Kripke model[8] with a set of initial states where R is not 
necessarily a total relation. For a structure model K = (E, J, R, Eo), a finite sequence of states 
7r = SQS\... sn is called a finite path from so iff (st-, s t +i) £ R for any i such that 0 < i < n. Similarly, 
an infinite sequence of states tt = S 0 S 1 S 2 . . . is called an infinite path from so iff (¿¿,¿,-+1) € R for 
any i > 0. 

Truth value of 6-free RTL formula with respect to a structure model K is defined as follows. An 
e-free RTL formula 77 is said to be (K, s)-true if there exists a finite path x from s in the structure 
model K such that 77 holds along 7r (7T | = 77); it is said to be (K,s)-false otherwise. Furthermore, 
an e-free RTL formula 77 is said to be K-true if there exists some initial state SQ G E o such that 77 
is (lif,so)-true; it is said to be K-false otherwise. 

Let M = (X, Z, 5,£, A, so) be a deterministic sequential machine with an initial state, where 
X, Z, and 5 are finite, nonempty sets of binary input signals, binary output signals, and states, 
respectively; 
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• 5o is the initial state; 

• 6 : 2X x 5 —• 5 is the state transition function; 

• A is the output function such that 

— A : 5 —• 2Z for Moore machine (We assume that A is a total function.); 
— A : 2X x S —• 2Z for Mealy machine (We assume that the A is defined so long as 6 is 

defined.). 

A structure model K corresponding to a machine M is defined to be a structure model such 
that there exists one to one correspondence between the possible input-output sequences of M and 
the paths from one of an initial state in So of K. Then design verification problem becomes to 
check if spec holds along any finite path from one of the initial states of the corresponding structure 
model K. In other words, -yspec is if-false iff the design is correct. 

For a Moore machine Mr = (X, Z, 5 , A , SQ), its corresponding structure model Kr = (S , J, i?, So) 
is constructed as follows: 

• E = Wijsi G SJ G 2X, and 6(j,Si) is defined. } 

• = {P*\* e j} U {pz\z G X(si)} 

• R = {(sij.Siij^lsij^Sif^ E S ,<$(jf ,5 t ) = * t - /} 

• S 0 = ls'0j G S} 

The order of the number of states and transitions in K becomes as follows: 

0( |S | ) = 0{\S\2X), 0 ( 1 * 1 ) = 0 ( № * ) , and 0 ( | S | + |J2|) = 0((\S\ + \E\)2X) = 0 ( | 5 | 2 2 ^ ) . 

For a Mealy machine Mi = (X,Z, S,£, A,$o), its corresponding structure K\ = ( S , / , J? ,S 0 ) is 
constructed as follows: 

. E = {s'iJtk\si e SJ €2x,ke 2z,\(j,i) = k} 

• = € j } U {p,|ar G k} 

• So = {s'0Jtk e s} 

The order of the number of states and transitions in K becomes as follows: 

0 ( | £ | ) = 0{\E\\ 0(\R\) = 0(\E\2X), and 0 ( | S | + |JJ|) = 0(\E\(1 + 2X)) = 0( |5 |2 2 l^ l ) . 

If at least one next state is defined for each state in Mr and M/, R of their corresponding 
structure model becomes a total relation. 

Figure 4 shows the structure models corresponding to two designs (Mr and Mi; see Figure 3) of 
the T flipflop whose specification is given in Figure 2. Kr corresponds to Mr while Ki corresponds 
to Mr. Initial states are shown as double circles. Labels associated with nodes of structure models 
represent truth value of atomic propositions at the states in the order of px and p2. Ki has equivalent 
states and can be reduced to Kr. 
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Structure Model Corresponding to Mr Structure Model Corresponding to M\ 

Figure 4: Structure Models of T Flipflop 

4. Derivative of 6-free RTL Formulas 

Derivative of an €-free RTL formula 77 by a state s e E, denoted by 77/3 , is defined inductively as 
follows: 

def J v T i f p e / W 4sf f V T if; 
\ VF ot] ( Vp otherwise 

3 . ( i ? v o / « d = ( i ? / * ) v ( e / * ) 

5 . ( , : « / . « { f V « t ) ! 0 ^ M 

^ ( 7 7 / 3 ) : f otherwise 

I C 7 / / 5 ) v ( O 7 / 5 ) : Q ] | J ) otherwise 

By extending the above definition, a derivative by a sequence of states is defined as follows. Let 
77 and a = s§s\ . . . 5 n G b e a n 6-free RTL formula and a sequence of states respectively. Then 
7 7 / d =f ((• • • ((TF/so)/si) • • -)/sn). We also define that 77/6 =F 77, where € is a null sequence. 

As for derivatives, following equations hold, where 0 denotes any Boolean operator with two 
arguments (i.e. A, =>,=,©, and so on): 

• 0 ? © O / * = (v/s)Q(t/s) • VT/s = y T 

• V > / * = V F • LENl/s = V p 

• ( O v ) / * = ( 7 7 / 5 ) V O 7 7 • ( 0 7 7 ) / ^ = ( 7 7 / 5 ) A D77 

Lemma 1 ie* a = so^ i . . . s n fee a / m t t e sentience of states whose length is greater than 1 . Then, 
M,a\=r) iff M^1

 | = 7 7 / 5 0 . 

(Proof) This lemma can be proved inductively as follows: 

• M,<7 |= p iff s G /(so). From the definition of derivative, p / s 0 is Vr if s e I(so); Vp otherwise. 
Therefore, M, a |= p iff M, cr1 |= p/«so-
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• M,a | = 771 V 772 ifi M,a | = 771 or M,a | = 772. By the induction hypothesis, this is equivalent to 
M, a1 | = ( 7 7 1 / ^ 0 ) V ( 7 7 2 / 50 ) . This is equivalent to M , ^ 1 |= (771 V 7 7 2 ) / s 0 . 

• M,cr |= -«77 iff M,<7 |£ 77. By the induction hypothesis, this is equivalent to M, a1 | £ 77/50. 
This is equivalent to M,al |= (~*ri)/so. 

• M,<r |= O 7 ? iff M,al | = 77. This is equivalent to M,al |= (Orj)/50. 

• M,<r |= 7 7 1 : 7 7 2 iff there exist <7i,<72 € S* such that a = <7i<72, - W ^ i 1= Vii a n <l M,<72 |= 772. If 
|<7i| = 1, this is equivalent to Af,5o |= 771 and M,ox | = 772. If |<7i| > 1 on the other hand, it is 
equivalent to M, a\ | = 771 /50 and M,<?2 | = 772. Then these conditions can be stated as follows: 
If M ,5o |= 771, it is equivalent to M,ax | = 772 V ( ( 7 7 1 / 5 0 ) : 772) ; otherwise, it is equivalent to 
M, a1 | = ( 7 7 1 / 5 0 ) : 772- Therefore, it is equivalent to M , ^ 1 |= ( 7 7 1 : r ^ / s o . 

• M,cr |= Q]77 is equivalent to M , a |= 77 V ( 7 7 : [T]77). Then, if M ,5o |= 77, it is equivalent 
to M, a1 |= (W/so) V [T]77 V ( (77 /50) '.jTJ^); otherwise it is equivalent to M, a1 | = (77 /50) V 
((V/so) '-Q]7?)- Therefore, it is equivalent to M,cr 1 |= ( [ T j 7 7 ) / 5o . (q.e.d.) 

Lemma 2 Ze* M = ( S , / ) 6e a linear model of e-freeRTL and let r = 5o5i52 . . . 6e either finite 
or infinite sequence on S. The necessary and sufficient condition that e-freeRTL formula rj holds 
along some finite prefix sequence of r is that M ,5o |= 77 or 77/50 holds along some finite prefix 
sequence of r 1 = 5i52 

(Proof) Necessity: Let us assume that M,a | = 77, where a is a finite prefix sequence of r . If |<j| = 1, 
M, 5o |= 77. Otherwise, M , ^ 1 |= (77 /50) and a1 is a finite prefix sequence of r 1 . 
Sufficiency: If M ,5o |= 77, 5o is clearly a finite prefix sequence of r. If 77/50 holds along some finite 
prefix sequence a1 of r 1 , M^SQCT1 | = 77 from Lemma 1, and 5O0" 1 is clearly a finite prefix sequence 
of r. (q.e.d.) 

Theorem 2 Let K = (S , J ,R,So) and 77 6e a structure model and an e-freeRTL formula respec­
tively. The necessary and sufficient condition that 77 is (K,s)-true at a state 5 G S is s | = 77 or 
there exists a state sf such that (5,5') G R and rj/s is (K,sf)-true. 

(Proof) From the definition of a structure model, 77 is (jfif,5)-true if and only if there exists a finite 
path 7r on K starting from 5 such that x ( = 77. This is equivalent to the condition such that 77 holds 
along a finite prefix sequence 7T of some infinite path r on K starting from s. Then from Lemma 2, 
it is equivalent to the condition that 5 |= 77 or there exist a state s1 such that (5, s!) G R and 77 /5 is 
(K,s')-tme. (q.e.d.) 

Lemma 3 Let s be a state in a linear model M = (S , J). Whether M, 5 |= 77 or not can be decided 
in time 0 ( | t 7 | ) , where \r)\ is the number of operators and atomic propositions in 77. 

(Proof) It can be decided inductively as follows by executing each induction step at most (77! times: 

• M,5 |= p iff p G I{s). • M, 5 |= 771 V 772 iff M, 5 |= 771 or M,5 |= 772. 

• M , 5 (= -177 iff M , 5 ^ 77. • M , 5 ^ Or} holds always. 
• M , 5 ^ 7 7 1 : 7 7 2 holds always. • M , 5 | = [TJ77 iff M , 5 (= 77. (q.e.d.) 

9 



Theorem 3 TJ/S can be obtained in time 0(|r7|). 

(Proof) Derivative rj/s can be obtained inductively based on its definition. In the case of 77 = 7 7 1 : 7 7 2 

or 77 = [7]771, we need to check whether s | = 771 holds or not. This can be also done inductively 
as shown in the proof of Lemma 3 and each of this induction steps can be combined with that 
of induction steps in the calculation of derivative. Although 7 7 1 / 5 appears twice in the derivative 
of [TJ771 , we only need to calculate it once. Therefore, each induction step can be calculated in a 
constant time and the number of induction step which will be executed is | t7| . Thus, 77/5 can be 
calculated in time 0 ( | t ? | ) . (q.e.d.) 

Let D*(rf) be a set of all derivatives of 77. More precisely, D*(r)) = 77/(7,(7 G E*}. In the 
definition of D*(rj) we regard two formulas are identical if they can be transformed to one another 
by using commutative, associative, and idempotence law of ' V ' . 

Theorem 4 For any e-freeRTL formula 77, D*{rj) is a finite set. 

(Proof) D*(TJ) can be shown to be a finite set inductively as follows: 

• D*{p) = {p,VT,VF}. 

• D*(rh V 772) C V £ 2|£i € 2 T ( i & ) , 6 G D*(M)}. 

• D*(Or,) = iOv} U D*(V). 

• Let Ex = { V [ e ] | 0 G 2D*M} and E2 = tfi G 
Then, jD*(t7! : 7 7 2 ) C {vx V v2\v\ G £ i , v 2 6 E2} 

• Let Fi = {V[0]|© 6 2 D ^ U & } } and F2 = { 6 : Q t ? | 6 G D*(V)}. 
Then, D*([7]77) C V i/ 2 | i/ i G Fx,v2 G F 2 } , 

where V [ © ] denotes Boolean disjunction of all formulas in 0 . From the induction hypothesis, right 
hand sides of the above equations are finite sets. (q.e.d.) 

5. Model Checking Algorithm 

From Theorem 2 we obtain a model checking algorithm which decide whether an 6-free RTL 
formula 77 is iif-true for a structure model K = ( E , I , R , % Q ) as shown in Figure 5 . It checks the 
condition stated in Theorem 2 by depth first search. 

The procedure Addlabel(5,77, a:) registers a label x which shows that the value of 77 is a: at state 
5 . x = 4 T ' means that 77 is (K9 s)-true. x = 'F ' means that 77 is (K, 5)-false. x = 4 C means that the 
truth value of 77 at state s is now under investigation. The procedure Label(5,77) returns the label 
of 77 at s if already registered; otherwise it returns null. The procedure Initlabel(iif, AP) registers 
labels for each atomic proposition, V^, and Vp at each state. The procedure Check(/i r, 5 , 7 7 ) is called 
only if no label is registered for 77 at s and checks whether 77 is ( if ,5)-true. First, it calculate the 

1 0 



procedure Verify(/<", 77, AP) 
Initlabel(#, AP); 
for all states s in So do { 

if Label(s,r7) = "F then return "F; 
if Label(s,rç) ^ 'F ' then 

if Check(#, 5,77) = "T then return *T'; 
} 
return 'F'; 

end of procedure 

procedure Initlabel(if, AP) 
for all states s in E do { 

for all atomic propositions p in AP do { 
if p€ I(s) then Addlabel(s,p,'T); 
else Addlabel(s,p,'F'); 

} 
Addlabel(s,VWT'); 
Addlabel(s, V>,T'); 

} 
end of procedure 

procedure Check(/<', s, 77) 
(x,£) = Derivation^, 77); 
i f x = ' T ' then{ 

Addlabel(s,77,T'); 
return 'T'; 

} else { 
Addlabel^Tj/C); 
for all sf such that (s, s') £ R do { 

x = Label(s',£); 
if x = 'T' then return('T'); 
if x = 'nw/f then 

if Check(#,s',£) = <T' then { 
Addlabel(s,77,T'); 
return 'T'; 

} 
} 
Addlabel(s,77,'F'); 
return T'; 

} 
end of procedure 

Figure 5: Model Checking Algorithm 

truth value of 77 along s and the derivative of 77 by s by the procedure Derivation^, 77). If s )fc 77, 
then it checks 77/5 at each successor s' of s successively. If 77/5 has been already labeled as 4 T ' at s\ 
it returns 4 T \ If 77/5 has been already labeled as 'F ' or ' C , it proceeds to check other successors. 
The label ' C means that there arises a loop in checking the truth value of 77/5 at s' and is treated 
like the label ' F ' because 77/s never holds along such a loop (see the proof of Theorem 5). If 77/5 
has no label at s', it calculate the truth value of 77/5 at s' by calling Checkflif,^7,77/5) recursively. 

Theorem 5 The procedure Verify(K,r),AP) correctly calculate K-truth value ofr). 

(Proof) Its correctness is almost clear from the definition of If-truth value and Theorem 2 except 
its termination and loop handling. Note that Check(lT, 5,77) never generates derivatives of a same 
formula at a same state twice. Theorem 4 guarantees that only finite number of derivatives are 
generated by successive derivations. Therefore, it always terminates. 

When Check(if,5,77) detects a loop (i.e. Label(s', f) = ' C , f = 77/3), it just treats it as 'F ' 
without checking its successors anymore because £ never holds along any finite prefix subsequence 
on the loop (i.e. a*av ^ f where a is a sequence of states which constructs the loop and av is any 
prefix subsequence of a). This can be proved as follows: 
Because Label(s',f) = (/a = f and av |£ f for any prefix sequence av of a. Let us assume 
that there exists some prefix sequence of cr, denoted by <7p/, such that a^a^ |= £. Since £/cr = £, 
this implies that cy |= £, which is a contradiction. Therefore, <J*<TP |£ £ for any prefix sequence ap 

ofcr. (q.e.d.) 

Figure 6 shows how the e-free RTL model checking algorithm works on the structure model Kr 

(see Figure 4) and its specification spec of T flipflop. The frame boxes represent that the procedure 

11 



1 ~ Px = (Pz = O^Pz) 
rjo = f ->spec = A a(r; V LENl)) 
m = f ""(p* A V LENl)) 
so 170 

«2 |£ *7l 

W«o = ^0 

*7i/53 = *7o 

Figure 6: Verification of T Flipflop by the Model Checking Algorithm 

Check(if,«s,77) is called with arguments written in the boxes. The dashed boxes means that the 
associated formulas at the specified states have been already labeled with either 4 C , 4 F' , or 4 T \ 
The number associated with edges represent that algorithm traverses on the structure model in 
this order. The edges labeled 2,5,7, and 8 causes backtracking with return value 4 F ' because the 
formulas in the dashed box pointed by these edges have been labeled 4 C at the specified states. 
Similarly the edges labeled 9 and 10 also causes backtracking with return value 4 F ' because the 
formulas in the dashed box pointed by these edges have been already labeled 4 F ' at the specified 
states. Then the model checking algorithm terminates with return value 4 F ' , which means that the 
design of T flipflop satisfies its specification. 

Next, we evaluate the execution time of the model checking algorithm. Let Len(D*(rj)) be a 
maximum number of operators which will be generated in derivation of f G D*(v)-

Theorem 6 The model checking algorithm runs in time 0((\12\Len(D*(r)))log(Len(D*('rf))) + 
\R\ log(\Dm(rj)\))\D*(rj)\), which is linear order o / |E | + \R\. 

(Proof) For each f € D*(ri), Check(liT,s,£) is called at most |E| times because Check(jfif,$,£) is 
never called twice with same arguments. In Check(/i r,5,^), s \= f is checked and £/s is gen­
erated. These steps can be done basically in time 0(Len{D*{r}))) as shown in Lemma 3 and 
Theorem 3. In order to guarantee termination of the algorithm, however, we need to simplify 
derivatives by using idempotence, commutative, and associative lows of 4 V\ This simplification 
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can be done in time 0(Len(D*(7]))log(Len(D*(ri)))). If 5 ^ 6 label of £/s at each succes­
sor of s is checked and Check(ijf,s',£/s) is called if necessary. This step can be done in time 
0 ( l o g ( | £ > * ( 7 7 ) | ) ) and is executed at most | j R | times in total during Check(jST,s, 77) is called for each 
s G S. Since these steps are possibly executed for each £ G D*(rj), the entire algorithm requires 
time 0((\X\Len(D*(r)))\og(Len(D*(r))))+ \R\ log(|£*(77 ) | ) ) |Z>*(77)|) . Because ^ ( 7 7 ) is independent 
on a structure model K, it is proportional to the size of the structure model (i.e. |E| +1R\). (q.e.d.) 

6. Complexity of Model Checking Problem 

In this section the DTM (deterministic Turing machine) space complexity of the model checking 
problem of e-free RTL is shown to be non-elementary with respect to the length of a given e-free RTL 
formula. In order to show this, we show that the emptiness decision problem of an extended regular 
expression, whose DTM space complexity is non-elementary[1], can be transformed into the model 
checking problem of e-free RTL in elementary time. 

e-free Extended Regular Expression over an alphabet E is defined recursively as follows: 

• <F> is an 6-free extended regular expression which denotes an empty set. 

• s is an e-free extended regular expression which denotes a set {s}, where s 6 E. 

• Let # 1 and R2 be e-free extended regular expressions which denotes language L\ and L2 over 
E respectively. Then, R\ + R2yRi • R2,R\jRi H R2, and ~ j R i are e-free extended regular 
expressions which denotes L\ U L2,L\L2,l\,L\ n L2j and E* — L\ respectively. 

For any extended regular expression, we can obtain its equivalent expression in the form either 
e+R or R in elementary time where R is an e-free extended regular expression. Furthermore, we can 
decide if a language denoted by an extended regular expression contains null string e in linear time 
of the length of the given extended regular expression. Therefore, the DTM space complexity of 
emptiness decision problem of e-free extended regular expression is also non-elementary. A language 
denoted by an e-free extended regular expression is apparently an e-free regular set. 

Lemma 4 The DTM space complexity of satisfiability problem of e-free RTL is non-elementary. 

(Proof) Let AP be a set of corresponding atomic propositions such that AP = {ps\s G E}. Let jR, 
Ru and R2 be e-free extended regular expressions. Let F(R) be an e-free RTL formula correspond­
ing to R. F(R) is constructed inductively as follows: 

F{4>) 

F(Ri + R2) 

F(~R) 

VF 

F(R1)VF(R2) 

M M ) 

^F(R) 

F(s) 
• F(R1-R2) 
• F(RiDR2) 

pa A LENl 
F(Ri)'-F(R2) 
F(Rt) A F(R2) 

We also define e-free RTL formulas <p1, (p2, and TP as follows: 

d~ A fa« PB) 
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def \ / 
<£>2 = y Ps 

P»€AP 

$ àÉ U(Vl A <p2) A F(R) 

<pi represents that any two different atomic propositions cannot become both true at a time and 
<p2 represents that at least one atomic proposition is true. Then, 6-free extended regular expression 
is empty if and only if $ is not satisfiable. t\> can be constructed in elementary time 0 ( | S | 2 + | i î |) , 
where \R\ denotes the number of operators in R. (q.e.d.) 

Theorem 7 The DTM space complexity of the model checking problem of e-freeRTL is non-
elementary with respect to the length of a given e-free RTL formula. 

(Proof) We prove that the satisfiability problem of any e-free RTL formula rj can be transformed to 
the model checking problem of 77 in elementary time. Consider a structure model Kc = (S , I , R, S 0 ) 
such that |S | = 2 l^ p / l , / : S -+ 2 ^ ' ! is bijection, R = S x S, and S 0 = E, where AP' is a set 
of atomic propositions appeared in 77. Then, apparently 77 is satisfiable if and only if 77 is if c-true. 
The structure model Kc can be constructed in elementary time 0(2 2 ' r ? l ) . (q.e.d.) 

7. Implementation and Verification Examples 

The model checking algorithm stated in Section 5. has been implemented as an e-free RTL model 
checker on VAX-11/780 under 4.3 BSD UNIX operating system and it has been used for design 
verification of some sequential machines with practical number of states. 

7.1. Implementation of e-free RTL Model Checker 

In the 6-free RTL model checker, e-free RTL formulas are stored as labeled directed acyclic binary 
graph in usual way. Labels are associated with nodes and represent either operators or atomic 
propositions and immediate successors of a node represent operands of its associated operator. 

e-freeRTL formulas and their sub-formulas are also managed as sorted tree and same sub-
formulas are shared where required in order to save spaces. Furthermore, each node has two 
pointers: derivative pointer and complement pointer. If a derivative of some sub-formula is gener­
ated during derivation of some formula at some state, the derivative pointer of the corresponding 
node is set to point its derivative. When a derivative of the same sub-formula is required again, 
the derivative pointer is used without re-calculating derivation. The complement pointer points 
its complemented formula if exists. This pointer does good job in simplifying formulas such as 
-1-177 = 77, -177 V 77 = VT, and so on. 

7.2. Verification of a Traffic Controller 

In order to check the efficiency of the e-free RTL model checker, it has been used for design verifica­
tion of a traffic controller in [2]. The traffic controller is stationed at the intersection of a two-way 
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IEN2 def 0{LENI) 
LENZ def 

0(LEN2) 

LENGTH def ^(LENl V LEN2 V / e n 3 ) 

NOCOLI def 
• H E L G O A (NJGO V 5 . G O ) ) ) 

ICN def -I((n(N A^NJGO)) : -IN) 

ICS def -^((•(5 A ^ 5 . G O ) ) : ^S) 

ICE def 
- » ( ( • ( £ A ^EJGO)) : -*E) 

IC def •(icn A ICS A ICE) 
ASNA def N A —TE A /eny*3 

ASSA def 5 A ->£' A /en^3 

ASEA def 
£ A -i(JV V E) A LENGTH 

NGOBY4 def 
NJGO V 0{N-GO V Q(NJGO V ON.GO)) 

SGOBY4 def 
SJGO V Q(SJGO V 0{SJG0 V O S j G O ) ) 

EGOBYA def 
e l g o v O(EJGO v O(EJGO v OEJGO)) 

DELAYA def 
IC => ( D ( a 5 n 4 => NGOBYA) A U{ASSA SGOBYA) A D(ASEA EGOBYA)) 

SPEC def NOCOLI A DEIAYA 

Figure 7: Specification of Traffic Controller 

highway going north and south and a one-way road going east. It has 3 input signals (iV, 5, and 
E), 3 output s i g n a l s ( i V j G O , 5 _ G O , and EJGO), and 5 internal signals. iV(north), S(south), and 
i?(east) represent that there is at least one car which intends to cross the intersection straight to 
north, south, and east respectively. NJGO, SJGO, and EJGO represents the state of traffic lights 
at the intersection for the corresponding direction. It is designed as Moore machines. One design, 
'bad design', which has some design error, has 43 states and its corresponding structure model has 
344 states while the other ('good design') has 31 states and its corresponding structure model has 
248 states. 

The full specification spec for the traffic controllers is written in e-free RTL as shown in Figure 7. 
Ien2,len3, and length means that the length of a period is 2, 3, and greater than 3 respectively. 
nocoli states that traffic lights for east direction and north-south direction never become both green 
at a same time, ic represents input constraints such that once N, S, and E are asserted, they never 
turn off until NJGO,SJGO, and EJGO turn on respectively. asnA,assA, and a$e4 represent the 
situation, whose time period is greater than 3, that there is now at least one car intending to cross 
the intersection to the corresponding direction while there are no cars to its orthogonal directions. 
nogobyA, sgobyA, and egobyA declares that the traffic lights will be green for the corresponding 
direction within 4 unit times including now. Therefore, spec specifies that the traffic lights for the 
orthogonal directions to each other never becomes both green at a same time and if a car arrives at 
the intersection and there are no cars from its orthogonal directions the traffic light for its direction 
becomes green within 4 unit times including now so long as input constraints are satisfied. 
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Ien2 = OLEN1 
lengi2 =f -i(LENlVlen2) 

asl =f (OMemReq O-i ActivateComparator) A (O-n MemReq D-iAfemGrant) 
as2 = f •((Cptii&g A ^DmaReq) => 0((MemFinished A /en(tf2) => O O -~>CpuReq)) 
as3 = f n((-nTransferReq A OTransferReq) 0(0(DeviceReady =» (LEN1 V QDmaReq)))) 

as4 =f D(DmaReq 0(ActivateComparator 0(ComparatorSet 
( j L E M V 0 ( i > ^ ^ ^ V DmaCont))))) 

as5 = f -»0(ActivateComparator A MemGrant) 

as6 =f U(^(TransferReq A OTransferReq A (DmaType 0 ODmaType)) V LEN1) 
asl = f D((DmaDonc A Comparator Set) (DmaEnd V DDmaDone V (DDmaDone : DmaEnd))) 
asS = f •((-uDmaDone A Comparator Set) (DmaCont V •(^DmaDone) V 

(O-iDmaDone: DmaCont))) 
as9 =f ActivateComparator A OActivateComparator A Comparator Set)) 

asall ==f asl A a^2 A as3 A a«4 A a«5 A as6 A as7 A a«8 A a«9 

Figure 8: Assertions for DMA Controller 

spec contains 89 operators and the e-free RTL model checker found that -ispec becomes true 
for the bad design in 4.7 seconds by using additional 90 expression nodes (i.e. it contains some 
design error) and -ispec becomes false for the good design in 19 seconds by using additional 159 
expression nodes (i.e. the good design satisfies the specification). These required time and space 
seems to be reasonable from practical point of view. 

7.3. Verification of a D M A Controller 

As an example of verification of sequential machines with more states, design verification of a DMA 
controller in [3] has been also done. The DMA controller is designed as Moore machines with 5 
input signals and 15 output signals. One design (bad design), which has some design error, has 
392 states and its corresponding structure model has 12544 states. The other (good design) is a 
corrected version and has 272 states. Its corresponding structure model has 8704 states. 

Figure 8 shows the assertions for the DMA controller. Iengt2 represents a period greater than 
2 unit times. The assertion asl denotes that if MemReq is always high then ActivateComparator 
is always low and if MemReq is always low then MemGrant is also always low. as2 asserts that 
it is always true that if CpuReq is high and DmaReq is low then it will eventually happen that 
CpuReq becomes low in two clock after MemFinished is asserted. as3 represents that if TransferReq 
becomes high then it will eventually happen that DmaReq will be high at next time of DeviceReady 
being high. as4 states that if DmaReq is high and ActivateComparator and Comparator will be 
high sometime then either DmaEnd or DmaCont will be high at the next time. as5 states that 
ActivateComparator and MemGrant never becomes high at a same time. as6 means that DmaType 
never changes its value during TransferReq is high, asl and as8 describes that if ComparatorSet 
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DMA Controllers (5 input signals, 15 output signals) 
Bad Design (392 states) Good Design (272 states) 

Structure Model 12544 states Structure Model 8704 states 
Assertion #oP. Result Time #Node Result Time #Node 

(sec.) used (sec.) used 
asl 10 O.K. 10.7 1 O.K. 6.4 1 
as2 13 O.K. 225.9 9 O.K. 141.3 9 
asS 10 O.K. 74.1 6 O.K. 41.5 6 
as4 9 O.K. 117.5 7 O.K. 63.8 7 
as5 3 O.K. 46.8 0 O.K. 28.4 0 
as6 8 O.K. 108.6 9 O.K. 63.9 9 
asl 8 Fail 12.8 3 O.K. 57.1 3 
asS 11 Fail 5.6 3 O.K. 56.7 3 
as9 6 Fail 3.5 2 O.K. 37.8 2 

asall 86 Fail 114.3 132 O.K. 1825.8 225 

Table 1: Verification of DMA Controller 

is high then the value of DmaDone never changes until DmaEnd or DmaCont becomes high. as9 
states that ComparatorSet is never high just before ActivateComparator becomes high, asall is a 
logical conjunction from asl to as9. 

Table 1 shows the result of verifications. The column c # O p . ' shows the number of operators 
contained in assertions. The column '#Nodes' shows the number of expression nodes used in the 
verification process except required nodes to store given assertions themselves, asl ~ as9 are 
checked successively while asall is checked separately. The 6-freeRTL model checker finds out 
that assertions as7,as8,as9, and asall are not satisfied by the bad design. Assertions asl ~ as9 
contain 3 ~ 13 operators. Required time to verify them varies from 3.5 ~ 225.9 seconds, which 
is still acceptable from practical point of view. Especially, design errors are detected much faster 
and it requires only 3.5 ~ 12.8 seconds. In order to check asl ~ as9, 40 expression nodes are used 
additionally in total. 

asall is a conjunction of asl ~ as9 and contains 86 operators. It takes about 30 minutes by 
using 225 additional expression nodes to verify that the good design satisfies asall, while asl ~ as9 
can be verified in about 8.3 minutes by using additional 40 expression nodes in total. As shown 
in Theorem 6 and Theorem 7, the complexity of the model checking problem of e-free RTL is non-
elementary with respect to the length of a given formula but is still linear order of the size of a 
structure model. This means that the number of derivatives and/or their length which will be 
generated during model checking is non-elementary with respect to the length of a given assertion. 
So, if an assertion can be represented as a conjunction of some sub-formulas, it is more efficient to 
check sub-formulas individually than to check it as one formula from both time and space's point 
of view. 
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8. Conclusion 

In this paper a method for design verification of sequential machines based on model checking 
of e-free RTL has been described. Although the model checking problem of e-free RTL has been 
proved to be non-elementary, the proposed model checking algorithm has been shown to be linear 
in the size of the structure model. The e-free RTL model checker has been also implemented. It 
is able to determine whether given specifications written in e-free RTL are satisfied by a design 
in reasonable time for medium size of sequential machines. For more complicated specifications it 
may require much more time to show that there is no design errors. However, it is still useful from 
practical point of view because it usually detects design errors much faster if design contains some 
errors. If the model checker detects some design error, it is easy to obtain e-free RTL formula and 
a computation path along which it fails to hold. Reasoning the cause of design error from these 
information is an interesting future problem. 

Although e-free RTL can treat only finite sequence of states, full specifications of any finite 
state synchronous machine can be described in e-free RTL because it is expressively equivalent to 
e-free regular set. In some cases such as description of input constraints, however, it sometimes 
becomes easier to describe specifications by using some properties over infinite sequences. Thus 
the extension of e-free RTL so that it can handle infinite sequences is one of the important future 
problems. 
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