
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

An Overview of the Project NASEV Parser.

William R. Keller.

July 1987.

Cognitive Studies Research Paper

Serial no: CSRP 86

The University of Sussex
Cognitive Studies Programme
School of Social Sciences
Falmer
Brighton BN1 9QN

An Overview of the Project NASEV Parser.

William R. Keller.

University of Sussex, Cognitive Studies Programme.
Falmer, Brighton BN1 9QN. England.

July 1987.

ABSTRACT

The KIT/NASEV chart-parsing system for GPSG-like grammars is
described. The parser is based on a version of Ear ley's algorithm and
accepts rules in IP/LP format with category-labels represented by
complex feature structures (complex symbols). Particular attention is
paid to the problem of parsing with complex symbols and the need to
perform LP checks 'on the fly'.

The parser also incorporates a simple version of the functional
realization principle of GPSG, augmented with a quantifier storge
mechanism. By this means, logical translations of NL input may be
built in parallel with syntactic analysis.

An Overview of the Project NASEV Parser.

William R. Keller.

University of Sussex, Cognitive Studies Programme,
Falmer, Brighton BN1 9QN, England.

July 1987.

1. Introduction.

The KIT/NASEV [l] chart parser is an experimental implementation of GPSG

under development at the Technische Universitaet Berlin. A primary design goal is

the provision of an interpreter for the GPSG formalism as set out in [Gazdar

et al 1985] (henceforth GKPS). Furthermore the implementation should be efficient,

as the parser is to form one component of a practical machine-translation system

additionally involving transfer and generation modules.

This report covers work completed on the implementation at the end of Sep-

tember 1986. As described here, the parser accepts rules in immediate

dominance /linear precedence (ID/LP) format, with category labels represented by

complex feature structures. Feature passing is achieved explicitly through the

unification of feature values within individual ID rules. In this way something of

the complex interactions of the feature instantiation principles (FIPs) may be mim-

icked in order to deal with NL dependency and agreement phenomena.

The parser incorporates a simple implementation of the functional realisation

principle (FRP) of GKPS permitting the translation of NL input into expressions of

Montague's intensional logic (IL). In order to cope with quantifier scope ambiguities,

1. Project KIT/NASEV (Kuenstliche Intelligenz und Textverstehen/Neue Analyse- und
Syntheseverfahren zur maschinellen Uebersetzung — Artificial Intelligence and Text-
Comprehension/New Approaches to Analysis and Generation for Machine Translation) is the
Technical University of Berlin component of the Eurotra-D research project sponsored by the
Federal Ministry of Research and Technology, West Germany.

Thanks are due to Roger Evans and Gerald Gazdar for their comments on an earlier version of
this report.

the FRP has been augmented with a novel version of Robin Cooper's storage mechan-

ism. The complete system also includes output formatting routines and trace facilities

which are under the control of the user.

Work in progress includes the implementation of feature cooccurrence restrictions

(FCRs). the FIPs and the addition of a linguistically-oriented editor to facilitate

grammar writing and debugging. A large-scale grammar of German is also currently

under development.

2* The Grammar Formalism.

The NASEV parser makes use of a grammar consisting of three basic com-

ponents:

• ID Rules.
• LP Rules.
• A Lexicon.

Additional information is necessary if the parser is to provide semantic as well

as syntactic analyses of its input (see section 4).

2.1. Grammar Format.

ID rules are represented by Prolog terms of the following general form:

id(< Number >, < Mother >, < Daughters >).

where < Number > is a unique number associated with the ID rule, and < Mother >

is the mother symbol. Categories on the right-hand side of the rule are represented

by < Daughters > which is itself a Prolog term:

r(< Obligatory >, < Optional >, <Star>).

Each of < Obligatory >, < Optional > and <Star> is a (possibly empty) list of

symbols. As their names suggest, the lists represent those sets of categories which

are obligatory, optional and closed under the Kleene-star operation respectively.

(Note that the order in which symbols appear in these lists is of no significance to

the parser.)

By way of illustration, the ID rule in (la) would be represented internally as

(lb).

(1) a. 16 : vp —> v, (pp_to), vp_inf
b. id(l6, vp, r([v, vp_inf], [pp_to].

It will prove useful subsequently to understand an ID rule such a (la) as syn-

tactic sugar for the internal form rule shown in (lb).

LP rules are represented internally by Prolog terms having the general form:

lp(<Categoryl>, <Category2>).

The GPSG LP rule in (2a) is encoded for the parser simply as (2b). As for ID

rules, (2a) may be conveniently regarded as syntactic sugar for (2b).

(2) a. np < vp
b. lp(np, vp)

The lexicon consists of various entries, each of the form:

lex(<Word>, < Category >, <Mexp>).

where <Word> is a Prolog atom representing a word form (e.g. wichtig, ver-

abschiedet, auf, etc), <Category > represents the lexical category for <Word>, and

<Mexp> represents an appropriate translation of <Word> into intensional logic

(see section 4.1).

2.2. Complex Categories.

In GPSG category labels are not monadic symbols, but sets or bundles of

feature specifications. The use of feature sets or structures as category labels, along

with the feature instantiation principles, accounts for much of the success of GPSG in

providing elegant analyses of complex syntactic phenomena. In order to 'talk about'

categories in this sense, the GPSG formalism permits rules to be stated in terms of

complex symbols, or partial representations of feature sets. Similarly, the parser

accepts rules and lexical entries which are stated in terms of partially specified

category-descriptors. A category-descriptor is a Prolog term of the following form:

cat (<v l> , < v 2 > , ..., <vn>) .

Each of the <v i> is a feature value (possibly unspecified).

From grammar to grammar, the arity of the functor CAT may vary, but for a

particular grammar it will be fixed and equal to the number of distinct feature

names from which categories may be built. Each argument position encodes a

unique feature name. For example, consider the following features and values for a

very small GPSG.

(3) 1.
2.
3.
4.
5.

BAR
N
V
NUM
PER

{0.1.2}
{+.-}

{sing.plur}
{1.2.3}

6. CASE {nom,acc}

By numbering the features as shown in (3) then a complex symbol such as

[BAR 1, N-, V+, "CASE] (a description of VP) may be encoded as (4).

(4) cat(l,-,+,X.Y,~).

Note that if a particular feature value is not explicitly specified, then the

corresponding argument is left as a Prolog variable (e.g. the values of NUM and

PER are represented by the variables X and Y respectively in the above). Undefined,

as opposed to unspecified features are represented using a special feature value '~\ so

that CASE is undefined in (4).

Category-descriptors, just like the complex symbols of GPSG are partial

representations of feature sets. Each may be understood as denoting, or licencing a

whole set of categories. For example, (4) denotes a set of 12 different categories,

bearing various combinations of feature values for NUM and PER (note that this

includes the possibility of the 'undefined* value '~')- In contrast, the category-

descriptor in (5) licences just a single category — it actually uniquely determines

one of the 12 categories licensed by (4) (third person singular VP).

(5) cat(l,-,+,sing,3,~)

Feature passing is achieved by unifying feature values across category-

descriptors within individual rules. That is, the same Prolog variable is used to

stand for the value of separate attributes. Using the feature system of (3), the fol-

lowing ID rule might be used in a toy grammar of English to achieve number and

person agreement between subject and predicate.

1 : cat(2,-,+,X/O - > cat(l,+,-,X,Y,nom), cat(l,-,+,X,Y,~)

3. The Parser.

3.1. Earley*s Algorithm and ID/LP Grammar.

It is well known that the problem of context-free recognition is not difficult,

indeed practical algorithms exist which perform in time proportional to the cube of

the length of the input string [Earley 1970], [Kasami 1965], [Tomita 1985]. Since it

is furthermore clear that the weak generative capacity of ID/LP grammars (and

indeed GPSGs) is identical to that of standard CFGs, this suggests that with suitable

modifications these algorithms may also be used for effective recognition with gram-

mars in ID/LP format [2]. In this respect Earley's algorithm has been particularly

attractive on account of its generality and good practical efficiency.

A modification of Earley's algorithm for direct parsing of ID/LP grammar was

2. However, this does not in itself imply that recognition of either ID/LP grammars or GPSGs is
of the same order of complexity as recognition of CFGs, so long as no prior compilation step is
permitted. It has been shown by Barton that the problem of ID/LP recognition is NP-hard,
whilst Ristad has located further sources of intractability in the GPSG formalism indicating that
the recognition problem is EXP-POLY-hard [Barton et al 1987].

first proposed by Shieber [Shieber 1984]. The Shieber predictor, like that of Ear ley,

works top-down and may lead to the introduction of superfluous items. It was sug-

gested by Kilbury [Kilbury 1984a 1984b] that by altering the basic parse-strategy,

the introduction of certain items could be avoided and the practical efficiency of

ED/LP parsing enhanced.

Kilbury's proposed alteration involves a delayed predictor, now driven bottom-

up rather than top-down. A so-called FIRST relation is used to guide the predictor

by locating just those ID rules which may introduce a given constituent at a partic-

ular point in an analysis. FIRST is a set of pairs, each of the form < Q n > , where

C is a category and n a rule number. For <AJk> € FIRST, category A may appear

as first daughter in some local tree projected from ID rule k.

Although Kilbury's technique avoids the need to store certain items, the

bottom-up property of the algorithm has its own disadvantages. Other superfluous

items may be introduced during prediction, and in some cases the algorithm's perfor-

mance is actually worse than that of Earley's. A consideration of Kilbury's parse-

strategy subsequently lead to a further development of the algorithm by Doerre and

Momma [Doerre & Momma 1985].

The Doerre-Momma parse-strategy overcomes the disadvantages of Kilbury's

approach without giving up any of the advantages. The algorithm makes use of a

delayed predictor, but retains the top-down property of Earley's original strategy

and Shieber's adaptation. The predictor is driven by a new relation FIRST+, which is

basically the transitive closure of Kilbury's FIRST relation. FIRST+ is a set of tri-

ples, each of the form <Cl,C2^a>, where Cl and C2 are categories and n is a rule

number. For <AJB>k> 6 FIRST-h then category B may appear as first symbol in a

string of symbols dominated by category-label A, if B is introduced by ID rule k.

In terms of practical efficiency, it appears that the Doerre-Momma parse stra-

tegy is superior to both Shieber*s algorithm and that of Kilbury. For this reason it

was chosen as the basis for the NASEV chart parser.

3.2. Parser Implementation.

The NASEV parser is implemented in a core subset of Prolog

[Clocksin and Mellish 1981]. and has been run successfully with only minor

modifications under Dec 10 Prolog, MProlog, and Waterloo Prolog 1.5.

The implementation makes use of an active chart which is maintained as a set

of edges asserted in the Prolog database whilst the program is running. Each edge

has the form:

item(< Start >, < Finish >, < Mother >, < Daughters >, < Trees >. < Repns >).

where < Start > and < Finish > are integers representing the starting and finishing

points of the edge in the input string, < Mother > represents the mother category of

the corresponding ED rule, and < Daughters > is a record of the daughter categories

which remain to be recognised. In addition, < Trees > is a list of parse trees, in

order from the left, of the constituents which have already been recognised between

< Start > and < Finish >, and < Repns > is a corresponding list of semantic represen-

tations, such that the fth member of < Repns > is the semantic representation of the

Tth parse tree in < Trees >.

New edges are introduced at two separate points in the algorithm: COMPLETE

and PREDICT. Once introduced the new edge is passed directly to a predicate CLO-

SURE which calls COMPLETE and PREDICT recursively. On termination of CLO-

SURE, the current edge is guaranteed to have been processed as far as possible (i.e.

it never needs to be passed to CLOSURE again).

It turns out that not all edges introduced during the COMPLETE and PREDICT

phases of the algorithm need to be entered in the chart. During COMPLETE only

active edges are ever retrieved from the chart (in an attempt to extend them). At

the PREDICT stage, on the other hand, the chart is checked to establish which

symbols are expected at the current point in the parse. Again this involves only the

inspection of active edges. In consequence, completely inactive edges passed to CLO-

SURE never need to be recorded [3]. Omitting inactive edges form the chart has

two positive effects:

• The parser uses up less space than it otherwise would whilst running.
• The time taken to search the chart for an edge is reduced.

Since the Doerre-Momma algorithm is essentially top-down, some initialisation

of the chart is required. In the present implementation explicit initialisation is

avoided by adopting a bottom-up strategy at the outset of a parse. Working

bottom-up, the first few symbols of an input string effectively provide enough infor-

mation to quickly converge on a set of possible categories for the string as a whole.

Once established, the parser may proceed top-down for the remainder of the input.

The parse strategy is thus rather more flexible than a direct implementation of the

Doerre-Momma algorithm, since it permits the analysis of strings derived from any

non-terminal symbol of the grammar (i.e. not just some designated start symbol).

3.3. Linear Precedence and Complex Symbols.

In GPSG LP rules are interpreted as well-formedness conditions on local trees

(i.e. trees of depth equal to one). An LP rule, Cl < C2, may be understood as

the conditional statement:

If Cl* and C2* occur as sisters in a local tree, then Cl* must precede C2*
(where Clf and C2* extend Cl and C2 respectively).

Although this is a fairly straightforward idea, the correct implementation of LP

checks during parsing is rather less obvious. Consider the problem of deciding when

to carry out LP checks. In the Doerre-Momma algorithm, LP checking is done 'on

3. An edge is here described as completely inactive if it has no constituents (obligatory or
otherwise) still to be recognised. This implies that edges with remaining optional (or starred)
constituents must always be entered into the chart. It may also be noted in passing that since it
is useful (though by no means necessary) to record the final results of a parse in the chart,
inactive edges which span the entire input string are asserted in the Prolog database.

the fly' during both COMPLETE and PREDICT. However, the algorithm does not

address the problems arising from the use of complex symbols in grammar rules [4].

In general it is not possible to correctly verify LP ordering requirements with

respect to a string of partial representations of categories, since feature instantiation

may subsequently lead to LP violations. The conclusion must be that LP checking

cannot be carried out effectively during either COMPLETE or PREDICT, as category-

descriptors are typically under-specified at this stage (i.e. they provide only partial

information about categories).

Rather surprisingly, it appears that there is no point during a parse at which a

string of fully instantiated descriptors, representing the daughters of a node, is

guaranteed to be available. It follows a fortiori, there is no point at which LP ord-

ering requirements may be reliably checked.

Consider the way in which features become instantiated during a parse. In gen-

eral, category-descriptors are unified, causing feature information to flow both 'up'

and 'down* the parse structures being built. For a parser, a pathological case can

arise when feature information associated with a constituent at one point in a string

crucially effects the required ordering of constituents at another. This state of affairs

is illustrated by the following simple grammar.

4. Note that the comments in this section also apply to extensions to complex symbols of the
algorithms presented by Shieber and Kilbury.

2. INV {+,-}

1 : cat(a,X) - > cat(b,X). cat(c,X).
2 : cat(b,X) ~ > cat(d,X), cat(e,~).

cat(c,+) - > - c__plus.
cat(c-) - > - c_minus.
cat(d._) - > - d.
cat(e,__) - > - e.

cat(_,~)

Suppose that a left-to-right parser is analysing a string with the prefix ed

according to the above grammar. After seeing only the prefix, the analysis will have

progressed to the stage represented below.

cat(a,X).

cat(b,X) cat(c.X)

/ \
cat(eD cat(d,X)

Note that if the string continues with the terminal symbol c^minus, then

feature INV will take on the value '-' wherever it is currently unspecified (i.e. the

variable X). As a result, the second LP rule will be violated because cat(e,~) and

cat(d,-) occur as sisters, yet in the wrong order. Until the third input symbol is

seen and the variable X becomes bound through unification, the LP rules have noth-

ing concrete to say about the linear ordering of cat(e,~) and cat(d*X). This is because

the latter category-descriptor is not an extension of catC /̂O, cat(_,+) or cat(_,-) so

that the two LP rules simply do not apply.

It is quite possible to devise grammars using the formalism of section 2.1

which involve unbounded dependencies of this sort. It follows that even if the

parser is capable of looking ahead some fixed number of input symbols then this

in the general case LP-checks cannot be reliably performed until all of the input has

been seen, a state of affairs that is hardly satisfactory. Delaying LP checks until the

last moment will mean that the parser wastefully pursues many 'dead-ends' in

attempting to analyse its input. Fortunately, it turns out that a minor restriction on

the form of the grammars accepted by the parser is sufficient to guarantee that LP

checks may be carried out reliably during COMPLETE

First let us note that during COMPLETE an inactive edge, representing a recog-

nised constituent B, may be used to extend an active edge. The general situation is

pictured in (6), where the active edge from i to j is extended by an inactive edge

from j to k. Note that a is a (possibly null) string of category descriptors, 0 a

(possibly empty) set of category-descriptors, and y is either a string of category-

descriptors or a terminal symbol.

(6)
A — > a£.]3

A - > a.{B) U ft B - > y.

i j-1 j j+1 k

Now clearly, it is necessary to ensure that the new string of category-

descriptors ocB in the edge constructed from i to k is consistent with the LP rules of

the grammar. That is, assuming a to be well-ordered, it must be verified that B

can indeed follow each category-descriptor in the string a. If this can be ensured

each time an edge is extended, then each inactive edge produced by the parser will

represent a well-formed (i.e. well-ordered) constituent.

For the reasons outlined above, in order to perform LP checks with respect to

a string otB, each of the category-descriptors in the string must be fully instan-

tiated. Thus the problem of LP checking during completion effectively reduces to the

problem of ensuring that each inactive edge represents a unique constituent.

There are two cases to consider. Firstly, suppose that B represents a preterminal

category, and y a terminal symbol. In this case, to ensure that B is a fully instan-

tiated category-descriptor just amounts to putting a restriction on the the form of

lexical entries. This is quite simply that all preterminal category-descriptors associ-

ated with terminals in the lexicon be fully instantiated. Intuitively, the restriction

means that lexical ambiguity should alway be dealt with explicitly, by spelling out

all of the various possibilities. Ambiguity should not be 'fudged' by making lexical

entries suitably vague.

In the second case B represents a non-terminal category, and y «= y ly2 ... yn a

string categories. The inactive edge corresponds to some ID rule of the grammar

B' —> {yV, ..., yn'}, where B extends B' and each yi extends yi \ 1 < i < n.

Now . we might reasonably expect that given complete information about the

components of a phrase we consequently have complete information about the phrase

as a whole. Genuine cases of ambiguity are then realised by multiple edges in the

chart. Again, any feature specifications which may be carried by a category licensed

by B' ought to depend only upon B* or its immediate constituents yl,...,yn. The

problem then is to find some fairly natural constraint on ID rules which ensures

that B is a fully instantiated category-descriptor, whenever each daughter yi is fully

instantiated, and the entire string y is well-ordered.

There are many more or less natural ways in which such a condition could be

imposed, involving feature passing conventions, feature restrictions, feature defaults

and so on. In the present implementation however, the condition amounts to the fol-

lowing simple restriction on the form of ED rules, and the use of variables within

category-descriptors:

• In an ID rule, any variable which occurs on the mother category-descriptor
must also occur on at least one of the daughter category-descriptors.

It should be clear that if each of the daughters is fully instantiated, then the

mother will also be fully instantiated (and in the absence of other constraints such

as FCRs or FSDs will actually be uniquely determined). No feature value on the

mother can be a variable, since this implies either that at least one daughter is

under-specified (contrary to initial assumptions) or that the condition itself is

violated (i.e. the variable is independent of the daughters).

Given these conditions on the grammars accepted by the parser, LP checking

may be carried out correctly during COMPLETE. The conditions turn out to be

quite minor in the sense that they do not seem to impose any restrictions on the

expressive power of the grammar formalism. In effect, they simply force the

grammar-writer to be explicit about possible sources of lexical or phrasal ambiguity.

4. The Semantic Component.

The NASEV parser incorporates a basic version of the functional realisation prin-

ciple of GPSG [GKPS pp.209-211]. By this means, NL input may be translated into

expressions of Montague's intensional logic [Montague 1974]. Functional realisation

basically works by combining as functions and arguments those semantic representa-

tions associated with the immediate constituents of a phrase to create a new expres-

sion representing the meaning of the phrase as a whole.

Each lexical item may have associated with it a typed semantic representation

of the following form:

mexp(<Exp>, <Type>).

where <Exp> is as well-formed expression of IL and <Type> is the semantic, or

logical type of <Exp>. A term xnexp(a, r) may be read "a is a meaningful expres-

sion of type T"

It is additionally necessary to supply type information about non-lexical

categories. This is done simply by providing the parser with appropriate type

statements of the form:

type(< Category >, < Type >).

where < Category > is a category-descriptor and <Type> is a type expression.

Functional realisation is performed during both PREDICT and COMPLETE. A

predicate FREAL takes as its 'input* a list of meaningful expressions of IL (i.e.

terms of the form given above) and a type expression, and builds a new meaningful

expression of the indicated type. Expressions of EL are combined under intensional

functional application [5], with each expression used only once. Since it is quite pos-

sible that expressions can be combined in different ways, FREAL may produce addi-

tional results on backtracking.

4.1* Intensional Logic.

Montague's EL is a system of higher-order logic employing a type hierarchy,

higher-order quantification, lambda-abstraction and modal operators as well as 'inten-

sion* and 'extension' operators [Dowty et al 1981, Ch.6]. The semantic component of

the NASEV parser utilises the following notational variant of IL (based on Dowty

et al p.155-156).

Types.

Given the Prolog atoms t, e and s, then the set of types is defined recursively

as follows.

1. t is a type.

2. e is a type.

3. if a and b are any types, then [alb] is a type.

5. That is to say, all arguments to functors arc implicitly assumed to be intensional. Introducing
intensionality in this fashion permits a simplification of the semantics without any loss of
generality.

4. if a is any type, then [sla] is a type.

Note that s is not a type.

A, Basic Expressions.

1. Logical constants of all types are represented by Prolog atoms (i.e. strings OJ

alphanumerical characters starting with a lower case letter).

2. Variables of all types are represented by Prolog terms of the form:

v(<Var>)

where <Var> is a Prolog variable (i.e. a string of alphanumeric character

beginning with a capital letter).

B. Syntactic Rules*

The set of meaningful expressions of type a is defined recursively as follows:

1. If v is a variable of type a, then mexp(v,a)

2. If c is a constant of type a, then mexp(ca).

3. If mexp(a,a) and mexp(v.b), where v is a variable, thei

mexp(lambda(v,a),[bla]).

4. If mexp(a,[alb]) and mexp(/3,a) then mexp(app(a,j3),b).

5. If mexp(a,a) and mexp(j3,a) then mexp(eq(a,/3),t).

6.-10. If mexp(#,t) and mexp(^,t) then

6. mexp(not(0),t).

7. ((0)

8.

9.

10. mexp(iff(0,i/O.t).

11. If mexp(<£,t) and u is a variable of any type, then mexp(forall(u,0),t).

12. If mexp(0,t) and u is a variable of any type, then mexp(exist(u,0),t).

13. If mexp(0,t) then mexp(nec(<£),t).

14. If mexp(0,t) then mexp(future(<£),t).

15. If mexp(0.t) then mexp(past(<£),t).

16. If mexp(a,a) then mexp(int(a),[sla]).

17. If mexp(t*,[sla]) then mexp(ext(a),a).

4.2. Quantifier Storage.

The functional realization principle of GKPS is strictly compositional, and thus

provides no means of treating quantifier ambiguities, which arise independently of

any structural ambiguity. It is therefore assumed in GKPS "that quantifier ambigui-

ties should be handled by some variant of 'Cooper storage*11 [GKPS p. 15], although

no details of a suitable mechanism are provided.

Cooper's storage strategy represents a weakening of the strict compositionality

assumed by Montague [Cooper 1983]. As a phrase is interpreted, the possibility of

storing term phrases (i.e. NP denotations) arises as an alternative to combining them

directly with the interpretations of other constituents. These stored binding operators

remain 'on ice' until such time as they are retrieved, and combined with the rest of

the interpretation. Since the order in which binding operators are retrieved does not

depend upon the order of storage, it is possible to represent all scope assignments in

this way.

Cooper's strategy naively generates all possible permutations of quantifiers with

the result that a sentence containing n quantified NPs is predicted to have more than

n! readings (although not all of these may be truth-conditionally distinct). Under

certain circumstances this can give rise to over-generation. More specifically, the

storage mechanism proposed by Cooper makes false predictions about the readings

available for complex NPs such as those italicised in (7).

(7) a. the agent of every company arrived.
b. a player belonging to every team was disqualified.
c. every attempt to find a unicorn failed miserably.

In each of the above sentences, the interpretation of the embedded NP is

integral to the interpretation of the outer quantifier, and thus the meaning of the

subject NP as a whole. Roughly speaking, the problem with Cooper's strategy is that

it fails to take this sort of dependency into account, and as a consequence, the

semantic role of an embedded NP may 'get lost*. This can lead to anomalous

interpretations.

A solution to the difficulties inherent in Cooper's approach is proposed in

[Keller 1987]. Essentially, Keller's modification involves the introduction of extra

structure into the store making it possible to encode the semantic dependencies which

exist between NL quantifiers. Keller's nested storage technique forms the basis of

the storage strategy adopted for the NASEV parser.

In the implemented version, storage is mandatory [6]. Each syntactic consti-

tuent recognised by the parser may have associated with it an appropriate semantic

representation:

rep(<Mexp>, < Store >).

where <Mexp> is a typed, meaningful expression of IL (as defined in the previous

section) and < Store > is a list of referenced semantic representations. Each referenced

representation in the store consists of a unique reference variable paired with a

semantic representation of a term-phrase:

ref(v(<Var>), <Repn>).

6. In contrast, both Cooper's original storage technique and Keller's modification are non-
deterministic mechanisms.

- 15 -

In the implementation reference variables are taken to be of the same semantic

type as term-phrases, and not of type individual (c.f. Cooper storage and Keller's

modification). This move requires some redefinition of the storage and retrieval

operations, but should permit both de dicto and de re readings to be generated from

the semantic representations, even though the storage mechanism operates determinist-

ically. Roughly speaking, term-phrases may either be directly substituted for refer-

ence variables (leading to narrow-scope interpretations) or else a 'dummy pronoun* is

first substituted, followed by an application of Keller's storage retrieval operation.

The latter ensures that all of the valid wide-scope readings may be produced. At

present the appropriate retrieval operations are not implemented.

5. Parser Environment.

A small environment has been written for the parser in order to make it more

convenient to use. The environment supports a number of parse modes which are

intended to facilitate grammar-development, and testing of the parser itself. Although

by no means a finished product, the main features of the support system are out-

lined in this section for the sake of completeness.

5.1. Output Display Routines.

To help the user interpret the syntactic and semantic representations built by

the parser, the support system includes a package of display routines. With the

display package loaded parse trees are printed out in indented list format:

cat(2,-,+,sing,3.~)
— cat(l,+,-,sing,3,nom) he
— cat(l,-.+,sing,3,~)

cat(0,-,+.sing,3,~) sees
cat(l,+,-,plur,l,acc) us

The user may additionally specify suitable aliases for category-descriptors,

which are then used by the formatting routines. An alias definition is of the form:

alias(< Category >, < Alias >).

where < Category > is a category-descriptor, and < Alias > is an appropriate Prolog

atom or term. So for example

alias(cat(l,-,+,X.Y,~), vp(X,Y)).

sets up a generic VP alias. With further suitable definitions of this kind the display

routines might produce the following output instead of that shown above:

s
— np(sing,3) he
— vp(sing,3)

v(sing,3) sees
np(plur,l) us

A 'logic paraphrase* mechanism is also included in the package, although this is

of fairly limited use. In storage mode it produces output of the following kind:

Expression type: t

(v(0)) arrive

v(0) -> EVERY (agent (of v(l))) 0

v(l) -> SOME company ()

It is important to note that the paraphrase does not constitute a separate level

of semantic representation. It is intended to serve simply as a readable approximation

to the actual IL translation from which it is derived.

5.2. Parse Modes.

A number of parse modes are available to the user. Each mode may be turned

on or off independently of the others using a switch command:

switch(<Mode>, < State >).

where < State > is either on or off, and <Mode> is one of the following:

display Display mode default state is on. In off mode the parser sim-

ply prints out a message alerting the user to the success or

otherwise of an analysis.

trace Trace mode default state is off. When on, the parser prints out

a trace of all edges as they are produced during analysis.

count Count mode default state is off. When on, a count of the total

number of edges introduced by the parser is printed out at ter-

mination of analysis.

semantics Semantics mode default state is off. When on, the parser per-

forms functional realisation and builds up semantic representa-

tions of its input.

storage Storage mode default state is off. In semantics mode, switching

storage on causes term-phrases to be stored up rather than

combined with other semantic representations by functional

realisation.

paraphrase Paraphrase mode default state is off. In semantics mode and

with display on, switching paraphrase on causes semantic

representations to be printed out as simple paraphrases.

propose Propose mode default state is off. Switching propose on forces

the parser to make intelligent guesses about the syntactic

category of any unknown lexical item it comes across in the

input.

6. Summary and Conclusion.

What has been described in this report is a chart parsing system for a GPSG-

like grammar formalism. The parser accepts rules in ID/LP format with category-

labels represented by complex feature structures. A simple implementation of the

functional realization principle, augmented with a quantifier storage mechanism

enables semantic representations of NL input to be built up in parallel with syntac-

tic analysis.

The implementation has demonstrated the practicability of Earley-based stra-

tegies for parsing with ID/LP grammars. A consideration of the problems arising

from the use of partial representations of categories (i.e. complex symbols) in con-

junction with linear precedence rules has additionally lead to insights into direct

parsing with GPSG-like formalisms. In particular it has been shown that certain res-

trictions on the form of grammars may be motivated on computational grounds.

This point is important and has ramifications for subsequent work on the

NASEV parser. It is noted that GPSG was initially chosen for the NASEV project

because it provides a formally precise and linguistically well-motivated theory of

linguistic knowledge. However, the formalism lacks a useful computational interpreta-

tion. Indeed, a fundamental mis-match exists between the extensional, and essentially

static conception of the formalism as presented in GKPS, and the way in which par-

tial information may be understood in computational terms.

This mis-match shows up whenever it becomes necessary to seek a sensible com-

putational interpretation for a particular component of the GPSG formalism. LP rules,

for example, properly apply to categories, and not to their representations, complex

symbols. The former are complete, fully specified linguistic objects, whilst the latter

are typically under-specified, or partial. Yet a parser operates on objects of the

latter kind and not the former, and so a more suitable interpretation of LP rules

must be found (in this case with consequences for the rest of the formalism).

Likewise, the FCRs, FSDs, and FIPs of GPSG are correctly understood as simul-

taneous well-formedness conditions on fully specified linguistic objects (categories or

local trees). Finding suitable computational interpretations of these components of

GPSG as constraints and operations on partial objects will be the focus of future

- 22 -

research.

References.

Barton, G.E., R.C. Berwick and E.S. Ristad (1987). Computational Complexity and
Natural Language. Cambridge, Mass.: MIT Press.

Clocksin, W.F. and C.S. Mellish (1971). Programming in Prolog. Berlin: Springer-
Verlag.

Cooper. R. (1983). Quantification and Syntactic Theory. Dordrecht: D. Reidel.

Doerre, J. and S. Momma (1985). ModifLkationen des Earley-Algorithmus und ihre
Verwendung fuer ID/LP Grammatiken. Stuttgart: Institute for
Linguistik/Romanistik, University of Stuttgart.

Dowty, D.R., R.E. Wall and S. Peters (1981). Introduction to Montague Semantics.
Dordrecht: D. Reidel.

Earley, J. (1970). An Efficient Context-Free Parsing Algorithm. Communications of
the ACM 13 pp.94-102

Gazdar, G.. E. Klein, G.K. Pullum & LA. Sag (1985). Generalized Phrase Structure
Grammar. Oxford: Blackwell.

Kasami, T. (1965). An efficient recognition and syntax algorithm for context-free
languages. Scientific Report AFCRL-65-758, Air Force Cambridge Research Lab,
Bedford, Mass.

Keller, W.R. (1987) Nested Cooper Storage: The Proper Treatment of Quantification
in Ordinary Noun Phrases. Cognitive Science Research Paper, 78 (CSRP 078),
Brighton: University of Sussex.

Kilbury, J. (1984a) A Modification of the Earley-Shieber Algorithm for Direct Pars-
ing of ID/LP Grammar. Ms, Berlin: Technical University Berlin.

Kilbury, J. (1984b) Earley-basierte Algorithmen fuer direktes Parsen mit ID/LP

Montague, R. (1974). Formal Philosophy. New Haven: Yale University Press.

Shieber, S.M. (1984) Direct Parsing of ID/LP Grammar. Linguistics and Philosophy 7,
pp.135-154.

Tomita, M (1985). An efficient Context-Free Parsing Algorithm for Natural
Languages, in Proceedings of the 9th International Joint Conference on Artificial
Intelligence. \

