
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A IWo-level Morphological Processor

Lynne J. Cahill

August 1987

Sognitive Studies Research Paper
terial No: 94
he University of Sussex
Jchool of Cognitive Science

A Two-level Morphological Processor

Lynne J. Cahill

ABSTRACT

A system for the analysis and production of word forms
is described* The system is based on the two-level model
of Kimmo Kostosnniemi, with the major changes being to
his lexicon system, to allcw greater linguistic general-
izations. The lexicon system makes use of a rule system
for describing inflectional morphology proposed by
Arnold Zwicky. It incorporates aspects of both models to
give a system which can analyse word forms to give their
morphological features, or produce correctly inflected
word forms, when given the stem and features.

Introduction

Natural language processing (NIP) systems have frequently, in the

neglected the morphological aspects of language, partly because o:

preoccupation with English, vfoich has a minimal inflectional mor]

and partly because of the predominance of syntax in linguistic

The increase in work on other languages in NIP, and in theoretical

on morphology has signalled an increase in interest in cotputatioi

counts of morphology.

One of the most widely known systems for the analysis and synthe

word forms is that of Kimmo Kbskenniemi, and his system forms th<

for the model presented here* While his rule system provides a li]

ically sound, as well as cranputationally effective means for handl:

morphonology of a language, the structure of his lexicon sysi

only irotivated by the data he uses, i.e. Finnish, and not by g<

cross-linguistic phenonena. It is this aspect of Kbskenniemi fs

which is radically changed in the model presented here, to provide

icon system, and, thereby, a means of handling the morphotactics

language, which reflects linguistic facts and makes claims about •

ture of language in a way in vfriich Kbskenniemi's system does not.

The alterations to Kbskenniemi fs lexicon system are based largely

the means for describing inflectional morphology proposed by

Zwicky in his paper, lfHcw to describe inflection" (1985). In this

proposes, however, was not intended as a cxxrputational model* The model

presented here, therefore, provides a ccnputational inplementation of the

theory behind the rule system.

In the first section, we shall begin by looking briefly at Kbskenniemi's

system, followed by a more detailed exposition of the rule system pro-

posed by Zwicky. The second section will then present the aartibined

model, with an explanation of hew the rule system was implemented, and

how it was integrated into the Kbskeraiiemi-type system.

Finally, we shall consider the merits and the inadequacies of the system,

together with sane suggestions for ways in which it could be extended and

improved. Work is continuing on the system, and the model presented here

represents its state in August 1986.

Section 3.: The models of Kbskenniemi and Zwicky

Kbskenniemi's two-level model was presented as his doctoral thesis

University of Helsinki (1983). Althou^i Kbskenniemi himself de

the model as one of morphology, he uses the two-level rules, vrtii

the essence of the whole theory, as phonological or morphonologica

and it is interesting to note that in a later publication (with Ka

and Kaplan, 1987) he refers to the same rules as being phonologica

two-level rules take the form,

i +

j V 0 V

where the top rcw refers to the lexical representation, the bott

refers to the surface representation, and the rule describes a coi

dence between the lexical "ifl and the surface "j 1 1, in the given c

i.e. between two surface vowels where there is a plural mar

present. The rules can refer to correspondences which are conditi

the presence of phonological features (e.g. the vowels) or by th

enoe of morphological features (e.g. the lf+") or , as in this cas€

combination of the two.

The rules in Kbskenniemi's system are given to the system in the f

finite state automata, which are all applied in parallel. Kbskenr

at pains to stress that the rules represent correspondences a

processes, and hence that they are entirely bi-directional, a

lexicons together with continuation classes. Each continuation class is

defined simply as a set of sublexicons, an entry in any one of which may

cone after any lexical entry Which has that continuation class stored

with it in the lexicon. For example, a lexical stem may have the con-

tinuation class S123 stored with it, which together with the definition

of that class in the lexicon (S123 = SI, S2, S3), ensures that that stem

is only followed by an entry from one of those sub-lexicons (SI, S2, S3).

This type of lexicon enables Kbskenrdemi to describe the inflectional

patterns of Finnish, but, as we shall see in Section 3, we come upon

problems vrtien we look at the German system of inflection for determiners,

adjectives and nouns, which is what Zwicky bases the demonstration of his

rule system on.

It must be stressed from the start that the aim of Zwicky's paper, "How

to Describe Inflection" is only to "sketch a framework for describing

systems of inflectional morphology". Zwicky says in a footnote, "My aim

in formalization in this paper is clarity, not completeness or any en-

visaged cxanputational iirplementation. Nor do I intend the framework as

an incipient processing model." He does concede, however, that the

framework lends itself fairly naturally to sane such enterprises.

The rule system proposed by Zwicky consists of two types of rule, rules

of eaponenoe and rules of referral. A rule of exponence describes how

particular features are realised in certain contexts. For example, "in

English, in the context of [CAT: Verb], [VFOra*: Past] is realized by the

The rules are assumed to express defaults, That is, the more s

rule overrides the more general one. What this means in terms of

tual set of rules he gives, is quite easy to work out, as can be s

Section 3, but only in terms of the specific features mentioned

rules. There is no general principle, such as the number of featu

stantiated, which could apply to any rules. The decision is 1

specific.

Another important aspect of the rule formal ism is its ability to r

value-clusters and feature-clusters. A value-cluster is a g

values which a particular feature can take, such as direct case,

ring to ncminative and accusative case, as opposed to genitive and

case, which can be called oblique case. A feature-cluster is a gr

features which may have a ccxribined realization rule, such as the

CaSE/GEND/NUM in German.

A feature-cluster is related to the notion of slots which Zwic*

mentions. He suggests that in each language there is an ordered

(abstract) slots for inflectional material. What this means is th

each category or sub-category, there are certain generalization

can be made about affixation (although it must be noted, and will

cussed in more detail later, that affixation is not the only kind

flection which we want to be able to model). Zwicky defines si

saying, "Any particular rule supplies material for a specified

slots, and several distinct rules can supply material to the same

The ordering of a rule with respect to others is then governed

ordering of slots". An example of vfriat a slot is can be given from En-

glish, Where nouns have slots for plural marker and possessive marker,

for exairple, "cats1" can be divided "cat + s + ls"/ where the first "s"

is the plural marker, the " fs" is the possessive marker, and the final

"s" has been cxaitted for phonological reasons. In any case, it can be

seen that the slot for the plural marker is positioned before the slot

fro the possessive marker.

As mentioned before, the rules are assumed to express defaults, so a rule

which expresses an exception, applying only to, say, one case, is going

to be ordered before any rule which expresses a generalization. Zwicky

demonstrates his rule system with a set of rules for the German declen-

sional forms of determiners, adjectives and nouns. He specifies aliases

for category groupings,

Adjal = {adjective, determiner}

Nounal = {adjective, determiner, noun}

where a rule with the first grouping will necessarily apply before a rule

with the second, it being more specific. He also specifies the value-

clusters mentioned before,

Direct = {roainative, accusative}

Oblique « {genitive, dative}

Zwicky fs osnvention of using capital letters to distinguish aliases from

straightforward values will be used in this chapter.

Zwicky also xoentions, although not in great detail, VORs - value co-

uiar value, in zwicKyfs interpretation, a VGR taxes trie form, if

tain feature has a particular value then a certain realization ruL

not apply. Thus, Zwicky does not really use his VCRs in the same

the FCRs, since his VCRs do not say that particular features or va

features nay not be present, merely that the rule which associa*

feature or value with a morpho- or phonological realization shoi

overlooked. This subtle distinction explains Why Zwickyfs VCRs a

pily fit in the lexicon, since they refer to rules vftiich belong

lexicon, while Gazdar and Pullum's FCRs belong in the syntax, wh<

feature value assignment is defined. Zwicky gives one VCR, wh

shall look at later, when we have defined the other rules.

The declension systems for German adjectives ard determiners are g

ly divided into three classes, strong, weak and mixed. Weak decle

endings occur on adjectives vfaich follc*/ definite articles (der

das etc.); strong endings occur on determiners and adjectives w

not follow a determiner; and mixed endings (a mixture of strong an

occur on adjectives which follow an indefinite article (ein, mei

etc.). Mixed endings can be defined in terms of the other two c

as we shall see shortly.

Ihe set of weak endings can be seen in Table I, over.

As can be seen, all plural forms, and all Oblique forms take the e

-en , while all Direct singular forms, with the exception of the

tive masculine, take the ending -e . This is generally cumber

describe, but with Zwickyfs system, the set of endings, including

MASC-SG NEOT-SG FEM-SG PLURAL

NCM -e -e -e -en

ACC -en -e -e -en

GEN -en -en -en -en

DAT -en -en -en -en

Table I.

exception is acxxsunted for, with the following three rules:

1. In the context of [CATradj, CIASS:wk], [CASE:aoc, GEND:xnasc,

NUM:sg] is realized by the suffixation of /en/.

2. In the context of [CAT:adj, CLASS:wk], [CASE:Direct# NUM:sg] is

realized by the suf fixation of /e/.

3. In the context of [CAT:adj, CLASS:wk], any bundle of CASE, GEM)

and NUM values is realized by the suf fixation of /en/.

Hie first rule describes the single exception, and overrides the second,

so we are still able to make the generalization. The third rule then

describes the general default, or "elsewhere application".

The strong endings are shown in Table II, over.

Hie groupings here are obviously nowhere near as sinple to describe as

with the weak endings. To start, though, we note that the accusative

1. In the context of [CAT:Adjal], [CASE:acc, GEND:masc,

NUM:sg] is realized by the suf fixation of /en/.

MASC-SG NEUT-SG FEM-SG PIURAL

NOM -er -es -e -e

AOC -en -es -e -e

GEN -en -en -er -er

DAT -em -em -er -en

Table II.

The nominative masculine singular is also a case on its own:

4. In the context of [CAT:Adjal], [CASE:ncm, GENDimasc,

NUM:sg] is realized by the suf fixation of /er/. These rules

need to mention the class, since in cases of weak class the more s]

rules will apply, and the cat is Adjal, since this also applies to

miners.

Zwicky gives the rules for describing the rest of the strong endi]

follows:

ii. In the context of [CAT:Adjal], [CASE:aoc] has the same

realization as [CASE: nan].

5. In the context of [CAT:Adjal], [CASE:nari, GEND:neut, NUM:J

realized by the suf fixation of /es/.

realization as [GENDtneut].

8. In the context of [CAT:Adjal], [CASE:gen, GENDrneut, NUM:sg] is

realized by the suf fixation of /en/.

9. In the context of [CAT:Adjal], [CASE:dat, GEND:neut, NUMrsg] is

realized by the suf fixation of /en/.

10. In the context of [CAT:Adjal], [CftSE:Ofol, GENDrfem, N0M:sg] is

realized by the suf fixation of /er/.

iii. In the context of [CAT:Adjal], [CASErdat, NUM:pl] is realized

by the suf fixation of /en/.

12. In the context of [CAT:Adjal], [NUM:pl] has the same

realization as [GEND:fem, NUM:sg].

In fact, it would appear that rule number ii is actually unnecessary,

since all it does is refer the accusative case to the noninative, but he

has already provided us with a means of referring to the nominative and

accusative cases together, without having to define a separate rule to do

so. I therefore propose that this rule should be eliminated and all oc-

currences of nan in the above rules replaced with Dir.

The other rules are fairly straightforward, referring the masculine to

the neuter and the plural to the feminine singular, with the exception of

the ncm and ace masculine, v*iich were defined before, and the dative

plural, **iidh has a separate rule. The rules of exponence define the ac-

tual realizations for these.

13• In the context of [CAT:det], [CASE:gen, GENDmeut, NUM:sc

realized by the suffixation of /es/.

Ihe mixed declension of adjectives and determiners, as mentioned t

can be defined in terms of the others:

14. In the context of [CAT:Adjal, CTASS:mixed], [CASErDir, NC

has the same realization as [CLASS :str].

15. In the context of [CAT:Adjal, CLASSrmixed], any bundle of

GEND and NUM values has the same realization as [CLASS:wk].

So far, we have not mentioned the nouns. German nouns have two

one for plural marker and one for the CftSE/GEND/NUM marker. For e>

the word Buch (book) can be made plural by the suf fixation of -€

gether with an umlaut, giving B&cher and it can also carry a suffi>

ciated with the O^E/GEND/NUM slot, dealt with for adjectives and

miners above. In fact, there is only one possible suffix - the -JG

suffix representing the dative plural (any gender), which, after tt

nological adjustment gives us B&shern .This shows another feat

slots - they do not have to be mutually exclusive regarding the f€

they represent. It can also be seen in this case, that the NUM s

ordered before the caSE/GEM)/NUM slot. Zwidkyfs rules are fc

caSE/GEND/NUM slot only, so we shall ignore the fact, for the time

that the NUM slot has several different possible realizations (a]

we will look at this in the caittoined model).

-en for the dative plural. These few instances of suf fixation can be

easily accounted for by the rules:

17. In the context of [CM?:noun], [CASE:gen, GEND:neut, NUM:sg] is

realized by the suf fixation of /es/.

18. In the context of [CAT:noun], [CASE:gen, GEND:masc, NLM:sg] is

realized by the suf fixation of /s/.

The dative plural suffix can be handled by incorporating the category

"noun" into rule number iii above, changing it to:

11. In the context of [CaJT:Nounal], [NUM:pl] has the same

realization as [GEND:fem, NUM:sg].

There is also a class of nouns, known as weak nouns, which have almost

the same declension as weak adjectives, for which Zwicky gives the fol-

lowing rule:

v. In the context of [CAT:noun, CLASS:wk], any bundle of CASE, GEND

and NUM has the same realization as [CAT:adj].

together with the VCR we mentioned earlier, which takes the form:

vi. If a bundle contains CAT:ncun and CLASS:wk, it also contains

KJI£|(2):no.

and means that rule 2 does not apply in that situation. However, this

does not seem to tell the true story about weak nouns, since their de-

clensional pattern, according to Hammer (1971), is an -en suffix in ALL

cases except the nominative singular. This could be expressed by the

rules:

vii. In the context of [CAT:noun, dASS:wk], any bundle of CASE,

is a result of the non-application of rules, so that if no suff:

rules apply, then the bare base is what results. He does say "I c

reject the possibility that seme zero formations are stipulated b]

I am, however, assuming that the normal source for zero formations

absence of any rule providing an exponent for certain bundles.11

not clear whether the above case is one which might have a zero f oi

stipulated by rule, intuitively. It would, however, make generali;

much easier and make the rules for this particular aspect of

correspond more to the other rules described so far:

18. In the context of [GW?:noun, CLASS:wk], [CASE:ncm, NUM:s

realized by the suffixation of /-/•

19. In the context of [CAT:noun, CIASS:wk], any bundle of G

GEND anfl NUM values is realized by the suf fixation of /en/.

Hiese then are all the rules needed for the declension of German

determiners and adjectives. The full list of those given here, w

the final adjustments, is given in appendix A.

Another point which must be made about Zwickyfs rule system is th

lating to directionality. As we saw in Chapter 1, Zwicky states t]

component follows a syntactic component and precedes a phonologica:

implying that the rules apply in the production of word forms only

is also the iirpsession given by the wording of the rules. Howeve:

important aspect of the rules is that they can be seen to d<

correspondences between the realization (in this case suffixes) ai

set of features, and they can therefore, when viewed as such, be \

either direction.

The next section will now present the cxxribined model, demonstrating he

Zwicky's rule system can be integrated into the two-level irodel c

Kbskenniemi.

Section 3: The Combined Model demonstrated using German

As stated before, the model being presented here uses a aanobinat:

the model of Kbskenniemi and the rules system of Zwicky. The mod(

sists of five major modules, together with a "lexbuild" module,

constructs the lexicon initially. The other five modules are: 1.

bet, 2. Tables, 3. Fst (Finite State Transducer), 4. Lexicon, 5.

cess, which this section will describe in turn. We shall look <

module in respect of what it does, how it does it, and hew it <

from Kbskenniemifs model.

3.. Alphabet:- The alphabet module, like Kbskenniemifs, contains tl

phabet, defining the possible surface characters and the subs*

aliases, for example, the set of vowels. It also defines subsets c

morphological features, such as,

alias (case, [nom, ace, gen, dat])

vftiich defines the case features, and

alias (dir, [nom, aoc])

which defines a subset of these, the direct case, which was used :

last section. The morphological features are all self-explanatorj

nom and ace, unlike the symbols used in Kbskenniemi's model, MH

plural and so on. There is no need to use cryptic symbols, as ira

charactered objects are treated exactly the same as single charactu

it seems more sensible to use names for the features vdiich have ai

ous meaning. This makes understanding the program much easier, anc

terpretation of a word in a form southing like, "ein + nam + pi".

As well as the aliases, the alphabet module in this model also contains

definitions and procedures for checking character pair sets. In

KbstaenrderruPs model, as we saw, the character pair sets were found by the

finite state transducer module. This could also be done in this model,

by the definition of a procedure to do it in the process module, but for

the time being the concrete pair sets are sirrply defined using very sim-

ple Prolog rules, which allow every character to be paired with itself,

all morphological features to be paired with a 0 on the surface, and all

the other possible penttutations alleged by the two-level rules. It also

contains the procedures to insert a 0 in either level if there is a pos-

sibility of such a correspondence. For example, suppose there is a rule

v&iich involves the correspondence of a lexical "e" with a surface 0

(which there is in German), and we are analysing a surface form into its

lexical representation, at each point we have to consider the possibility

that there is a lexical flefl which has no surface realization. This pro-

cedure makes the overall program consider the possibility. (Of course, it

only considers the possibility in the light of the morphonological and

lexical rules.)

The list of aliases together with the procedures for checking the charac-

ter pairs can be found in Appendix B.

2. Tables:- The tables module contains the tables which represent the

ready been demonstrated amply with Finnish, English, Romanic

Japanese. It is not claimed that the two-level rules given here i

haustive for the German language, but they give a flavour of \dhat :

ing on.

The first two-level rule modelled here, and probably the most a

used, is that for umlaut on certain plural forms. Nouns in Gen

six different means of forming the plural, and are therefore divid<

six groups, marked in this model by a number feature, e.g. der Ta(

belongs to group 3 vfaich adds an -e to form the plural, die Tage,

would have in its lexical entry something like, [n, itasc, 3], to a

it is a masculine noun of group three.

It has been suggested by seme grammarians that the plural group to

a noun belongs can be determined by the gender, with some exceptioi

the number of exceptions makes it more efficient for our purposes i

store the plural group with each noun. However, there is sea

linguistically desirable about generalizations of that form, sine*

example, the vast majority of feminine nouns take an (e)n suff:

any German speaker vtfio did not know the plural group of a feminin<

would guess at this suffix, so the best situation would appear t<

have the plural groups of those that are known listed directly, J

also have, in the lexicon, rules to determine the likely plural g]

any nouns for which it is not known. For example, a rule like Z\

such as,

such as the number ot synaoies in

stem, the suffix given could be in the form of a variable which is bound

using the phonological rules, for example,

Suff e 1 neut pi
<=>

0 e 1 0 0

determines that a neuter noun ending in -el has no surface realization

of the suffix in the plural. For the current model, however, we shall

use only the listed plural groups.

Ttie first two-level rule, then, is that which matches a lexical back

vowel with a surface front vcwel, or "umlauted", and the rule can be

written:

bl vig pi

ul 0 0

vrtiere bl is an alias for back vowels, ul is an alias for umlauted vowels,

and ug is an alias for those plural groups which take an umlaut. It

therefore says that a back vowel may correspond to an umlauted vowel if

it is followed by a plural group which takes an umlaut, and a plural

marker (all morphological features come after the lexical item, so the

iworphological features associated with the stem appear after the stem it-

self, and those associated with the suffix come after it, and so on). As

it stands, this rule permits the correspondence of bade vowels in the

lexicon with surface umlauted vowels which do not match, e.g. a/6, but

this is taken care of by the alphabet module which ensures that there are

only permitted correspondences. Hie table to represent this rule needs

the alphabet:

ul , 0 0 0 =

that is, all the peiirs mentioned in the rule, the sg/O pairing tc

trast with plural, and the "anything else" pair. The table then h

bl ug pi sg =
Ul 0 0 0 =

1: 2 1 1 1 1

2. 0 3 0 0 2

3. 0 0 1 0 3

which moves to state 2 only if it encounters a bl/ul pairing and tl

can only return to the final state 1 if it encounters first a ug i

and then a plural marker* It will always encounter them in this

as the plural group marker is stored with the stem, while the

marker cones as a result of the suffix. Anything else just keeps 1

tomaton in the state it is currently in.

The other rules are to delete a surface "e" in an -en suffix if :

lows an "e", an "er" or an "ar", for example, Bauer/Bauern rathei

Baueren ; to add a surface "n" in front of -en plural suffi:

feminine nouns, for example, LehreriyifihreriiTnen rather than]

inen ; and to delete a final -um on stems when adding a plura:

suffix, for example, A]Jjurq/Alben rather than Alburry/Albumen .

Apart from the umlaut rule, the others are all phonological or si

speaking, orthographical, and it should be mentioned that phono!

rules equally as effectively as those that are phonologically condi-

tioned, with the distinction that the former depend on the values of

features on the top row, vfoile the latter depend on the values of surface

characters on the bottom rcw.

The rules mentioned above can be found with their tables in Appendix C.

2* Fst:- The Finite State Transducer is the part which most closely

resembles Kbsk^nniemi's model. For each input pair it moves every auto-

maton to the next state, according to the appropriate matching pair on

the automaton labels. Kbskenrdemifs model does not interpret the labels,

but uses an expanded version of the tables with every possible pairing

explicitly listed. This model, however, has procedures to check for ap-

plicability of labels. It therefore has to check for each input pair and

each table, that there is a label which will apply Owhich there always is

because of the =/= label in each table), and that it is the most specific

that can apply. This is not a simple procedure, since it involves

several different checks. For example, if an input pair apparently only

fits the ==/= label, the procedure naast check that there is no label which

exactly matches the input pair, then that there is no label vtfiich has one

component which exactly matches one component of the input pair and whose

other component is applicable to the other component of the input pair

(this check has to be done for both ocaonponents), and finally that there

is no other label with aliases which both fit the input pair, and vfriich

are more specific than the =/= pair.

finds it is at the end of the input string, it calls the Fst moc

check that the automata are all in a final state.

Ihe procedures in the Fst module are listed in Appendix D.

£. Lexicon:- Ihe lexicon system has three main parts: i. the It

building module, ii. the lexicon checking procedures, and iii. th*

con itself. Ihe first two of these are general procedures for the

tern, while the third is the language specific data module. Let i

at the three in turn.

i. The lexicon building procedures are similar to Kbskenniemi's.

take a list of lexical entries and the information to be stored wi1

and build labelled letter trees, as described in Kbskenniemi i

Each lexicon, or sub-lexicon, has a name, and a list of structurec

which represent the letter trees. Additional information can be ii

into the lexicon at the appropriate point after the lexical ent

volved has been added.

Ihe lexicon building procedures are listed in Appendix E.i.

ii. The lexicon checking procedures are basically similar to the]

building procedures, but instead of inserting information, they <

information, or fail if the entry is not there, or has no info]

with it. Ihey do not just check to see if a word or word part is \

in the lexicon, but also return any information vfriich is stored wi1

If a word has separate interpretations, say as a noun or verb, 1

sets of information are listed separately, and the checking prc

will return one set of information at a time.

Ihe code for this module is given in Appendix E.ii.

iii. The actual lexicon module, the data module vfaere the lexical infor-

mation for the language in question is stored, is the area where the

Zwicky rules, as described in the previous chapter, are incorporated. It

is this part of the model which most differs from Kbskenniemifs. In

Kbskenniemi's model, the lexicon itself contains only the definition of

continuation classes and the sub-lexicons. In the lexicon here, we need

to define not what the continuation classes given with each entry mean,

but the rules for the continuation classes. These rules take the name of

the current lexicon, and the information currently knewn about the word

being analysed or produced, and return the sublexicons from which the

next part of the word may cone.

In many cases this is very strai^itforward. For example, in English, if

we are in the stem lexicon and we knew that we have a noun, then we can

go to the plural suffix lexicon or the possessive suffix lexicon next.

Kbskenniemi admits that his lexicon system is limited in this aspect. He

says that his system "seems powerful enough to cover the morphotactic

structure of many languages. Only a small residue of structures ...

forces one to resort to the use of rules and features for morphotactics."

(p.27) Ihe small section of German being described here, and vfriich is

described by Zwicky, however# does fall into this category, and cannot be

continuation linkages. The set of endings which

inherits from its context in the overall structure, i.e. what, i

determiner it aamfoines with in the noun phrase. Kbskenniemi's sys

it stands could not, therefore, handle this - it would require at 1

set of rules to interpret the suffixes in the light of the syntact

formation.

The Zwicky rules, as described in the last Chapter, are easily encc

Prolog rules, although the interpretation, as with the automata]

is not so simple. In fact, Zwickyfs concept of vfriich rule is

specific than the others is actually language specific, or to I

precise, depends on the particular features being used. In the s

rules for the nour\/adj/det system of endings, the CAT and CLASS ft

are the most iirportant, and the CASE, GEND and NUM features are les

portant in determining the most specific rule. Since there are r

eralizations that one can make within this rule system vrtiich would

to any set of rules, it was decided that, for the current purpos

would be just as efficient to use simple ordering of rules so that

can only apply if there is no other rule v*iidh could also apply, wt

ordered before it.

A rule of the form:

1. In the context of [CATrAdjal], [CASE:aoc, GEND:masc,

NUM:sg] is realized by the suffixation of /en/.

is expressed in Prolog as,

ogntest(adjal,class,aoc,masc,sg,suff2).

previous section, this rule can be used in Prolog to apply in either

direction, to fill in either the features (or any subset of them) or the

lexicon. For analysis of word forms, therefore, the rule would be ap-

plied with the suffix kncwn, while in the production of word forms, the

features would be kncwn.

A rule of referral, like:

7. In the context of [CAT: Adjal], [GENDrmasc, NUM:sg] has the same

realization as [GEND:neut].

is expressed in Prolog as,

cgntest(adjal,class,case,masc,sg,Suff) :-

ogntest(adjal,class,case,neut,sg,Suff).

where "Suf f" is a variable which should be instantiated to whatever is in

that position in the rule which satisfies the second clause. In fact,

the rules are all numbered and marked with "e" or "r" to distinguish

rules of exponence from those of referral, so it would actually look more

like,

ogntest(r, 15,adjal,class,case,masc,sg,Suff) :-

ogntest(e,X,adjal,class,case,neut,sg,Suff).

This appears very simple, but in fact there is more to it, as the rules

as they stand do not knew hew to interpret the aliases. Again, we could

just write out an expanded list of rules for every permutation for all

the features, but this would mean an enormous increase in the number of

rules, and would mean abaixioning much of the theory behind the rule sys-

bv abandoning the generalizations, which are not only convenient,

matches and membership of alias lists. It is not a complex pro

and nor is the procedure to check whether there is a more specif

which fits, since the latter simply involves checking the rule nuiri

seeing if there is another rule vdiich applies, and which has

number. Of course, the procedure must be called within the rules

ferral, to interpret the second clause.

Another ooaooplication which has been overlooked above, is that ru

referral actually need to be handled even more differently, as th

like the rules of exponenoe, can be applied in parallel. Thus, ea

of referral needs a second clause which says that it is satis

there is a rule of exponence with the relevant features (as given

or if there is another rule of referral which is also satisfie

those features specified by the first. For example, in the German

given above, there are two rules of referral which may both apply

er, numbers 7 and 14 in the list in Appendix A, which refer the ma

singular to the neuter singular and the mixed class of adjectives

direct singular to the strong class respectively. The first ru

should therefore refer to the other rule, 14, in the case of the

bundle, CAT:adj, CLASS:mixed, CASErnom, GENDrmasc, NUM:sg, givi

bundle CAT:adj, CIASS:str, CASE:nom, GEND:neut, NUM:sg, vfliich mu

be matched to a rule of exponence.

It should be noted at this point, that Kbskenniemifs interpretat

Finnish morphotactics could be easily fitted to this model.

The code and sub-lexicons described above are listed in Appendix E

That cxanpletes the description of the lexicon system. Let us now look at

the final module, the process module, vfriich brings together all the other

modules described above.

!>. Process:- The process module is the section vrtiich actually gets every-

thing going. It takes the input, calls the other modules as they are

needed, and returns the output. Unlike Kbskenrdemifs model (or most oth-

er models, for that matter) it does not have separate routines for ana-

lysing and synthesizing word-forms.

To start, the process module finds all the tables, and creates a statel-

ist, which is just a list of two-element lists, the name of each table

(just a number) and its current state. It puts each table in state 1,

the initial state. It then works through the input, first calling the

alphabet module to dheck the character pair or find the possible alterna-

tives if one element has to be found, then calling the Fst module to

alter the statelist for each input pair, and calling the lexicon system

to check membership and find lexical information. It does checking of

tables and the lexicon in parallel, that is, it doesnft first find the

possible phonological correspondences for the vftiole word, and then check

the lexicon, but does it all as it goes along. Shis is very iirportant

with the system as it is at the moment, because it is required to do the

processing in both directions using the same routine. If it only used

one module at a time, it would be necessary to have different routines

for analysis and production, to do each type of processing in different

lyses the word kleines , which means "small" and is inflected

rraninative neuter singular of the weak adjective (amongst others

program will find all possible analyses, but let us just look

one). First, after it has set up the statelist, it checks the p

character pair for the first letter given, and finds that there

one possibility - k/k. It then moves each automaton to the next

for this pair, that is, it changes the state on the statelist. N

checks in all of the sub-lexicons which it knows can be initial le

to see if there is a lexical entry "k". There isn't, so it co:

with the next letter pair in the same way, again the only possibl

is 1/1, and again there is no word part in the lexicon, "kl". It <

ues in this way until it gets to the "n", by which time the word p

is looking for has grown to "klein", and it finds this in the ste

con, together with the information that it is an adjective. If th

part has not been found in the lexicon, then the "newlex" which it

look in, is always the same one it was looking in anyway, but once

been found, the lexicon rules have to be used to find vfaich lex

may go to from there. It therefore looks at the rules (from

knowing only that it is an adjective. Since most of the rules a;

adjectives, there are several which can apply and it simply tries

them in turn, until it finds one whose lexicon matches the en

have, -€s . It finds the rule,

ogntest (e, 4, adj 1, class, nom, neut, sg, suf f 3)

and assigns the value flweak" to the class, because no aliases are

[k^,e,i,n,adj,e,s,wk,rKm,neut,sg]

This case did not use any of the itorphophonological rules in the tables

but an example of a run losing the umlaut rule is shewn in Appendix G.

The code for the process module is in Appendix F.

The system as described so far has certain limitations. The final se

tion will discuss these and indicate how it is planned to remedy them.

Section Ax Concluding Remarks

The system as it stands still vises a number of sub-lexicons,

Kbskenniemi's model, most of \tfiich contain only one entry. Ihis

necessary and the system cculd be inproved by having one lexicon cc

ing stems, together with "newlextest" type rules to provide the ai

However, if we do this, it becomes impractical to retain the cc

bi-directionality in the current system. If we want to give the sj

stem and certain features for it to return the surface representati

would be necessary to derive the lexical representation, with c

fixes, before deriving the surface representation with all necessai

nological alterations. If the two processes are not being carri

simultaneously, then it is not practical to use the same routine fc

duction and analysis of word forms. Although it could still be dc

would be extremely inefficient as the routine would necessarily be

more to one direction of processing, and would be making guesses

dark when doing processing in the other direction. For example, j

routine began by checking for affixes according to the features i

about, then when analysing word forms, it would be doing this whils

ing about no features, and would therefore do a lot of needless

tracking.

Another disadvantage with having just one routine for both directic

processing, is that in the production of word forms, the system we

ation rules in the lexicon, and find air/ morphological information stored

with the stem for production as described above, it is not necessary to

constantly check vrfiether the word begins with a prefix or a stem, as the

system should know that it has been given a stem. This checking is, how-

ever, necessary in the analysis of word forms.

It is therefore proposed that there should be distinct routines for the

production and the analysis of word forms, the former talcing the stem and

features and returning the complete lexical representation before carry-

ing out the phonological processing, and the latter proceeding in a simi-

lar way to the present system.

The adaptations mentioned above would also improve the system from a

linguistic point of view, since the lexicon as proposed by Kbskenniemi

does not distinguish affixes from stems, but treats them as equal. While

this may not be important from a purely implementational point of view,

it would appear to be undesirable from a theoretical point of view, and

indeed# it is easy to envisage difficulties when trying to incorporate

the system into a larger language system, since we would want to extract

syntactic and semantic information from the stem of a word, rather than

any of its inflectional affixes.

Other problems which have not been mentioned above include other inflec-

tional processes, such as infixation and rediplication, but space prdhi-

Appendix A: The set of Zwicky-type rules for German

1. In the context of [CATrAdjal], [CASEracc, GENDrmasc,
NUM:sg] is realized by the suffixation of /en/.

2. In the context of [CATradj, CLASSrvdc], [CASE:Direct, NUMrsg] is
realized by the suf fixation of /e/.

3. In the context of [CATradj, CLASSrwk], any bundle of CASE, GEND
and NUM values is realized by the suf fixation of /en/.

4. In the context of [CATrAdjal], [CASErDir, GENDrmasc,
NUM:sg] is realized by the suf fixation of /er/.

5. In the context of [CAT:Adjal], [CASErDir, GENDrneut, NUM:sg] is
realized by the suf fixation of /es/.

6. In the context of [CKFrAdjal], [CASE:Dir, GENDrfem, NUM:sg] is
realized by the suf fixation of /e/.

7. In the context of [CATrAdjal], [GENDmasc, NUMrsg] has the same
realization as [GEND:neut].

8. In the context of [CATrAdjal], [CASErgen, GENDrneut, NUMrsg] is
realized by the suf fixation of /en/.

9. In the context of [CATrAdjal], [CASErdat, GENDrneut, NUMrsg] is
realized by the suf fixation of /em/.

10. In the context of [CATrAdjal], [CASErOfol, GENDrfem, NUMrsg] is
realized by the suf fixation of /er/.

11. In the context of [CATrNounal], [CASErdat, NUMrpl] is realized
by the suf fixation of /en/.

12. In the context of [CATrAdjal], [NUMrpl] has the sacre realization
as [GEND:fern, NUMrsg].

13. In the context of [CATrdet], [CASErgen, GENDrneut, NUMrsg] is
realized by the suf fixation of /es/.

14. In the context of [CATrAdjal, CLASSritdxed], [CASErDir, NUMrsg]
has the same realization as [CXASSrstr].

15. In the context of [CATrAdjal, CLASSrmixed], any bundle of CASE, GEN1
and NUM values has the same realization as [CLASS rwk].

16. In the context of [CATrnoun], [CASErgen, GENDrneut, NUMrsg] is
realized by the suf fixation of /es/.

17. In the context of [CATrnoun], [CASErgen, GENDrmsc, NUMrsg] is
realized by the suf fixation of /s/.

18. In the context of [CATrnoun, CLASSrwk], [CASErncm, NUMrsg] is
realized by the suf fixation of /-/•

19. In the context of [CATrnoun, CLASSrwk], any bundle of CASE, GEND
and NUM values is realized by the suf fixation of /en/.

Appendix B: The alphabet module - aliases and character pair sets

alias(nnl,[nn,adj,det]).
alias(adjl,[adj,det]).
alias (cat, [nn,adj,det,prep,vb]).
alias (class, [wk,str,inxd]) •
alias (case, [nan, ace, gen, dat]) .
alias(dir, [ncm,aoc]).
alias (dbl, [gen,dat]).
alias (gend, [masc,fera,neut]).
alias (num, [sg,pl]).

•u"1])-
alias(vl, [a,e,i,o,u, "a111, 'o111, fufl1]) •
alias(cl,[b,c,d,f,g,h,j,k,l,in,n,p,q,r,s,t,v,w,x,2]).
alias(bl, [a,o,u]) •

alias (xl, [nn,adj, det, wk,str,inxd,inasc,fem,neut,ncm,acc,gen/dat,sg/pl,l/
4,5,6]).

alias(=,[a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z/
lafff,lollf

•u111 nn,adj,det,vi?k,stx,itD^,inasc,fem,neut,rx]m^
1,2,3,4,5,6]).

alias(plg,[1,2,3,4,5,6]).
alias(ug,[2,4,5]).
alias(suffixnum, [suffl#suff2,suff4]).
alias(ognlex, [suff 1,suff2, suff3, suff4,suff5]).

chatest(X,X):- definitions of ciiaracter pair sets
findalias(X,sl,List).

chatest(X,O):-
findalias(X,xl,Iist).

chatest(a,falfl).
chatest(o, f o t n) .
chatest(u, fu I l t).
chatest(O,n).
chatest(e,O) •
chatest(u,O).
chatest (m, 0).

chacheck([Oial|Restl], [Cha2|Rest2], [Chal|Restl], [Cha2|Rest2]) :-
chatest(Chal,Cha2).

chacheck([Chal|Restl], [Cha2 |Rest2], [ChaliPestl], [0,Cha2,Rest2]) :-
chatest(Chal,0),

l a .

Ib .

e

0

e
<=>

0

a

(D

It

r

II
i U

6

0

6

0

=

n

n

pl

0

pl

0

these two rules are combined into a single automaton

table(l,[[final,[1,1,1,1,0,1,1]],
[[a,a],[2,2,2,0,0,0,0]],
[[e,e],[3,3,3,0,0,0,0]],
[[r,r],[2,3,3,0,0,0,0]],
[[6,0],[1,1,4,0,0,0,0]],
[[e,0],[0,0,0,5,0,0,0]],
[[n,n],[1,1,1,0,6,0,0]],
[[pl,0],[1,1,1,0,0,6,0]],
[[gen,0],[1,1,1,0,0,7,0]],
[[-,-],[1,1,1,0,0,0,0]],

2. 0 = - 6 - - pl

n i n 0 e n 0

table(2,[[final,[1,1,1,1,0,0,0]],
[[-,i],[2,1,1,0,0,0,0]],
[[=,e],[1,1,1,0,6,0,0]],
[[-,n],[1,3,1,0,0,7,0]],
[[6,0],[1,1,4,0,0,0,0]],
[[pl,0],[1,1,3,4,0,0,1]],
[[0,n],[0,0,0,5,0,0,0]],
[[Xl,0],[1,1,3,4,0,0,7]],
[[-,-],[1,1,1,0,0,0,0]]]).

3. bl ug pl
<=>

Ul 0 0

table(3,[[final,[1,0,0,0]],
[[bl,ul],[2,0,0,0]],
[[ug,0],[4,3,0,0]],
[[pl,0],[1,0,1,0]],
[[sg,0],[i,o,o,i]],
[[Xl,0],[1,2,3,4]],
[[-,-],[1,2,3,4]]]).

4 . u

0 0

6

0 e n

pl

0

table(4,[[final,[1,0,0,0]],
[[U,0],[2,0,0,0]],
[[m,0],[0,3,0,0]],
[[6,0],[1,0,4,0]],
[[pl,0],[1,0,0,1]],
[[sg,0],[1,0,0,0]],
[[Xl,0],[1,0,3,4]],
[[=,=],[1,0,0,4]]]).

Appendix D: FST module for phonological processing Koskenniemi-style

?- reconsult('prooedures.pl').
?- reconsult ('tables.pl •) .
?- reconsult ('alphabet.pl').

finalstate([],Statelist).
finalstate([[Name,Table] |Tail],Statelist) :-

final (Naroe,Table,Statelist),
f inalstate (Tail,Statelist).

final (Name, [[First | [List|_]] | _] , [[Name,State] |_]) :-
listnum(State,List,Num),
Num is 1.

final (Name, List, [Head | Tail]) :-
final (Name,List,Tail).

move([Wordl,Word2], [] ,Statelistl,Statelistl).
move([Wordl,Word2],[Head|Tail],Statelistl,Statelist2):

nextmove([Wordl,Word2],Head,Statelistl,Statelist3)
move([Wordl,Word2],Tail,Statelist3,Statelist2).

newstate (Name, States, [[Name,State] |01dtail], [[Name,Nextstate] |01dtai
listnum(State/States,Nextstate).

newstate (Name, States, [Head | Oldtail], [Head|Newtail]):-
newstate(Name,States,Oldtail,Newtail).

nextmove([Wordl,Word2], [Name,Table] ,Statelistl,Statelist2) :-
member([[Wordl,Word2]|[Statesl |_]],Table),
newstate(Name,Statesl,Statelistl,Statelist2);
member([[Wordl,Word3] | [States21_]],Table),
check(l,Wordl,Word2,Word3,Table),
newstate(Name,States2,Statelistl,Statelist2);
member([[Word4,Word2] | [States31_]] ,Table),
check(2,Wordl,Word2,Word4,Table),
newstate(Name,States3,Statelistl,Statelist2);
findmatch(Wordl,Word2,Table,States4),
newstate(Name,States4,Statelistl,Statelist2).

findmatch(Wordl,Word2,Table,States4) :-
member ([[X, Y] | [States41_]] ,Table),

not(checdc(4,Wordl/Word2,Listl,irable)),
not(dheck(3, X,Word2,List2, Table)),
not(check(4,Y,Vfordl,Listl,Table)).

check(l,Wordl,Word2,Vford3,Table) :-
f indalias (Word2 ,Wbrd3, l i s t) ,
ixjt(member ([[WDrdl,Word2] |_] , Table)),
rKDt(otheralias(l,Wordl,Wbrti2,List/'rable))

check(2,Wbrdl,WbrxJ2/Word3/Table) :-
f indalias (Wbrdl,Wbrd3, L i s t) ,
not(meaiiber([[Wonil,Word2] |_] ,Table)) ,
iK3t(otheralias(2,Wbrdl,Wbrd2,List/Table))

checik(3,WordlfWord2,Listl,Table) :-
member([[Wordl,X] |_] ,Table),
alias (X,List2),
member(Word2,List2),
subset(List2,Listl).

check(4/Wordl,Word2/Listl,Table) :-
member([[X,Wordl] |_] ,Table),
alias(X,List2),
member(Word2,List2),
subset(List2,Listl).

dheck(5,Wordl,Wbrd2,Table):-
member([[Wordl,X] |_] ,Table),
findalias(Word2,X,List) ;
member([[Y,Word2] |_] fTable),
findalias(Wordl,Y,List).

findalias(Wordl,Word2,List) :-
alias (Word2, List),
member (Wbrdl, List).

Appendix E i.: "Lexbuild" module for creating sub-lexicons

?- reconsult('procedures.pi1).

lexlist (Lexname, List) :-
lexicon(Lexname,Lex),
Iexlist2 (List,Lex,Newlex),
assertlex(Iaxname,ljsx,Newiex).

Iexlist2 ([], Lex, Lex).
Iexlist2 ([[Word,C] |Tail],Lex,Newlex):-

add(Word,Lex,Nextlex,C),
lexlist2(Tail,Nextlex,Newlex).

assertlex(Lexname,Lex,Newlex) :-
Lex = Newlex;
retract (lexicon (Lexname, Lex)),
assert (lexicon (Lexname,Newlex)).

add([Head], [[Head,X,Restl] |Rest2], [[Head,Z,Restl] |Rest2] ,C) :-
X - 0,
Z is C;
X = C,
Z is C;
Z is [X,C].

add([Headl], [[Head2 |Restl] |Rest2], [[Head2|Restl] |Rest3] ,C) :-
add([Headl] ,Fest2,Rest3,C).

add ([Head | Tail], [[Head,X,Restl] |Rest2], [[Head,X,Rest3] |Rest2],C) :-
add (Tail, Restl,Rest3,C).

add([Headl|Tail], [[Head2 |Restl] |Rest2], [[Head2 |Restl] |Rest3] ,C) :-
add ([Headl | Tail], Rest2, Rest3, C).

add([Head],[],[[Head,C,[]]],C).
add([Head|Tail], [], [[Head,0,Pest]] ,C) :-

add (Tail, [] ,Rest,C).

writelex(Lexname) :-
lexicon(Lexname,X),
write(lexicon(Lexname,X)).

Appendix E i i : Lexicon checking module

?- reconsult(flexicon.pl1).
?- reconsult('procedures.pl1).

lex (Word, B, Lex) :-
test (Word, Lex, C) ,
meniber(B,C) •

test([Head], [[Head,C,_J |_] ,C).
test([Headl], [[Head2|Restl] |Rest2] ,C) :-

test([Headl] ,Rest2, C).
test([Head|Tail], [[Head#X#Restl] |Rest2],C) :-

testCrail#Restl#C).
test([Headl|Tail], [[Head2 |Restl] |Rest2] #C) :-

test([Headl|Tail] ,Rest2fC).

:-
f indal ias (Chal,xl, List).

Oial,l£xr)^^ :•
, [Chal], Lexword2),

Iextest2 (Lexworti2, Lexname, Newlexname fInfofNewinfofNewlexword)

:-
lexicon(Lexnaroe,Lex),
not(lex(LexwordrX#Lex)).

lextest2(Lexword#l£xnairie#Newlexnaite#Inf :~
lexicon (Lexname, Lex),
lex(Lexwordf Info2rLex),
C3onc(Infol#Info2,Newinfol),

i

initiallex (Lexname): -

finallex (Lexname) :-
newlextest (Lexname,X,Y,#)

match(X#Y#Z):-
X = Y,
Y « Z;
X = Y,
findalias(X#Z#L);
firdalias(X#YfLl)#
findal ias (Xf Z r 12),
subset2(Ll,L2);
alias (X, II),

alias(Z,L3),
subset (KL,L2),
subset (12,13).

inatchi (X,Y,Z) : -
match(X,Y,Z),
not(al ias(X,List)) .

match2(X,Y,Z):-
match(XrYf Z) ;
not(match(X,Y,Z)),
match(Y,X,Z).

matx2h3(Cat/Catl,Class,Classl,GerKa,GerKJl,Case/<^sel,Num/Nuinl) : -
roatchl(Cat,Catl/cat),
inatchi(Class,Classl,class),
matchl(Gend,Gendl,gend),
matchl(Case,Casel, case) ,
inatchi(Num,Numl,nuin).

Appendix E iii: Lexicon - containing sublexicons and rules for
ooribination

?- reoonsult(fprooedures.pl1).
?- reccnsult(falphabet.pl1).

lexioon(stem, [[d, 0, [[i, 0, [[e, 0, [[s, [[det, str, _l]], []]]]]]
[j, 0, [[e, 0, [[n, [[det, str, JL]], []]]]]], [e, 0, [[i, 0, [[i
[[det, str, JL]], []]]]]], [g, 0, [[u, 0, [[t, [[adjf str, _i]]f
[]]]], [r# 0, [[o, 0f [[s, 0f [[s, [[adj, str, _l]], []]]]]]]]]]
[k, 0, [[1, 0, [[e, 0, [[i, 0, [[n, [[adj, str, _l]]f []]]]]]]],
[a, 0, [[t, 6, [[z, 0, [[e, [[noun, str, fern, 6]], []]]]]]]], [i
[[r, 0, [[c, 0, [[h, 0, [[e, [[noun, str, fern, 6]], []]]]]]]]]]]
[b, 0, [[i, 0, [[1, 0, [[1, 0, [[i, 0, [[g, [[adj, str, _1]],
[]]]]]]]]]]]]# [wr 0, [[a, 0, [[g, 0, [[e, 0, [[n, [[noun, str,
masc, 1]], []]]]]]]]]], [f, 0, [[u, 0, [[s, 0, [[s, [[noun, str,
masc, 4]], []]]]]]]], [m, 0, [[e, 0, [[s, 0, [[s, 0, [[e, 0, [[r
[[noun, str, neut, 1]], []]]]]]]]]]]]]).

lexicx>n(suffl, [[e, [],
Iexioon(suff2, [[e, 0, [[n, [], []]]]]).
Iexioon(suff3, [[e, 0, [[s, [], []]]]]).
Iexicon(suff4, [[e, 0, [[r, [], []]]]]).
Iexicx)n(suff5, [[e, 0, [[m, [], []]]]]).
Iexicon(suff6, [[s, [],

newlextest (prefix, X,X,*).
nev^lextest (prefix, X,X, stem).
newlextest(stem,X,X,*) •
newlextest(stem,X,X,#).
nev/lextest(stem,I^o,Newinfo,Suffixlex) :-

iaesmber(nn,Info),
findalias(Plg,plg,X),
loernber (Pig, Info) ,
suffixnum(Plg,Suffixlex),
oonc(Info, [pi] ,Newinfo).

newlextest(stem,Iiifo,Newirifo,C3gnlex) :-
g (, , g

newlextest(Suffixnum,X,X,#) :-
f indal ias (Suf f ixnum, suf f ixnum,A).

newlextest(Suffixram,Info,Newinfo,C3g^ex)
member (nn, Info),
ineacnber(pl,Info),
f indalias (Suf f ixnum, suf f ixnum, X),

i l
newlextest(Ognlex,X,X,#) :-

member(Class,Info),
finclalias (Gend, gend, C),
member (Gend, Info),
ogntestprocl(T#X,Cat,Class,Case/Gend/Num#Suffixlex),
not(checklex(T,X#Cat,Class,Case, Gend, Num)),
cone (Info, [Case,Num] ,Newinfo) •

cgntestprocl(T,X,Cat,Class,Case,Gend,Num,Lex) : -
match3 (Cat,Catl, Class, Classl,Gend,Gendl,C^ise,Casel,Num,Nuxnl)
cgntest(e,X,C&tl,Classl,Casel,Ger*il,N^ ;
match3 (Cat, Catl, Class, Classl, Gend, Gendl, Case, Casel,Num,Numl)
ogntest(r,X,Catl,C^assl,Casel,Gendl,Numl,Iex).

ogntestproc2(T,X,Cat,Class,Case,Gend,Num,Lex) :-
ogntest(T,X,Catl,Classl,Casel,Gendl,Numl,Lex),
match2 (Cat, Catl,cat),
match2 (Class, Classl, class),
match2(Gend,Gendl,gend),
match2 (Case,Casel,case),
match2(Num,Numl,num) •

checklex(A,X,Cat,Class,Case,Gend,Num) :-
cgntestprocl(B,Y,Cat,Class,Case,Gend,Num,Lex),
X = Y,!, fail,

checklex(A,X,Cat,Class,Case,Gend,Num) :-
ogntestprocl(B,Y,Cat,Class,Case,Gend,Num,Lex),
X > Y.

suffixnum(3,suffl).
suffixnum(4,suffl).
suffixnum(5,suff4).
suffixnum(6,suff2).

ogntest(e,l,adjl,class,ace,masc,sg,suff2).
ogntest(e,2,adj,wk,dir,gend,sg,suffl) •
ogntest(e,3,adj,wk,case,gend,num,suff2).
cgntest(e,4,det,class,gen,neut,sg,suff3).
ogntest(e, 5, noun, class, gen,neut,sg,suff3).
cgntest(e,6,noun,class,gen,inasc,sg,suff6).
cgntest(e,7,rK3un,wk,nojn,gend,sg,#).
cqntest(e,8,noun,vflc,case,gend,num,suff2) •
agntest(r,9,adjl,mxd,dir,gend,sg,Lsx) :-

ogntes1^rxxi2(A,X,adjl,str,dir,gend,sg,Lex),
not(X • 9).

ogntest(r,10,adjl,mxd,case,gend,num,Lex) :-
a3ntestprxx2(A,X,adjl,str,case,gend,pl,Lex)

cgntestproc2(A#X#adjl#class/case,neiit/sg#Lex),
not(X « 14).

ogntest(e,15,adjlfclass,gen,neiitfsg#suff2).
cgntest(e#16#adjl#class#dat#neutfsg#suff5) •
c u t e s t (e, 17, adjl, class, chl, fem,sg,suff4).
cgntest(e, 18,nounal,class,dat,gerKi,pl,suff2).

9,noun^ :-
ogntestproca(A#X#r«inal/class#c^se#f^^ ,
not(X « 19),

Appendix F: The process module which rontrols the whole process

?- library(findall).
?- reconsultClexproc.pl1).
?- reconsult(procedures.pi1).
?- reconsult(falphabet.pif).
?- reconsult(ffst.pl1).

prooessbegin(Idstl,List2) :-
flnaall([Nsnne#l], table (Name,Table) ,StataListl),
bagof ([Name,Table],table(Naine,Table),Tablelist),
initiallex(Iexnarae),
process (Ii^l#lJLst2 fStetelistl fStat^ist2,Tablri [] ,Info,

Newinfo).

process([], [] /Stetelistl,Statelist2/TaDlelist,Lexnainef [] ,1^0,Newinfo) :-
finalstate (Tablelist^tatelistl),
f inallex(Lexname).

process ([Chart | Stringl], [Char2 |Stri«g2] fStatelistl/Statelist2/Tablelist,
Lexnaine,Lexword,Info,Newinfo) :-

chacheck([Charl|Stringl], [Char21String2], [Qial|Restl], [Qia2|Rest2]),
iEK^e([Chal,Cha2],Tablelist,Statelistl,Statelist3),
lextest(IfiXWord,Oial,Lexnaitie,Newlexnaine,3^ ,
process (Restl, Rest2, Statelist3, Statelist2, Tablelist, Newlexname, Newlex

The following is a run of tne program, giving xm&
and asking for the surface representation, with the current input pai
the current statelist and the current lexicon printed out at each pai
Prolog will try to find the value of the variables X, which is the
surface representation vftiich corresponds to the lexical representation
given, and Y, which is the suffix needed for the lexical representati
given the inorphological features provided.

?- process([f^^^^nn^stx^inasc,4#Y#nom#pl]#X).

input pair « [f ,f]
statelist = [[1,1],[2,1],[3,1],[4,1]]
lexicon = stem

input pair = [u,u]
statelist = [[1,1],[2,1],[3,1],[4,1]]
lexicon = stem

input pair « [s,s]
statelist - [[1,1],[2,1],[3,1],[4,1]]
lexicon = stem

irpit pair = [s,s]
statelist - [[1,1],[2,1],[3,1],[4,1]]
lexicon = stem

input pair = [nn,O]
statelist - [[1,1],[2,1],[3,1],[4,1]]
lexicon = stem

input pair = [str,O]
statelist - [[1,1],[2,1],[3,1],[4,1]]
lexicon = stem

iiput pair = [inasc,O]
statelist = [[1,1],[2,1],[3,1],[4,1]]
lexicon = stem

input pair = [4,0]
statelist - [[1,1],[2,1],[3,4],[4,1]]
lexicon = stem

with the morphological information it has above, it finds that one
possible continuation is the -e suffix, if it is plural ...

input pair = [e,e]
statelist = [[1,3],[2,1],[3,4],[4,1]]
lexioon « suf f1

•... it then finds that the assumed plural feature was correct...

input pair = [pl,O]
statelist = [[1,1],[2,1],[3,4],[4,1]]
lexicon = suff1

at this point it backtracks because table 3 is in a non-final
state and the input string has ended, due to the umlaut not
being present with the plural feature. Most of the bacictracking
has been cut out...

input pair = [u, tult•]
statelist = [[1,1],[2,1],[3,2],[4,1]]
lexicon = stem

input pair = [s,s]
statelist = [[1,1],[2,1],[3,2],[4,1]]
lexicon = stem

input pair = [s,s]
statelist = [[1,1],[2,1],[3,2],[4,1]]
lexicon = stem

input pair = [nn,O]
statelist - [[1,1],[2,1],[3,2],[4,1]]
lexicon = stem

input pair = [str,O]
statelist = [[1,1],[2,1],[3,2],[4,1]]
lexicon = stem

input pair = [masc,O]
statelist - [[1,1],[2,1],[3,2],[4,1]]
lexicon == stem

pair = [4,0]
statelist - [[1,1],[2,1],[3,3],[4,1]]
lexicon = suff1

input pair = [e,e]
statelist « [[1,3],[2,1],[3,3],[4,1]]
lexicon = suff1

input pair = [pl,0]
statelist = [[1,1],[2,1],[3,1],[4,1]]
lexicon = # - the # indicates that the word termnates here.

All the automata are in final states, and the
lexicon system is also, so the word has been
successfully produced:

X = [f, lulll,s,s,0,0,0,e,0] ?
Y = e ?
yes

References

Gazdar,G.J.M. and G.Pullum - "Generalized Hbrase Structure Grammar: A

Iheoretical Synopsis", IULC, 1982.

Hammer,A.E. - "German Grammar and Usage", Arnold, 1971.

Karttunen,L., K.Koskenniemi and R.M.Kaplan - "A Compiler for Two-leve!

Phonological Rules", Xerox Palo Alto Research Paper, CSU, 1987.

Kbskenniemi,K. - "A Two-level Morphological Processor" - PhD

dissertation, University of Helsinki, 1983.

Zwicky,A. - "How to describe Inflection" in BIS 1985.

