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Abstract 
This paper addresses the issue of learning hidden Markov model (HMM) parameters for 
speaker-independent continuous speech recognition. Bahl et al. [Bahl 88a] introduced the 
corrective training algorithm for speaker-dependent isolated word recognition. Their algorithm 
attempted to improve the recognition accuracy on the training data. In this work, we extend this 
algorithm to speaker-independent continuous speech recognition. We use cross-validation to 
increase the effective training size. We also introduce a near-miss sentence hypothesization 
algorithm for continuous speech training. The combination of these two approaches resulted in 
over 20% error reductions both with and without grammar. 
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1. Introduction 
At present, hidden Markov models (HMMs) constitute the predominant approach to 

automatic speech recognition. HMM-based systems make certain structural assumptions, and 
then try to learn two sets of parameters—output probabilities, which represent speech events, and 
transition probabilities, which represent duration and timescale distortions. Most HMM-based 
systems use the Baum-Welch (or forward-backward) algorithm [Baum 72, Jelinek 76, Bahl 83], 
which adjusts the parameters to obtain an approximation to the maximum-likelihood estimates 
(MLE) of the HMM parameters. 

Maximum likelihood estimators have many desirable properties, and many successful 
systems [Jelinek 85, Chow 87, Lee 89a, Rabiner 88] are based on MLE. However, maximum 
likelihood estimation has one serious flaw: it assumes that the underlying models are correct. In 
reality, however, typical HMMs make extremely inaccurate assumptions about the speech 
production process. This suggests two avenues of research: (1) attempt to rectify these 
assumptions, or (2) use new estimation techniques that work well in spite of these inaccurate 
assumptions. In this paper, we will consider the latter approach. 

Bahl et al. [Bahl 88a] introduced the corrective training algorithm for HMMs as an 
alternative to the forward-backward algorithm. While the forward-backward algorithm attempts 
to increase the probability that the models generated the training data, corrective training 
attempts to maximize the recognition rate on the training data. This algorithm has two 
components: (1) error-correction learning — which improves correct words and suppresses 
misrecognized words, (2) reinforcement learning —which improves correct words and 
suppresses near-misses. Applied to the IBM speaker-dependent, isolated-word office 
correspondence task, this algorithm reduced the error rate by 16%. 

In this study, we extend the corrective and reinforcement learning algorithm to 
speaker-independent, continuous speech recognition. Speaker independence presents some 
problems, because corrections appropriate for one speaker may be inappropriate for another. 
However, with a speaker-independent task, it is possible to collect and use a large training set. 
More training provides not only improved generalization but also a greater coverage of the 
vocabulary. We also propose the use of cross-validation to increase the effective training data 
size used to locate the misrecognitions needed by the correction algorithm. Cross-validation 
partitions the training data and determines misrecognitions using models trained on different 
partitions. This simulation of actual recognition leads to more realistic misrecognition 
hypotheses. 

Extension to continuous speech is more problematic. With isolated-word input, both error-
correcting and reinforcement training are relatively straighforward, since all errors are simple 
substitutions. Bahl, et al. [Bahl 88a] determined both misrecognized words and near-misses by 
matching the utterance against the entire vocabulary. However, with continuous speech, the 
errors include insertions and deletions. Moreover, many substitutions appear as phrase-
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substitutions, such as home any for how many. In general, word boundaries are neither known 
nor reliably detectable. Without word-boundary information, it would be difficult to suppress 
misrecognized words and hypothesize near-misses. These problems make reinforcement 
learning difficult We propose an algorithm that hypothesizes near-miss sentences for any given 
sentence. First, a dynamic programming algorithm produces an ordered list of likely phrase 
substitutions. Then, this list is used to hypothesize the near-miss sentences used in 
reinforcement learning. 

We applied our corrective training procedure to the 997-word DARPA continuous resource 
management task, using the speaker-independent database. Without a grammar, we obtained a 
20.3% error-rate reduction over the standard MLE-trained SPHINX System. With a word-pair 
grammar, we obtained a 23.4% reduction. These improvements are comparable to the IBM 
results with speaker-dependent, isolated-word recognition. Thus, we have successfully 
demonstrated the extensibility and applicability of the corrective training and reinforcement 
learning algorithm to speaker-independent continuous speech recognition. 

In this paper, we first give a brief overview of hidden Markov models in Section 2. A brief 
description of the SPHINX system, on which this work is based, is presented in 3. We present our 
algorithm in Section 4, and our results in Section 5. Section 6 discusses possibilities for future 
work and finishes with a brief conclusion. 
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2. Hidden Markov Models and Maximum Likelihood 
Training 

Hidden Markov models (HMM) were first described in the classic paper by Baum [Baum 
72]. Shortly afterwards, they were extended to automatic speech recognition independently at 
CMU [Baker 75] and IBM [Bakis 76, Jelinek 76]. It was only in the past few years, however, that 
HMMs became the predominant approach to speech recognition, superseding dynamic time 
warping. 

A hidden Markov model is a collection of states connected by transitions. Each transition 
carries two sets of probabilities: a transition probability, which provides the probability for 
taking this transition, and an output probability density function (pdf), which defines the 
conditional probability of emitting each output symbol from a finite alphabet, given that some 
transition from the state is taken. Figure 2-1 shows an example of a hidden Markov model with 
two output symbols, A and B . 

T A 0 . 5 ] 

L B 0 . 5 J 

Figure 2-1: A simple hidden Markov model with two states, and two output 
symbols, A and B . 

There are several types of hidden Markov models. In this study, we will assume discrete 
density HMMs, which are defined by: 

• {s}—A set of states including an initial state 5 7 and a final state SF. 
• {a^}—A set of transitions where a{i is the probability of taking a transition from 

state / to state j . 

• {bij(k)}—The output probability matrix: the probability of emitting symbol k when 
taking a transition from state i to state y. 

The forward-backward algorithm is used to estimate a and b. We provide only a simplistic 
sketch here; details of the algorithm can be found in [Bahl 83, Lee 88a], The forward-backward 
algorithm adjusts a and b iteratively. For each iteration, the estimates from the previous iteration 
are used to count how frequently each symbol is observed for each transition, and how 
frequently each transition is taken from each state. These counts are then normalized into new 
parameters. Let c^Qc) represent the frequency (or count) that the symbol k is observed when the 

transition from i to j is taken, the new output probability b -(k) is given by the normalized 
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frequency: 

Cijik) 
(1) K 

Similarly, transition probabilities are re-estimated by normalizing the frequency that a transition 
is taken from a particular state: 

K 

Baum [Baum 72] showed that re-estimating a and ft, as shown in equations 1 and 2, will 
increase the likelihood of generating the training data, unless a local maximum has been reached. 
Although the forward-backward algorithm guarantees only a local maximum, it efficiently 
produces an approximation to the maximum-likelihood estimates (MLE) of the HMM 
parameters. 

In spite of the many advantages of maximum-likelihood estimation, it suffers a serious 
problem, namely, it assumes that the underlying models, in this case HMMs, are correct [Brown 
87]. However, HMMs are poor models of reed speech, due mainly to the Markov independence 
assumption. With an incorrect model, there is no guarantee that maximum-likelihood estimation 
will converge to the best values for speech recognition. 

(2) K 
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3. The SPHINX Speech Recognition System 
Our experiments in this paper were run by modifying an existing speech recognition 

system, SPHINX [Lee 89a]. SPHINX is a large-vocabulary, speaker-independent, continuous-
speech recognition system based on maximum-likelihood HMMs. 

SPHINX, which uses vector quantized LPC-derived cepstral coefficients in discrete HMM's, 
is based on phonetic hidden Markov modeling. Each word is represented by a pronunciation 
network of phones, and the set of sentences accepted by the grammar is represented by a network 
of words. Recognition in SPHINX is carried out by a Viterbi beam search [Viterbi 67, Schwartz 
85]. While these techniques have worked well in speaker-dependent or isolated-word 
recognition, we have found that they alone are inadequate for our difficult task. It is necessary to 
improve these techniques to deal with speaker independence and continuous speech. 

In order to deal with speaker independence, we experimented with various ways of adding 
knowledge to SPHINX. The simplest way to add knowledge to HMM's is to add more frame-
based parameters. We use three sets of parameters : (1) instantaneous LPC cepstrum 
coefficients, (2) differenced LPC cepstrum coefficients, and (3) power and differenced power. 
These parameters are vector quantized separately into three codebooks, each with 256 entries. 
We found that quantizing these parameters separately both improved recognition accuracy and 
reduced VQ distortion. We also incorporated a word duration knowledge source into the 
recognizer. 

Two great problems introduced by continuous speech are unclear function words and 
coarticulation. In order to improve the recognition of function words, we use 
funetion-word-dependent phone models, whose parameters depend on the word in which they 
appear. Since function words occur frequently, these models can be adequately trained. 
Moreover, since function words appear frequently in any task, they can be trained in a task-
independent fashion. Finally, these models are still phone models, so we can interpolate their 
parameters with context-independent models when their training is insufficient. In order to deal 
with coarticulation, we introduce the generalized triphone models. Generalized triphone models 
are similar to context-dependent triphone models [Schwartz 85]. However, instead of modeling 
all left and right contexts, we use a maximum likelihood clustering procedure to merge similar 
contexts together. The use of function-word-dependent phone models and generalized triphone 
models gives us a total of 1076 models. 

We applied SPHINX to the 997-word resource management task used by the DARPA 
projects. We used 4200 sentences produced by 105 speakers for training, and another 150 
sentences by 15 different speakers for testing. We obtained word accuracies of 93.7%, and 
70.6% for grammars with perplexity 60 and 997, respectively. More information about SPHINX 
can be found in [Lee 88a, Lee 88b, Lee 89a, Lee 89b, Lee 89c]. 
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4 . Corrective and Reinforcement Learning for 
Speaker-Independent Continuous Speech Recognition 

4.1 The IBM Corrective Learning Algorithm 
In view of the dependence of MLE on the problematic assumptions of HMMs, Bahl, et al. 

[Bahl 88a] proposed the IBM corrective training algorithm for speaker-dependent isolated-word 
recognition. This procedure, inspired by perceptron models [Minsky 69], attempts to tune the 
models to minimize recognition errors. This goal has a definite practical appeal, since error rate, 
not sentence likelihood, is the bottom line for speech recognition. 

In order to minimize errors, the algorithm first attempts to recognize each training utterance 
it, representing some word w, with some initial model If u is misrecognized as co, then the 
parameters of the system are modified so as to make w more probable and co less probable. This 
is the corrective component of the algorithm. The other component, which we call the 
reinforcement learning, is always activated whether or not u is recognized correctly. In that case, 
a list of near-misses co;. are identified. Each near-miss is then made less probable with respect to 
the correct word. Figure 4-1 illustrates this algorithm in detail 

1. Generate an initial set of models from forward-backward training, 
preserving counts (c^k)) for the transitions and output symbols. 

2. For each training utterance u, use normalized to compute 
P(u\w) for the correct word w, and /^(ulco^ for a list of 
"confusable" words, com. This list consists of: 

• misrecognitions — if P(u | coj > P(u | w) 
• near-misses — if \ogP(u\com) - logP(u\w) > - 5 

where 8 is a positive threshold determined a priori. 
3. Run the forward-backward algorithm on each utterance u, using 

the model for the correct word w to obtain the counts c£". Do the 
same with the model for each com to obtain the counts c!?V Then, 
replace original counts c{j with c^ + Y(c£* - c™m)- Y is an 
adjustment factor: 

• For misrecognitions, it is set to |3. 
• For near misses, it decreases linearly from p to 0 as 

the difference in log-probabilities decreases from 0 
t o -5 . 

4. Replace any negative counts by a small positive constant, and 
continue with step 2, until enough iterations have been run. 

Figure 4-1: The IBM corrective training algorithm. 

Error correction occurs in step 3. By adding counts for the correct word (cjp to actual 
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counts for the models (cty)f the correct word is made more probable. Conversely, by subtracting 
counts for the confiisable words (cTm) from c iy, the confiisable words are made less probable. 
The parameters of this algorithm include: 

• 8 — the threshold value for determining what constitutes a near-miss. 
• (3 — the maximum step size in correction. 

yis directly computed from logP(u\ w), log^wlco^, and p. 

Since word boundaries are known in their isolated-word task, it was possible to generate 
com, the list of near-miss words by matching the utterance with all the words in the vocabulary. 
Bahl, et al. actually used a fast match algorithm [Bahl 88b] which does this efficiently. From 
this list, misrecognitions and near-misses were determined using the criterion in step 2 of Figure 
4-1. 

Over a series of four experiments, the IBM corrective training algorithm produced an 
average error reduction of 16% on test data, and 88% on training data. These experiments 
successfully demonstrated the feasability of corrective training for speaker-dependent, isolated-
word recognition. 

The simplest way to apply IBM's corrective training algorithm to continuous speech is to 
treat each sentence as a "word." A misrecognition of a sentence can then be corrected by 
adjusting the counts for the entire sentence. This simple-minded approach has at least two flaws. 
First, there is no convenient way to produce multiple misrecognitions, so the corrective 
component would have at most one error per sentence. This provides very little training. 
Second, this approach does not suggest any good ways of generating near-misses, because there 
is no readily available list of near-miss sentences. This makes reinforcement learning 
impossible. In the next two sections, we will introduce techniques that solve both these 
problems. 

4.2 Using Cross Validation to Increase Training 
The IBM corrective training algorithm uses the same data to train the HMM probabilities 

and to determine what and how much to correct. However, recognition on training data 
invariably results in fewer and less realistic errors than does recognition on independent test data. 
SPHINX makes almost twice as many errors on a test set than on a training set. Thus, correcting 
on training data will provide only half as many misrecognitions for correction. 

In order to alleviate this problem, we propose the use of cross-validation. First, the training 
data is divided into two partitions, and HMMs are trained on each partition. Then, HMMs 
trained from one partition are used to recognize the sentences from the other. Not only will we 
obtain many more errors this way, but these errors will also be more realistic. We then use these 
errors to correct the models trained on the entire set. Partitioning for cross-validation no longer 
makes sense after the first iteration, because the HMMs will have been trained on one partition 
and corrected on the other. Therefore, in our implementation we use the misrecognized 
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sentences from cross-validation for the first iteration. In future iterations, we reuse them as near-
miss sentences. 

4.3 Reinforcement Learning for Continuous Speech Recognition 
Bahl, et al. [Bahl 88a] found that reinforcement (near-miss) learning aided the convergence 

of corrective training considerably. For isolated-word tasks, near-miss training is conceptually 
simple, since the only errors are simple word-for-word substitutions (such as for -> far). To 
generate near-misses, Bahl, et al. used a list of near-miss words produced by a fast-match 
algorithm [Bahl 88b]. 

Such an approach is unsuitable for continuous speech, where we need to produce near-miss 
sentences given a correct sentence. This information is unavailable from a continuous speech 
recognizer due to pruning. We decompose this problem as follows: 

1. Produce a long list of near-miss phrase substitutions, where each phrase may have 
zero to several words. 

2. Use this list to hypothesize near-miss sentences by substituting one or more of the 
near-miss phrases with their respective replacements. 

The next two sections will describe these two components of our reinforcement learning 
algorithm for continuous speech recognition. 

4.3.1 Generating Near-Miss Phrase Substitutions 
In this section, we describe our algorithm to generate a list of near-miss, or confusable, 

phrases. The first issue is the definition of a confusable phrase. It is inadequate to simply model 
word-for-word substitutions, because errors in continuous speech recognition are rarely so 
simple. More complex errors have been modeled by scoring routines [Pallett 87] that attempt to 
compute the error rate of a system, and provide a list of frequent errors. These routines typically 
consider insertions (ship -» the ship) and deletions (a sub -» sub) in addition to substitutions. 
While these three categories are adequate for determining the error rate of a system, they are 
unsuitable for finding near-miss phrases for two reasons. First, they contain no contextual 
information (the is more likely to be deleted in list the uttered word than in the word was 
uttered). Second, phrase substitutions (during that are m, how many —> home any) cannot 
be decomposed into substitutions, insertions, and deletions. 

In view of the above, we model system errors as near-miss phrase substitutions. A near-
miss phrase substitution is a pair of phrases, where each phrase may have zero or more words. 
We generate these confusable phrases as follows. First, we use cross-validation recognition to 
obtain realistic misrecognized sentences. Then, to find plausible phrase errors, each 
misrecognized sentence is matched against the corresponding correct one by a dynamic 
programming (DP) algorithm [Aho 74]. We could then define near-miss phrases as phrase 
alignments that have reasonable costs. 
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In order to align two sentences, each sentence must be first decomposed into a sequence of 
comparable units. For example, the scoring programs use words as units. The problem with 
using words as units is that they have no self-evident distance metric. Scoring programs use a 
simple distance metric, where if two identical words are aligned, the distance is zero, and 
substitutions, insertions, deletions are penalized with some constant distances. This type of 
distance metric is insensitive to similarities at the subword level, and will result in unreasonable 
alignments when multiple alignments are possible. Phones are a better unit, because multiple 
alignments can be resolved using phonetic similarity. However, there is no principled way of 
incorporating duration into phonetic distances. Also, similarities at the sub-phone level may be 
useful. 

Therefore, we use the smallest unit available to us, and represent each sentence as a 
sequence of frames, where a frame is represented as an output distribution, by. To obtain the 
distribution sequence, we align the actual utterance against the hidden Markov model for the 
correct sentence using the Viterbi algorithm. This is repeated for the misrecognized sentence. 
This process converts the correct and misrecognized sentences to their corresponding {by} 
sequences. 

In order to align two by sequences, we need a distance metric between the byS. We use an 
information theoretic distance that measures the change in entropy when the two distributions are 
merged [Lee 88a]. These distances are scaled to lie in [0,1], with a cost of 1 for insertions and 
deletions. 

Given the by sequences for the correct sentence (C) and for the misrecognized sentence (A/), 
each with length L, we are now in a position to generate near-miss phrase substitutions. A 
phrase substitution can be thought of as a "box", indicated by its coordinates, C^CpM^M^ This 
"box" matches two phrases: (1) frames i to j of the correct by sequence, and (2) frames k to / of 
the misrecognized by sequence. The cost of a box can be determined by aligning the two 
sequences of byS using a dynamic programming (DP) algorithm [Aho 74] to find the optimal 
alignment and cost. This cost is defined by the following equations: 

CosKCpCpMtMJ^O (3) 

CostiCt, C ^ , Af* Af w ) +Dwr(C;, Af,) 
Cost(CiyCpNifiM^ = MINI CostiCt,CH9M^Mt) +1 (4) 

where DistiCj9Mt) is the entropic distance between frame j of the correct sequence and frame / of 
the misrecognized sequence. 

For example, the box in Figure 4-2(a) shows alignment of two entire sentences, which gives 
us a globally optimal cost, or Cost(Cv CLM\*Mj). Figure 4-2(b) shows the decomposition of the 
global box into three boxes. The central box represents the substitution who is in —» will 
wasn+t. We consider the central box a near-miss phrase substitution if the total cost of the three 
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boxes is within e of the globally optimal cost (that of the box in Figure 4-2(a)). In other words, 
the phrase substitution designated by the central box will be considered a near-miss if the 
following equation is satisfied: 

Cost{Cv CM9MVMM)+Cost(Ci9 Cj,M»M}+Cost(Chl9 CvMk+xMd 
^CostiCvCuMxMj+z (5) 

This gives us a principled way of finding good near-miss phrases that actually caused the 
misrecognition. In the example, the central box in Figure 4-2(b) was considered a near-miss, 
while the central box in Figure 4-2(c) was not All the near-miss phrase substitutions are saved, 
along with their cost in the central box, for later use. 

The costs of all possible peripheral boxes can be precomputed efficiently, because there are 
only CwxMw possible end points for the left box, and CwxMw possible begin points for the right 
box (Cw is the number of words in the correct string, and Mw is that in the misrecognized string). 
As a byproduct of the DP algorithm, alignment of the entire sentences yields all the possible 
costs for left boxes. Similarly, aligning the sentences in reverse yields the costs for the possible 
right boxes. However, there are almost (C^xAf^)2 possible central boxes, one for every possible 
combination of the two peripheral boxes, and DP alignment will have to be run for each 
combination. Some pruning is needed to contain the central box computation. We use branch-
and-bound to discard any box for which the combined peripheral cost already exceed the 
globally optimal cost by more than e, on 

CostiC^i^M^^^CosKCj^C^^M^ > CostiC^MxMJ+t . (6) 
In addition, we restrict the substitution phrases to at most three words. We felt that longer 
phrases would become too specific for the training data. 

We processed 4150 pairs of correct and recognized sentences using the above algorithm, 
obtaining a list of 13000 phrase substitutions in about 4 hours of CPU time on a Sun-4. As an 
example of the substitutions produced, the substitutions produced for matching "Who is in west 
Siberian sea?" with "If will wasn't last Siberian sea" are: 

west —» last 
is in —» wasn't 
who —» will 
who is in —> will wasn't 

To digress momentarily, we would like to point out that the algorithm described in the 
section could be modified into a sophisticated scoring algorithm that can give more accurate 
estimates of error rate and automatically provide a list of errors of analysis [Pallett 87, Hunt 88]. 
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IF 

SIL 
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WHO IS IN WEST SIBERIAN SEA SIL 

(a) 
WHO IS IN WEST SIBERIAN SEA SIL 

SIBERIAN 

SIL 
IF 

SIL 
WILL 

WASN+T 
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SIBERIAN 
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SIL 

(b) 
SIL WHO IS IN WEST SIBERIAN SEA SIL 

v 
(c) 

Figure 4-2: Three examples of DP alignment in the near-miss phrase generation, 
(a) is the globally optimal path, (b) is an example of a good alignment, and (c) is 
an example of a poor alignment The quality of the alignment is assessed by 
comparing the resulting distance with that of the optimal path. 
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4.3.2 Hypothesizing Near-Miss Sentences 
The candidate list produced by the phrase generation algorithm is then used by the sentence 

hypothesize^ which heuristically hypothesizes likely near-miss sentences. Almost any 
reasonable method will do, but for completeness we describe our algorithm in Figure 4-3. This 
algorithm hypothesizes one near-miss sentence given a correct sentence. Since it is non-
deterministic, we can iterate it until we have enough near-misses for each correct sentence. We 
use an average of 6 near-miss sentences per original sentence. 

1. Start at the beginning of the correct sentence by setting the current 
word position to zero. 

2. Make a list of possible phrase substitutions starting at the current 
position. 

3. Randomly make a substitution from the list determined in step 2. 
The probability of making a substitution is a monotonically 
decreasing function of the cost in the DP process. Making no 
substitution is allowed, with no cost 

4. If we made a substitution, advance the current position to the end 
of the substituted phrase. Otherwise, advance the current position 
by one word. 

5. If at end of sentence, stop. Otherwise, go to step 2. 

Figure 4-3: The near-miss sentence hypothesization algorithm. 

This algorithm is very efficient We can hypothesize 250 near-miss sentences per second 
on a Sun-4. The hypotheses generated by the algorithm depend greatly on the phrase 
substitution list with which it is provided. Using the substitution list derived from recognition 
without grammar, the hypotheses produced for who is in west Siberian sea include: 

who is in were sub area be 
who is in west it Siberian be 
who is in when Siberian same 
who is in when Siberian it sea 

On the other hand, using a word-pair-grammar substitution list, we obtained a different 
substitution list: 

who was the west Siberian sea 
who is in the west Siberian sea 
who list at west Siberian sea 
who has been in west Siberian sea 

Without a grammar, many ungrammatical substitutions occur, such as west —> when and sea —> 
be. But with a grammar, the hypothesized sentences are more grammatical, with substitutions 
such as is —» was and in —» at. 
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4.4 Final Algorithm Description 
Figure 4-4 summarizes our corrective and reinforcement algorithm for continuous speech 

recognition. There is one implementational detail that we have not covered. A problem we 
encountered during recognition was that corrective training would make some probabilities too 
small for test data. As a result, a few sentences could not be recognized. To remedy this 
problem, we use a large |3 and then smooth the trained parameters with the MLE parameters. For 
example, with a smoothing weight of 0.2 for the MLE parameters and 0.8 for the new 
parameters, we ensure that no parameter can shrink by more than 80% from its MLE estimate. 
This is more sensitive than simply using a smaller (3, or setting a large minimum value for output 
probabilities. 

1. Partition the training sentences into two equal sections for cross-
validation and train a set of models on each half. 

2. Recognize each half with the models trained on the other half 
(cross-validation). 

3. Perform the DP algorithm on misrecognized sentences in Section 
4.3.1 to obtain a list of near-miss phrase substitutions. 

4. Iterate the non-deterministic algorithm described in Figure 4-3 to 
hypothesize a list of near-miss sentences. 

5. Generate the list of confiisable sentences (com) by combining: 
• The actual misrecognitions from the models of the 

previous iteration. 

• The list of hypothesized near-miss sentences in the 
previous step. 

• Sentences from cross-validation, for iterations after 
the first. 

6. Run the forward-backward algorithm on each spoken sentence u, 
using the model for the correct sentence w to obtain the counts 
cf™. Do the same with each (Om to obtain the counts c?V Then, 

ij m y 

replace the each original count with + y(c™ - c"?m). y is an 
adjustment factor: 

• For misrecognitions, it is set to J3. 
• For near misses, it decreases linearly from (3 to 0 as 

the difference between logP(u\w) and logP(u\(om) 
decreases from 0 to - 5 . 

7. Smooth the resulting models with the MLE parameters, using a 
weighted average. 

8. Go to step 3, until a sufficient number of iterations have been run. 

Figure 4-4: The final corrective and reinforcement training algorithm. 
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5. Results and Discussion 
The algorithm described in Section 4.4 can be used for recognition systems with and 

without grammar. We applied the algorithm to both cases. 

To obtain the baseline MLE results, we trained the SPHINX system using the forward-
backward algorithm, as described in Chapter 3. We applied SPHINX to the 997-word Tl 
Resource Management task [Price 88], using 4150 training sentences (104 speakers) and 150 test 
sentences (10 speakers). Without a grammar, the perplexity is 997. With the word-pair 
grammar, which knows only about the legality of pairs of words classes, the perplexity is 60. 

Our first experiment was run on the no grammar recognizer, where the MLE models made 
375 errors1 on test data, for an error rate of 29.4%. One iteration of simplistic corrective 
training, without near-misses or cross-validation, reduces the number of errors on test data to 
336. More realistic cross-validation sentences reduces this to 329. Finally, one iteration of the 
complete algorithm, described in Figure 4-4, with reinforcement learning reduces this number to 
316. Thus, after one iteration, our corrective training algorithm achieves a 15.7% error rate 
reduction on test data. Most of the improvement comes from basic corrective training, although 
a significant portion comes from enhancements such as cross-validation and reinforcement 
learning. 

System 
Configuration 

Errors on 
Test Set 

% Test Set 
Error Reduction 

MLE Training 375 (29.4%) --

Corrective only 336 (26.3%) 10.4% 
+ Cross-validation 329 (25.8%) 12.3% 
+ Reinforcement 316 (24.7%) 15.7% 

Table 5-1: Results of maximum-likelihood training vs. one iteration of variants 
of corrective and reinforcement training. 

We then ran additional iterations of the corrective and reinforcement learning algorithm. 
For each iteration, we used the system from the previous iteration to produce misrecognitions for 
corrective training. A different set of near-miss sentence hypotheses was used, without 
regenerating the near-miss phrase substitutions. In addition, the misrecognitions from cross-
validation were repeatedly used. The results are shown in Table 5-2. Also shown are the error 
rates on the training sentences. Note that the results shown for MLE training were obtained 

xAn error could be a substitution, a deletion, or an insertion. 
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without cross-validation2, so that the entries in the first column would be more comparable. We 
found that after running two iterations, the result improved only negligibly. The final result 
gives an error rate of 23.4%, for an error rate reduction of 20.3% over the MLE models. 

Errors on 
Training Set 

Errors on 
Test Set 

% Test Set 
Error Reduction 

Iteration 0 (MLE) 6122 (18.8%) 375 (29.4%) 
Iteration 1 4008 (10.9%) 316(24.7%) 15.7% 
Iteration 2 2218 (6.8%) 302 (23.6%) 19.5% 
Iteration 3 1896 (5.2%) 299 (23.4%) 20.3% 

Table 5-2: Results for iterative training of corrective and reinforcement training 
without grammar. 

We also applied the corrective training algorithm to the models used by SPHINX's word-pair 
grammar. We first tried to use the models adjusted with the no-grammar hypotheses, but the 
error rate was actually greater than with MLE models. This happens because the two grammars 
make very different errors, which we verified by comparing their near-miss phrase hypotheses. 
For example, the word-pair grammar recognizer usually does not confuse than with their, but the 
no grammar one often does. Adjusting the model parameters that disambiguate these two words 
might actually hurt the word-pair recognition rate. So, we regenerated the cross-validation data 
and the phrase substitution list for the word-pair grammar correction. The results are shown in 
Table 5-3. As expected, comparable error reduction with the no grammar recognizer was 
achieved. 

Errors on 
Training Set 

Errors on 
Test Set 

% Test Set 
Error Reduction 

Iteration 0 (MLE) 1799 (4.9%) 81 (6.3%) 
Iteration 1 809 (2.2%) 68 (5.3%) 16.0% 
Iteration 2 689 (1.9%) 64 (5.0%) 21.0% 
Iteration 3 650 (1.8%) 62 (4.9%) 23.4% 

Table 5-3: Results for iterative training of corrective and reinforcement training 
with a word-pair grammar. 

IBM reported error rate reductions of 16% and 88% on test data and training data 
respectively [Bahl 88a]. With more training, we report 20% and 72% without grammar, 23% 

2With cross-validation, there are about 20-30% more errors than the test set, because it is a test set evaluation with 
less training data. 
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and 63% with grammar. Thus, we have not only demonstrated the extensibility of the corrective 
training algorithm to speaker-independent continuous speech recognition, but also narrowed the 
gap between training and testing results through the use of more training and cross validation. 
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6 . Conclusion 
Hidden Markov models with maximum-likelihood estimation constitute the predominant 

approach to automatic speech recognition today. However, maximum likelihood produces 
inferior results when the underlying models are incorrect, which HMM's obviously are as 
models of real speech. For this reason, the IBM corrective training algorithm produced good 
results when applied to the IBM isolated-word, speaker-dependent, office-correspondence task. 
The basic idea of this algorithm is to modify the HMM parameters so as to maximize the 
recognition rate on the training set This is accomplished by making the correct words more 
probable, and the confusable words less probable. This paper extended this algorithm to 
continuous, speaker-independent speech recognition. 

In order to increase the effective training size, we used cross-validation. In order to extend 
the algorithm to continuous speech, we introduced an algorithm that hypothesized near-miss 
sentences. This algorithm has two components: (1) a near-miss phrase substitution generator 
that used a dynamic programming algorithm to produce a long list of possible phrase 
substitutions, and (2) a non-deterministic near-miss sentence hypothesizer that used the phrase 
substitution list to hypothesize possible near-miss sentences from a correct sentence. These 
enhancements, aided by the use of a large training database, led to error rate reductions of 20.3% 
without grammar, and 23.4% with a word-pair grammar. One notable finding was that grammar-
specific training was necessary, because corrections appropriate for one grammar may be 
suboptimal, or even harmful, to another grammar. Another finding was that smoothing a 
heavily-corrected set of parameters with MLE parameters led to the best results. 

These results clearly demonstrated that the corrective training algorithm is applicable to 
speaker-independent, continuous speech recognition. The applicability of this algorithm to 
continuous speech is demonstrated through the use of novel algorithms for near-miss sentence 
hypothesization. The applicability of this algorithm to speaker-independent recognition is also 
important, because much more training data can be collected in speaker-independent mode. 
Through the use of a large multi-speaker database and cross-validation to increase the effective 
training size, we have narrowed the gap between the results of training and testing data. 
However, there is still a large difference between training and testing results. In order to further 
reduce this difference, more training will be needed, and more efficient techniques must be 
investigated to deal with the increased training. 

There are number of other directions for future work. The phrase generation method 
described in this paper relied on having a large training database. This is practical for a 1000-
word vocabulary, but would not be for a 20,000 word system. A method to generate confusable 
phrases given only a grammar and a dictionary would be very useful. 

Another research area is whether the corrective training algorithm will be useful when 
training data is sparse. For example, could we improve a model even when it has not been 
observed? Positive results in this area will make corrective training an excellent speaker-
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adaptation algorithm. Otherwise, it will still be a good adaptation algorithm when a reasonable 
amount of speaker-specific data is available. 

Corrective and reinforcement learning is but one innovation that departs from the traditional 
maximum-likelihood estimation. A few other techniques, such as maximum mutual information 
estimation [Brown 87] and minimum discrimination information estimation [Ephraim 88], have 
been proposed. We believe that this is a rich area for further research. 
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