
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



BEAM: An Accelerator for 
Speech Recognition 

R. Bisiani, T. Anantharaman and L. Butcher 

January 1989 

CMU-CS-89-102 ^ 

Computer Science Department 
Carnegie Mellon University 

Pittsburgh, PA 15213 

Copyright © 1989 R. Bisiani, T. Anantharaman and L. Butcher 

This is a revised version of a paper that will appear in the Proceeding of the IEEE 1989 International 
Conference on Acoustics, Speech and Signal Processing. This research is sponsored by the Defense 
Advanced Research Projects Agency, DoD, through ARPA Order 5167, and monitored by the Space and 
Naval Warfare Systems Command under contract N00039-85-C0163. Views and conclusions contained 
in this document are those of the authors and should not be interpreted as representing official policies, 
either expressed or implied, of the Defense Advanced Research Projects Agency or of the United States 
Government 



Abstract 
BEAM is a hardware accelerator that has been designed and built for real-time execution of the 

SPHINX speaker-independent, continuous speech recognition system and similar systems. SPHINX on 
BEAM is able to recognize sentences from a 1,000 word vocabulary and a perplexity 60 grammar in about 
1.3 times real time. BEAM does not use any custom integrated circuit. This report describes the 
architecture of the accelerator, gives performance data and compares BEAM to other architectures. 

1. Introduction 
BEAM is a multiprocessor capable of executing hidden-Markov-model (HMM) based speech 

recognition systems in real-time. BEAM has been applied to the SPHINX speech recognition system [1] 
and is currently the fastest machine able to run this recognition system. SPHINX is a speaker-
independent, connected recognition system capable of high accuracy on non-trivial tasks. For example, it 
has less than 5% recognition error on a 1,000-word, perplexity 60 task (DARPA Resource Management 
Task, see [1] for a description of this task); when run on BEAM, SPHINX can recognize a sentence from 
this task in about 1.3 times real time. By comparison, a Sun-4/260 workstation is six times slower than 
BEAM on the same task and a 15-processor Encore Multimax shared-memory multiprocessor is about 
four times slower. This speed is achieved without compromising the accuracy of SPHINX. 

Despite its speed, BEAM does not use any custom integrated circuits and has been developed quickly 
and cheaply (in about five months by three people). Unlike some custom integrated circuit systems, 
BEAM is programmable in a simple language (C) and can be tailored to different recognition systems. 
The main reason for the good performance of BEAM is that it is a good trade-off between general 
purpose systems, which do not have the necessary speed, and custom systems, which take too much time 
to build. We will first briefly describe the recognition task, then describe the architecture and finally 
compare it with other systems. 

2. The Task 
Speech recognition systems require a certain amount of front-end processing for the transformation of 

the input signal into a form suitable for the recognition algorithm. Front-end processing is of no concern 
from the point of view of the computational power required, since general-purpose digital signal 
processors can easily perform this task in real time. For example, a Texas Instruments TMS 32030, 
programmed in C, could perform the front-end processing required by SPHINX (including controlling 
the data-acquisition device) in real time. For our experiments we have used a signal processing board 
that employs three TMS 32020's. This board generates a vector that represents the likelihood (log 
probability) that the current 10ms speech input was generated by each one of the reference sound classes. 
This vector is the input of BEAM. 

The task of BEAM is to search the HMM representation and return the most likely sequence of words. 
Allophones are described with seven-state models and words are sequences of (in average) six 
allophones. Therefore, each word requires about 40 states. Legal sequences of words are represented by a 
grammar that can be either a finite state grammar or a statistical grammar. The likelihood of a state S at 
time t is a function of the current input vector and of the likelihoods, at time W, of the states preceding S 



2 

in the HMM. There are a few minor differences in the computation depending on whether a transition 
crosses a word boundary or not. 

In a regular Viterbi algorithm all the states are updated at every frame: for the DARPA 1,000-word 
Resource Management Task this would require updating about 40,000 states every 10ms, or one state 
every 200ns. In order to lessen the computational load, BEAM uses a heuristic search technique, called 
beam search, in which a number of nearly optimal alternatives (the beam) are examined in parallel at 
every frame. Beam search is a heuristic technique because heuristic rules are used to discard 
nonpromising alternatives in order to keep the size of the beam as small as possible. Beam search 
reduces the number of states that need to be updated at every frame to about 4,000, or about 8,000 
transitions since there are, in average, two predecessors for each state. This means that beam search 
makes the task one order of magnitude less demanding, a factor that cannot be ignored. On the other 
hand, the size of the beam can vary dramatically and in an unpredictable way from one frame to the next: 
this creates load-balancing problems when decomposing a beam search algorithm for a multiprocessor. 
BEAM is equipped with special hardware to assist synchronization and load-balancing. 

Memory bandwidth is probably the major bottleneck created by this algorithm. The DARPA task, for 
example, requires an average memory bandwidth of 40 Mbytes per second if it is executed in real time 
using a beam search algorithm (a regular Viterbi algorithm would require about ten times as much 
memory bandwidth). BEAM has a dual-bank shared memory and local memories to support memory 
bandwidth requirements. 

3. The Architecture 
The architecture employs only off-the-shelf components but it connects them in a way that improves 

their performance for this task, see Figure 3-1. Three general purpose Weitek 8032 processors share an 
8-Mbyte memory and have two private memories: a 32-Kbyte program memory (8K instructions) and a 
256-Kbyte local memory. Each of the processors is able to execute 10 million instructions per second, 
access the local memory at every instruction and access the shared memory every 200ns if there is no 
contention. Since there are two (low-order-bit interleaved) banks of shared memory on separate buses, 
two processors can access shared data at the same time. 

The shared memory is augmented with a one-bit-per-word flag which is managed directly by the 
hardware and is visible at the instruction level through special-read and special-write operations. See the 
description of the HEP multiprocessor [2] for an example of the use of this feature in a general purpose 
machine. If the programmer accesses memory through special-read and write operations, the hardware 
checks the value of the flag before performing the operation: if the flag is 0, read operations are forbidden 
and if the flag is 1, write operations are forbidden. A forbidden operation leaves the memory untouched 
and sets a processor condition code. A successful special read sets the flag to 0 and a successful special 
write sets it to 1. In this way a producer-consumer synchronization operation between two processors 
can be implemented with a minimum of overhead. 

The machine communicates with the rest of the world through a VME-bus connection that makes the 
shared memory available to a host. The flag-based synchronization is also available to the host. 



3 

VME Bus 

Figure 3-1: The Architecture of BEAM 

Downloading of programs is done through the VME bus when the machine is not running. 

4. Parallel Decomposition and Programming 
Beam search requires a very fine-grain decomposition and a substantial amount of synchronization. 

Typically, see Figure 4-1, a processor must dequeue one state from the list of states to be processed, lock 
all the states that follow it and finally queue a new state. For the DARPA task to be executed in real time 
all these operations must be performed in about 2 jis. All intra-word transitions must be computed 
before inter-word computations begin, and vice-versa; this requires a barrier synchronization. 

Barrier synchronization and locking of states can be accomplished very effectively with one-bit-per-
word flags since they make it possible to overlap most of the synchronization overhead with data 
accesses. On the contrary, queuing (dequeuing) states in (from) a central queue causes a serialization that 
the special hardware cannot avoid. The solution is to split the queue into local queues, one for each 
processor, so that queue accesses can proceed in parallel. In this case, because of the highly data-
dependent behavior of beam search, it is not likely that all queues will become empty at the same time 
and some processors will remain idle creating a load imbalance. This load imbalance can be limited by 
means of a rebalancing mechanism in which the processors negotiate how many queue items each should 
have and then hand their surplus to the processors that have a deficit. This mechanism has been 



4 

PI 
For each frame: 

Per each active state: 
oarpJbe transition 

SttC (barrier) 
For each word-end: 

cenpute transition 
SXNC (terrier) 

^ Redistribute states^ 

P2 
For each frame: 

For each active state: 
oaipUte transition 

SYNC (harrier) 
For each word-end: 

Parnate transition 
sac (barrier) 

^Redistribute 

P3 
For each frame: 

For each active state: 
Gemote transition 

SUC (barrier) 
For each word-end: 

oenpute transitim 
SYNC (harrier) 

Recftstribute states^ 

Active 
states Active 

MODELS LIKELIHOODS 

Figure 4-1: Parallel Decomposition 

implemented very efficiently by using the synchronization flags. 

The accelerator is programmed in C, this has let us optimize the implementation of the Viterbi search 
without compromising the possibility of improvements by the speech researchers. In fact, the accelerator 
has been built while the SPHINX system was still being developed. Most of the development time (80%) 
was spent writing software instead of designing or building hardware. This time was divided almost 
equally between support software coding, algorithm restructuring and algorithm coding. This seems to 
indicate that better software development methodologies will have a substantial impact on the 
development time of machines like BEAM. 

5. Performance and Comparisons 
The architectural requirements of speech recognition programs depend heavily on the task and on the 

recognition technique used. BEAM has been developed for HMM based systems with a vocabulary of 100 
-1,000 words. Table 5-1 shows the performance of BEAM on 150 test sentences of the 1000-word DARPA 
Resource Management Task. The performance is computed by dividing the recognition time (i.e. the time 
from the beginning the utterance to the moment the recognition is complete) by the length of the 
utterance. As one can see from the Table, the performance of a beam search algorithm depends on the 
sentence and on the speaker. 

Perplexity Average St. Dev. Min Max 
60 1.38 .40 .59 3.00 
20 1.15 .33 .61 2.41 

Figure 5-1: Recognition Time Divided by Utterance Length 
(for Two Tasks of Different Perplexity) 



5 

The cost of an architecture suitable for HMM-based systems is mainly bound to the cost of memory (for 
example SPHINX needs about 8 Mbytes of memory). Most of the real estate and power requirements 
also depend on the amount of memory needed by the algorithm. Therefore, for this task, a custom-
processor solution does not have any substantial advantage over BEAM. For example, a custom system 
that is being developed at SRI and UC Berkeley will eventually have the capability to process 50,000 
states for every 10 ms frame. Since the system does not use pruning, it will probably be only slightly 
faster than BEAM on the 40,000 state DARPA Resource Management Task. Preliminary information 
indicate that the system will require five different custom integrated circuits and its board-level size will 
be comparable to BEAM'S. The system has been in development for about one year. 

Much simpler tasks, e.g. tasks with a vocabulary of less than 100 words or a highly constraining 
grammar, can be handled in real time by a single processor and a standard general-purpose architecture. 
Custom solutions are adequate in this case only if their cost is competitive with the cost of a general 
purpose processor, a difficult goal to meet. For example, a single Texas Instruments TMS 32030 could 
handle in real time a task with an average beam size of 1,000 states. 

The feasibility of harder tasks, e.g. tasks with a ten times larger vocabulary or a very high perplexity 
grammar, has yet to be demonstrated. Therefore, we are unsure of the kind of speech technology 
necessary to achieve the required accuracy. For instance, it is not clear if continuous hidden-Markov 
models will be necessary. Recent history has shown that improving the computational capabilities of a 
speech recognition system does not necessarily make the system capable of tackling harder tasks. For 
example, there are architectures that can execute a Dynamic Time Warping algorithm in real time for 
vocabularies of many thousand words: unfortunately these architectures are not very useful because 
DTW algorithms do not work well on large vocabularies. There is no evidence that systems like SPHINX 
can be extended to larger and harder tasks and remain unchanged. 

Only marginal speed-ups can be obtained on a general purpose machine. For instance, when ported to 
a 15-processor Encore Multimax, SPHINX is five times slower than on BEAM. There are two reasons for 
this. First, the memory bandwidth is exhausted with only 6 processors and the performance does not 
improve when more processors are used. Second, careful analysis has shown that, even if memory 
bandwidth could be increased until the memory bottleneck is eliminated, synchronization overhead 
would create a new bottleneck and about 50% of the time would be lost waiting for synchronization. 

6. Conclusions 
At the time BEAM was first demonstrated (June 1988) it was many times faster and cheaper than any 

other custom or general purpose system. Since then BEAM has been used daily to evaluate a number of 
speech recognition applications. Even though the performance of BEAM will be achievable by a single-
processor, general purpose system when technology improves (the fate of all architectures), BEAM 
remains an example of how general purpose technology can be used to build systems that are substantially 
faster than general purpose systems. 



6 

Acknowledgments 
Part of the BEAM support software has been developed by J.M. Calvez. K.F. Lee and H.W. Hon have 

helped us understanding SPHINX. D. Adams and R. Reddy have contributed to the project with their 
criticism and support. 

References 
[1] Lee,K.F. 

Large-Vocabulary Speaker-Dependent Continuous Recognition: The SPHINX System, 
PhD thesis, Carnegie-Mellon, 1988. 

[2] Smith, B. J. 
A Pipelined, Shared Resource MIMD Computer. 
In 1978 Intl. Conf. on Parallel Processing, pages 6-8. IEEE Computer Society, 1978. 


