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— Introduction

There are many books, newspaper reports and conferences providing information and making

claims about Artificial Intelligence and its lusty baby the field of Expert Systems. Reactions

range from the lunatic left wing view that all our intellectual capabilities will be exceeded

by computers in a few years time to the slightly more defensible right wing view that

computers are merely lumps of machinery that simply do what they are programmed to do

and therefore cannot conceivably emulate human thought, creativity or feeling. As an

antidote for these extremes, I'll try to sketch a sane middle-of-the-road view.

I expect that in the long-term (50 years hence or more) AI will have enormously

important consequences for science and engineering and our view of what we are. But it

would be rash to speculate in detail about this. In the short to medium term there are

extremely difficult problems to overcome, some of which are sketched below. Despite

unsolved problems, AI may still be very important not so much because we shall be

building intelligent machines but because AI techniques can be used to build intelligence

amplifiers for human beings. Even if machines have not advanced enough to be capable of

designing complex systems, discovering new concepts and theories, understanding speech at



cocktail parties and taking all our important economic, political and military decisions for
us, AI systems may nevertheless be able to help people to learn, plan, take decisions, solve
problems, absorb information, find information, design things, communicate with one another
or even just brain-storm when confronted with a new problem.

Besides helping human thought processes, AI techniques can also be used for improving and
extending existing types of automation, for instance: cataloguing, checking software,
checking consistency of data, checking plans or configurations, formatting documents,
analysing images, and many kinds of monitoring and controlling activities.

But there is no sharp boundary between such AI applications and computer science
generally. Indeed the boundary is not only fuzzy but shifts with time, for established AI
techniques and solved AI problems are simply absorbed into mainstream computer science.
A striking example is compiling: once only human beings could understand algebraic
expressions, and making a machine do likewise was a problem in AI. Now any humdrum
compiler for a programming language can do it (apart from some quirky languages, liker
simpler versions of the most widely used AI language, namely LISP!).

- What then is AI?

Some people give it a very narrow definition as an applied sub-field of computer science.
My own definition reflects the range of work reported at AI conferences, in AI journals,
and the interests and activities of some of the leading practitioners, including founders of
the subject. From this viewpoint AI is a very general investigation of the nature of
intelligence and the principles and mechanisms required for understanding or replicating it.
Like all scientific disciplines it has three main types of goals, theoretical, empirical, and
practical.

— Goals of AI: the trinity of science

The long term goals of AI include: finding out what the world is like, understanding it,

and changing it, or, in other words:

(a) empirical study and modelling of existing intelligent systems (mainly human beings):

(b) theoretical analysis and exploration of possible intelligent systems and possible
mechanisms, architectures or representations usable by such systems:



(c) solving practical problems in the light of (a) and (b), namely:

(c.l) attempting to deal with problems of existing intelligent systems (e.g.

problems of human learning or emotional difficulties) and

(c.2) designing new useful intelligent or semi-intelligent machines.

In the course of these activities AI generates new sub-problems, and these lead to new

concepts, new formalisms, and new techniques.

Some people restrict the term 'Artificial Intelligence' to a subset of this wide-ranging

discipline. For example those who think of it as essentially a branch of engineering restrict

it to (c.2). This narrow view of AI does not do justice to the full range of work done in

the name of AI.

In any case, it is folly to try to produce engineering solutions without either studying

general underlying principles or investigating the existing intelligent systems on which the

new machines are to be modelled or with which they will have to interact. Trying to build

intelligent systems without trying to understand general principles would be like trying to

build an aeroplane without understanding principles of mechanics or aerodynamics. Trying

to build them without studying how people or other animals work would be like trying to

build machines without ever studying the properties of any naturally occurring object.

The need to study general principles of thought, and the ways in which human beings

perceive, think, understand language, etc. means that AI work has to be done in close

collaboration with work in psychology, linguistics, and even philosophy, the discipline that

examines some of the most general presuppositions of our thought and language.

This is why. at Sussex University, AI has never been restricted to an engineering

department. In fact it is now to be found in several different schools, the largest AI group

being in what has hitherto been called the Cognitive Studies Programme, and will shortly

become a new school of Cognitive Sciences.

The term 'Cognitive Science* can also be used to cover the full range of goals specified

above, though it too is ambiguous, and some of its more narrow-minded practitioners tend

to restrict it to (a) and (c.l).



— But what is intelligence? Three key features:

The goals of AI have been defined in terms of the notion of intelligence. I don't pretend
to be able to offer a definition of 'intelligence*. However, most, if not all, the important
work in AI arises out of the attempt to understand three key characteristics of the kind of
intelligence found in people and, to different degrees, other animals. The features are
intentionality, flexibility, and productive laziness.

— Intentionality
This is the ability to have internal states that refer to or are about entities or
situations more or less remote in space or time, or even non-existent or wholly
abstract things.

So intentional states include contemplating clouds, dreaming you are a duke, exploring
equations, pondering a possible action, seeing a snake or wanting to win someone's
favours. These are all cases of awareness or consciousness of something, including
hypothetical or impossible objects or situations. A sophisticated mind may also have
thoughts or desires about its own state - various forms of self consciousness are also
cases of intentionality.

Particular categories of intentional states include:

- perceiving something

- believing or knowing something

- wanting something, or having something as a goal

- considering or imagining a possibility

- asking a question about something

- having a plan or strategy

All intentional states seem to require the existence of some kind of representation of the
content of the state: some representation of whatever is believed, perceived, desired,
imagined, etc. A major theme in AI is therefore investigation of different kinds of
representations and their implementation and uses. This is a very tricky topic, since there
are many different kinds of representational forms: sentences, logical symbols, computer



data-bases, maps, diagrams, arrays, images, etc. It is very likely that there are still

important forms of representation waiting to be discovered.

Moreover, many representations are themselves abstractions that are not necessarily

explicitly or directly embodied in physical structures, for example a very large sparse array

that is encoded in a compact form. It is therefore useful to talk about Virtual

representations' as opposed to physical representations.

A particularly important case involves the use of inference procedures. If new conclusions

can be drawn from what is represented, then besides the information stored explicitly there

is additional information that an be derived when needed. Thus we all have knowledge of

arithmetic that goes beyond the tables we have learnt explicitly, since we know how to

derive new facts from them. A different example is using an old map to work out a new

route. Different kinds of representations require different kinds of inference mechanisms.

One reason why computers are powerful tools for exploring intentional systems is that they

can very rapidly construct or change virtual representations, whereas mechanical

construction would often be too slow to deal with a world that waits for no man or

machine. Brains also seem to have this ability, though exactly how they do it remains

largely unexplained. Perhaps new kinds of machines will one day exhibit new kinds of

rapid structural variability enabling new kinds of intelligence to be automated.

— Flexibility

This has to do with the breadth and variety of intentional contents, for instance the

variety of types of goals, objects, problems, plans, actions, environments etc. with

which an individual can cope, including the ability to deal with new situations using

old resources combined and transformed in new ways.

Flexibility in this sense is required for understanding a sentence you have never heard

before, seeing a familiar object from a new point of view, coping with an old problem in a

new situation, dealing with unexpected obstacles to a plan. A kind of flexibility important

in human intelligence involves the ability to raise a wide range of questions.

A desirable kind of flexibility often missing in computer programs is 'graceful degradation*.

Often if the input to a computer deviates at all from what is expected the result is simply

an error message and abort, or worse in some cases. Graceful degradation on the other hand

would imply being able to try to cope with the unexpected by re-interpreting it, or

modifying one's strategies, or asking for help, or monitoring actions more carefully. Instead

of total failure, degradation might include taking longer to solve a problem, reducing the



accuracy of the solution, reducing the frequency of success, and so on.

One of the factors determining the degree of flexibility will be the range of representations

available. A system that can merely represent things using a vector of numerical measures,

for example, will have a narrower range of possible intentional states than a system that

can build linguistic descriptions of unlimited complexity, like:

the man

the old man

the old man in the corner

the old man sitting on a chair in the corner

the sad old man sitting on a chair with a broken leg in the corner

etc.

So flexible control systems of the future will have to go far beyond using numerical

measures, and will have to be able to represent goals or functions, and relationships

between structures, resources, processes, constraints, and so on.

Another requirement for flexibility is non-rigid control structures. In most machines

behaviour is pre-determined by structure. Computer programs with conditional instructions

allow more flexibility. Even greater flexibility is achieved by turning the whole program

into a set of condition-action rules, as is done in some AI programming languages known as

'production systems'. Then, instead of the programmer having to determine in advance a

good order in which tests should be made and actions attempted, the rule interpreter can

examine the applicable rules and decide in the light of the context at 'run time'. If the

program can change the set of rules yet more flexibility is available.

However, an excess of flexibility can cause its own problems, notably a lack of control.

That leads to the idea of a layered process architecture where some kind of higher level

supervisor program watches over the actions of lower level programs and decides when they

need to be suspended, modified, or aborted. This kind of flexibility is not much in evidence

in AI programs yet, but will become increasingly feasible as computer power becomes

cheaper and more readily available.

Different kinds of flexibility are to be found in different organisms. For example, birds that

can build only one sort of nest may nevertheless be very flexible and adaptive in relation

to availability of materials and sites for such nests. Many aspects of human intelligence

range over a potentially infinite variety of structures - for instance infinitely many

sentences, dance movements, algebraic equations, or social situations. To account for this we

need to study the generative power of the underlying mechanisms and representations, as



well as mechanisms that allow major changes of direction in the light of new information.

— Productive laziness

It is not enough to achieve results: intelligence is partly a matter of how they are

achieved. Productive laziness involves avoiding unnecessary work.

A calculator blindly follows the rules for multiplication or addition. It cannot notice short

cuts. If you tell it to work out 200 factorial minus 200 factorial, it will do a lot of

unnecessary computation, and perhaps produce an overflow error. The intelligent solution is

a far more lazy one. A chess champion who wins by working through all the possible

sequences of moves several steps ahead and choosing the optimal one is not as intelligent as

the player who avoids explicitly examining so many cases because he notices some higher

level pattern that points directly to the best move.

The implications of this kind of laziness are profound. In particular, noticing short cuts

often requires using a far more complex conceptual structure, such as might be needed to

discern high level symmetries in the problem space. Compare trying to answer the question

'Is there a prime number bigger than a billion?* by searching for one, with Euclid's lazy

approach of proving in a few lines that there is no largest prime number.

Why is laziness important? Given any solvable task for which a finite solution is

recognisable, it is possible in principle to find a solution by enumerating all possible actions

(or all possible computer programs) and checking them exhaustively until the right one

turns up. In practice this is useless because the set of possibilities is too great.

This is the 'combinatorial explosion*. Any construction involving many choices from a set of

options has a potentially huge array of possible constructs to choose from. If you have

four choices each with two options the total set of options is sixteen. If you have twenty

choices each with six options, the total shoots up to 3,656,158,440,062,976. Clearly

exhaustive enumeration is not a general solution. The tree of possible moves in chess is

larger than the number of electrons in the Universe (if we are to believe the physicists).

So lazy short cuts have to be found.

For example a magic square is an array of numbers all of whose rows columns and

diagonals add up to the same total. Here is a 3 by 3 magic square made of the digits 1 to

9.



159
834

If you try to construct an N by N magic square by trying all possible ways of assigning

the NxN numbers to the locations in the square then the number of possible combinations

is the factorial of NxN. In the case of the 3x3 square that makes 362,880 combinations.

Trying them all would not be intelligent. A sensible procedure would involve testing partial

combinations to see whether they can possibly be extended satisfactorily, and, if not,

rejecting at one blow all the combinations with that initial sequence.

It is also sensible to look for symmetries in the problem. Having found that you can't

have the number 5 in the top left corner, reject all combinations that involve 5 in any

corner.

Yet more subtle arguments can be used to prune the possibilities drastically. For example,

since eight different triples with the same total are needed, it is easy to show that large

and small numbers musf be spread evenly over the triples, and that they must in fact add

up to 15. So the central number has to be in four different triples adding up to 15, the

corner numbers in three triples each, and the mid-side numbers in two each. For each

number we can work out how many different triples it can occur in, and this immediately

restricts the locations to which they can be assigned. E.g. 1 and 9 must go into locations in

the middle of a side, and the only candidate for the central square is 5. In fact, a high

level symmetry shows that you need bother to do this analysis only for the numbers 1 to

4. You can then construct the square in a few moves, without any trial and error. What

about a two by two magic square containing the numbers 1, 2, 3 and 4? Think about it!

These examples show that the ability to detect short cuts requires the ability to describe

the symmetries, relationships, and implications in the structure of the task. It also requires

the ability to notice them and perceive their relevance, even though they are not mentioned

in the statement of the task. This kind of productive laziness therefore depends on

intentionality and flexibility, but motivates their application. Discovering relevant

relationships not mentioned in the task specification (e.g. "location X occurs in fewer triples

than location Y") requires the use of a generative conceptual system and notation.

An intelligent problem solver therefore requires a rich enough representation language to

express the constraints and describe relevant features, and a powerful inference system to

work out the implications for choices. Being lazy in this way is often harder than doing

the stupid exhaustive search. But it may be very much faster. This points to a need for an

analysis of the notion of intellectual difficulty.

-8-



Productive laziness often means applying previously acquired knowledge about the problem

or some general class of problems. So it requires learning: the ability to form new concepts

and to acquire and store new knowledge for future application. Sometimes it involves

creating a new form of representation, as has happened often in the history of science and

mathematics.

Laziness motivates a desire for generality — finding one solution for a wide range of cases

can save the effort of generating new solutions. This is one of the major motivations for

all kinds of scientific research. It can also lead to errors of over-generalisation, prejudice,

and the like. A more complete survey would discuss the differences between avoiding

mental work (saving computational resources) and avoiding physical work.

— Sub areas of AI

So far I have given a very general characterisation of intelligence and the goals of AI. Most

work in the field necessarily focuses on a sub-area, and each area has its own literature

growing too fast for anyone to keep up with.

The topic can be divided up in a number of ways. One form of division reflects the

supposed architecture of an autonomous intelligent system. Thus people study components

like vision, language understanding, memory, planning, learning, motor control, and so on.

These include empirical studies of people and other animals as well as exploratory

engineering designs.

There are also attempts to address what appear to be general issues, for instance about

suitable representational formalisms, inference strategies, search algorithms, or suitable

hardware mechanisms to support intelligent systems. A second order debate concerns

whether there are any generally useful formalisms or inference engines. Some who oppose

the notion argue that different kinds of expertise require their own representations and

algorithms, and indeed early attempts to produce general problem solvers showed that they

often had a tendency to get bogged down in combinatorial searching.

Until recently computer power has been expensive and scarce, so hardly anybody has been

able to do anything about assembling integrated systems. Increasingly, however, we can

expect to see attempts to produce robots with a collection of computers working together.

This will lead to investigations of different kinds of global architectures for intelligent

systems. In particular, whereas most AI systems in the past have been based on a single

sequential process, it will increasingly be appropriate for different subsystems to work

asynchronously in parallel-



— A simple architecture

Initially it is to be expected that systems will be designed with the following main

compoents:

(a) Perceptual mechanisms

These mechanisms analyse (e.g. parse) and interpret information taken in by the

'senses* and store the interpretations in a database.

(b) A database of information.

This is not just as a store of facts, for a database can also store procedural

information, about how to do things, in a form accessible by planning procedures. It

may include both particular facts provided by the senses and generalisations formed

over a period of time.

(c) Analysis and interpretation procedures

These are procedures which examine the data provided by the senses, break them up

into meaningful chunks, build descriptions, match the descriptions, etc. Analysis

involves describing what is presented in the data. Interpretation involves describing

something else, possibly lying behind the data, for instance constructing a 3-D

description on the basis of 2-D images, or inferring someone's intentions from his

actions.

(d) Reasoning procedures.

These use information in the database to derive further information which can also

be stored in the database. For instance if a lot of information about lines is in the

database, inference procedures can work out where there are junctions. If you know

that Socrates is a man, and that all men are mortal, you can infer something new

about Socrates.

(e) A database of goals.

These just represent possible situations which it is intended should be made ACTUAL.

There may also be policies, preferences ideals, and the like.

(f) Planning procedures.

These take a goal, and a database of information, and construct a plan which will

achieve the goal, assuming the correctness of the information in the database.

(g) Executive mechanisms and motors

These translate plans into action.



Often the divisions will not be very clear. For instance is 'this situation is painful* a fact

or a goal concerned with the need to change the situation?

This sort of model can be roughly represented by the following diagram.

— Sketch of a not very intelligent system

We use curly braces to represent {PROCESSES} square brackets to represent stored

[STRUCTURES] and parentheses to indicate (PROCEDURES) which generate processes.

—> {parsing sentences} >i
(parsing procedures) I

I
—> {analysing images} >l

(visual procedures) I
l

—> {other kinds of sensory I
analysis} (analysis and I—> [database of beliefs]
interpretation procedures) I /i\ I

l l i

\ i / l I

[goals] {reasoning} I
I (inference rules) I

\ i / I

{ planning } < —-—-———---+
(problem solvers)

<—{motors} < [plans]

— Limitations of the model

This sort of diagram conceals much hidden complexity. Each of the named sub-processes

may have a range of internal structures and sub-processes, some relatively permanent, some

very short term.

However, even this kind of complexity does not do justice to the kind of intelligence that

we find in human beings and many animals. For example, there is a need for internal

self-monitoring processes as well as external sensory processes. A richer set of connections



may be needed between sub-processes. For example perception may need to be influenced
by beliefs, current goals, and current motor plans. It is also necessary to be able to learn
from experience, and that requires processes that do some kind of retrospective analysis of
past successes and failures. The goals of an autonomous intelligent system are not static,
but are generated dynamically in the light of new information and existing policies,
preferences, and the like. There will also be conflicts between different sorts of goals that
need to be resolved. Thus 'goal-generators* and 'goal-comparators' will be needed, and
mechanisms for improving these in the light of experience.

In the case of real-time intelligent systems further complexities arise from the need to be
able to deal with new information and new goals by interrupting, modifying, temporarily
suspending, or aborting current processes. I believe that these are the kinds of requirements
that explain some kinds of emotional states in human beings, and we can expect similar
states in intelligent machines.

It is possible that full replication and understanding of the types of intelligence found in
people (and other animals) will require the development of new physical designs for
computers. Already there is work investigating highly parallel "connectionist" architectures
loosely modelled on current theories about the brain as an assembly of richly
interconnected neurones that compute by exciting and inhibiting one another. Such machines
might be specially useful for long term associative memory stores, and for low level
sensory processing. However, the hardest problem will be knowing how to 'program' such
machines.

It may also turn out that we need to discover entirely new kinds of formalisms or
representations. For example, at present it is very hard to give machines a good grasp of
spatial structures and relationships of kinds that we meet in everyday natural
environments. It isn't too difficult for a computer to represent a shape bounded entirely by
plane or simply curved surfaces. But we, and other animals, have visual systems without
that restriction. Similar comments apply to the representation of motion, e.g. in a ballet, or
the non-rigid transformations of a woollen jumper as you take it out of a drawer and put
it on.

— Less ambitious projects

Much AI work is concerned with subsystems of an intelligent system, rather than trying to
design a complete autonomous intelligent robot.

In most cases the hardest problems involve identifying the knowledge that is required to



perform a task, and finding good ways to represent it. As already hinted, in vision there is

a largely unsolved problem of representing shapes and motion in sufficient generality to

accommodate the range of objects we all perceive effortlessly. In designing speech

understanding systems a key question is what features in the acoustic signal are significant

in identifying the meaningful units in utterances. In designing fault diagnosis systems it is

often extremely difficult to identify the clues actually used by an expert, the inference

strategies used in drawing conclusions from the clues, and the control strategies used in

deciding what to do next when the problem is difficult. The difficulties are compounded

when the expert needs to be able to combine different sorts of knowledge in a new way,

for example knowledge about electical properties of components, the mechanical and spatial

properties, the thermal properties, and the functional design of the system.

One reason these tasks are so difficult is that much human expertise is below the level of

consciousness. People are quite unable simply to write down the grammatical rules they use

in generating and understanding their native language, despite many years of use. The same

applies to most areas of human expertise, though paradoxically it is the most advanced and

specialised forms, usually learnt late in life, that are easiest to articulate. This is often

partly because they are less rich and complex than more common and superficially

impressive abilities shared by all and sundry. This has led to techniques for 'knowledge

elicitation', a process that often has much in common with methods by which philosophers

probe hidden assumptions underlying our conceptual systems.

For those who wish to apply AI in such a way as to avoid these difficult research issues,

it is generally advisable to tackle much simpler problems, for example fault-diagnosis

problems where there is already a lot of clearly articulated reliable information on how to

track down the causes of malfunctions.

— Tools for AI

Anyone who has spent much time programming will appreciate that getting computers to

perform AI tasks is not easy. Moreover, most of the widely used programming languages

were not designed for this sort of purpose, and the programming support tools, such as

editors, compilers and debuggers, are not adequate for projects that are not concerned with

implementing well-understood algorithms worked out in advance on the basis of

mathematical analysis.

AI development work requires languages that support a wide range of representations

including things like verbal descriptions, logical rules of inference, plans, definitions of

concepts, images and speech wave-forms. This requires the use of languages that make it

easy to build and manipulate non-numerical as well as numerical structures. Examples of



such highly expressive languages are LISP, the oldest AI language, Prolog, a language based
on logical inference, and POP-11 a relatively new language developed first at Edinburgh
University (as POP-2) then at Sussex. POP-11 has the power of LISP but a far more
readable syntax and a range of additional features.

Moreover, since the process of building a program is often a tentative exploratory task, part
of whose goal is to find out precisely what the constrants and requirements for the
program are, it is necessary to provide languages and compilers that support 'rapid
prototyping* and very flexible experimentation. Compilers for conventional languages such as
C, Ada, Fortran. Pascal, for example, do not allow you to define new experimental
procedures or modify old ones, without re-linking the whole system, which can be very
slow and wasteful of human and computer time if the system is already big. So AI
development tools include interpreters and incremental compilers and editors that are linked
in with the compilers so that there is no need for continual switching between the two.
The best development environments for LISP, Prolog and POP-11 provide such integrated
support tools.

— An example of the expressive power of an AI language

I'll give one example to illustrate the kind of thing that AI languages provide to simplify
programming tasks. Suppose you have to store lists of lists of words and for some reason
need a program to find a sublist containing a pair of given words and produce a list of the
words in between. For example given the pair of words "cat" HhorseH and the list of lists:

[[book cat chair spoonlape cat dog flea horse sharklcastle house tower]]

it should produce the list: [dog flea]. Writing a program like this in a language like C or
PASCAL would require the use of three nested loops and rather complicated constructs for
back-tracking if you find a false clue like "cat" in the first list. In POP-11 there is a
pattern matcher that enables you to write a single line instruction:

list_of_lists — > [«= [ = cat TTwanted horse «=] ==]

(or a more general form replacing "cat" and "horse" with variables), to solve this problem.

Having expressive constructs tailored to the requirements of the task enables programmers
to get things right first time far more often. This is one reason why many AI systems
include "macro" facilities for extending the syntax of the language to suit new applications.
Similarly it is often useful to try one method to solve a task and if that fails try others,



where each method itself involves trial and error strategies. Programming this back-tracking

control structure yourself is tedious, and you may not do it efficiently, whereas Prolog

provides a very general form of it built in to the language.

— Horses for courses: multi-language, multi-paradigm systems

Which language is best for AI? Our view at Sussex is that this is a misguided question.

Different languages are needed for different problems or different sub-problems, and for that

reason we believe that a good AI development environment should make a range of

languages available in such a way as to make it easy to integrate programs written in

different styles.

POPLOG, developed at Sussex University is a pioneering system meeting this requirement. It

includes all three of the languages mentioned above, all incrementally compiled into a

common portable virtual machine, which runs on a range of computers and operating

systems (VMS, UNIX System V, Berkeley UNIX 4.2, on VAX, DEC 8000 series, Hewlett-

Packard 9000/200 and 900/300, SUN-2, SUN-3, Bleasdale, GEC-63, Apollo Domain). It also

allows programs written in conventional languages to be linked in and unlinked

dynamically, and provides facilities for developing new special-purpose sub-languages suited

to particular sub-tasks. The Alvey Real-time Expert Systems Club, for exmple made good

use of this language-extension facility. It is now also being used to implement a version of

Standard ML, the new functional language, in the POPLOG environment.

A full description of POPLOG would require yet another article. Suffice it to say that there

are over 400 POPLOG licences in the UK and abroad, including the USA, Scandinavia,

Europe, India, Japan and Australia and the number is growing steadily. It is being used as

the core teaching system in a new Masters degree in the University of New Soutch Wales.

In the UK it is used in over 70 universities and colleges, and in about 40 different Alvey

projects. It is marketed for the University of Sussex by Systems Designers and GEC

Computers Ltd (on GEC-63 computers).

Although some Amercian suppliers are beginning to see the virtues of mixed language

systems we feel that POPLOG currently offers more flexibility, is more compact, and above

all makes available POP-11 with its readable syntax and powerful new facilities. A stand-

alone subset of POP-11 will shortly be available able on the Mac, and later on the IBM

PC, marketed by Cognitive Applications Ltd, the new campus based AI company at Sussex.



— Conclusion

This is by no means a complete overview of AI and its tools. At best I hope I have
whetted the appetites of those for whom it is a new topic. The bibliography includes
pointers to books and papers that extend the points made in this article.

As readers may have discerned, my own interests are mainly in the use of AI to explore
philosophical and psychological problems about the nature of the human mind, by designing
and testing models of human abilities, analysing the architectures, representations and
inferences required, and so on. These are long term problems.

In the short run, my own guess is that the most important practical applications will be in
the design of relatively simple expert systems, and in the use of AI tools for non-AI
programming, since the advantages of such tools are not restricted to AI projects. In
principle, AI languages and tools could also have a profound effect on teaching by making
new kinds of powerful teaching and learning environments available, giving pupils a chance
to explore a very wide range of subjects by playing with or building appropriate programs.
But since our culture does not attach much importance to education as an end in itself, I
do not expect this potential to be realised. Instead millions will be spent on military
applications of AI.
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