NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A Two-level Morphological Processor
Iynne J. Cahill
August 1987

ognitive Studies Research Paper
erial No: 94

he University of Sussex

chool of Cognitive Sciemce

= Tmaw

A Two-level Morphological Processor

Iynne J. Cahill

ABSTRACT

A system for the analysis and production of word forms
is described. The system is based on the two-level model
of Kimmo Koskenniemi, with the major changes being to
his lexicon system, to allow greater linguistic general-
izations. The lexicon system makes use of a rule system
for describing inflectional morphology proposed by
Arnold Zwicky. It incorporates aspects of both models to
give a system which can analyse word forms to give their
morphological features, or produce correctly inflected
word forms, when given the stem and features.

| ntroduction

Nat ural |anguage processing (NP) systens have frequently, -in the
negl ected the norphol ogi cal aspects of |anguage, partly because o:
preoccupation wi th English, vfoich has a mnimal inflectional nor]
and partly because of the predomnance of syntax in linguistic
The increase in work on other |languages in NP, and in theoretical
on norphol ogy has signalled an increase in interest in cotputatioi

counts of norphol ogy.

One of the nost wi dely known systens for the analysis and synthe
word forms is that of Kimmo Kbskenniem, and his systemfornms th<
for the nodel presented here* VWhile his rule systemprovides a |i]
ically sound, as well as cranputationally effective neans for handl

nor phonol ogy of a language, the structure of his Iexicon sysi
only irotivated by the data he uses, i.e. Finnish, and not by g<
cross-linguistic phenonena. It is this aspect of Kbskennieni's
which is radically changed in the nodel presented here, to provide
icon system and, thereby, a means of handling the norphotactics
| anguage, which reflects linguistic facts and makes cl ai ms about ¢

ture of language in a way in vriich Koskenniem's systemdoes not.

The alterations to Koskennieni's Iexicon systemare based |argely
the neans for describing inflectional norphology proposed by

Zwi cky in his paper, '"Howto describe inflection" (1985). Inthis

[L R, P P S, T ST [N . N (N RN, T

proposes, however, was not intended as a cxxrputational nodel* The nodel
presented here, therefore, provides a ccnputational inplenentation of the

theory behind the rule system

Inthe first section, we shall begin by looking briefly at Kbskenniem's
system followed by a nore detailed exposition of the rule systempro-
posed by Zwi cky. The second section will then present the aartibined
nmodel , with an expl anation of hewthe rule systemwas inplenented, and

howit was integrated into the Kbskeraiiem-type system

Finally, we shall consider the nerits and the inadequacies of the system
toget her with sane suggestions for ways in which it could be extended and
improved. Work is continuing onthe system and the nodel presented here

represents its state in August 1986.

Section 1: The models of Koskenniemi and Zwicky

Koskenniemi's two-level model was presented as his doctoral thesis
University of Helsinki (1983). Although Koskenniemi himself de
the model as one of morphology, he uses the two-level rules, whi
the essence of the whole theory, as phonological or morphonologics
and it is interesting to note that in a later publication (with K:
and Kaplan, 1987) he refers to the same rules as being phonologics
two~-level rules take the form,

i = + =

<=> —

3 Vv o v
where the ‘top row refers to the lexical representation, the bott
refers to the surface representation, and the rule describes a co:
dence between the lexical "i" and the surface "j", in the given
i.e. between two surface vowels where there is a plural ma:
present. The rules can refer to correspondences which are conditi
the presence of phonological features (e.g. the vowels) or by tt
ence of morphological features (e.g. the "+") or , as in this case

carbination of the two.

The rules in Koskenniemi's system are given to the system in the f
finite state automata, wh1ch are all applied in parallel. Koskenr
at pains to stress that the rules represent correspondences -z
processes, and hence that they are entirely bi-directional, e

lexicons together with continuation classes. Each continuation class is
defined simply as a set of sublexicons, an entry in any one of which may
come after any lexical entry which has that continuation class stored
with it in the lexicon. For example, a lexical stem may have thé con-
tinuation class S123 stored with it, which together with the definition
of that class in the lexicon (S123 = S1, S2, S3), ensures that that stem
is only followed by an entry from one of those sub-lexicons (S1, S2, S3).
This type of lexicon enables Koskenniemi to describe the inflectional
patterns of Finnish, but, as we shall see in Section 3, we come upon
problems when we look at the German system of inflection for determiners,
adjectives and nouns, which is what Zwicky bases the demonstration of his
rule system on.

It must be stressed from the start that the aim of Zwicky's paper, "How
to Describe Inflection" is only to "sketch a framework for describing
systems of inflectional morphology". Zwicky says in a footnote, "My aim
in formalization in this paper is clarity, not completeness or any en-
visaged camputational implementation. Nor do I intend the framework as
an incipient processing model." He does cdncede, however, that the

framework lends itself fairly naturally to same such enterprises.

The rule system proposed by Zwicky consists of two types of rule, rules
of exponence and rules of referral. A rule of exponence describes how
particular features are realised in certain contexts. Fbr example, "in

English, in the context of [CAT: Verb], [VFORM: Past] is realized by the

The rules are assumed to express defaults. That is, the more s
rule overrides the more general one. What this means in terms of
tual set of rules he gives, is quite easy to work out, as can be s
Section 3, but only in terms of the specific features mentioned
rules. There is no general principle, such as the mumber of featu
stantiated, which could apply to any rules. The decision is 1

specific.

Ancther important aspect of the rule formalism is its ability to r
value-clusters and feature-clusters. A value-cluster is a c
values which a particular feature can take, such as direct case,

ring to nominative and accusative case, as opposed to genitive arx
case, which can be called cblique case. A feature-cluster is a qr
features which may have a cambined realization rule, such as the

CASE/GEND/NUM in German.

A feature-cluster is related to the notion of slots which 2Zwick
mentions. He suggests that in each language there is an orderec
(abstract) slots for inflectional material. What this means is tt
each category or sub-category, there are certain generalizatior
can be made about affixation (although it must be noted, and will
cussed in more detail later, that affixation is not the only kinc
flection which we want to be able to model). 2Zwicky defines sl
saying, "Any particular rule supplies material for a specified
slots, and several distinct rules can supply material to the same

The ordering of a rule with respect to others is then governec

ordering of slots". An example of what a slot is can be given from En-
glish, where nouns have slots for plural marker and possessive marker,
for example, "cats'" can be divided "cat + s + 's", where the first "s"
is the plural marker, the " 's" is the possessive marker, and thé final
s has been omitted for phonological reasons. In any case, it can be
seen that the slot for the plural marker is positioned before the slot

fro the possessive marker.

As mentioned before, the rules are assumed to express defaults, so a rule
which expresses an exception, applying only to, say, one case, is going
to be ordered before any rule which expresses a generalization. 2Zwicky
demonstrates his rule system with a set of rules for the German declen-
sional forms of determiners, adjectives and nouns. He specifies aliases
for category groupings,

Adjal = (adjective, determiner)

Nounal = {adjective, determiner, noun}
where a rule with the first grouping will necessarily apply before a rule
with the second, it being more specific. He also specifies the value-
clusters mentioned before,

Direct = {(naminative, accusative)}

Oblique = {genitive, dative}
Zwicky's convention of using capital letters to distinguish aliases from
straightforward values will be used in this chapter.

Zwicky also mentions, although not in great detail, VCRs - value co-

uiar value, inzwicKy'sinterpretation, a VGRtaxes trie form if
tain feature has a particular value then a certain realization rul
not apply. Thus, Zw cky does not really use his VCRs in the sane
the FCRs, since his VCRs do not say that particular features or va
features nay not be present, nerely that the rul e which associ a*
feature or value with a norpho- or phonol ogical realization sho
overl ooked. This subtle distinction explains Wy Zwi cky's VCRs &
pily fit inthe lexicon, since they refer to rules Vtiich bel ong

| exicon, while Gazdar and Pullums FCRs bel ong in the syntax, wx
feature val ue assignnent is defined. Zwicky gives one VCR wh

shall ook at |ater, when we have defined the other rules.

The decl ensi on systens for German adjectives ard determners are g
'y divided into three classes, strong, weak and m xed. Weak decl e
endi ngs occur on adjectives vfaich follc*/ definite articles (der
das etc.); strong endings occur on determners and adjectives w
not followa determner;. and m xed endings (a m xture of strong an
occur on adjectives which followan indefinite article (ein, nei
etc.). Mxed endings can be defined interns of the other two c

as we shall see shortly.
| he set of weak endings can be seen in Table I, over.

As can be seen, all plural forns, and all Cblique forns take the €
-en, whileall Direct singular forns, wth the exception of the
tive masculine, taketheending -e . This is generally cunber

describe, but with Zwi cky's system the set of endings, including

MASC-SG NEUT-SG FEM-SG PLURAL

NOM -e -e -e -en

ACC -en -e -e -en

GEN -en -en -en -en

DAT -en -en -en -en
Table I.

exception is accounted for, with the following three rules:

i. In the context of [CAT:adj, CILASS:wk), [CASE:acc, GEND:masc,
NUM:sg] is realized by the suffixation of /en/.

2. In the context of [CAT:adj, CILASS:wk], [CASE:Direct, NUM:sg] is
realized by the suffixation of /e/.

3. In the context of [CAT:adj, CILASS:wk], any bundle of CASE, GEND

and NUM values is realized by the suffixation of /en/.

The first rule describes the single exception, and overrides the secord,
so we are still able to make the generalization. The third rule then
describes the general default, or "elsewhere application".

The strong endings are shown in Table II, over.

The groupings here are cbviously nowhere near as simple to describe as

with the weak endings. To start, though, we note that the accusative

1. In the context of [CAT:Adjal], [CASE:acc, GEND:masc,

NUM:sg] is realized by the suffixation of /en/.

MASC-SG NEUT-SG FEM-SG PIURAL

NOM -er -es -e -e

ACC -en -es -e -e

GEN -en -en -er -er

DAT -em -em -er -en
Table II.

The nominative masculine singular is also a case on its own:
4. In the context of [CAT:Adjal], [CASE:nom, GEND:masc,
NUM:sg] is realized by the suffixation of /er/. These rules
need to mention the class, since in cases of weak class the more s
rules will apply, and the cat is Adjal, since this also applies to

niners.

Zwicky gives the rules for describing the rest of the strong endi:
follows:
ii. In the context of [CAT:Adjal], [CASE:acc] has the same
realization as [CASE:nam].
5. In the context of [CAT:Adjal], [CASE:nom, GEND:neut, NUM:

realized by the suffixation of /fes/.

realization as [GEND:neut].

8. In the context of [CAT:Adjal], [CASE:gen, GEND:neut, NUM:sg] is
realized by the suffixation of /en/.

9. In the context of [CAT:Adjal], [CASE:dat, GEND:neut, NUM:ég] is
realized by the suffixation of /eny.

10. In the context of [CAT:Adjal], [CASE:Obl, GEND:fem, NUM:sg] is.
realized by the suffixation of /er/.

iii. In the context of [CAT:Adjal], [CASE:dat, NUM:pl] is realized
by the suffixation of /en/.

12. In the context of [CAT:Adjal], [NUM:pl] has the same

realization as [GEND:fem, NUM:sg].

In fact, it would appear that rule mumber ii is actually unnecessary,
since all it does is refer the accusative case to the nominative, but he
has already provided us with a means of referring to the nominative and
accusative cases together, without having to define a separate rule to do
so. I therefore propose that this rule should be eliminated and all oc-
currences of nam in the above rules replaced with Dir.

The other rules are fairly straightforward, referring the masculine to
the neuter and the plural to the feminine singular, with the exception of
the nom and acc masculine, which were defined before, and the dative
plural, which has a separate rule. The rules of exponence define the ac-
tual realizations for these.

13. In the context of [CAT:det], [CASE:gen, GEND:neut, NUM:sc

realized by the suffixation of /es/.

The mixed declension of adjectives and determiners, as mentioned
can be defined in terms of the others:
14. In the context of [CAT:Adjal, CIASS:mixed], [CASE:Dir, N
has the same realization as [CLASS:str].
15. In the context of [CAT:Adjal, CIASS:mixed], any bundle of

GEND and NUM values has the same realization as [CLASS:wk].

So far, we have not mentioned the nouns. German nouns have two

one for plural marker and one for the CASE/GEND/NUM marker. For &
the word Buch (book) can be made plural by the suffixation of -
gether with an umlaut, giving Blicher and it can also carry a suffis
ciated with the CASE/GEND/NUM slot, dealt with for adjectives and

miners above. In fact, there is only one possible suffix - the -
suffix representing the dative plural (any gender), which, after ti
nological adjustment gives us Blchern .This shows another feat
slots - they do not have to be mutually exclusive regarding the fe
they represent. It can also be seen in this case, that the NUM :
ordered before the CASE/GEND/NUM slot. Zwicky's rules are £«
CASE/GEND/NUM slot only, so we shall ignore the fact, for the time
that the NUM slot has several different possible realizations (a

we will look at this in the combined model).

-en for the dative plural. These few instances of suf fixation can be
easily accounted for by the rules:
17. Inthe context of [CM?: noun], [CASE gen, GEND. neut, NUMsg] is
realized by the suf fixationof /es/. |
18. Inthe context of [CAT:noun], [CASE gen, GEND. masc, NLMsg] is
realized by the suf fixationof /s/.
The dative plural suffix can be handled by incorporating the category
"noun" intorule nunber iii above, changingit to:
11. Inthe context of [CaJT.Nounal], [NUMpl] has the sanme
realizationas [GEND fem NUM sg].
There is al so a class of nouns, known as weak nouns, which have al nost
the sane declension as weak adjectives, for which Zw cky gives the fol -
| owing rul e:
v. Inthe context of [CAT:.noun, CLASS:wk], any bundle of CASE, GEND
and NUMhas t he same real ization as [CAT: adj]. |
together with the VCRwe mentioned earlier, which takes the form
vi. |f abundle contains CAT: ncun and CLASS: wk, it al so contains
KIIE| (2): no.
and means that rule 2 does not apply inthat situation. However, this
does not seem totell the true story about weak nouns, since their de-
clensional pattern, accordingto Hanmer (1971), is an -en suffix inALL
cases except the nomnative singular. This could be expressed by the
rules:

vii. Inthe context of [CAT:.noun, dASS:wk], any bundl e of CASE,

is a result of the non-application of rules, sothat if no suff:
rules apply, thenthe bare base is what results. He does say "I ¢
reject the possibility that seme zero formations are stipul ated b]
| am however, assumng that the normal source for zero formnations
absence of any rule providing an exponent for certain bundl es.
not clear whether the above case i s one whi ch m ght have a zero f oi
stipulated by rule, intuitively. It would, however, make generali;
nuch easi er and make the rules for this particular aspect of
correspond nore to the other rul es described so far:

18. Inthe context of [GAP:noun, CLASS:wk], [CASE ncm NMs

realized by the suffixation of /-/e

19. Inthe context of [CAT:noun, CIASS:wk], any bundle of C

GEND anfl NUMval ues is realized by the suf fixation of /en/.

H ese then are all the rul es needed for the decl ension of Gernan
determners and adjectives. The full list of those given here, w

the final adjustnents, is given in appendix A

Anot her point whi ch nust be made about Zwi cky's rule systemis th
lating to directionality. As we sawin Chapter 1, Zwicky states t]
conponent follows a syntactic conponent and precedes a phonol ogi ca:
implying that the rules apply in the production of word forns only
is alsotheiirpsession given by the wording of the rules. Howeve:
important aspect of the rules is that they can be seen to d<
correspondences between the realization (inthis case suffixes) ai

set of features, and they can therefore, when viewed as such, be\

either direction.

The next section will now present the combined model, demonstrating ke
Zwicky's rule system can be integrated into the two-level model ¢

Section 3: The Cambined Model demonstrated using German

As stated before, the model being presented here uses a combinat:
the model of Koskenniemi and the rules system of Zwicky. The mods
sists of five major modules, together with a "lexbuild" module,
constructs the lexicon initially. The other five modules are: 1.
bet, 2. Tables, 3. Fst (Finite State Transducer), 4. Iexicon, 5.
cess, which this section will describe in turn. We shall look :
module in respect of what it does, how it does it, and how it «

from Koskenniemi's model.

1. Alphabet:- The alphabet module, like Koskenniemi's, contains t
phabet, defining the possible surface characters and the subs:
aliases, for example, the set of vowels. It also defines subsets ¢
morphological features, such as,

alias(case, [nom, acc, gen, dat])
which defines the case features, and

alias(dir, [nom, acc])
which defines a subset of these, the direct case, which was used
last section. The morphological features are all self-explanator
nom and acc, unlike the symbols used in Koskenniemi's model, M-
plural and so on. There is no need to use cryptic symbols, as m
charactered objects are treated exactly the same as single charact:
it seems more sensible to use names for the features which have a

ous meaning. This makes understanding the program much easier, arx

terpretation of a word in a form samething like, "ein + nom + pl".

As well as the aliases, the alphabet module in this model also contains
definitions and procedures for checkmg character pair sets. In
Koskenniemi's model, as we saw, the character pair sets were found by the
finite state transducer module. This could also be done in this model,
by the definition of a procedure to do it in the process module, but for
the time being the concrete pair sets are simply defined using very sim-
Ple Prolog rules, which allow every character to be paired with itself,
all morphological features to be paired with a 0 on the surface, and all
the other possible permutations allowed by the two-level rules. It also
contains the procedures to insert a 0 in either level if there is a pos-
sibility of such a correspondence. For example, suppose there is a rule
which involves the correspordence of a lexical "e" with a surface 0
(which there is in German), and we are analysing a surface form into its
lexical representation, at each point we have to consider the possibility
that there is a lexical "e" which has no surface realization. This pro-
cedure makes the overall program consider the possibility. (Of course, it
only considers the possibility in the light of the morphonological and
lexical rules.)

The list of aliases together with the procedures for checking the charac-
ter pairs can be found in Appendix B.

2. Tables:- The tables module contains the tables which represent the

PG (R anaT Mhamaen caswan srmler €ma1ve alnlac 299 e e rvdaT Emoe e e e

ready been demonstrated amply with Finnish, English, Rumani
Japanese. It is not claimed that the two-level rules given here :

haustive for the German language, but they give a flavour of what .

ing on.

The first two-level rule modelled here, and probably the most c
used, is that for umlaut on certain plural forms. Nouns in Ger
six different means of forming the plural, and are therefore divid
six groups, marked in this model by a mumber feature, e.g. der Ta
belongs to group 3 which adds an -e to form the plural, die Tage,
would have in its lexical entry something like, [n, masc, 3], to s

it is a masculine noun of group three.

It has been suggested by same grammarians that the plural group to
a noun belongs can be determined by the gender, with some exceptio
the number of exceptions makes it more efficient for our purposes
store the plural group with each noun. However, there is so
linguistically desirable about generalizations of that form, sinc
example, the vast majority of feminine nouns take an (e)n suff
any German speaker who did not know the plural group of a feminin
would guess at this suffix, so the best situation would appear t
have the plural groups of those that are known listed directly, |
also have, in the lexicon, rules to determine the likely plural g
any nouns for which it is not known. For example, a rule 1like

such as,

such as the mumber Of SYyllaples 1N UIE SLEl UL WIS Lakia seginie —a —oe
stem, the suffix given could be in the form of a variable which is bound
using the phonological rules, for example,
Suff e 1 neut pl
<>
0 e 1 0] ()
determines that a neuter noun ending in =-el has no surface realization
of the suffix in the plural. For the current model, however, we shall

use only the listed plural groups.

The first two-level rule, then, is that which matches a 1lexical back

vowel with a surface front vowel, or "umlauted", and the rule can be

written:
bl ug pl
<=>
ul 0 0

where bl is an alias for back vowels, ul is an alias for umlauted vowels,
and ug is an alias for those plural groups which take an umlaut. It
therefore says that a back vowel may correspond to an umlauted vowel if
it is followed by a plural group which takes an umlaut, and a plural
marker (all morphological features come after the lexical item, so the
morphological features associated with the stem appear after the stem it-
self, and those associated with the suffix come after it, and so on). As
it stands, this rule permits the correspondence of back vowels in the
lexicon with surface umlauted vowels which do not match, e.g. a/6, but
this is taken care of by the alphabet module which ensures that there are
only permitted correspondences. The table to represent this rule needs
the alphabet:

ub, 0 0 0 =

that is, all thepeirsnmentionedintherule, the sg/O pairing tc

trast wthplural, and the "anything el se" pair. The table then h

bl ug pi sg =
u 0 0 0 =
. 2 1 1 1 1
2. 0 3 0 0 2
3. 0 0 1 0 3

whi ch noves to state 2 only if it encounters a bl/ul pairing and tl
can only returntothe final state 1 if it encounters first augi
and then a plural nmarker* 1t wll always encounter themin this
as the plural group narker is storedwththe stem while the
nmarker cones as aresult of the suffix. Anything el sejust keeps 1

tomaton inthe state it is currently in.

The other rules areto delete a surface "e" inan -en suffixif :

lows an "e", an "er" or an "ar", for exanple, Bauer/Bauern rathei

Baueren ; to add a surface "n" in front of -en plural suffi:

femnine nouns, for exanple, LehreriyifihreriiTnen rather than]

inen ; andto delete a final -um on stens when adding a plura:

suffix, for exanple, Jiurg/Aben rather than Aburry/Abunen .

Apart fromthe umaut rule, the others are all phonoI‘ ogical or si

speaki ng, orthographical, and it shoul d be nentioned that phono!

rules equally as effectively as those that are phonol ogical Iy condi -
tioned, withthe distinction that the former depend on the values of
features onthe top row, vfoile the latter depend on the val ues of surface

characters on the bottomrcw
The rul es nentioned above can be found with their tables in Appendix C.

2* Fst:- The Finite State Transducer is the part which nost closely
resenmbl es Kbsk”nniem's nodel. For each input pair it noves every auto-
maton to the next state, according to the appropriate matching pair on
the automaton | abels. Kbskenrdeni's nodel does not interpret the |abels,
but uses an expanded version of the tables with every possible pairing
explicitly listed. This nodel, however, has procedures to check for ap-
plicability of labels. It therefore has to check for each input pair and
each table, that there is a label whichw |l apply Onhich there always is
because of the =/ = label in each tabl e), andthat it is the most specific
that can apply. This is not a sinple procedure, since it involves
several different checks. For exanple, if an input pair apparently only
fitsthe =/=1abel, the procedure naast check that there is no |abel which
exact|y matches the input pair, thenthat there is no | abel wfiich has one
conponent whi ch exact|y matches one conponent of the input pair and whose
ot her conponent is applicable to the other conponent of the input pair
(this check has to be done for both ocaonponents), and finally that there
s noother |abel with aliases whichboth fit the input pair, and Jriich

are more specific than the =/=pair.

finds 1t 1s at the end of the input string, It calls the Fst noc

check that the autonata are all in a final state.

| he procedures in the Fst nodul e are listed i n Appendi x D.

£. Lexicon:- | he lexicon systemhas three nain parts: i. the It
building nodule, ii. the |exicon checking procedures, and iii. th*
conitself. |Ilhe first two of these are general procedures for the

tern, while thethird is the | anguage specific data nodule. Let i

at the three in turn.

i. The lexicon building procedures are simlar to Kbskenniem's.
take a I.ist of lexical entries and the information to be stored w1
and build |labelled letter trees, as described in Kbskenniem i
Each [lexicon, or sub-lexicon, has a nane, and a |ist of structurec
which represent the letter trees. Additional information can be ii
into the lexicon at the appropriate point after the |exical ent

vol ved has been added.
I he | exicon building procedures are listed in Appendix E.i.

ii. The lIexicon checking procedures are basically simlar to the]
bui Il di ng procedures, but instead of inserting information, they <
information, or fail if the entry is not there, or has no infQ]
withit. 1lhey do not just check to see if a word or word part is\
inthe lexicon, but also return any infornation vf_riiéh is stored w1l
If a word has separate interpretations, say as a noun or verb, 1

sets of information are listed separately, and the checki ng prc

wll return one set of information at a tine.
| he code for this nmodule is givenin Appendix E.ii.

iii. The actual |exiconnodul e, the data nodul e vfaere the | exi cal infor-
mation for the language in questionis stored, is the area where the
Zwi cky rul es, as described inthe previous chapter, are incorporated. |t
is this part of the nodel which nost differs fromKbskennieni's. In
Kbskenniem's nodel, the lexicon itself contains only the definition of
continuation classes and the sub-lexicons. Inthe |exiconhere, we need
to define not what the continuation classes given wth each entry nean,
but the rules for the cont i nuation cl asses. These rul es take the nane of
the current lexicon, and the information currently knewn about the word
being analysed or produced, and return the sublexicons fromwhich the

next part of the word may cone.

Innmany cases this is very strai®itforward. For exanple, in English, if
we are inthe stemlexicon and we knewthat we have a noun, then we can
gotothe plural suffix |exicon or the possessive suffix |exicon next.
Kbskenniem admts that his |exicon systemis limted inthis aspect. He
says that his system"seens powerful enough to cover the morphotactic
structure of many languages. Only a small residue of structures ...
forces onetoresort tothe use of rules and features for norphotactics.™
(p.27) lhe small section of German being described here, and vriichis
descri bed by Zwi cky, however, does fall into this category, and cannot be

handlad e neing aimole continuation |inkages. The set of endi ngs which

inherits from its context in the overall structure, i.e. what, 1
determiner it combines with in the noun phrase. Koskenniemi's sy:s
it stands could not, therefore, handle this - it would require at
set of rules to interpret the suffixes in the light of the syntact

formation.

The Zwicky rules, as described in the last Chapter, are easily enx
Prolog rules, although the interpretation, as with the automata]
is not so simple. In fact, 2wicky's concept of which rule i
specific than the others is actually language specific, or to }
precise, depends on the particular features being used. In the
rules for the noun/adj/det system of endings, the CAT and CIASS fe
are the most important, and the CASE, GEND and NUM features are les
portant in determining the most specific rule. Since there are !
eralizations that one can make within this rule system which would
to any set of rules, it was decided that, for the current purpo:
would be just as efficient to use simple ordering of rules so that
can only apply if there is no other rule which could also apply, wi
ordered before it.

A rule of the form:
1. In the context of [CAT:Adjal], [CASE:acc, GEND:masc,
NUM:sg] is realized by the suffixation of /ery/.

is expressed in Prolog as,
ogntest (adjal,class,acc,masc, sg,suff2).

AAAAAAA a8 2 & am . ' T N g~ 2 9 . ee® a2 2 P

previous section, this rule can be used in Prolog to apply in either
direction, to fill in either the features (or any subset of them) or the
lexicon. For analysis of word forms, therefore, the rule would be ap-
plied with the suffix known, while in the production of word forms, the

features would be known.

A rule of referral, like:

7. In the context of [CAT:Adjal], [GEND:masc, NUM:sg] has the same

realization as [GEND:neut].
is expressed in Prolog as,

cgntest (adjal,class,case,masc, sg,Suff) : -

ogntest (adjal,class,case, neut,sg,Suff) .
where "Suff" is a variable which should be instantiated to whatever is in
that position in the rule which satisfies the second clause. In fact,
the rules are all numbered and marked with "e" or "r" to distinguish
rules of exponence from those of referral, so it would actually look more
like,

agntest (r, 15,adjal,class,case, masc, sg,Suff) : -

ogntest (e, X,adjal,class,case, neut, sg, Suff) .

This appears very simple, but in fact there is more to it, as the rules
as they stand do not know how to interpret the aliases. Again, we could
just write out an expanded list of rules for every permutation for all
the features, but this would mean an enormous increase in the number of
rules, and would mean abandoning much of the theory behind the rule sys-

tem. bv abandoning the generalizations, which are not only convenient,

matches and membership of alias lists. It is not a complex pro
and nor is the procedure to check whether there is a more specif
which fits, since the latter simply involves checking the rule mum
seeing if there is another rule which applies, and which has
nmmber. Of course, the procedure must be called within the rules
ferral, to interpret the second clause.

Another complication which has been overlooked above, is that ru
referral actually need to be handled even more differently, as th
like the rules of exponence, can be applied in parallel. Thus, ea
of referral needs a second clause which says that it is satis
there is a rule of exponence with the relevant features (as given
or if there is ancther rule of referral which is also satisfie
those features specified by the first. For example, in the Germar
given above, there are two rules of referral which may both apply
er, mumbers 7 and 14 in the list in Appendix A, which refer the me
singular to the neuter singular and the mixed class of adjectives
direct singular to the strong class respectively. The first n
should therefore refer to the other rule, 14, in the case of the
bundle, CAT:adj, CLASS:mixed, CASE:nom, GEI\?D:masc, NUM:sg, givi
bundle CAT:adj, CIASS:str, CASE:nom, GEND:neut, NUM:sg, which mu
be matched to a rule of exponence.

It should be noted at this point, that Koskenniemi's interpretat
Finnish morphotactics could be easily fitted to this model.

The code and sub-lexicons described above are listed in Appendix E

That completes the description of the lexicon system. Iet us now look at
the final module, the process module, which brings together all the other
modules described above.

5. Process:- The process module is the section which actually gets every-
thing going. It takes the input, calls the other modules as they are
needed, and returns the output. Unlike Koskenniemi's model (or most oth-
er models, for that matter) it does not have separate routines for ana-

lysing and synthesising word-forms.

To start, the process module finds all the tables, and creates a statel-
ist, which is Jjust a list of two-element lists, the name of each table
(just a number) and its current state. It puts each table in state 1,
the initial state. It then works through the input, first calling the
alphabet module to check the character pair or find the possible alterna-
tives if one element has to be fourd, then calling the Fst module to
alter the statelist for each input pair, and calling the lexicon system
to check membership and find lexical information. It does checking of
tables and the lexicon in parallel, that is, it doesn't first find the
possible phonological correspondences for the whole word, and then check
the lexicon, but does it all as it goes along. This is very important
with the system as it is at the moment, because it is required to do the
processing in both directions using the same routine. If it only used
one module at a time, it would be necessary to have different routines
for analysis and production, to do each type of processing in different

lyses the word kleines , which means "small" and is inflected
nominative neuter singular of the weak adjective (amongst others
program will find all possible analyses, but let us just look
one). First, after it has set up the statelist, it checks the p
character pair for the first letter given, and finds that there
one possibility - k/k. It then moves each automaton to the next
for this pair, that is, it changes the state on the statelist. N
checks in all of the sub-lexicons which it knows can be initial le
to see if there is a lexical entry "k". There isn't, so it co
with the next letter pair in the same way, again the only possibl
is 1/1, and again there is no word part in the lexicon, "kl". It
ues in this way until it gets to the "n", by which time the word p
is locking for has grown to "klein", and it finds this in the ste
con, together with the information that it is an adjective. If th
part has not been found in the lexicon, then the "newlex" which it
look in, is always the same one it was looking in anyway, but once
been found, the 1lexicon rules have to be used to find which lex
may go to from there. It therefore loocks at the rules (from
knowing only that it is an adjective. Since most of the rules a
adjectives, there are several which can apply and it simply tries
them in turn, until it finds one whose lexicon matches the en
have, -es . It finds the rule,
ogntest (e, 4,adjl,class,nam, neut, sg, suff3)

and assigns the value "weak" to the class, because no aliases are

S dedum L2 onmn T o ydevay yde T Crmmdtrrwmey avem varme s =l I AT dem Elam < om oo -

k,1,e,i,n,adj,e,s,wk,nom, neut, sg]
This case did not use any of the morphophonological rules in the tables

but an example of a run using the umlaut rule is shown in Apperdix G.
The code for the process module is in Appendix F.

The system as described so far has certain limitations. The final se

tion will discuss these and indicate how it is planned to remedy them.

Section 4: Concluding Remarks

The system as it stands still uses a mumber of sub-lexicons,
Koskenniemi's model, most of which contain only one entry. This
necessary and the system could be improved by having one lexicon cx
ing stems, together with "newlextest" type rules to provide the ai
However, if we do this, it becomes impractical to retain the «
bi-directionality in the current system. If we want to give the s
stem and certain features for it to return the surface representat:
would be necessary to derive fhe lexical representation, with
fixes, before deriving the surface representation with all necessai
nological alterations. If the two processes are not being carr:
simultaneously, then it is not practical to use the same routine f«
duction and analysis of word forms. Although it could still be d
would be extremely inefficient as the routine would necessarily be
more to one direction of processing, and would be making guesses
dark when doing processing in the other direction. For example,
routine began by checking for affixes according to the features
about, then when analysing word forms, it would be doing this while
ing about no features, and would therefore do a lot of needles:
tracking.

Another disadvantage with having just one routine for both directix

processing, is that in the production of word forms, the system w

B e Emanr wmarmnmrn vl e e demlam T At Aumen Foln N Tn B A, o o T T Tom Y~ lr s

ation rules in the lexicon, and find any morphological information stored
with the stem for production as described above, it is not necessary to
constantly check whether the word begins with a prefix or a stem, as the
system should know that it has been given a stem. This checking is, how-

ever, necessary in the analysis of word forms.

It is therefore proposed that there should be distinct routines for the
production and the analysis of word forms, the former taking the stem and
features and returning the complete lexical representation before carry-
ing out the phonological processing, and the latter proceeding in a simi-

lar way to the present system.

The adaptations mentioned above would also improve the system from a
linguistic point of view, since the lexicon as proposed by Koskenniemi
does not distinguish affixes from stems, but treats them as equal. While
this may not be important from a purely implementational point of vie&,
it would appear to be undesirable from a theoretical point of view, and
indeed, it is easy to envisage difficulties when trying to incorporate
the system into a larger language system, since we would want to extract
syntactic and semantic information from the stem of a word, rather than
any of its inflectional affixes.

Other problems which have not been mentioned above include other inflec-

tional processes, such as infixation and reduplication, but space prohi-

T ddeon m ol i tenrn s mrn smd delurmeern I TR < v St 7w amd e P PR | PR, TR PR

Appendix A: The set of Zwicky-type rules for German

10.

11.

13.

14.

15.

16.

17.

18.

19.

In the context of [CAT:Adjal], [CASE:acc, GEND:masc,

NUM:sg] is realized by the suffixation of /en/.

In the context of [CAT:adj, CIASS:wk], [CASE:Direct, NUM:sg] is
realized by the suffixation of /e/.

In the context of [CAT:adj, CIASS:wk], any bundle of CASE, GEND
and NUM values is realized by the suffixation of /ery.

In the context of [CAT:Adjal], [CASE:Dir, GEND:masc,

NUM:sg] is realized by the suffixation of /er/.

In the context of [CAT:Adjal], [CASE:Dir, GEND:neut, NUM:sg] is
realized by the suffixation of /es/.

In the context of [CAT:Adjal], [CASE:Dir, GEND:fem, NUM:sg] is
realized by the suffixation of /e/.

In the context of [CAT:Adjal], [GEND:masc, NUM:sg] has the same
realization as [GEND:neut].

In the context of [CAT:Adjal], [CASE:gen, GEND:neut, NUM:sg] is
realized by the suffixation of /en/.

In the context of [CAT:Adjal], [CASE:dat, GEND:neut, NUM:sg] is
realized by the suffixation of /eny.

In the context of [CAT:Adjal], [CASE:Obl, GEND:fem, NUM:sg] is
realized by the suffixation of /er/.

In the context of [CAT:Nounal], [CASE:dat, NUM:pl] is realized
by the suffixation of /ery/.

In the context of [CAT:Adjal], [NUM:pl] has the same realization
as [GEND:fem, NUM:sg].

In the context of [CAT:det], [CASE:gen, GEND:neut, NUM:sg] is
realized by the suffixation of /es/.

In the context of [CAT:Adjal, CIASS:mixed], [CASE:Dir, NUM:sg]
has the same realization as [CLASS:str].

In the context of [CAT:Adjal, CIASS:mixed], any bundle of CASE, GEN

and NUM values has the same realization as [CIASS:wk].

In the context of [CAT:noun], [CASE:gen, GEND:neut, NUM:sg] is
realized by the suffixation of /es/.

In the context of [CAT:noun], [CASE:gen, GEND:masc, NUM:sg] is
realized by the suffixation of /s/.

In the context of [CAT:noun, CIASS:wk], [CASE:nom, NUM:sg] is
realized by the suffixation of /-/.

In the context of [CAT:noun, CLASS:wk], any bundle of CASE, GEND
and NUM values is realized by the suffixation of /en/.

Appendi x_ B: The al phabet module - aliases and character pair sets

aliasgnnl [nn, adj, det])
alias(adj!,[adj, detd]

al i as(cat, [nn adj et, prep,vh]).
al i as(class, [wk,str, |nxd])

al i as(case, [nan ace, gen dat]).
alias(dir, [ncm aoc

alias(dbl, [gen, dat
alias gend Fnasc fera, neut]).
alias(num [sg, pl])
alias(sl, [alb .c,d,e,£,9,h,4,3,k,1,m,n,0,p,q,r,8,t,u,v,w,Xx,y,2, a"", ‘o
oy")-
al | asévl ,[[a, e i,o,u, "a™ oy
alias(cl,[b,c,d,f,ghj,klI,innp,qr,st,v,wx2])
al |,as§b| ,[a, 0 “].)
ias{ul,[* wh ont, wnt
alias (Zl(lé [6nr)1, dj det WK, str I nxd, i nasc, f em neut, ncm acc, gen,dat, sg;pl, I,
alias(::[é,L,é,d,e,f,g hi,j,k,l,mno0,p qr,st,uvwxyz'a'' o"
.ijlzl 3n2, 5d]]d()et vi %, stx, 1D, i nasc, f em neut rx]Maw,gm,dat sg,pl,
alias plg,’[’l, 2,3,45, 6]).
al ias(ug, T[2,4 5]
al ias(suffixnum [suffl#suffz suff4])

al i as(ognl ex, [suff 1, suff2, suff 3, su]ff4 suff5]).

chatest (X X): - definitions of ciiaracter pair sets
findalias(X sl,List).

chatest (X O: -
findalias(X,xI,Iist).

chat est (a, '”)

chat est o

chatest% fu!

chat est (O, ni

chatest(e, Q¢

chatest(u, O

chatest (m 0) .

chacheck([O al | Rest!l], [Cha2| Rest 2], [Chal | Rest1], [Cha2| Rest2]) : -
chatest (Chal , Cha2). _

chacheck([Chal | Restl] [Cha2| Rest 2], [ChaljPestl], [0, Cha2, Rest2]) : -
chatest (Chal, 0),

g e ™y .ﬁ\

these two rules are conbined into a single autonaton

- _ o -
— o —
— L —
— - — o -
- —— ~ [- - _——
e —_—— - O - i n —m ——
— O —r— -
o — O > o — P~ — —_
OO0 0000O ~NO o~ B} Oo0o0o .o _.O —
—A - - - - - - © - -\ - - - - O O - — o -
OO0 00o00O OO0 = Ooo~NOo O O o o [N
—A - - - - - - o - Iy - - - - O O - O ————
OO0 0OoW OO = Oowoo o .O O —— ———
— - - - - - - o . .« — - . e - o _ 00 < —
OO0 0OoOIO O « © o OO0 0o 10 O o> =
— - - - - L — - . — - - - -0 o0 . S5 O +d _-Od om -
L, AN tTO A A fAAA O Y = B o)
. —A - NN I c IR = T o - SN O O -
_ NN A A Tl o N o VI o\
C - -~ - = = = e - C - - - - < - < 1 .— — -
CNONTASH o Ao CN— A A O C e
D — 9 —— —— — - - - ——
— e e e - —O ~rm - S m e e m— - — — ——_————— -
= (e R—_ -— O —O— FSoooo—
LT oL_ OO cC ,n_nu_ ~ N — DO - - -
T8OV PR N=T= ﬂ oS o X
| - b e e
(D) e <3} — — —_\V — <3} [—
@ o - 2 o5 ©
o) o))
3+ - [5+] - 3+
— [q\] — o —

-~ - e———— -

. OO O —

oo o - - -1
~—— O—

DO EcanX Il

tabl e

Appendix D: FST module for phonological processing Koskenniemi-style

?- reconsult ('procedures.pl').
?- reconsult('tables.pl').
?- reconsult('alphabet.pl').

finalstate([],Statelist).

finalstate ([[Name,Table] |Tail],Statelist) :-
final (Name,Table,Statelist),
finalstate(Tail,Statelist).

final (Name, [(First| {LiStl_]] |_1,[[Name,State]|_]):-
listnum(State, List,Num),
Num is 1.

final (Name,List, [Head|Tail]) :-
final (Name, List,Tail).

move ([Wordl,Word2], [],Statelistl,Statelistl).

move ([Wordl,Word2], [Head|Tail],Statelistl,Statelist2):-
nextmove ([Wordl,Word2],Head, Statelistl, Statelist3),
move ([Wordl,Word2],Tail,Statelist3,Statelist2).

newstate (Name, States, [[Name, State] |Oldtail], [[Name,Nextstate] |Oldta:
listnum(State,States,Nextstate) .

newstate (Name, States, [Head|Oldtail], [Head|Newtail]) : =
newstate (Name,States,0ldtail,Newtail).

nextmove ([Wordl,Word2], [Name, Table],Statelistl,Statelist2) :~
member ([[Wordl,Word2] | [Statesl|_]],Table),
newstate (Name,Statesl,Statelistl,Statelist2);
member ([[Wordl,Word3] | [States2|]],Table),
check(1,Wordl,Word2,Word3, Table) ,
newstate (Name, States2,Statelistl,Statelist2);
member ([[Word4,Word2] | [States3|_]],Table),
check (2,Wordl,Word2,Word4,Table) ,
newstate (Name, States3,Statelistl,Statelist2);
findmatch (Wordl,Word2,Table,States4),
newstate (Name, States4,Statelistl,Statelist2).

findmatch (Wordl, Word2, Table, States4) : -
member ([[X,Y] | [States4|]],Table),

not(checdc(4,Wordl,Word2,Listl,'rable)),
not(dheck (3, X,Word2,List2, Table)),
not(check(4,Y,Vfordl,Listl, Table)).

check(l,Wordl,Word2,Vford3,Table) :-
findalias(Word2 ,Wbrd3,list),
ixjt(member ([[WDrdl,\Word2] |_] ,Table)),
rKDt(otheralias(l,Wordl,Wbrti2,List,'rable)) .
check(2,Wbrdl,WbrxJ2Word3Table) :-
findalias (Wbrdl,Wbrd3, List),
not(meaiiber ([[Wonil,Word2] |_],Table)),
IK3t(otheralias(2,Wbrdl,Wbrd2,List,Table)) .
checik(3,Wordl{Word2,Listl, Table) :-
menber ([[Vordl, X] |], Tabl e),
alias(X List2),
nenber (Wor d2, Li st 2),
subset (Li st 2, Listl
check(4,Wordl , Wrd2,Listl, Table) :-
mermber ([[X, Wordl]| _], Tabl e),
alias(X List2),
nmenber (Wor d2, Li st ZL,

subset (List2,Listl).
dheck(5, Wrdl , Wrd2, Tabl e): -
nenber ([[Wrdl, X] |_], Tabl e),
findal 1 as(Wrd2, X List);
menber ([[Y, Wrd2] |];Table),
findal1as(Wrdl,Y,List).

findali as&W)rdI ,Wrd2, List) :-
al i as(Wrd2, List),
nmenber (Wrdl, List).

Appendix E i: "Lexbuild" module for creating sub-lexicons

?=- reconsult ('procedures.pl').

lexlist (Lexname, List) : =
lexicon(Lexname, Iex),
lexlist2(List,Lex,Newlex),
assertlex(Lexname, Iex,Newlex) .

lexlist2([],1ex,1ex).

lexlist2 ([[Word,C]|Tail],Lex,Newlex) : =
add (Word, Lex,Nextlex,C),
lexlist2(Tail,Nextlex,Newlex) .

assertlex(Lexname,Lex,Newlex) : -
Lex = Newlex;
retract (lexicon(Lexname,l1ex)),
assert (lexicon (Lexname, Newlex)) .

add ([Head], [[Head, X,Rest1] |Rest2], [[Head, Z,Rest1] |Rest2],C) :~
X =0,

X=¢C,
Z is C;
z is [X,C].
add ([Headl1], [[Head2 |Rest1] |Rest2], [[Head2 |Rest1] |Rest3],C) : -
add ([Headl1],Rest2,Rest3,C).
add([Head|Tail], [[Head,X,Rest1] |Rest2], [[Head,X,Rest3] |Rest2],C) : -
add(Tail,Restl,Rest3,C).
add ([Headl|Tail], [[Head2 |Rest1] |Rest2], [[Head2 |Restl] |Rest3],C) : -
add([Headl|Tail],Rest2,Rest3,C).
add([Head], [], [[Head,C,[]1]1],C).
add([Head|Tail], [], [[Head,0,Rest]],C) :~
add(Tail, [],Rest,C).

writelex(Lexname) : -
lexicon(Lexname, X),
write(lexicon(Lexname,X)).

Appendix E ii: Iexicon checking module

?- reconsult('lexicon.pl').
?- reconsult('procedures.pl').

lex(Word,B,lex) :—
test (Word, 1ex,C),
member (B,C) .

test ([Head], [[Head,C,_]1]_],C).

test ([Headl], [[Head2 |Rest1] |Rest2],C) :-
test ([Headl],Rest2,C).

test ([Head|Tail], [[Head,X,Rest1] |Rest2],C) :-
test (Tail,Restl,C).

test ([Headl|Tail], [[Head2 |Rest1] |Rest2],C) :-
test ([Headl|Tail],Rest2,C).

. lextest (Lexword, Chal, Lexname, Lexname, Info, Info, Lexword) : -
findalias(Chal,xl,List).

lextest (Lexword, Chal, Lexname, Newlexname, Info,Newinfo, Newlexword) : -
conc (Lexword, [Chal],Lexword2),
lextest2 (Lexword2, Lexname, Newlexname, Info, Newinfo, Newlexword) .

lextest2 (Lexword, Lexname, Lexname, Info, Info, Lexword) : -
lexicon(Lexname,lex) ,
not (lex(ILexword, X,Lex)) .

lextest2 (Lexword, Lexname, Newlexname, Infol ,Newinfo2, []) : -
lexicon(Lexname,lex),
lex(Lexword, Info2,lex),
conc (Infol, Info2,Newinfol),
newlextest (Lexname, Newinfol ,Newinfo2, Newlexname) .

initiallex(ILexname) :-
newlextest (Lesmame, X, Y, *) .

finallex(Lexname) : -
newlextest (Lexname, X, Y, #) .

match(X,Y,2):-
X—Y,
Y = 2;
X=Y,

flrxiallas(x, L):
findalias(X, Y 11),
firdalias({X,z,12),
subset2 (L1, L2) ;
alias(X,11),

alias(z,13),
subset (11,12),
subset (L2,1L3) .

matchl(X,Y,2):-
match(X,Y,2),
not (alias(X,List)).

match2(X,Y,Z) :-
match(X,Y,2);
not (match(X,Y,2)),
match(Y,X,2).

match3 (Cat,Catl,Class,Classl,Gend,Gerd1l, Case,Casel, Num, Numl) : -
matchl (Cat,Catl,cat),
matchl (Class,Classl,class),
matchl (Gend,Gendl,gend),
matchl (Case,Casel,case),
matchl (Num, Numl, num) .

Appendi x E iii: Lexicon - containing sublexicons and rules for
00ri bi nati on ' - - : -

?- reoonsul t (! B ooedur es. E’l oF
?- reccnsul t ('al phabet . pl %)

I exioon(stem [[d, O, [[i, 0, [[e, O, [[s, [[det, str, I]],_[]]]]]]_
i, 0 [[e O [[n [[det, str, JL]], []]]]]] [e, [[i, O, [[i
[det, str, JL]], []]]]]] [g 0, [[u 0, [[t, [[adjfstr,_I]]f
1111, [r#O._ [[o, O [[s, O [[s, [[adi, str, _I'T1, [1111T1]11]
[k, 0, [[1, O, [[e, 0, [[i, 0 [[n [[adi, str, _11]; (11111111,
a, 0, [[t, 6 [[z O [[e [[noun, str, fern 6]T, [11111111, [
[r, O, [[c, O, [[h 0, [[e [[noun, str, fern 611, [1111111111]
b, 0, [[1, 0, [[L 0, [[L 0, [[i, O, [[g, [[adi, str, _1]],
111111111111 # [w O, [[a O, [[g, O, [[e O, [[n [[noun, str,
masc, 1]1, []111111111, [f, O, [[u, O, [[s, O, [[s, [[noun, str,
masc, 4]1, []1]11]1111], 0, [[& 0, [[s O, [[s, O [[e 0O [[r

L 4], [m
[[noun, str, neut, 111, [111111111111D).

lexicx>n(suffl,

| [[e. [1. {31D)-
lexioon(suff2, [[e, O, [[n, []. []11]1])-
lexioon(suff3, [[e, O, [[s, []. []11]1])-
lexicon(suff4, [[e, O, [[r, []. [1]1]11])-
lexic)n(suffs, [[e, O, [Im, [], [1111D).
lexicon(suffé, [[s, [1, [111).

newlextest (prefix, X,X,*).
nev/lextest (prefix, X, X, stem).
newlextest(stem, X, X,*) o
new|extest{stem, X, X #).
nev/lextest{stem,|~o,Newinfo ,Suffixlex)
laesmber(nn, Info)
findalias(Plg,plg,X),
loernber (Pig, I nfo),
suf fixnun(Pl g, Suffixlex),
oonc(lnfo, [pi] ,Newinfo).
newlextest(stem,liifo,Newirifo,C3gnlex) :-
ognche¢k Info Newinfio C nlex).
newlextest(Suffixnum, X, X ,#) :-
findal.ias(Suf f ixnum, suf fixnum,A).
newlextest(Suffixram,l nfo,Newinfo,C3g*ex) =
manbe (nn, | nfo),
ineacnber (pl,Info),
findalias(Suf fixnum, suf fixnum, X),
cancheck (Info, Newi nfo,l&;n__ex) .
newlextest(OgnIex XX H#) :

oy D N R R s el an= BY

menmber (Class, Info),

findalias(Gend,gend,C),

member (Gend, Info) ,

ogntestprocl (T, X, Cat, Class, Case,Gend, Num, Suffixlex) ,
not (checklex(T, X, Cat,Class,Case,Gend,Nunm)),
conc(Info, [Case,Num] ,Newinfo) .

cgntestprocl (T, X, Cat, Class, Case,Gend,Num, Lex) : -
match3 (Cat,Catl,Class,Classl,Gend,Gerdl, Case, Casel , Num, Numl)
cgntest (e, X, Catl,Classl,Casel,Gendl,Numl, Iex) ;
match3 (Cat,Catl,Class,Classl,Gend,Gendl, Case,Casel, Num, Numl)
cgntest (r,X,Catl,Classl, Casel,Gendl,Numl,1ex) .

ogntestproc2 (T, X, Cat,Class, Case,Gend, Num, ILex) : -
ogntest (T, X, Cat1,Classl,Casel,Gendl,Numl, Lex) ,
match2 (Cat,Catl,cat),
match2 (Class,Classl,class),
match2 (Gend, Gendl,gend) ,
match2 (Case,Casel,case),
match2 (Num, Numl, num) .

checklex(A,X,Cat,Class,Case,Gend, Num) : -
cgntestprocl (B, Y,Cat,Class, Case,Gend, Num, Lex) ,
X=Y,!, fail.

checklex (A, X,Cat,Class, Case,Gend, Num) : -
cgntestprocl (B, Y, Cat,Class,Case,Gend, Num, Lex) ,
X>Y.

suffixmm(3,suffl).
suffixmm(4,suffl).
suffixnum(5,suff4).
suffixmm(6,suff2).

cgntest (e, 1,ad]jl,class,acc, masc, sq,suff2) .
cogntest (e, 2,adj,wk,dir,gend, sg, suffl).
cgntest (e, 3,ad]j,wk,case,gend, num, suff2).
cgntest (e, 4,det, class,gen, neut, sg,suff3).
cgntest (e, 5,noun, class,gen, neut, sg,suff3).
cgntest (e, 6,noun, class,gen, masc, sg, suffe6) .
cgntest (e, 7, noun, wk, nom,gend, sq, #) .
cgntest (e, 8, noun, wk, case,gend, num, suff2) .
ogntest(r,9,adjl,mxd,dir,gend, sg, Lex) :~
ogntestproc2 (A, X,adjl, str,dir,gend, sg,1ex),
not(X = 9).
ogntest (r,10,adjl,mxd, case,gend, num, Lex) : -
cgntestproc2 (A, X,adjl, str,case,gend, pl, Lex) ,

cgntestproc2(AxXzadjl.class,case,neiit;sgslL ex),
not(X « 14).
ogntest(e,15,adjlsclass,gen,neiit;sgysuff2).
cgntest(ez164ad I#class#dat#neutfsg#suffS% .
cutest (e, 17,adjl, class, chl, fem,sg,suff4).
cgntest(e, 18,nounal,class,dat,ger Ki,pl,suff2).
ogntest (r,19,noun” ,class,case,gend,pl, Lex) :-
ogntestproca(A X «inal,class,c” sesf " sg,Llex) ,
not(X « 19),

Appendix F: The process module which controls the whole process

?- library(findall).

?- reconsult('lexproc.pl').
?- reconsult ('procedures.pl').
?- reconsult('alphabet.pl').
?- reconsult('fst.pl').

processbegin(Listl, List2) : -
findall ([Name, 1], table(Name, Table) ,Statelistl),
bagof ([Name, Table] , table (Name,Table) ,Tablelist),
initiallex(Lexname),
process(Listl, List2,Statelistl,Statelist2,Tablelist, ILexname, [], Info,
Newinfo) .

process([],[],Statelistl,Statelist2,Tablelist,lexname, [],Info,Newinfo) :-
finalstate(Tablelist,Statelistl),
finallex(Lexname) .

process([Charl|Stringl], [Char2|String2],Statelistl,Statelist2,Tablelist,

Iexname, Lexword, Info,Newinfo) : -

chacheck([Charl|Stringl], [Char2|String2], [Chal|Rest1], [Cha2|Rest2]),
move([Chal,Cha2],Tablelist,Statelistl,Statelist3),
lextest (Lexword, Chal, Lexname , Newlexname, Info,Newlexword) ,
process (Restl,Rest2,Statelist3,Statelist2,Tablelist,Newlexname, Newles

The following is a run of the program, giving TNe lexiCdli Lepresciiiac
and asking for the surface representation, with the current input pai
the current statelist and the current lexicon printed out at each pai
Prolog will try to find the value of the variables X, which is the
surface representation which corresponds to the lexical representatic
given, and Y, which is the suffix needed for the lexical representati
given the morphological features provided.

?- process([f,u,s,s,nn,str,masc,4,Y,nom,pl],X).

input pair = [f,f)

statelist = [[1,1],[2,1],(3,1],(4,1]]
lexicon = stem

input pair = [u,u]

statelist = ([1,1]1,([2,11,(3,1],[4,1]]
lexicon = stem

input pair = (s,s]

statelist = [[1,1],[2,1],([3,1],[4,1]]
lexicon = stem

input Qair = [s,s]

statelist = [[1,1],[2,1],([3,1],[4,1]]
lexicon = stem

input pair = [nn,0]

statelist = [[1,1],[2,1],(3,1],[4,1]]
lexicon = stem

input palr = [str,0]

statelist = [[1,1]r[21111[3r1]r[4r1]]
lexicon = stem

input Qair = [masc, 0]

statelist = [[11111[201]'(3t1]l[401]]
lexicon = stem

input pair = [4,0]

statelist = [[1,1)],[2,1],(3,4],[4,1]]
lexicon = stem

with the morphological information it has above, it finds that one
possible continuation is the -e suffix, if it is plural ...

input pair = [e,e]
statelist = [[1,3],[2,1],([3,4]},[4,1]]
lexicon = guffl

«ss. it then finds that the assumed plural feature was correct...

input pair = [pl,0]
statelist = [[1,1],(2,1],(3,4],(4,1]]
lexicon = suffl

at this point it backtracks because table 3 is in a non-final
state and the input string has ended, due to the umlaut not
being present with the plural feature. Most of the backtracking
has been cut out...

input pair - [u' Iu'l|]

statelist = [[1,1],[2,1],(3,2],[4,1]]

lexicon = stem

input pair = (s,s]

statelist = [[1,1],(2,1],(3,2],[4,1])

lexicon = stem

input pair = [s,s]

statelist = ([1,11,02,11,(3,2],[4,1]1]

lexicon = stem

input pair = [nn,0]

statelist = [[1,1],[2,1],(3,2],(4,1]]

lexicon = stem

input pair = [str,0]

statelist = (ca,13,12,11,03,2],04,1]1]

lexicon = stem

input pair = [masc,0]

statelist = [[1,1],([2,1),(3,2]),(4,1]]

lexicon = stem

input pair = (4,0]

statelist = (ra,131,02,1],13,3],(4,1]]

lexicon = suffl

input Pair = [e,e]

statelist = [[1,3],(2,1],[3,3]1,[4,1]]

lexicon = suffl

input ;?air = [pl,0]

statelist = [[1,1],[2,1],(3,1],([4,1]]

lexicon = # ~- the # indicates that the word terminates here.
All the automata are in final states, and the
lexicon system is also, so the word has been
successfully produced:

X=[£f,'u',s,s,00,0,e0] ?

Y=e?

yes

References

Gazdar,G.J.M. and G.Pullum - "Generalized Phrase Structure Grammar: A
Theoretical Synopsis", IULC, 1982.
Hammer,A.E. - "German Grammar ard Usage", Arnold, 1971.
Karttunen,L., K.Koskenniemi and R.M.Kaplan - "A Campiler for Two-leve
Phonological Rules", Xerox Palo Alto Research Paper, CSLI, 1987.
Koskenniemi,K. - "A Two-level Morphological Processor" - PhD
v ._;‘i;fL-s‘sertation, University of Helsinki, 1983.

Zwicky,A. - "How to describe Inflection" in BLS 1985.

