
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Corrective and Reinforcement Learning
for Speaker-Independent

Continuous Speech Recognition

Kai-Fu Lee and Sanjoy Mahajan
January 1,1989

CMU-CS-89-100?

Computer Science Department
Carnegie-Mellon University

Pittsburgh, PA 15213

Abstract
This paper addresses the issue of learning hidden Markov model (HMM) parameters for
speaker-independent continuous speech recognition. Bahl et al. [Bahl 88a] introduced the
corrective training algorithm for speaker-dependent isolated word recognition. Their algorithm
attempted to improve the recognition accuracy on the training data. In this work, we extend this
algorithm to speaker-independent continuous speech recognition. We use cross-validation to
increase the effective training size. We also introduce a near-miss sentence hypothesization
algorithm for continuous speech training. The combination of these two approaches resulted in
over 20% error reductions both with and without grammar.

This research was sponsored by Defense Advanced Research Projects Agency Contract N00039-85-C-0163. The views and
conclusions contained in this document are those of the author and should not be interpreted as representing the official policies
either expressed or implied, of the Defense Advanced Research Projects Agency, or teUSGov«mmaT^ ^

Table of Contents
1. Introduction
2. Hidden Markov Models and Maximum Likelihood Training
3. The SPHINX Speech Recognition System
4. Corrective and Reinforcement Learning for Speaker-Independent

Continuous Speech Recognition
4.1 The IBM Corrective Learning Algorithm
4.2 Using Cross Validation to Increase Training
4.3 Reinforcement Learning for Continuous Speech Recognition

43.1 Generating Near-Miss Phrase Substitutions
43.2 Hypothesizing Near-Miss Sentences

4.4 Final Algorithm Description
5. Results and Discussion
6. Conclusion

Acknowledgements

Ur.iverj.ft>'

http://Ur.iverj.ft%3e'

1

1. Introduction
At present, hidden Markov models (HMMs) constitute the predominant approach to

automatic speech recognition. HMM-based systems make certain structural assumptions, and
then try to learn two sets of parameters—output probabilities, which represent speech events, and
transition probabilities, which represent duration and timescale distortions. Most HMM-based
systems use the Baum-Welch (or forward-backward) algorithm [Baum 72, Jelinek 76, Bahl 83],
which adjusts the parameters to obtain an approximation to the maximum-likelihood estimates
(MLE) of the HMM parameters.

Maximum likelihood estimators have many desirable properties, and many successful
systems [Jelinek 85, Chow 87, Lee 89a, Rabiner 88] are based on MLE. However, maximum
likelihood estimation has one serious flaw: it assumes that the underlying models are correct. In
reality, however, typical HMMs make extremely inaccurate assumptions about the speech
production process. This suggests two avenues of research: (1) attempt to rectify these
assumptions, or (2) use new estimation techniques that work well in spite of these inaccurate
assumptions. In this paper, we will consider the latter approach.

Bahl et al. [Bahl 88a] introduced the corrective training algorithm for HMMs as an
alternative to the forward-backward algorithm. While the forward-backward algorithm attempts
to increase the probability that the models generated the training data, corrective training
attempts to maximize the recognition rate on the training data. This algorithm has two
components: (1) error-correction learning — which improves correct words and suppresses
misrecognized words, (2) reinforcement learning —which improves correct words and
suppresses near-misses. Applied to the IBM speaker-dependent, isolated-word office
correspondence task, this algorithm reduced the error rate by 16%.

In this study, we extend the corrective and reinforcement learning algorithm to
speaker-independent, continuous speech recognition. Speaker independence presents some
problems, because corrections appropriate for one speaker may be inappropriate for another.
However, with a speaker-independent task, it is possible to collect and use a large training set.
More training provides not only improved generalization but also a greater coverage of the
vocabulary. We also propose the use of cross-validation to increase the effective training data
size used to locate the misrecognitions needed by the correction algorithm. Cross-validation
partitions the training data and determines misrecognitions using models trained on different
partitions. This simulation of actual recognition leads to more realistic misrecognition
hypotheses.

Extension to continuous speech is more problematic. With isolated-word input, both error-
correcting and reinforcement training are relatively straighforward, since all errors are simple
substitutions. Bahl, et al. [Bahl 88a] determined both misrecognized words and near-misses by
matching the utterance against the entire vocabulary. However, with continuous speech, the
errors include insertions and deletions. Moreover, many substitutions appear as phrase-

2

substitutions, such as home any for how many. In general, word boundaries are neither known
nor reliably detectable. Without word-boundary information, it would be difficult to suppress
misrecognized words and hypothesize near-misses. These problems make reinforcement
learning difficult We propose an algorithm that hypothesizes near-miss sentences for any given
sentence. First, a dynamic programming algorithm produces an ordered list of likely phrase
substitutions. Then, this list is used to hypothesize the near-miss sentences used in
reinforcement learning.

We applied our corrective training procedure to the 997-word DARPA continuous resource
management task, using the speaker-independent database. Without a grammar, we obtained a
20.3% error-rate reduction over the standard MLE-trained SPHINX System. With a word-pair
grammar, we obtained a 23.4% reduction. These improvements are comparable to the IBM
results with speaker-dependent, isolated-word recognition. Thus, we have successfully
demonstrated the extensibility and applicability of the corrective training and reinforcement
learning algorithm to speaker-independent continuous speech recognition.

In this paper, we first give a brief overview of hidden Markov models in Section 2. A brief
description of the SPHINX system, on which this work is based, is presented in 3. We present our
algorithm in Section 4, and our results in Section 5. Section 6 discusses possibilities for future
work and finishes with a brief conclusion.

3

2. Hidden Markov Models and Maximum Likelihood
Training

Hidden Markov models (HMM) were first described in the classic paper by Baum [Baum
72]. Shortly afterwards, they were extended to automatic speech recognition independently at
CMU [Baker 75] and IBM [Bakis 76, Jelinek 76]. It was only in the past few years, however, that
HMMs became the predominant approach to speech recognition, superseding dynamic time
warping.

A hidden Markov model is a collection of states connected by transitions. Each transition
carries two sets of probabilities: a transition probability, which provides the probability for
taking this transition, and an output probability density function (pdf), which defines the
conditional probability of emitting each output symbol from a finite alphabet, given that some
transition from the state is taken. Figure 2-1 shows an example of a hidden Markov model with
two output symbols, A and B .

T A 0 . 5]

L B 0 . 5 J

Figure 2-1: A simple hidden Markov model with two states, and two output
symbols, A and B .

There are several types of hidden Markov models. In this study, we will assume discrete
density HMMs, which are defined by:

• {s}—A set of states including an initial state 5 7 and a final state SF.
• {a^}—A set of transitions where a{i is the probability of taking a transition from

state / to state j .

• {bij(k)}—The output probability matrix: the probability of emitting symbol k when
taking a transition from state i to state y.

The forward-backward algorithm is used to estimate a and b. We provide only a simplistic
sketch here; details of the algorithm can be found in [Bahl 83, Lee 88a], The forward-backward
algorithm adjusts a and b iteratively. For each iteration, the estimates from the previous iteration
are used to count how frequently each symbol is observed for each transition, and how
frequently each transition is taken from each state. These counts are then normalized into new
parameters. Let c^Qc) represent the frequency (or count) that the symbol k is observed when the

transition from i to j is taken, the new output probability b -(k) is given by the normalized

4

frequency:

Cijik)
(1) K

Similarly, transition probabilities are re-estimated by normalizing the frequency that a transition
is taken from a particular state:

K

Baum [Baum 72] showed that re-estimating a and ft, as shown in equations 1 and 2, will
increase the likelihood of generating the training data, unless a local maximum has been reached.
Although the forward-backward algorithm guarantees only a local maximum, it efficiently
produces an approximation to the maximum-likelihood estimates (MLE) of the HMM
parameters.

In spite of the many advantages of maximum-likelihood estimation, it suffers a serious
problem, namely, it assumes that the underlying models, in this case HMMs, are correct [Brown
87]. However, HMMs are poor models of reed speech, due mainly to the Markov independence
assumption. With an incorrect model, there is no guarantee that maximum-likelihood estimation
will converge to the best values for speech recognition.

(2) K

5

3. The SPHINX Speech Recognition System
Our experiments in this paper were run by modifying an existing speech recognition

system, SPHINX [Lee 89a]. SPHINX is a large-vocabulary, speaker-independent, continuous-
speech recognition system based on maximum-likelihood HMMs.

SPHINX, which uses vector quantized LPC-derived cepstral coefficients in discrete HMM's,
is based on phonetic hidden Markov modeling. Each word is represented by a pronunciation
network of phones, and the set of sentences accepted by the grammar is represented by a network
of words. Recognition in SPHINX is carried out by a Viterbi beam search [Viterbi 67, Schwartz
85]. While these techniques have worked well in speaker-dependent or isolated-word
recognition, we have found that they alone are inadequate for our difficult task. It is necessary to
improve these techniques to deal with speaker independence and continuous speech.

In order to deal with speaker independence, we experimented with various ways of adding
knowledge to SPHINX. The simplest way to add knowledge to HMM's is to add more frame-
based parameters. We use three sets of parameters : (1) instantaneous LPC cepstrum
coefficients, (2) differenced LPC cepstrum coefficients, and (3) power and differenced power.
These parameters are vector quantized separately into three codebooks, each with 256 entries.
We found that quantizing these parameters separately both improved recognition accuracy and
reduced VQ distortion. We also incorporated a word duration knowledge source into the
recognizer.

Two great problems introduced by continuous speech are unclear function words and
coarticulation. In order to improve the recognition of function words, we use
funetion-word-dependent phone models, whose parameters depend on the word in which they
appear. Since function words occur frequently, these models can be adequately trained.
Moreover, since function words appear frequently in any task, they can be trained in a task-
independent fashion. Finally, these models are still phone models, so we can interpolate their
parameters with context-independent models when their training is insufficient. In order to deal
with coarticulation, we introduce the generalized triphone models. Generalized triphone models
are similar to context-dependent triphone models [Schwartz 85]. However, instead of modeling
all left and right contexts, we use a maximum likelihood clustering procedure to merge similar
contexts together. The use of function-word-dependent phone models and generalized triphone
models gives us a total of 1076 models.

We applied SPHINX to the 997-word resource management task used by the DARPA
projects. We used 4200 sentences produced by 105 speakers for training, and another 150
sentences by 15 different speakers for testing. We obtained word accuracies of 93.7%, and
70.6% for grammars with perplexity 60 and 997, respectively. More information about SPHINX
can be found in [Lee 88a, Lee 88b, Lee 89a, Lee 89b, Lee 89c].

6

4 . Corrective and Reinforcement Learning for
Speaker-Independent Continuous Speech Recognition

4.1 The IBM Corrective Learning Algorithm
In view of the dependence of MLE on the problematic assumptions of HMMs, Bahl, et al.

[Bahl 88a] proposed the IBM corrective training algorithm for speaker-dependent isolated-word
recognition. This procedure, inspired by perceptron models [Minsky 69], attempts to tune the
models to minimize recognition errors. This goal has a definite practical appeal, since error rate,
not sentence likelihood, is the bottom line for speech recognition.

In order to minimize errors, the algorithm first attempts to recognize each training utterance
it, representing some word w, with some initial model If u is misrecognized as co, then the
parameters of the system are modified so as to make w more probable and co less probable. This
is the corrective component of the algorithm. The other component, which we call the
reinforcement learning, is always activated whether or not u is recognized correctly. In that case,
a list of near-misses co;. are identified. Each near-miss is then made less probable with respect to
the correct word. Figure 4-1 illustrates this algorithm in detail

1. Generate an initial set of models from forward-backward training,
preserving counts (c^k)) for the transitions and output symbols.

2. For each training utterance u, use normalized to compute
P(u\w) for the correct word w, and /^(ulco^ for a list of
"confusable" words, com. This list consists of:

• misrecognitions — if P(u | coj > P(u | w)
• near-misses — if \ogP(u\com) - logP(u\w) > - 5

where 8 is a positive threshold determined a priori.
3. Run the forward-backward algorithm on each utterance u, using

the model for the correct word w to obtain the counts c£". Do the
same with the model for each com to obtain the counts c!?V Then,
replace original counts c{j with c^ + Y(c£* - c™m)- Y is an
adjustment factor:

• For misrecognitions, it is set to |3.
• For near misses, it decreases linearly from p to 0 as

the difference in log-probabilities decreases from 0
t o -5 .

4. Replace any negative counts by a small positive constant, and
continue with step 2, until enough iterations have been run.

Figure 4-1: The IBM corrective training algorithm.

Error correction occurs in step 3. By adding counts for the correct word (cjp to actual

7

counts for the models (cty)f the correct word is made more probable. Conversely, by subtracting
counts for the confiisable words (cTm) from c iy, the confiisable words are made less probable.
The parameters of this algorithm include:

• 8 — the threshold value for determining what constitutes a near-miss.
• (3 — the maximum step size in correction.

yis directly computed from logP(u\ w), log^wlco^, and p.

Since word boundaries are known in their isolated-word task, it was possible to generate
com, the list of near-miss words by matching the utterance with all the words in the vocabulary.
Bahl, et al. actually used a fast match algorithm [Bahl 88b] which does this efficiently. From
this list, misrecognitions and near-misses were determined using the criterion in step 2 of Figure
4-1.

Over a series of four experiments, the IBM corrective training algorithm produced an
average error reduction of 16% on test data, and 88% on training data. These experiments
successfully demonstrated the feasability of corrective training for speaker-dependent, isolated-
word recognition.

The simplest way to apply IBM's corrective training algorithm to continuous speech is to
treat each sentence as a "word." A misrecognition of a sentence can then be corrected by
adjusting the counts for the entire sentence. This simple-minded approach has at least two flaws.
First, there is no convenient way to produce multiple misrecognitions, so the corrective
component would have at most one error per sentence. This provides very little training.
Second, this approach does not suggest any good ways of generating near-misses, because there
is no readily available list of near-miss sentences. This makes reinforcement learning
impossible. In the next two sections, we will introduce techniques that solve both these
problems.

4.2 Using Cross Validation to Increase Training
The IBM corrective training algorithm uses the same data to train the HMM probabilities

and to determine what and how much to correct. However, recognition on training data
invariably results in fewer and less realistic errors than does recognition on independent test data.
SPHINX makes almost twice as many errors on a test set than on a training set. Thus, correcting
on training data will provide only half as many misrecognitions for correction.

In order to alleviate this problem, we propose the use of cross-validation. First, the training
data is divided into two partitions, and HMMs are trained on each partition. Then, HMMs
trained from one partition are used to recognize the sentences from the other. Not only will we
obtain many more errors this way, but these errors will also be more realistic. We then use these
errors to correct the models trained on the entire set. Partitioning for cross-validation no longer
makes sense after the first iteration, because the HMMs will have been trained on one partition
and corrected on the other. Therefore, in our implementation we use the misrecognized

8

sentences from cross-validation for the first iteration. In future iterations, we reuse them as near-
miss sentences.

4.3 Reinforcement Learning for Continuous Speech Recognition
Bahl, et al. [Bahl 88a] found that reinforcement (near-miss) learning aided the convergence

of corrective training considerably. For isolated-word tasks, near-miss training is conceptually
simple, since the only errors are simple word-for-word substitutions (such as for -> far). To
generate near-misses, Bahl, et al. used a list of near-miss words produced by a fast-match
algorithm [Bahl 88b].

Such an approach is unsuitable for continuous speech, where we need to produce near-miss
sentences given a correct sentence. This information is unavailable from a continuous speech
recognizer due to pruning. We decompose this problem as follows:

1. Produce a long list of near-miss phrase substitutions, where each phrase may have
zero to several words.

2. Use this list to hypothesize near-miss sentences by substituting one or more of the
near-miss phrases with their respective replacements.

The next two sections will describe these two components of our reinforcement learning
algorithm for continuous speech recognition.

4.3.1 Generating Near-Miss Phrase Substitutions
In this section, we describe our algorithm to generate a list of near-miss, or confusable,

phrases. The first issue is the definition of a confusable phrase. It is inadequate to simply model
word-for-word substitutions, because errors in continuous speech recognition are rarely so
simple. More complex errors have been modeled by scoring routines [Pallett 87] that attempt to
compute the error rate of a system, and provide a list of frequent errors. These routines typically
consider insertions (ship -» the ship) and deletions (a sub -» sub) in addition to substitutions.
While these three categories are adequate for determining the error rate of a system, they are
unsuitable for finding near-miss phrases for two reasons. First, they contain no contextual
information (the is more likely to be deleted in list the uttered word than in the word was
uttered). Second, phrase substitutions (during that are m, how many —> home any) cannot
be decomposed into substitutions, insertions, and deletions.

In view of the above, we model system errors as near-miss phrase substitutions. A near-
miss phrase substitution is a pair of phrases, where each phrase may have zero or more words.
We generate these confusable phrases as follows. First, we use cross-validation recognition to
obtain realistic misrecognized sentences. Then, to find plausible phrase errors, each
misrecognized sentence is matched against the corresponding correct one by a dynamic
programming (DP) algorithm [Aho 74]. We could then define near-miss phrases as phrase
alignments that have reasonable costs.

9

In order to align two sentences, each sentence must be first decomposed into a sequence of
comparable units. For example, the scoring programs use words as units. The problem with
using words as units is that they have no self-evident distance metric. Scoring programs use a
simple distance metric, where if two identical words are aligned, the distance is zero, and
substitutions, insertions, deletions are penalized with some constant distances. This type of
distance metric is insensitive to similarities at the subword level, and will result in unreasonable
alignments when multiple alignments are possible. Phones are a better unit, because multiple
alignments can be resolved using phonetic similarity. However, there is no principled way of
incorporating duration into phonetic distances. Also, similarities at the sub-phone level may be
useful.

Therefore, we use the smallest unit available to us, and represent each sentence as a
sequence of frames, where a frame is represented as an output distribution, by. To obtain the
distribution sequence, we align the actual utterance against the hidden Markov model for the
correct sentence using the Viterbi algorithm. This is repeated for the misrecognized sentence.
This process converts the correct and misrecognized sentences to their corresponding {by}
sequences.

In order to align two by sequences, we need a distance metric between the byS. We use an
information theoretic distance that measures the change in entropy when the two distributions are
merged [Lee 88a]. These distances are scaled to lie in [0,1], with a cost of 1 for insertions and
deletions.

Given the by sequences for the correct sentence (C) and for the misrecognized sentence (A/),
each with length L, we are now in a position to generate near-miss phrase substitutions. A
phrase substitution can be thought of as a "box", indicated by its coordinates, C^CpM^M^ This
"box" matches two phrases: (1) frames i to j of the correct by sequence, and (2) frames k to / of
the misrecognized by sequence. The cost of a box can be determined by aligning the two
sequences of byS using a dynamic programming (DP) algorithm [Aho 74] to find the optimal
alignment and cost. This cost is defined by the following equations:

CosKCpCpMtMJ^O (3)

CostiCt, C ^ , Af* Af w) +Dwr(C;, Af,)
Cost(CiyCpNifiM^ = MINI CostiCt,CH9M^Mt) +1 (4)

where DistiCj9Mt) is the entropic distance between frame j of the correct sequence and frame / of
the misrecognized sequence.

For example, the box in Figure 4-2(a) shows alignment of two entire sentences, which gives
us a globally optimal cost, or Cost(Cv CLM*Mj). Figure 4-2(b) shows the decomposition of the
global box into three boxes. The central box represents the substitution who is in —» will
wasn+t. We consider the central box a near-miss phrase substitution if the total cost of the three

10

boxes is within e of the globally optimal cost (that of the box in Figure 4-2(a)). In other words,
the phrase substitution designated by the central box will be considered a near-miss if the
following equation is satisfied:

Cost{Cv CM9MVMM)+Cost(Ci9 Cj,M»M}+Cost(Chl9 CvMk+xMd
^CostiCvCuMxMj+z (5)

This gives us a principled way of finding good near-miss phrases that actually caused the
misrecognition. In the example, the central box in Figure 4-2(b) was considered a near-miss,
while the central box in Figure 4-2(c) was not All the near-miss phrase substitutions are saved,
along with their cost in the central box, for later use.

The costs of all possible peripheral boxes can be precomputed efficiently, because there are
only CwxMw possible end points for the left box, and CwxMw possible begin points for the right
box (Cw is the number of words in the correct string, and Mw is that in the misrecognized string).
As a byproduct of the DP algorithm, alignment of the entire sentences yields all the possible
costs for left boxes. Similarly, aligning the sentences in reverse yields the costs for the possible
right boxes. However, there are almost (C^xAf^)2 possible central boxes, one for every possible
combination of the two peripheral boxes, and DP alignment will have to be run for each
combination. Some pruning is needed to contain the central box computation. We use branch-
and-bound to discard any box for which the combined peripheral cost already exceed the
globally optimal cost by more than e, on

CostiC^i^M^^^CosKCj^C^^M^ > CostiC^MxMJ+t . (6)
In addition, we restrict the substitution phrases to at most three words. We felt that longer
phrases would become too specific for the training data.

We processed 4150 pairs of correct and recognized sentences using the above algorithm,
obtaining a list of 13000 phrase substitutions in about 4 hours of CPU time on a Sun-4. As an
example of the substitutions produced, the substitutions produced for matching "Who is in west
Siberian sea?" with "If will wasn't last Siberian sea" are:

west —» last
is in —» wasn't
who —» will
who is in —> will wasn't

To digress momentarily, we would like to point out that the algorithm described in the
section could be modified into a sophisticated scoring algorithm that can give more accurate
estimates of error rate and automatically provide a list of errors of analysis [Pallett 87, Hunt 88].

11

SIL
IF

SIL
WILL

WASN+T

WHO IS IN WEST SIBERIAN SEA SIL

(a)
WHO IS IN WEST SIBERIAN SEA SIL

SIBERIAN

SIL
IF

SIL
WILL

WASN+T

LAST

SIBERIAN

SEA
SIL

(b)
SIL WHO IS IN WEST SIBERIAN SEA SIL

v
(c)

Figure 4-2: Three examples of DP alignment in the near-miss phrase generation,
(a) is the globally optimal path, (b) is an example of a good alignment, and (c) is
an example of a poor alignment The quality of the alignment is assessed by
comparing the resulting distance with that of the optimal path.

1 2 '

4.3.2 Hypothesizing Near-Miss Sentences
The candidate list produced by the phrase generation algorithm is then used by the sentence

hypothesize^ which heuristically hypothesizes likely near-miss sentences. Almost any
reasonable method will do, but for completeness we describe our algorithm in Figure 4-3. This
algorithm hypothesizes one near-miss sentence given a correct sentence. Since it is non-
deterministic, we can iterate it until we have enough near-misses for each correct sentence. We
use an average of 6 near-miss sentences per original sentence.

1. Start at the beginning of the correct sentence by setting the current
word position to zero.

2. Make a list of possible phrase substitutions starting at the current
position.

3. Randomly make a substitution from the list determined in step 2.
The probability of making a substitution is a monotonically
decreasing function of the cost in the DP process. Making no
substitution is allowed, with no cost

4. If we made a substitution, advance the current position to the end
of the substituted phrase. Otherwise, advance the current position
by one word.

5. If at end of sentence, stop. Otherwise, go to step 2.

Figure 4-3: The near-miss sentence hypothesization algorithm.

This algorithm is very efficient We can hypothesize 250 near-miss sentences per second
on a Sun-4. The hypotheses generated by the algorithm depend greatly on the phrase
substitution list with which it is provided. Using the substitution list derived from recognition
without grammar, the hypotheses produced for who is in west Siberian sea include:

who is in were sub area be
who is in west it Siberian be
who is in when Siberian same
who is in when Siberian it sea

On the other hand, using a word-pair-grammar substitution list, we obtained a different
substitution list:

who was the west Siberian sea
who is in the west Siberian sea
who list at west Siberian sea
who has been in west Siberian sea

Without a grammar, many ungrammatical substitutions occur, such as west —> when and sea —>
be. But with a grammar, the hypothesized sentences are more grammatical, with substitutions
such as is —» was and in —» at.

13

4.4 Final Algorithm Description
Figure 4-4 summarizes our corrective and reinforcement algorithm for continuous speech

recognition. There is one implementational detail that we have not covered. A problem we
encountered during recognition was that corrective training would make some probabilities too
small for test data. As a result, a few sentences could not be recognized. To remedy this
problem, we use a large |3 and then smooth the trained parameters with the MLE parameters. For
example, with a smoothing weight of 0.2 for the MLE parameters and 0.8 for the new
parameters, we ensure that no parameter can shrink by more than 80% from its MLE estimate.
This is more sensitive than simply using a smaller (3, or setting a large minimum value for output
probabilities.

1. Partition the training sentences into two equal sections for cross-
validation and train a set of models on each half.

2. Recognize each half with the models trained on the other half
(cross-validation).

3. Perform the DP algorithm on misrecognized sentences in Section
4.3.1 to obtain a list of near-miss phrase substitutions.

4. Iterate the non-deterministic algorithm described in Figure 4-3 to
hypothesize a list of near-miss sentences.

5. Generate the list of confiisable sentences (com) by combining:
• The actual misrecognitions from the models of the

previous iteration.

• The list of hypothesized near-miss sentences in the
previous step.

• Sentences from cross-validation, for iterations after
the first.

6. Run the forward-backward algorithm on each spoken sentence u,
using the model for the correct sentence w to obtain the counts
cf™. Do the same with each (Om to obtain the counts c?V Then,

ij m y

replace the each original count with + y(c™ - c"?m). y is an
adjustment factor:

• For misrecognitions, it is set to J3.
• For near misses, it decreases linearly from (3 to 0 as

the difference between logP(u\w) and logP(u\(om)
decreases from 0 to - 5 .

7. Smooth the resulting models with the MLE parameters, using a
weighted average.

8. Go to step 3, until a sufficient number of iterations have been run.

Figure 4-4: The final corrective and reinforcement training algorithm.

14

5. Results and Discussion
The algorithm described in Section 4.4 can be used for recognition systems with and

without grammar. We applied the algorithm to both cases.

To obtain the baseline MLE results, we trained the SPHINX system using the forward-
backward algorithm, as described in Chapter 3. We applied SPHINX to the 997-word Tl
Resource Management task [Price 88], using 4150 training sentences (104 speakers) and 150 test
sentences (10 speakers). Without a grammar, the perplexity is 997. With the word-pair
grammar, which knows only about the legality of pairs of words classes, the perplexity is 60.

Our first experiment was run on the no grammar recognizer, where the MLE models made
375 errors1 on test data, for an error rate of 29.4%. One iteration of simplistic corrective
training, without near-misses or cross-validation, reduces the number of errors on test data to
336. More realistic cross-validation sentences reduces this to 329. Finally, one iteration of the
complete algorithm, described in Figure 4-4, with reinforcement learning reduces this number to
316. Thus, after one iteration, our corrective training algorithm achieves a 15.7% error rate
reduction on test data. Most of the improvement comes from basic corrective training, although
a significant portion comes from enhancements such as cross-validation and reinforcement
learning.

System
Configuration

Errors on
Test Set

% Test Set
Error Reduction

MLE Training 375 (29.4%) --

Corrective only 336 (26.3%) 10.4%
+ Cross-validation 329 (25.8%) 12.3%
+ Reinforcement 316 (24.7%) 15.7%

Table 5-1: Results of maximum-likelihood training vs. one iteration of variants
of corrective and reinforcement training.

We then ran additional iterations of the corrective and reinforcement learning algorithm.
For each iteration, we used the system from the previous iteration to produce misrecognitions for
corrective training. A different set of near-miss sentence hypotheses was used, without
regenerating the near-miss phrase substitutions. In addition, the misrecognitions from cross-
validation were repeatedly used. The results are shown in Table 5-2. Also shown are the error
rates on the training sentences. Note that the results shown for MLE training were obtained

xAn error could be a substitution, a deletion, or an insertion.

15

without cross-validation2, so that the entries in the first column would be more comparable. We
found that after running two iterations, the result improved only negligibly. The final result
gives an error rate of 23.4%, for an error rate reduction of 20.3% over the MLE models.

Errors on
Training Set

Errors on
Test Set

% Test Set
Error Reduction

Iteration 0 (MLE) 6122 (18.8%) 375 (29.4%)
Iteration 1 4008 (10.9%) 316(24.7%) 15.7%
Iteration 2 2218 (6.8%) 302 (23.6%) 19.5%
Iteration 3 1896 (5.2%) 299 (23.4%) 20.3%

Table 5-2: Results for iterative training of corrective and reinforcement training
without grammar.

We also applied the corrective training algorithm to the models used by SPHINX's word-pair
grammar. We first tried to use the models adjusted with the no-grammar hypotheses, but the
error rate was actually greater than with MLE models. This happens because the two grammars
make very different errors, which we verified by comparing their near-miss phrase hypotheses.
For example, the word-pair grammar recognizer usually does not confuse than with their, but the
no grammar one often does. Adjusting the model parameters that disambiguate these two words
might actually hurt the word-pair recognition rate. So, we regenerated the cross-validation data
and the phrase substitution list for the word-pair grammar correction. The results are shown in
Table 5-3. As expected, comparable error reduction with the no grammar recognizer was
achieved.

Errors on
Training Set

Errors on
Test Set

% Test Set
Error Reduction

Iteration 0 (MLE) 1799 (4.9%) 81 (6.3%)
Iteration 1 809 (2.2%) 68 (5.3%) 16.0%
Iteration 2 689 (1.9%) 64 (5.0%) 21.0%
Iteration 3 650 (1.8%) 62 (4.9%) 23.4%

Table 5-3: Results for iterative training of corrective and reinforcement training
with a word-pair grammar.

IBM reported error rate reductions of 16% and 88% on test data and training data
respectively [Bahl 88a]. With more training, we report 20% and 72% without grammar, 23%

2With cross-validation, there are about 20-30% more errors than the test set, because it is a test set evaluation with
less training data.

16

and 63% with grammar. Thus, we have not only demonstrated the extensibility of the corrective
training algorithm to speaker-independent continuous speech recognition, but also narrowed the
gap between training and testing results through the use of more training and cross validation.

17

6 . Conclusion
Hidden Markov models with maximum-likelihood estimation constitute the predominant

approach to automatic speech recognition today. However, maximum likelihood produces
inferior results when the underlying models are incorrect, which HMM's obviously are as
models of real speech. For this reason, the IBM corrective training algorithm produced good
results when applied to the IBM isolated-word, speaker-dependent, office-correspondence task.
The basic idea of this algorithm is to modify the HMM parameters so as to maximize the
recognition rate on the training set This is accomplished by making the correct words more
probable, and the confusable words less probable. This paper extended this algorithm to
continuous, speaker-independent speech recognition.

In order to increase the effective training size, we used cross-validation. In order to extend
the algorithm to continuous speech, we introduced an algorithm that hypothesized near-miss
sentences. This algorithm has two components: (1) a near-miss phrase substitution generator
that used a dynamic programming algorithm to produce a long list of possible phrase
substitutions, and (2) a non-deterministic near-miss sentence hypothesizer that used the phrase
substitution list to hypothesize possible near-miss sentences from a correct sentence. These
enhancements, aided by the use of a large training database, led to error rate reductions of 20.3%
without grammar, and 23.4% with a word-pair grammar. One notable finding was that grammar-
specific training was necessary, because corrections appropriate for one grammar may be
suboptimal, or even harmful, to another grammar. Another finding was that smoothing a
heavily-corrected set of parameters with MLE parameters led to the best results.

These results clearly demonstrated that the corrective training algorithm is applicable to
speaker-independent, continuous speech recognition. The applicability of this algorithm to
continuous speech is demonstrated through the use of novel algorithms for near-miss sentence
hypothesization. The applicability of this algorithm to speaker-independent recognition is also
important, because much more training data can be collected in speaker-independent mode.
Through the use of a large multi-speaker database and cross-validation to increase the effective
training size, we have narrowed the gap between the results of training and testing data.
However, there is still a large difference between training and testing results. In order to further
reduce this difference, more training will be needed, and more efficient techniques must be
investigated to deal with the increased training.

There are number of other directions for future work. The phrase generation method
described in this paper relied on having a large training database. This is practical for a 1000-
word vocabulary, but would not be for a 20,000 word system. A method to generate confusable
phrases given only a grammar and a dictionary would be very useful.

Another research area is whether the corrective training algorithm will be useful when
training data is sparse. For example, could we improve a model even when it has not been
observed? Positive results in this area will make corrective training an excellent speaker-

18

adaptation algorithm. Otherwise, it will still be a good adaptation algorithm when a reasonable
amount of speaker-specific data is available.

Corrective and reinforcement learning is but one innovation that departs from the traditional
maximum-likelihood estimation. A few other techniques, such as maximum mutual information
estimation [Brown 87] and minimum discrimination information estimation [Ephraim 88], have
been proposed. We believe that this is a rich area for further research.

Acknowledgements
The authors would like to thank Hsiao-Wuen Hon and Joe Keane for discussions and help.

We would also like to thank DARPA for the support

19

References
[Aho 74] Aho, A., Hopcroft, J., Ullman, J.

The Design and Analysis of Computer Algorithms.
Addison-Wesley Publishing Company, 1974.

[Bahl 83] Bahl, L. R., Jelinek, F., Mercer, R.
A Maximum Likelihood Approach to Continuous Speech Recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence

PAMI-5(2): 179-190, March, 1983.

[Bahl 88a] Bahl. L.R., Brown, P.F., De Souza, P.V., Mercer, R.L.
A New Algorithm for the Estimation of Hidden Markov Model Parameters.
In IEEE International Conference on Acoustics, Speech, and Signal

Processing. April, 1988.

[Bahl 88b] Bahl. L.R., Brown, P.F., De Souza, P.V., Mercer, R.L.
Obtaining Candidate Words by Polling in a Large Vocabulary Speech

Recognition System.
In IEEE International Conference on Acoustics, Speech, and Signal

Processing. April, 1988.
[Baker 75] Baker, J.K.

The DRAGON System - An Overview.
IEEE Transactions on Acoustics, Speech, and Signal Processing

ASSP-23(l):24-29, February, 1975.
[Bakis 76] Balds, R.

Continuous Speech Recognition via Centisecond Acoustic States.
In 91st Meeting of the Acoustical Society of America. April, 1976.

[Baum 72] Baum, L. E.
An Inequality and Associated Maximization Technique in Statistical

Estimation of Probabilistic Functions of Markov Processes.
Inequalities 3:1-8,1972.

[Brown 87] Brown, P.
The Acoustic-Modeling Problem in Automatic Speech Recognition.
PhD thesis, Computer Science Department, Carnegie Mellon University, May,

1987.

[Chow 87] Chow, Y.L., Dunham, M.O., Kimball, O.A., Krasner, M.A., Kubala, G.F.,
Makhoul, J., Roucos, S., Schwartz, R.M.
BYBLOS: The BBN Continuous Speech Recognition System.
In IEEE International Conference on Acoustics, Speech, and Signal

Processing, pages 89-92. April, 1987.

[Ephraim 88] Ephraim, Y., Rabiner, L.
On the Relations Between Modeling Approaches and Information Sources.
In IEEE International Conference on Acoustics, Speech, and Signal

Processing, pages 24-27. April, 1988.

20

[Hunt 88]

[Jelinek76]

[Jelinek 85]

[Lee 88a]

[Lee 88b]

[Lee 89a]

[Lee 89b]

[Lee 89c]

[Minsky 69]

[Pallett 87]

[Price 88]

Hunt, M.
Evaluating the Performance of Connected-Word Speech Recognition

Systems.
In IEEE International Conference on Acoustics, Speech, and Signal

Processing, pages 457-461. April, 1988.

Jelinek, F.
Continuous Speech Recognition by Statistical Methods.
Proceedings of the IEEE 64(4):532-556, April, 1976.

Jelinek, et al.
A Real-Time, Isolated-Word, Speech Recognition System for Dictation

Transcription.
In IEEE International Conference on Acoustics, Speech, and Signal

Processing. March, 1985.

Lee, K.F.
Large-Vocabulary Speaker-Independent Continuous Speech Recognition: The

SPHINX System.
PhD thesis, Computer Science Department, Carnegie Mellon University,

April, 1988.

Lee, K.F., Hon, H.W.
Large-Vocabulary Speaker-Independent Continuous Speech Recognition.
In IEEE International Conference on Acoustics, Speech, and Signal

Processing. April, 1988.

Lee, K.F., Hon. H.W., Reddy, R.
An Overview of the SPHINX Speech Recognition System.
IEEE Transactions on Acoustics, Speech, and Signal Processing , To Appear

in, 1989.

Lee, K.F.
Automatic Speech Recognition: The Development of the SPHINX System.
Kluwer Academic Publishers, Boston, 1989.

Lee. K.F., Hon, H.W.
The SPHINX Speech Recognition System.
In IEEE International Conference on Acoustics, Speech, and Signal

Processing. April, 1989.

Minsky, M., Papert, S.
Perceptrons.
MIT Press, Cambridge, Massachusetts, 1969.

Pallett, D.
Test Procedures for the March 1987 DARPA Benchmark Tests.
InDARPA Speech Recognition Workshop, pages 75-78. March, 1987.
Price, P.J., Fisher, W., Bernstein, J., Pallett, D.
A Database for Continuous Speech Recognition in a 1000-Word Domain.
In IEEE International Conference on Acoustics, Speech, and Signal

Processing. April, 1988.

21

[Rabiner 88] Rabiner, L.R., Wilpon, J.G., Soong, F.K.
High Performance Connected Digit Recognition Using Hidden Markov

Models.
In IEEE International Conference on Acoustics, Speech, and Signal

Processing. April, 1988.

[Schwartz 85] Schwartz, R., Chow, Y., Kimball, O., Roucos, S., Krasner, M., Makhoul, J.
Context-Dependent Modeling for Acoustic-Phonetic Recognition of

Continuous Speech.
In IEEE International Conference on Acoustics, Speech, and Signal

Processing. April, 1985.
[Viterbi 67] Viterbi, A. J.

Error Bounds for Convolutional Codes and an Asymptotically Optimum
Decoding Algorithm.

IEEE Transactions on Information Theory IT-13(2):260-269, April, 1967.

