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Abstract 

This report describes the design, implementation and performance evaluation of a virtual shared memory 
server for the Mach operating system. The server provides unrestricted sharing of read-write memory 
between tasks running on either strongly coupled or loosely coupled architectures, and any mixture 
thereof. A number of memory coherency algorithms have been implemented and evaluated, including a 
new distributed algorithm that is shown to outperform centralized ones. Some of the features of the 
server include support for machines with multiple page sizes, for heterogeneous shared memory, and for 
fault tolerance. Extensive performance measures of applications are presented, and the intrinsic costs 
evaluated. 
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1. Introduction 
Shared memory multiprocessors are becoming increasingly available, and with them a faster way to 

program applications and system services via the use of shared memory. Currently, the major limitation 
in using shared memory is that it is not extensible network-wise, and therefore is not suited for building 
distributed applications and services. Example uses of a distributed shared memory facility include 
operating system services such as file systems and process migration, distributed databases, parallel 
languages like Ada or Multilisp, and systems for parallel and distributed programming [11,2, 10]. More 
motivation for a distributed shared memory facility comes from the increasing interest that hardware 
designers show in non-shared memory multiprocessors: the Nectar project [1] at CMU for instance uses 
fast fiber optic links. This will reduce the end-to-end time to send a 1 kilobyte data packet from the tens of 
milliseconds range of the current ethernet to the tens of microseconds range of the fiber. Fast 
communication makes distributed shared memory an appealing complement to message passing. 

The Mach virtual memory system allows the user to create memory objects that are managed by 
user-defined processes (external pagers) [13]. An external pager is a process responsible for providing 
data in response to page faults (pagein) and backing storage for page cleaning (page-out) requests. This 
is precisely the function of the in-kernel disk pager. The only difference is that the user-specified pager 
task can manage the data in more creative ways than the designer of the in-kernel pager may have 
envisioned. This paper describes the design, implementation, and performance evaluation of one such 
memory server which provides a shared memory semantics for the objects it manages. The server 
provides unrestricted sharing of read-write memory between tasks running either on the same machine or 
on different machines. In the first case, all processors have direct access to common physical memory 
(architectures with Uniform Memory Access time (UMA) or Non-Uniform Memory Access time (NUMA)) 
and the server provides a flexible management of shared memory. In the second case, processors do 
not have any way to access common memory (architectures with No Remote Memory Access (NORMA)) 
and the server provides it in software, migrating and replicating virtual memory pages between 
processors as needed. 

To understand the properties of a distributed shared memory facility the performance characteristics of 
the server itself and of some application programs have been evaluated. To measure the effects of 
different page management policies in the server, a number of algorithms have been implemented and 
evaluated, including a new distributed algorithm that outperforms centralized ones. Some of the features 
of the algorithms described include support for machines with differing page sizes, for heterogeneous 
processors, and for fault tolerance. The algorithms service page faults on multiple machines by migrating 
pages that must be shared, scheduling conflicting or overlapping requests appropriately, tagging and 
translating memory pages across incompatible processors and keeping a duplicate copy in case of 
machine crashes. The experiments with application programs were designed under the assumption that 
the amount of information that is communicated in each synchronization operation is the key factor. 
Applications at the extreme of the spectrum were selected for testing. 

2. Shared Memory Within a Machine 
The first goal of the server is to provide sharing of read/write memory between tasks allocated on the 

same machine. This overcomes the constraint of the standard Mach memory inheritance mechanism that 
the shared memory must have been allocated by some common ancestor, as well as a security check in 
the implementation of the Unix exec(2) system call that deallocates all of the task's address space. The 
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server provides the user with a call to create memory objects, logical pieces of memory that are identified 
by ports. A memory object can be used by a thread in a call to the vmjmapQ kernel primitive, which 
maps some portion of the object into the task's address space at some virtual address. Note that since a 
port can only be transmitted in a message, memory objects are entities protected by the kernel. Note 
also that access to ports can be transmitted over the network, and therefore the vm_map() primitive 
allows for networked shared memory. 

From user to pager 

c r e a t e m e m ory_ob ject (initial size) 
RPC, Creates a new memory object and returns the associated port. 

memory_object_replicate( object) 
RPC, When using the distributed pager, create a local copy of the memory object. 

memory_object_tag( tag, page range ) 
RPC, When using heterogeneous processors, assign a type tag to a portion of the memory object. 

From user to kernel 

vm_map( task, memory_object, address range, attributes ) 
RPC, Maps an object into a task's address space. 

vm_deallocate(task, address range) 
RPC, Removes ail mappings for the given address range. 

From kernel to server 

memory_object_init(pager, control_port) 
MSG, Contact the pager of an object which is mapped for the first time, for initial handshake. 

memory_object_data_request( page range, protection ) 
MSG, Request for a (range of) page which the kernel does not have in its cache. 

memory_object__data_un lock( page range, protection ) 
MSG, Requires more access permissions for a page. 

memory_object_data_wrlte( page range, pages ) 
MSG, Pageout of dirty pages from main memory. 

memory_object_lock_completed( page range) 
MSG, Completion of the requested paging operation. 

memory_object_term inate() 
Notification of removal from cache. 

From server to kernel 

memory_object_set_attributes( attributes) 
MSG, Confirms availability completing initial handshake, specifies initial attributes. 

memory_object_data_provided(page range, pages) 
MSG, Provides page(s) data to the cache. 

memory_object_data_unavailable( page range) 
MSG, Zero fill page(s). 

memory_object_lock_request( object, request, reply_port) 
MSG, Cache control request, e.g. page flush or granting of write access. 

Figure 1 : Summary Of The External Pager Interface 

The thread can access the memory normally, and the kernel delegates the paging duties to the user-
level memory manager (external pager) that is responsible for the memory object. This is done via an 
asynchronous message protocol between the pager and the kernel which is described in more detail in 
[13]. The external pager interface allows pagers to control the managing of main memory by the kernel, 

so that main memory effectively acts as a common cache for memory objects. The various operations 
have the flavor of cache control functions: when a thread first accesses a page it takes a page fault and 
the kernel sends to the pager a memoryjob\ectjdata_request() message to request the missing page, 
which is similar to a cache miss. The server provides the page in a memory_object__data_provided() 
message. Other messages allow a pager to request a page flush or specify the caching and copy policies 
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for the object. Figure 1 informally lists the messages and remote procedure calls defined by the external 
pager interface and by the virtual shared memory server. 

3. A Simple Algorithm 
The shared memory server has been structured in an object-oriented fashion, so that it is possible to 

have memory objects with different behaviors. When a memory object is mapped by tasks on multiple 
machines, the pager needs to manage multiple copies of memory pages in some coherent way. The 
various management policies for memory objects are provided by different implementations of a common 
set of operations: an implementation is called fault scheduler in the following, because the goal of the 
module is to schedule read and write faults on different kernels in the best way, just like ordinary 
schedulers schedule the execution order of various threads. One of the many reasons for this choice is to 
allow experimentation with various algorithms and heuristics. At object creation time, a user can choose 
which specific scheduling policy will be applied to the new object, or rely on the default one. All the 
algorithms we describe maintain strict memory coherence on the objects they manage. There is no stale 
data because at any given time each page exists in only one version. 

This Section describes a very simple scheduler that provides centralized, single page-size memory 
objects. There is only one pager task for each memory object, but different objects might be allocated to 
different pager tasks to reduce service contention. Since Mach IPC is location transparent, the location of 
the pager task is also transparent to the client kernels. A later Section will describe how this algorithm is 
modified to allow distributed, coordinated management of a single object between separate pagers on 
different machines. Ownership of a page is transferred among kernels on demand: the owner of the 
page i$ the kernel that currently has write access to the page. When no kernel has write access to a 
page the scheduler itself is the owner, multiple kernels are allowed to have read-only copies of the page. 
The simple scheduler's algorithm is an automaton with four per-page states, which correspond to the four 
conditions in which a page can be: 

• Read: There are no writers, there may be readers with a copy, the server has a valid copy. 
This is the initial state. 

• Write: There is one writer, there are no readers and no one is queued waiting, the server 
does not have a valid copy. 

• ReadWait: There is one writer, some readers are waiting, the server does not have a valid 
copy and has asked the current owner to return the page to the server. 

• WriteWait: There is one writer, some writers are queued waiting, there may be readers 
waiting, the server does not have a valid copy and has asked the current owner to return the 
page to the server. 

Transitions between states are driven by the requests that are made by client kernels. In practice, not 
ail requests make sense in all states. For instance, a kernel will not pageout a page that has not been 
modified.1 The server accepts four input message types (requests), which the scheduler handles in three 
procedures: 

Security issues have not been addressed directly in the server. Rather, it is assumed that other servers, for example a name 
service integrated with an authentication service, will do the necessary verifications before handing a memory object port to a user 
An object might then have different ports associated with it, one for read-only access and one for read-write access. Note then that 
it is possible to prevent a user from impersonating a kernel by having a secure server handle the object's port directly and never 
permitting to unsecure tasks direct access to the port. These and other issues are addressed in a forthcoming document'[14] 
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• read__fault(): a kernel requests read access to a page (memory_object_data_request). 

• writeJaultQ: a kernel requests write access to a page and either needs a fresh copy of the 
page (memory_object_data_request) or does not (memory_object_data_unlock). 

• pageoutQ: a kernel flushes out the page to the server (memory__object_data_write and 
memoiy_objectJock_completed). 

These three functions do all the necessary work. A pseudo code description of how they operate on a 
page appears in Figures 2, 3 and 4. It can be assumed that all procedures keep the page locked and that 
messages are processed in the order of arrival. This pseudo code will be used again later to describe the 
distributed algorithm. The remaining procedures are either for initialization, termination, or recovery from 
kernel crashes. The pseudo code indicates that writers are queued in FIFO order, while readers do not 
need to be ordered. Writers take precedence over readers. Other, possibly more complicated policies 
might be needed. It is possible, for example, to introduce a simple test to prevent writers from causing 
starvation of readers. Sections 3.1 will expand on the queueing strategies. If we ignored fault tolerance 
issues the algorithms would differ only in a minor way: the server can dispose of a page once it is sent to 
a writer. This and other optimizations can be easily applied in the case the server runs without the (local) 
support of a permanent storage server, which is the case of a diskless workstation. 

read_fault (page, kernel) 
switch ( page->state ) { 
casa Read: 

m«mo ry__ob j ec t__dat a__p r o vi ded (kamal) 
break 

casa Writ*: 
page->state = ReadWait 
memory_ob ject_lock_request (page->owner, FLUSH (page)/ ownar_salf) 
break 

default: /* just enqueue */ 
} 
set__add (page->readars, kernel) 

Figure 2: Handling of Read Faults 

An example will help clarify the following discussion. Since all the tasks on one machine use the same 
copy of the memory object's pages (cached copy, possibly mapped into the various address spaces with 
different protections), we can pretend there is a single task per machine. Let us assume that a thread 
makes a read access to a page. The page is not in the cache, hence the kernel sends a 
memory_objectjdata_request() message to the pager. If the page is in Read state (the initial state), the 
server immediately sends the page in a memory_object__datajprovidedQ message, with read-only 
protection. If the thread makes a subsequent write access, the kernel sends a 
memory_object__data__unlock() message to request a protection upgrade which will be granted in a 
memory_objectJock_request() message, unless the page has changed state in the meantime. If the 
page is not in Read state, the kernel's request is enqueued and possibly the current writer is asked to 
page out the page via a memory_objectJock_request() message. When the page is actually paged out, 
the pageout procedure dequeues the next write access request and satisfies it, or satisfies all read 
requests at once. 



write_f ault(page, kernel) 
switch { page->state ) { 
case Read: 

set_remove( page->raaders, kernel) 
forall( readers ) 

(1) memory_object_lock_request( reader, FLUSH(page), owner_self ) 
page->readers = empty set 

(2) 
page->stata = Write 
page->owner = kernel 
if (needa__data) 

memory__ob jec t__data_provided ( page->owner ) 
else 

memory__ob ject_dat a_unlock ( page-X>wner ) 
break 

case Write: 
memory_ob ject__lock_requeat ( page->owner, FLUSH (page) , owner_self ) 
/* fall through */ 

case WriteWait: 
case ReadWait: 

page->state = WriteWait 
enqueue( kernel, page->writers ) 

} 

Figure 3: Handling of Write Faults 
pageout(page, kernel, data) 

(3) switch( page->state ) { 
case Read: 

return /* never happens */ 
case Write: 

save(data) /* true pageout */ 
page->state = Read 
page->owner = owner_self 
break 

case WriteWait: 
(4) 

(5) 

save(data) 
page->owner = dequeue( page->writers ) 
memory_object__data__provided( page->owner) 
if (!page->writers) 

if (page->readers) 
page->state = ReadWait 

else 
page->stata = Write 

if (page->readers || page->writers) { 
deschedule__myself () 
memory_ob ject__lock_request ( page->owner, FLUSH (page), owner_se 

} 
break; 

case ReadWait: 
save(data) 
forall(readers) 

memory__ob ject__data__provided (reader) 
page->state = Read 

(6) page->owner » owner_self 
} 

Figure 4: Handling of Pageout Requests 
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3.1. Multiple Page Sizes 
The simple scheduler described above can only be used by machines with the same page size, an 

unpleasant restriction. Moreover, in Mach the size of a virtual page can be changed and set even on a 
per-machine basis. Transforming a single page size scheduler into a multiple page size scheduler is not 
immediate. Our multiple page size scheduler uses internally an arbitrary page size (scheduler page size) 
and solves the problem by two means: 

• for requests smaller than the scheduler page size, the request is rounded up to the scheduler 
page size, and 

• for requests larger than the scheduler page size, the request is fulfilled by multiple scheduler 
pages (shipped all at once), after appropriate synchronization. 

Synchronization is accomplished via a queueing mechanism. It is necessary to avoid both false 
contention and descheduling of kernels until absolutely necessary, and to satisfy requests as quickly as 
possible while maintaining fairness. When the scheduler receives a request from a kernel, it may take 
one of the following actions: 

1. Satisfy the request immediately. 

2. Deschedule some writers and enqueue the request. 

3. Simply enqueue the request. 

The first is the case when there are no writers on any of the data that the kernel requests. For a read 
request, the scheduler can simply add the kernel to the set of readers of each scheduler-page; if the 
request is a write request, then the scheduler deschedules all readers of any scheduler-page in the 
writer's request range before scheduling the writer. In the second case, the scheduler finds that there are 
writers on some of the requested data, but none of them have yet been descheduled. The scheduler 
deschedules the writers, and the request is queued. 

In the third case, the scheduler finds descheduled writers on some of the requested data, indicating 
that other requests are already waiting for those scheduler-pages. In this case, the scheduler does not 
deschedule the rest of the writers because the requesting kernel is not yet ready to use their pages; the 
request is simply enqueued. When a descheduled writer sends a confirmation (a 
memory_objectJock_completed() message), the scheduler finds the request that was awaiting it. If the 
confirmation was the last one that the request was waiting for, then the scheduler satisfies the request (as 
in case 1 above) and checks to see if there are any more requests that might be satisfied as well. 

The data structures used for queueing readers and writers allow most operations to occur in constant 
time, while some (such as determining whether an incoming request can be immediately satisfied) take 
time proportional to the number of scheduler pages in the request. Each waiting client is represented by 
a record containing the identity of the requestor, a reference counter, and a pointer to a linked list of 
requests that follow. The reference counter is used to quickly test if the request can be satisfied. When 
the request follows other requests the counter represents the number of requests pointing to it; otherwise 
it is used to represent the number of outstanding descheduling acknowledgements. For each scheduler 
page there is also a pointer to the request waiting for an acknowledgement from the writer of the page, 
and a pointer to the last request waiting for the page. These pointers are set to nil if no such request 
exists. 
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3.2. Heterogeneous Processors 
Parallel programs that use a distributed shared memory facility should not be constrained to run on a 

uniform set of processors. Such a constraint is undesirable because as the number of machines 
available at a given site increases one typically observes an increased variation in their types as well. 
Unfortunately, interfacing heterogeneous processors not only creates the problem of potentially different 
page sizes, but also raises the issue of different machine representations of data objects. This problem 
goes beyond the byte order problem, since different processors are free to assign any given meaning to 
any given sequence of bits. A clear example is the case of floating point numbers. 

A more difficult set of problems arises from software data types. Modern programming languages 
allow higher level types to be built on top of hardware types, for instance in composing record structures 
with diverse component types. Quite often, the language definition does not specify how these types 
should be mapped to the hardware types, and the compiler is free to define this mapping as appropriate. 
A well known consequence is that the different fields of a record in the C language may be allocated at 
different offsets by different compilers, sometimes even among compilers for the same machine 
architecture. Finally, some languages use types that do not have any correspondent hardware type. Lisp 
systems, for instance, often use runtime data tags to mark a collection of bits as the representative of 
some data type (see [12] for a recent analysis). Only a few processors implement some form of data 
tagging in hardware. 

Solving the heterogeneity problem is difficult because it requires that the server has knowledge of the 
application's data types. This leads to undesirable close links with the application's runtime system and 
programming language [2]. On the other hand, the problem can be separated in two sub-problems: 
hardware data types (e.g. integers) and software data types (e.g. C records). A general purpose server 
solves the problems for the first class of types, and can be extended to cope with the second class of 
types. Quite simply, our server assigns a type tag to each segment of a paging object and makes the 
appropriate translation (if necessary) when sending data from that segment to a kernel. The interface 
with the application program is defined by the memory_object_Jag_data() RPC from the client to the 
pager that assigns a type tag to a segment. This operation is typically used by a dynamic memory 
allocator to fragment shared memory in typed segments, each segment containing only data of the given 
type. The standard Unix BSD malloc(2) memory allocator for C was modified to allocate typed data, as 
exemplified in Figure 5. Although different types cannot be mixed in a structure, one can always resort to 
a level of indirection, building records that only contain pointers to data. 

extern char 
*tmalloc ( type_tag, num_elements ) 

enum { t_int8, t_intl6, t_int32, t_float32, ... } type_tag; 
unsigned long int num_elements; 

#define xnalloc_short (n) (short*) tmalloc ( t_intl6, n) 

Figure 5: A Typed mallocQ 

All type tags and machine types must be known to the server in advance, hence each server is able to 
deal with a limited set of machine and data types. The server refuses type tags or machine types that it 
does not know how to handle. This limitation is not very restrictive: since the server is a user level 
process it can be modified quite easily to account for new data or machine types. A dynamic solution 
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requires the use of runtime type descriptors that the server uses for data translation. This approach is 
described in [5], and solves the problem of software data types as well. It is certainly possible to extend 
our server in this way. 

Finally, note that an approach similar to the one used for data translation might be used for other 
problems. Some approaches to the implementation of shared libraries require the use of a dinamic linker. 
Dinamic linking could be done using lazy-evaluation, only linking those pages of code that are actually 
accessed by the program when they are faulted in. A similar case arises with a secure program loader, 
which must check that the executable image has not been tampered with. A distributed object system 
might also use similar techniques while mapping objects into the program's address space. 

4. A Distributed Algorithm 
The motivations for a distributed algorithm are manyfold. A centralized server is a solution that does 

not scale up. When many kernels share many memory objects serviced by the same pager the 
availability of each object decreases, because the pager becomes the bottleneck where all requests pile 
up. Even when few kernels are involved, the location of the server is important because local and remote 
messages might have very different costs. A distributed solution that can allocate any number of servers 
on any number of machines is more usable. In this way the sharing of memory between tasks located on 
the same (multi)processor is decoupled from unrelated events on other machines. A careful analysis of 
the external pager protocol [13] also reveals one inefficiency: transferring ownership of a page from one 
kernel to another requires four messages (requesting the page, obtaining it, receiving the end-of-transfer 
message, shipping it to the right kernel), while only two messages are strictly needed (request the page 
transfer, ship it from one kernel to the other). Rather than modifying the external. pager interface to 
handle this case, we have designed and implemented a distributed paging server which exploits this and 
various other opportunities for reducing network traffic. 

The approach taken is simple: treat each remote server just like another kernel, and apply the 
algorithm of the centralized case. The reader may wish to go back to Figures 2, 3 and 4 and review the 
algorithm substituting the word "kernel" with "client", which now means either a kernel or (more likely) a 
fellow server. A pager will now accept a memory__objectJock_request() message just like a Mach kernel 
does and treat it as a fault notification, invoking readjault() or writeJaultQ as appropriate. A 
memoryjobject_datajprovidedQ message is handled by the pageoutQ procedure. 

Note now that the notion of the "owner" that each pager has does not need to be exact at all times. It is 
quite possible, actually highly desirable, that a pager be able to ask a second pager to transfer a page 
directly to a third one who needs it, without handling the page directly. We call this optimization 
forwarding, to catch both the positive effect of avoiding one message hop, and the (minor) negative 
effect of producing a new type of activity: the act of forwarding a mis-directed page fault message to the 
correct destination. Implementing forwarding requires relatively simple changes to the centralized 
algorithm. 

Figures 6 and 7 illustrate the changes and additions to the pseudo code of Figures 2, 3 and 4 to 
implement forwarding. A pager creates a local copy of a memory object when a user asks for it. The 
initial state of all pages in this case is the Write state, and the owner is the pager from which the object 
has been copied. Of course, no real copy is actually done. Note that it is possible to copy from another 
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(1) memory_object_lock_request( reader, FLUSH(page), 
is server (page->owner) ? kernel : owner__self) 

(2) if (page->owner != owner_self) { 
raemory_ob ject_lock__request ( page->owner, WRITE_FAULT(page) , owner_self) 
enqueue(page->writers, kernel) 
page->state = WriteWait 
return 

} 

(3) if (kernel != page->owner && !hinted(page)) 
page->owner = kernel 

hinted(page) = FALSE 

(4) if (!page->writers) { 
page->owner = owner_self 
goto ReadWait 

} 

(5) if (is_server(page->owner)) 
page_state = WriteWait /* pretend */ 

(6) if (!is_server(kernel)) 
page->owner = owner_self 

Figure 6: Modifications to the Distributed Scheduler 
to Implement Forwarding of Page Faults 

copy, and that the pager does not need to have complete knowledge of ail the kernels involved. The 
handling of read faults does not change. While handling write faults, at line (1) all readers are informed of 
who the new owner is, if it is a different pager. At line (2), a check is added to see whether the true owner 
actually is another pager, in which case the fault is queued and the state of the page modified 
accordingly. In the pageoutQ procedure at line (3) it is necessary to handle the case where the pager has 
incorrect information about the true owner. Note that the pager might have received a hint about who will 
eventually become the owner because it forwarded a write fault. At line (5) it is necessary to handle 
specially the case when a page is given to a server queued for writing, while having other readers waiting. 
The immediate request to have the page back pretends that there are writers queued anyway, to prevent 
the race that would otherwise arise. Line (4) jumps to the correct code in case the last writer had actually 
been serviced. Line (6) handles the fact that if the pager only receives read-only access to the page it 
does not become the owner of the page. 

Two new procedures, described in Figure 7, are used to check whether a page fault must be forwarded 
and to handle invalidations of read-only pages. A memory_objectJock_request() message is handled 
first by the page_fault() procedure, which forwards it if necessary. The fault is definitely not forwarded if 
the pager has ownership of the page, or the pager has already asked the current owner for write access 
to the page (state WriteWait), or if the pager has (state Read) or is about to have (state ReadWait) a 
read-only copy of the page and the fault is a read fault. In other words, a fault is only forwarded to 
another server when the pager has no current interest in the page whatsoever. An invalidation of a 
read-only page is generated at lines (1) and (7) if the reader is a server, and is handled in the 
invalidate_page() procedure. This is the only new message type needed. 

Forwarding creates problems for a closed form analysis, since the effect of forwarding of both page 
locations (page faults) and invalidations (page flush) are difficult to model. Our claim is that in actual use 
one will typically see only the two extreme cases: pages that are frequently accessed in write mode by 
many parties, and pages that are accessed infrequently, most likely in read mode. Even if a page is 
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invalidate_page(page, owner) 
if (page->state != Read) 

return /* sanity check */ 
forall (readers) 

(7) memory_ob ject_lock_request (reader, FLUSH (page) , owner) 
page->state = Write; 
page->owner = owner; 

page_fault( page, who, faultytype) 
if ((page-X>wner =»= owner_self) | | 

!is_server(page->owner) || 
(paga->state =« WriteWait) | | 
((fault__type = READ) && (page->state != Write))) { 

if (faultytype = READ) read_fault(page, who) 
else write_fault(page, who) 
return 

} 
/* Forward */ 
send_paga__fault (owner, who,page) 
if (fault_type — WRITE) { 

page->owner * who 
hinted(page) = TRUE 

} 

Figure 7: Additions to the Distributed Scheduler 
to Implement Forwarding of Page Faults 

accessed infrequently, it is hard to generate a faulting sequence that produces many forwarding 
messages. This claim is supported by the experience with actual application programs. Infrequently 
accessed pages do not affect performance. The bottlenecks derive very easily from the opposite case. 
Our analysis shows that the expected number of remote messages required to service a N-party page 
fault for the distributed pager is 

• 3N-4 initially, and 

• 2N-1 or 

• 2N at steady state 
depending on boundary conditions. To get the total number of messages in the distributed scheduler one 
must add a total of 2N-2 local messages between pagers and the kernels they service. For comparison, 
any centralized algorithm that maintains strict memory coherence must use at least 4N remote messages 
and no local messages. In the case of the simple scheduler this figure is 5N messages. Since the cost of 
local messages is often much less than the cost of remote messages, the distributed pager clearly 
outperforms the centralized one. The performance evaluation results, reported in Section 7 confirm this 
analysis. 

4.1. Example 
When a thread first maps a memory object in its address space the kernel contacts the server but does 

not require it to send any data yet. It is only when a thread touches a memory location within the address 
range where the object is mapped that a fault is generated. The faulting thread is stopped, and a 
message is sent to the pager to request data to service the fault. When the scheduling algorithm in the 
server has the necessary data available the page is sent to the kernel which maps it for the faulting 
thread which can then continue execution. In case the page is not immediately available at the server, a 
message is sent to the kernel that currently owns the page, asking to page it out to the server. In the 
case of the distributed algorithm, this may imply some more processing, since the "kernel" is actually 
another server. 
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It is interesting to consider one example that shows the effects of forwarding page faults among 
distributed servers. Let us assume that N servers (each one serving one or more kernels) all take 
repeated page faults on the same page, which is the hotspotcase that makes distributed shared memory 
perform the worst. Initially, all servers refer to the memory object's pages from the same one (say server 
1). Therefore N-1 requests are sent to server 1. The server first services its local fault(s), then ships the 
page to server 2 (say) which becomes (in server's 1 opinion) the new owner. The next fault request is 
then forwarded by server 1 to server 2, the next to server 3 and so on, to server N-1. When all faults 
have been forwarded and served, the situation is such that servers 1, N-1 and N all know that the page is 
located at server N, while every other server / believes the page is at server i+1. When all servers take 
the next page fault only 2 requests are sent to the owner, and any other request / is queued at server i+1 
waiting for i+1 itself to be served first. 

SI S2 -> S3 -> S4 -> ... Sn-l -> Sn 
I 

Figure 8: Steady State Behavior for a N-Party Write Hotspot 

This situation is depicted in Figure 8 and can repeat itself. Our experiments show that indeed in a 
write-hotspot the system oscillates between two configurations of this type, never entering the initial state 
again. There is a worst case that could surface: an isolated page fault triggers a number of forwarding 
messages. This number is N-2, since always at least two servers know exactly where the page is: the 
owner and the one who sent the page to it. In the example, this would happen if server 2 alone takes a 
fault after the first N faults are served. After a worst case fault ail servers know exactly where the page is, 
and therefore the system goes back to the initial state. 

5. Fault Tolerance 
A network memory server must be prepared to handle machine crashes and network partitioning 

without deadlocking. Once a crash has been detected, the server must either make user programs aware 
of the problem (for example signaling a memory error), or attempt to recover from the problem one way or 
another. Whatever action the server takes will not provide application-level'fault tolerance since the crash 
could leave memory inconsistent from the application's point of view. This happens, for instance, when a 
kernel crashes and some shared memory lock was held by a thread running on that processor. 

The centralized schedulers provide a mechanism for surviving kernel crashes whereby memory 
availability is preserved despite a failure of the current owner of a page. This avoids the alternative of 
making the whole object permanently unavailable. Assuming the current writer crashes (or for any reason 
is not capable of communicating with the server any more) the server reverts to the latest copy it has of 
the page, which is the one that was sent to the writer when it asked for write permission. Fault tolerance 
mechanisms for the distributed scheduler have not yet been implemented, and they will need to face the 
problems of network partitioning as well. 

Failure of a kernel only needs to be detected when the server needs a page back from it. The 
overhead of a fault tolerance guard can therefore be quite limited, about 1 % of our servers' time when 
heavily used. 
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6. Related Work 
Forwarding creates a new need: the need of forwarding page faults to the current owner of a page. Li 

[7] looked at the problem of locating a page and provided various algorithms to solve it, and analyzed 
their costs. Our distributed algorithm must be compared against the "Distributed Manager Algorithm 2.6", 
with the optimizations indicated at pages 61-63 that page invalidations are sent in a divide-and-conquer 
fashion. Note however that in Li's algorithms all operations are RPC, hence requiring twice as many 
messages and unnecessary serialization. Li also evaluates the use of broadcast messages and proves 
that they could benefit some of his algorithms, under the assumption that their cost is the same as a direct 
message. Note that in our algorithm the use of broadcasts would be detrimental to performance, since it 
brings back the system to the initial state and away from the most favorable situation. The idea of 
propagating invalidations in a divide-and-conquer fashion is, in our system, much more effective than 
broadcasts. In this paper it was only assumed that the underlying architecture provides efficient point-to-
point communication, with quasi-uniform cost. The cost of sending a message to N recipients is therefore 
greater than or equal to N times the cost of a message to a single recipient. 

Cheriton [3] has recently extended the V kernel to support user-level data and caching servers, which 
can be used to provide distributed shared memory. His facility has many similarities with Mach's external 
pager facility, although it is described in terms of file abstractions rather than memory object abstractions. 
The implementation uses a scheme analogous to the simple scheduler presented above, but might add 
considerable extra message traffic by polling and forcing page flushes every T-milliseconds to provide 
T-consistent files for transaction support. 

Fleisch [4] has extended the Locus kernel to provide distributed shared memory, with a SystemV 
interface. The scheme he describes seems geared to maintaining consistency at the segment rather than 
page level. A report on the implementation work will be necessary to better evaluate his approach. 

Our work is concerned with Operating System level distributed shared memory, where it is 
implemented as shared pages of virtual memory. Other approaches to user-level shared memory objects 
are possible, for example providing shared data structures as in the Agora [2] system. Other references 
can be found in [2]. 

7. Performance Evaluation 
The performance of the server was evaluated along a number of dimensions. Fundamental are the 

average times to service a fault, in both cases of single machine and multi-machine applications. These 
are affected by the various special features of the server. The centralized and distributed cases were 
compared, using ad-hoc programs that exercise the hotspot behavior. Our measures show two overall 
results: the distributed algorithm is more efficient than the centralized one, and none of the special 
features we introduced has an unacceptable impact on performance. The major bottleneck in the test 
configuration (token ring workstations) is the network latency, which accounts for about 98% of the 
elapsed times. The server was instrumented in two ways: keeping track of the number and type of faults 
it services (per object and per page), and collecting extensive traces of the message activity. These data 
were obtained via a remote procedure call by other processes, with minimum perturbation. 
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7.1. Basic Costs 
The most common use of the server is in sharing memory within a single machine. In this case, a fault 

on a missing page (cache-fill) requires two local messages, for a total cost of 1.5ms on a IBM RT-APC. A 
protection fault also requires two messages but no memory mapping, for a cost of 1.1ms. A pageout 
operation requires two receive messages and the deallocation of data, which is not a system call but a 
RPC to the kernel and involves two messages2. The total cost is then 2.5ms. Since system time is by far 
the dominant factor (93%) in all cases, schedulers do not show significant differences in the handling of 
local faults. Table 1 summarizes the most important costs. 

Memory use is an important factor for characterizing the performance of a program, although our 
primary concern was speed rather than space. The server allocates memory in a sparse fashion only 
when a kernel demands it, and then replaces each page as it is paged out by a kernel. This not only 
reduces the memory usage for a large and sparse object, but also removes from the critical path the 
copying of data Gust switch a pointer) and the deallocation of memory (two messages) which can be done 
in batches. To quantify these improvements, the hotspot cycle time for the distributed case for the simple 
scheduler was reduced by this strategy from 7.8ms/fault to 5.5ms/fault, including memory deallocations. 
Memory deallocation can be devoted to a separate thread, which reduces the fault time to approximately 
4.2ms/fault. Memory saving depends on the actual use, and is very effective for some applications. 

Parameter Measured Cost 

Zero-fill Fault 1 .5ms/fault 

Protection Fault 1.1ms/fault 

Hotspot Cycle 4.2ms/cycle 

Multiple Page Size Overhead 0.2ms/fault max 

Avg Messages, centralized hotspot case 5.0/fault (all remote) 

Avg Messages, distributed hotspot case 4.1/fault (2.0 remote) 

Forwarded Faults 10% (hotspot) 

System Time 93% 

Table 1 : Costs Of The Server. 

7.2. Costs of The Algorithms 
The multiple page size scheduler adds some overhead to the fault times, primarily because more 

server pages might be needed to cover a kernel's page fault. In most cases, a small range of page sizes 
will be used, but even with an unlikely ratio maximum/minimum page size of eight the overhead over the 
basic fault times is only 0.2ms. If necessary, however, the algorithm can be tuned further for larger page 
size ranges. 

Various experiments were performed on the distributed scheduler, the most interesting one being the 
case of an hotspot page. This is demonstrated by a simple program that repeatedly increments the same 
memory location, replicated on various machines. The measures show that on average each server 

2 As noted later, deallocation of memory is done by a separate thread, which means that for evaluating the latency of the server 
value of 1.5ms must be used 
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received requests for read/write/protection faults in an equal amount, as expected. This also means that 
the user program was interrupted 60% of the times when attempting to write the location (write or 
protection fault), and 30% when reading from it (read fault). The average number of messages per fault is 
the single most important figure: on average, each server handled 4.1 messages per fault. Half these 
messages are received and half sent. On average, 2.1 messages are local (interactions with the local 
kernel) and 2.0 are remote (interactions with other servers). This nicely confirms the estimates presented 
in Section 4. Remote messages are extremely more expensive than local ones: an average 98% 
overhead was observed in the test system, equally divided among the local Mach network server, the 
remote one, and the TCP/IP transfer protocol. 

The results indicate that the distributed algorithm makes the page available in a fair fashion, in the 
sense that among homogeneous processors the page is made available for an equal amount of time to all 
kernels: the number of operations for all programs were the same within a factor of 2%. If processors of 
different speed are used, the time during which a page is available does not change (it is bound by the 
network latency): using a processor two times as fast on our RTs exactly doubles the number of 
operations in the user programs. Other measures indicate that during the experiment each server 
handled about 58% local faults and 42% remote faults, including a 10% of requests that are forwarded. 
The total number of faults was the same (within 2%) on all servers. Each server requested or provided 
the page the same number of times (within 3%), including the case of a mix of slow and fast processors. 

Machine Int 16/32 Float32 Float64 

Sun 4/260 (*) 0.8 1.0 1.1 

Vax8800 1.5 2.3 3.7 

IBM RT 1.9 2.4 2.5 

Sun 3/280 1.9 2.5 2.9 

uVax-lll 2.8 4.6 6.8 

Sun 3/160 3.0 4.8 4.6 

V a x 7 8 5 4.4 7.6 10.9 

Encore (*) 4.9 1 2 3 14.3 

uVaxll 6.1 10.4 14.5 

Vax 8200 9.1 15.3 27.9 

Table 2: Overhead of Data Translations 
(in milliseconds per 4kbytes). 

For the heterogeneity problem, only those machine types that are more or less implied by the definition 
of the C language were chosen for implementation, which means integers of various sizes and floating 
point numbers. Many other data types map obviously onto these types. Support for software types is not 
provided. For floating point numbers, the two formats that are most often used on our machines (Vax-D 
and IEEE-754) were selected. Both short (32 bits) and long (64 bits) forms were considered. Table 2 
shows the overheads measured on the server on a wide variety of machines. The times reported are 
those necessary to convert 4kbyte of data, but note that some machines use larger page sizes. There is 
no other basic overhead beyond a simple test of whether conversion is necessary or not. Starred entries 
in the table indicate machines for which a Mach External Pager kernel is not yet available. In these 
cases, a synthetic test was run to time the critical code. Note that the translation process is very much 
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dependent on the processor type because the availability of special byteswap instructions can speed it up 
considerably. This is demonstrated by the entry for the IBM RT. 

Assuming that the server's (multi)processor has spare cycles, it is possible to eliminate the type 
conversion overhead at the expense of increased memory usage. The server can keep multiple copies of 
each segment, one per machine type, and pre-translates it when a page is received. Translation is done 
in parallel by a separate thread, which works in a pipelined fashion with the main thread that services 
faults. We have not yet implemented this optimization. 

In the centralized servers, the indicated overhead is paid each time a page is sent to a kernel, as 
added time for executing the memory_object_datajprovidedQ operation. This means that both read and 
write faults are affected, for machines that are not of the same general type as the object's creator. There 
is no overhead for protection faults, or for identical or compatible machines like the case of two Vaxen or 
the case of a Sun and an IBM RT. Note, however, that in some configurations the overhead of byte-
swapping and floating point conversion sum up: In the worst case of a centralized server running on an 
IBM RT and serving a Vax and an Encore, swapping is required both before and after the floating point 
conversion. Again, the distributed server performs much better since translation is merged in the page 
replication process: The server that receives a page from a machine-incompatible other server translates 
it before forwarding it to the Mach kernel. In this case, no more than one translation is ever required, and 
read or write faults do not require any translation at all when the server has a valid local copy of the page. 

7.3. Application Programs 
Intuitively, the performance gain from the use of memory sharing techniques comes from the large 

amounts of information that can be transferred with no cost between parallel activities in each 
synchronization operation. Below a certain threshold, on a uniprocessor the integration of scheduling and 
data transfer provided by a kernel optimized for message passing is apparent and wins over the simple 
busy-waiting scheme of spin-locks. The effect must be visible in the networked case, where spin-locks 
are more expensive. This was the idea that guided the choice of applications for testing the server. This 
hypothesis only partially contradicts the suggestion that the locality of references would completely 
dominate performance of a distributed shared memory program. 

In the networked shared memory case, all the tasks running on the same machine produce a single 
load on the pager, and the advantage of one of them obtaining a page that will then be used by other 
tasks is not apparent. This non-measurable gain was eliminated from the experiments and only one task 
was allocated per machine even if this is clearly unfair to the pager. 

All programs have been developed for a uniform shared memory multiprocessor, and were not 
modified in any way to get better distributed performance. In the matrix multiplication case, the problem is 
decomposed so that each machine computes all the elements of some row in the output matrix. In this 
way it is easy to compute large matrices with few processors. The Shortest Path program is a parallel 
version of a sequential algorithm which shows Nlog(N) complexity for planar graphs [6]. The program 
evaluates in parallel the possible extensions to the most promising paths, and each activity only looks in 
the neighborhood of a point and queues the new extensions to other activities. The other two programs 
have been used for architectural simulations, on the assumption that they are representatives of a large 
class of parallel programs. Mp3d is a particle simulator [8] and LocusRoute is a parallel VLSI router [9]. 
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The experiments were performed on machines under standard multi-user operating conditions, 
including any necessary disk paging. Measures were taken of elapsed and per-thread CPU times. Table 
3 shows the results of executing the programs on a small group of IBM RTs on a token ring. The network 
latency dominates performance, and only the matrix multiplication case shows linear speedup. All 
programs are known to demonstrate linear speedups on a bus-based shared memory multiprocessor with 
a small number of processors. 

Program 1 Machine 2 Machines 3 Machines 

Matrix 128x128 29 15 10 

Matrix 256x256 241 122 80 

ShortestPath 60 60 40 

LocusRoute 277 333 397 

Mp3d 8.6 16.1 23.0 

Table 3: Execution Times For Some Application Programs 

One important factor affecting the performance of an application that uses dynamically managed 
shared memory is the memory allocation algorithm used. Li described a scheme for memory allocation 
derived from Knuth's FirstFit scheme. A quick comparison was made with a different one, a descendant 
of Knuth's FreeList algorithm. Such an allocator is currently used, in a sequential version, by the standard 
Berkeley BSD Unix distribution. A parallel version was easily created by associating a semaphore to 
each free list, whereby requests for memory blocks of different sizes proceed completely in parallel. It is 
much more difficult to make the FirstFit scheme more parallel. 

The measurements show that not only does the FreeList algorithm use less memory (1/4 on average) 
than the FirstFit one, but that it is about 20-30% faster even in the sequential case. Other measurements 
indicate that a two level memory allocation strategy is very effective in reducing shared memory 
contention. The simple solution of allocating and deallocating memory in batches for blocks of the most 
frequently used size often suffices to eliminate the most obvious bottlenecks. 

8. Conclusions 
A user-level memory server for Mach and the algorithms it uses for dealing with issues like 

heterogeneity, multiple page sizes, distributed service and fault tolerance was described. The server 
shows very good performance under ail tests, and the distributed algorithm is effective in reducing 
communication over the (potentially slow) communication medium. Results with application programs are 
dominated by the network latency, but still optimal in some cases. It is conjectured that the amount of 
data exchanged between synchronization points is the main indicator to consider when deciding between 
the use of distributed shared memory and message passing in a parallel application. There is definitely 
space for more research work: a number of extensions and optimizations can be attempted using more 
sophisticated caching strategies and heuristics in servicing fault requests. 

Besides final user applications (e.g. scientific applications, window managers, etc.) there are a number 
of operating system utilities that can be built using shared memory, knowing that it is now a resource that 
is available network-wise. I/O between processes can be modeled as the transfer of ownership of some 
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shared memory buffer. In this way, a process (the producer) can allocate a buffer, fill it with data, and 
then notify the other process (consumer) that the buffer is available by enqueuing it in, for example, a 
circular queue. A good case in point is implementation of the Streams abstraction at the user level. 
Supporting distributed databases with distributed shared memory also becomes more simple. An 
example of how to structure a file system using the external pager facility was illustrated in [13], and the 
Camelot system [11] uses the facility to provide distributed atomic transactions. Finally, all parallel 
languages that assume a shared memory model will port easily on a distributed shared memory system, 
although they will require some tuning to obtain the best performance. 
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