
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

TYPES, MODULARISATION AND ABSTRACTION
IN LOGIC PROGRAMMING

George Dayantis
June 1987

p

Cognitive Studies Prograinme

Serial No. CSRP. 089
The University of Sussex,School of Cognitive Sciences•

TYPES, MODULARISATION AND ABSTRACTION IN LOGIC PROGRAMMING

George Dayantis

ABSTRACT

Although the concepts of typing, modularisation and data abstraction have already

proved their usefulness in modern programming languages, bgic programming does

not seem to have paid enough attention to them. A simple and efficient way that

these ideas can be realised in a bgic programming framework, which also remains

within the spirit of bgic programming, is proposed here. A polymorphic type system

with subtypes forms the basis for modular structure, which also supports object-

oriented programming. The ideas are presented as an extension to PROLOG, which is

taken as a practical representative of logic programming. Additionally, they have been

implemented in a skeleton language on top of standard Probg.

June 1987

TYPES, MODULARISATION AND ABSTRACTION IN LOGIC PROGRAMMING

L INTRODUCTION

Logic programming has been an attempt to offer a solution to the software crisis. By

making a clear separation between bgic and control and by offering both simple declarative and

operational semantics, it greatly simplifies software production. Logic programs are easier to

understafid. modify and reason about due to their declarative reading based on some familiar

bgic. Thus far, bgic programming has given rise to a practical tool, the programming language

PROLOG, winch is based on the Horn clause subset of first-order bgic. Despite its apparent

restricted expressive power and its controversial 'impure' features, PROLOG has become very

popular and has already been used for large applications - especially in A.I. for the implementa-

tion of expert systems. In such applications a serious deficiency of PROLOG becomes evident,

namely, its lack of a) any typing facilities, which is a source of errors that are difficult to detect

and b) any structure-imposing mechanisms, wilich renders large programs unmanageable.

Thus, it seems that the bgic programming school has virtually ignored all the main advances in

conventional software devebpment tools.

Drawing experience from the lessons learned from conventional software tools one real-

ises that if PROLOG or any of its successors is to be successful as a tool for serious software

devebpment it has to somehow support the concepts of typing, modularisation and data

abstraction without of course, seriously upsetting the principles of bgic programming. This

has only lately been realised by various researchers, who have considered the possibilities and

advantages of incorporating such features into a bgic programming language. Apart from

MPROLOG [Domolki & Szeredi 1983], whose 'modules' simply offer syntactic structuring, it is

worth mentioning the influential work of Goguen et al with EQLOG [Goguen & Meseguer

1984] - a language combining all the features of OBJ with functional and Horn-bgic program-

ming -, the Japanese response with Himiko [Furukawa, Nakajima & Yonezawa 1983], Zaniob's

object-oriented extension to PROLOG [Zaniob 1984] and the most recent proposal to 'dress'

PROLOG with ML's module system [Sanella & Wallen 1987].

A rather different simple and efficient way of incorporating the features of modularisa-

tion, parameterization and data abstraction in a bgic programming language like PROLOG is

proposed here. The basis of the proposal is the notion of 'type', so a polymorphic type system

with subtypes for PROLOG is studied separately in the folbwing section, while the central

notion of a 'module* and its features are detailed in section 3. Implementation issues are dis-

cussed in section 4 and a discussion and comparison with relevant \sork follows in section 5.

2 A POLYMORPHIC TVPE SYSTEM FOR PROLOG

Based on an untyped bgic. PROLOG is naturally an untyped language. We can see it as

having a single type - the term. This allows for much flexibility and is useful for fast prototyp-

ing. However, this is also a deficiency \dien using PROLOG for building laî ge systems, since

type errors can be detected only at run-time. An indication of how undesirable this can be is

given by the traditional definition of the append relation, which is intended to have meaning

only with lists for its arguments but from which append({J,l,l) can be deduced. Additionally,

and as far as reasoning about bgic programs is concerned, an axiomatisation and explicit use of

data types in bgic - as firstly proposed in [Clark & Tamlund 1977] - has been proved invaluable

(see also [Dayantis 1987]). On the other hand, the incorporation into bgic programs of explicit

(run-time) type information in the form of predicates generally leads to bnger and more com-

plicated proofs and deductions (see [Walther 1983]).

The need for a type system for Probg has been realised by various researchers leading to

diverse proposals [My:roft & O'Keefe 1983, Mishra 1984]. The question is: can we supply

PROLOG with a type system without seriously upsetting the principles of the language? And

the answr is yes. From the theoretical point *c simply need a shift to many-sorted bgic (or

even better order-sorted bgic). From the implementation point ws only need an enhancement

of the compiler with a typechecker. Finally from the user's point ue require a type discipline -

the user needs to decide and define the types for his predicates.

The type system proposed here is an extension of the one reported in [My:roft &

O'Keefe 1983]. It is presented informally in the folbwing two subsections, v*£iile section 2.3

deals with typechecking. A grammar for the type expression sublanguage and formal syntax

and semi-formal semantics for the type definitions are given in the Appendix.

2. L Types as sets.

The notion of a type or sort should be familiar to programmers. Intuitively, a type can be

understood as a set of values; in our case as a subset of the Herbrand Universe. The phrase

(l) In [SmoDuL 1986] it is show* how the semantic and deductive methods devebped for untyped logic generalise

t> oider-sorted Horn bgic

having a type or being of a type is then interpreted as membership in the appropriate set and is

denoted by V:T (V is of type T). Thus, in order to define a type we can use the same techniques

as for a set i.e. by enumeration of its elements and/or by the use of predicates. For example,

we could think of defining the familiar type of lists as: " type list(T) iff [] I {Tiist(T)T. Without

insisting on the syntax, we interpret this type definition as: "a term is a list of T s iff it is the

empty list ([]) or of the form [XR], where X is of type T and R is again a list of Ti.

This is an inductive definition of the enumeration kind The alternative term structures

([Lljj) used in such a type definition will be referred to as subpatterns, while the set of all

subpetlerns will make up a pattern. Furthermore, in this example, the notions of a generic type

and polymorphism are introduced The variable T is a type variable, that can stand for any type.

So with a single (generic) definition we define a family of types - lists of anything. By instantiat-

ing T with a specific type, say integer, we get lists of integers and so on. Notice that the term '[]'

has more than one type - type polymorphism.

In order to see how predicates can be used for defining types, first notice that any

(untyped) predicate implicitly specifies types for its respective arguments - the sets of values

that satisfy it A simple example would then be the definition of the familiar type of integers,

vAiich is built-in in Prolog : " type integer iff (Xiany with integeriX)) I (XI,integer + XZdnteger) I

(Xldnteger * XZdnteger) I....". This reads: "anything that satisfies the unary predicate integer or

is a sum of integers or a product of integers or ... is of type integer*.

The type any is the union of all types, the Herbrand Universe, and its role here will be clarified

later.

Consider also the generic type of all lists with a specific length:

" type Ust(TtNdnteger) iffL:list(T) with lengthiLJV):.

Notice that apart from type variables, value variables - variables that stand for terms, such as N

and L in the above example - are also allov^d in a type definition. Such variables can also be

annotated with their types.

Any defined predicate or conjunction of these can be used after a with keyword with the obvi-

ous restriction that no new variables are introduced

The reason, of course, for structuring our universe in this way is that we may restrict the

arguments of all defined relations to range over specific types. Thus, we may add declarations of

the form :
9 nlsappend(list(T)tlist(T)Mst(T)).\ * rels length(list(T),integer).*,

before the actual definition of the relations involved Such declarations will be referred to as

relation declarations. What this effectively means is that we accept partially defined relations.

For example, a PROLOG variable as an argument of a relation is understood to range over the

whole domain (can match anything at all), while if the relation is declared to be defined only

for arguments of a specific type then any attempt to match with terms that are not of this type

will fail The essential point is that such a match will not even be attempted (at run-time),

since the burden of typechecking can be placed at compile-time.

2.2. Subtypes.

We can now impose some more structure in our typed Universe by considering the rela-

tionships between different types. Two types can either be disjoint or have a common subset

The most interesting relation between types is the subtype relation; that is, when a type is a sub-

set of another type. Under this set inclusion relation (denoted by <) the set of all types forms

a lattice, wfoose top element is the tjpe any and the bottom one is the empty set Thus, if V:T1

and TKT2 then V:T2. From this follows the property that makes this relation interesting: any

relation defined over a type T2 works for members of any subtype 77.

It is obvious now that any type is a subtype of any and also that Ust(TtN) < Ust(T) for all

types T and integers N.

Another way of inducing a subtype relation is introduced by allowing a kind of equality between

subpatterns of different types. For example, if we wished to give a different representation to

lists of a specific length, say as a pair of a list and an integer (its length), we could define:

" type UstfTtN.inte^r) iff (Ufl) as []\ (([(XTHLtUsttfttJjH) with length([XL}tN)) as /ALL/.

This definition still implies that UstfTJ,) < list(T). That means that despite the different exter-

nal representation we still want these objects (of the new type) to be regarded as lists and have

all the operations (relations) on lists available for them. Of course, this 'equality* between sub-

patterns should encompass the whole pattern of the type definition in order to induce a subtype

relation. Furthermore, this can be extended to accommodate 'equality* of a subpattern with

more than one subpatterns (of different types), thus allowing a type to be a subtype of more

than one disjoint type {multiple inheritance).

The subtype relation can also be used to restrict a type variable-parameter in a type

definition. For example, if we wished to define just lists of anything whose type is a subtype of

integers, we could simply use :

" type intJistfKinteger) iff II\ lTmtJst(T)L\

Under this definition the expression intjxst(real) would not be a legal type.

Although subtypes introduce some extra complication in typechecking. as v>e shall see in

the following subsection, they also provide more expressive power and support for the basic

concept of inheritance in object-oriented programming.

Z3. Typechecking.

Typechecking a logic program, with respect to the relation declarations given for it, con-

sists of ensuring that all relations are used with the correct type and any answer-substitution

uill return the correct type. The notion of a well-typing for a program is formalised in a manner

similar to [Mysroft & O'Keefe 1983]. Hov^ver. in our case some run-time concepts need to be

incorporated in order to cope with subtypes. Additionally, this formalisation ignores predicate

constraints (introduced with with), since they cannot be taken into account at compile-time.

The way these are handled is explained in section 4.

A simple example should be sufficient to illustrate the problem introduced with subtypes.

Assume the declarations: " rels PI(integer),1* and " rels P2(real)*, where integer < real, and the

single clause: *P1(X) >• P2(X)\ Do we want this to be welt-typed ? Notice that if Pi is called

v»ith X instantiated (to an integer) then computation can safely proceed, but if it is called with

X uninstantiated then there is the danger that P2(X) may succeed and return a real (non-

integer) value for X which violates the type-restrictions for PL Thus, we need to carefully res-

trict the notion of a well-typing, taking into account the instantiation states of shared variables,

when a conflict between subtypes occurs. Although this may seem to result in the loss of the

full power of the logical variable, this pov^er is not really required in the cases where such res-

trictions have to be imposed

Due to the fact that in a PROLOG program all variables are local to a clause \ke have : A

logic program (set of clauses) is well-typed iff each of its clauses is well-typed.

A clause is well-typed iff it is well-typed under all different allowable calling modes. So, we now

need to define the well-typing of a clause with respect to a particular calling mode.

Let Q be a clause or a goal PT an association of extended types to all the predicates in Q and

of extended types to all the terms in Q and VT an association of type/literal pairs to all the vari-

ables appearing in Q. Each variable in Q is associated with a) an instance of its expected type in

the literal where it gets most instantiated - after successful execution for the chosen calling

mode - and b) the literal itself ; if it doesn't get instantiated at all we assume a dummy literal

lit.

For each predicate a of arity k in Q, PT will contain an element of the form aft i*~-tu)-

For each functor/of arity k inQ. FT will contain an element of the fonn jti^..,ty):L

For each variable Xin Q, VT will contain an element of the form X.tj/P.

DEFINITION: // VT, FT and Q are as above, we say that VTisa well-typing ofQ under FT. and

denote it by VT/PT V Q. iff:

Q - BQ <- Bj. B^.-, Bm (where m* 0 if no body)

BQ « p(aj. a)̂ (where fc* 0 if no argiiments)

C ^) E PT

VT/PT \-Q (a-: tj) (i« l....k) and

VT/PT K. B. (i~ 1 m)

or

Q Xi D T5 ftw/i

i3^ , O/s..»«. D ano

VT/PT *-. B. (i- 1 m)

where:

VT/PT k A (A is an atom in the body of a clause) iff

A « p(aj. a-̂) (where k« 0 if no arguments)

Ktj ^) E PT

VT/PT l-j (aj: Sj) (i- l.....k) and

Ks?) •» tj. i« l.....k. for some substitution r.

VT/PT k (u : s) (u is a term) iff

u «• f(aj. ap (wfcere k« 0 if u is a constant)

f(tj t ^ t E PT and

VT/PT l-j (a. : s.) (i- 1 k) and

Ks.) « tj. i« 1 k. and r(s) -» t

for some substitution r.

VT/PT k(X : t) (X is a variable) iff

(X : t / l i t) E V T or

(X r t / B ^ E V T or

(X : s / B.) E VT (i - / - j) and s < t / /

A desirable property we would expect from a well-typing is that in a >*ell- typed program

no predicate can ever be called with the 'wrong' type or return a term of the 'wrong' type in

one of its arguments (soundness). Since the only computation (inference) rule used to execute

logic programs is SLD-resolution. we effectively need to prove that SLD-resolution preserves

wellrtyping. More specifically we prove the following:

THEOREM: (Soundness of well-typing)

If R « • Aj, ->tAn is a well-typed resolvent (goal) and

Q - BQ <- Bj, ..., Bm a v>ell-typed clause,

soch that there exists a substitution ri*= MGU(BQ,AJ)

then the resolvent Rl - rl(Bj B^Aj,....»An) is also well-typed.

PROOF: Here *̂e ignore the polymorphic aspect of the typing, which has already been tackled

in [Mycroft & O'Keefe 1983], and concentrate on the problem with subtypes, which is orthogo-

nal to polymorphism.

We can assume that R and Q have no variables in common (if they have we can standardise

them apart by renaming).

Let FT be the basis for all typings of R and Q (associates extended tĵ pes to all their literals and

functors used).

We can also assume that the elements of FT have no (type) variables in common (if they have

\ke can standardise them apart by renaming).

By our assumptions there exist typings VT1, VT2. such that

VTIJPTVR and VT2/PTVQ.

Consider the typing:

VT- {X:t/P twhenXisavaricd>leand(X:t/P)Erl(VTlU VT2) }

From this we shall construct a well-typing VT' for Rl (VT%/ET V Rl).

For every variable X in VT1 do (assume X E a. and X:t/PE VT1):

a) if Xunifies with a term Fin c then

1) if P - Al then leave as it is;

2) otherwise {P « Ak for some kt 2 - <fc» <n) for every variable Y in F substitute Y:s/Pl by

YxllAk in VT. v&ere si is the type inferred for Y in Ak.

In both cases the well-typing of Rl is preserved.

b) if Xunifies with a variable Y in c (assume Z» rl(Xh rl(Y)) and Y:s/Pl E VT2) then

1) if P- Aj then delete Zt/P from VT (and leave Z:stPl in VT);

2) otherwise delete Zis/Pl (and leave ZA/P) from VT.

In both cases the well-typing of Rl is preserved.

c) if Xdoes not unify with anything (is part of a term that unifies with a variable Y in c/. such

that VT2/PT V Y:sJPl) then

1) if P** Aj then delete Xt/P from VT and add XtllPl, where tl is the type inferred for X in

PI:

2) otherwise leave as it is.

In both cases the well-typing of Rl is preserved

The cases are exhaustive and the resulting VT1 will clearly be a welt-typing for RL

Q.E.D.

The implementation of the typechecking algorithm, which is an extension to the one

described in [Mycroft & O'Keefe 1983], is discussed in section 4. It should be noted that most

of the typechecking can still be performed at compile-time and so we can have the confidence

that 'well-typed programs do not go wrong*. Obviously, a type system like the one described

here can be useful even in its own right Let us now see how this type scheme blends with our

ideas for modularity and abstraction.

3. PARAMETERISED MODULES AND DATA ABSTRACTION

A PROLOG program is just a series of clauses. This 'flatness' of PROLOG renders lai^e

programs unmanageable. Of course, the disciplined programmer can impose some structure via

clause clustering and commenting. But even simple grouping facilities, such as those offered by

MPROLOG [Domolki & Szeredi 1983]. do not offer much in the way of data abstraction. Here

modularity is introduced via the meta-logical notion of a module.

In a similar way that the notion of a type structures a universe of values the notion of a

module structures a universe of clauses. Semantically a module is something like an abstract

data type. It generally consists of a signature part and a set of standard Prolog clauses. A module

definition in its complete form centres around a single type definition, which is the main com-

ponent of the signature. The set of clauses defines all relevant predicates for manipulating this

type. Ideally the defined type and its associated relations constitute a conceptual unit

The syntax should be easily conveyed from the examples presented in the figures bebw,

syntax keywords are underlined and. following the Prolog convention, variable names

begin with a capital letter. Formal syntax and semantics for modules is given in the appendix.

The signature part in its complete form consists of:

(a) The module's name including its parameters, which are enclosed in brackets and separated

by \\ It follow the module keyword.

(b) Names of previously defined modules that this module uses (parent modules). They fol-

low the using keyword and are separated by the and keyword.

(c) At most one type definition - where the name of the defined, type always coincides with

the module-name. It folbws the pattern keyword.

(d) The names and arities of the predicate subpattern constructors - one for each subpattern.

They follow the oonstr keyword and are separated by bars (0.

(e) For each relation defined in the module a relation declaration - declaring the intended

types for the arguments of the relation. They follow the rels keyword and are separated

by commas (.).

In figure 1 bebw a simple module is presented defining the familiar generic data type

queue with only two relations on it, followed by an enrichment of it with a further relation (dr-

adar queue).

In figure 2, two modules representing related geometrical objects are presented, an example

often used in object-oriented languages.

module queue(Elm)

pattern empty I q(Elm,queue(Elm))

oonstr emptjq/11 addq/3

mis read(ctElm), dequeue(ctct).

clauses

iead(q(E,empty),E).

iead(q(El,q(E2,Q)).E) :- read(q(E2.Q),E).

dequeue(q(E,empty) .empty).

dequeue(q(El.q(E2.Q)),q(El.Ql)) :- dequeue(q(E2.Q).Ql).

endmodule.

module cqueue(Elm) using queue(Elm)

rels circukte(queue(Elm),queue(Elm)).

douses

ciiculate(Eq,Eq) :- emptjq(Eq).

circulate(Ql.Q2) :- read(Ql,E). dequeue(Ql.Q). addq(E,Q,Q2).

endmodule.

Rgure 1

Notes:

(1) The module-name identifier together v/ith the number of its parameters uniquely

identifies a module.

(2) The signature part is all one Prolog 'line' (or term); thus, a Y should be placed only at

the end of it and one after 'endmodule'. This also means that all variables in the signa-

ture axe shared.

(3) In the relation declaration the special constant *ct* is a shorthand for the current type - in

the above example *ct« queue(Elm)'.

(4) The semantics of the type definition: " module <modname> pattern <pattern>" is as

given in the appendix for the syntax: " type <modnarne> iff <pattern>*.

module parallelogram

pattern p(Sl:realS2:real.H:real) with SI - < S2, H - < SI

constr makeparal/4

rels perimeter(ct,real). area(ctreal).

clauses

perimetei(p(Sl.S2.H).N) :- N is 2*(S1+ S2).

aiea(p(Sl.S2.H).N) :- N is H*S2.

endmodule.

pattern sq(S:real) as makeparal(S,S,S)

oonstr makesq/2.

endmodule.

(5) Each pattern is known only inside the module in which it is defined. Access of this pat-

tern from another module is possible only via the constructors, the names of which are

given in the 'constr' declaration. In view of this, notice in square's pattern how a subpat-

tem equality (subtype relation) has to be denoted now: instead of writing " pattern

sqiSreal) as p(SJS,S)* we use the parallelogram constructor with its last argument missing

(treating it as a function). In this way, since a pattern actually provides a data representa-

tion, we ensure representation independence and facilitate data abstraction.

(6) It is meaningful to have a module without a) a pattern declaration - when it simply

enriches a previous module with more relations (fig.l), b) a 'constr' declaration - when

we are not interested in accessing a pattern from outside its module, c) any clauses; there-

fore no 'rels'-part either (fig.2).

A program now consists of a series of interdependent modules, which can be thought of

as comprising an acyclic graph. We assume the existence of a built-in wot module at the root of

this graph containing all the built-in types (boolean,integer,reallist) and Prolog predicates. We

could also provide - without much trouble - some library managing facilities for modules.

As for query evaluation, since the same relation name can be present in different and

independent modules - with different meaning - a query evaluation makes sense only with

respect to the environment of a specific module. A module's environment consists of the

module itself together with the environments of its parents.

In figure 3 below a richer example of program development using modules is presented. It

is the famous N-queens problem, for which a naive solution is given. The algorithm used

roughly works as follows: Start with an empty board. Assume an ordering of the board's squares

from left to right and top to bottom. (1) Place the next queen at the next untried square of the

next free column. (2) If this results in conflict advance it one square in the same column and

continue with (2) until either a safe position is reached, in which case continue from (l) or the

bottom of the column is reached, in wilich case backtrack and proceed from (2) with the previ-

ously placed queen. The algorithm terminates either when all queens have been placed in a

safe confiLguration or all possible configurations have been tried and failed.

Notice that when a queen is 'placed' outside the board (an ill-typed position) computation does

not terminate, but backtracking occurs, while a warning is also issued in case this violation was

not intended.

The N-Queens Problem

module absutil

reh absdiff(real,real,real).

douses

absdiff(Nl.N2,N) :- (Nl > N2. !, N is Nl - N2) ; N is N2 - Nl .

endmodule.

module queens(N:integer) using absutil

pattern queen(Nl:integer,N2:integer) with 1 - < Nl. Nl - < N, 1 « < N2, N2 « < N

constr makequeen/3

reb attacks(ctct).

douses

attacks(queen(Nl.N2).queen(Ml.M2)) :-Nl - Ml ; N2 - M2 ;

(absdiff(Ml.Nl.D). !. absdiff(M2.N2,D)).

endmodule.

module boaxd(N:integer) using queens(N)

pattern empty I (queens(N) * boaid(N))

constr emptyb/11 addqueen/3

pels addcolumn(ctct), movero\/ctct), badboard(ct).

douses

addcolumn(empty,(Q*empty)) :-makequeen(l,l.Q).

addcolumn((Ql*X).(Q2*Ql*X)) :-makequeen(N.M.Ql). Ml is M+ 1, makequeen(l,Ml.Q2).

moverow<(Ql*X).(Q2*X)) :- makequeen(N,M,Ql), Nl is N+ 1. makequeen(Nl.M,Q2).

badboaid(Ql*(Q2*X)) :- attacks(Ql,Q2) ; badboard(Ql*X).

endmodule.

module solvequeens(N:integer) using board(N)

mis solve(boaid(N)). solve(board(N).boaixi(N)). solvel(boairi(N).board(N)).

clauses'

solve(X) :- emptyb(E)» solve(E.X).

solve(X.Y) :-addcolumn(X,Yl), ((badboard(Yl), !, solvel(Yl,Y)) ; solve(Yl.Y)).

solve(X,X).

solvel(X.Y) r-movero^X^Yl). ((badboard(Yl). \, solvel(Yl.Y)) ; solve(Yl,Y)).

solvel(X.Y) :-addqueen(Q,Xl,X). solvel(Xl,Y).

endmodule.

Query for the 8-queens problem : ?- solve(X) in solvequeens(8).

Ansv̂ er: X - queen(4,8) * queen(2,7) * queen(7.6) * queen(3.5) *

queen(6t4) * queen(8,3) * queen(5,2) * queen(l,l) * empty

Rgure 3

4 IMPLEMENTATION

41 . Typecheckirg.

A typechecking algorithm for the polymorphic type system v̂ ith subtypes, vAich v/as

described in section 2. has been implemented in Prolog. The implementation is an extension to

the one described in [Mycroft & O'Keefe 1983] and it is only these extensions, namely the

handling of subtypes and *with* constraints, that are discussed here.

In an abstract setting the typechecker's task is to determine a VT given FT (see 2.3) for

every clause in the program. Naively, this can be achieved by inferring independently for each

literal in the clause a set of 'Variable:Type* associations for all the variables in the literal and

then reconciling the suggested types for all shared (common) variables between tv*> or more

literals.

It should be obvious from the well-typing theorem that vAen a subtype-conflict occurs

this tjpe-reconciliation cannot be done (at compile-time), since the notion of instantiation

states for variables is involved Of course, one could incorporate typechecking into unification

(run-time), thus resulting in a much slov^r interpreter. On the other extreme, one could con-

ceivabty attempt to determine at compile-time all possible allowable instantiation states for any

so conflicting variables in the program. This vwsuld either require the user to supply some mode

information or the system to infer it alL In any case such information would have to be in

many cases tediously detailed to be of practical use. A third alternative has been chosen here,

v&ich performs as much static typechecking as possible and traps unresolved subtype-conflicts

during execution, but without touching unification. How is this done?

When V*o consecutive appearances of a variable occur in tv*> literals with respective assigned

types tl and t2t such that tl<t2 or t2<tl, then an extra (system-defined) literal is inserted

between them, which will test whether the concerned variable is appropriately instantiated or

uninstantiated (as required for the well-typing) when computation passes that point If the test

fails it will abort with a special type-failure message.

In this way, even though one cannot be sure that a successfully compiled program is

correctly typed for different possible modes of execution, any type failure due to incorrect

modte-usage will be captured and reported at run-time. Additionally, this trap does not require

any modification to the interpreter.

As we stressed in section 2.2 the advantage of introducing subtypes is that relations

defined over supertypes v»ork for subtypes as wlL How can this be made possible?

For example, the square *sq(l)' passed as an argument to perimeter (see section 3. figure 2)

simply won't work. There are a number of messy and inefficient solutions to the problem, but

fortunately there is at least one, wiiich is elegant, efficient and also provides a solution for the

'with' constraints. This is presented below.

With each subpattern of a type definition v« associate a constructor predicate. These are

the same as the constructor predicates that are mostly supplied by the user in the module system

described in section 3. For each such predicate name, the system defines a type-accessing

relation, e.g. for the example in fig.l it asserts:
memptyq(empty).m. maddq(EtQ4(E,Q))"; and for the one in fig.2 :
mmakepamL(SltS2JStp(SltS2iH)) :- (SI « < 52, H- < Slt I) ;

(write(*Waming:Type violation*), fail)!1

and *makesq(Sjq(S))*> *makesq(SfX) ;- makepamHSJS£tX).\

In older to make use of these predicates a pre-processor substitutes any occurrence of a non-

variable term (other than the built-in constants and constructors) in a clause with a variable and

adds a Call to the appropriate type-accessing relation.

For example, the clause for 'perimeter* in figure 2 is transformed to the logically equivalent

clause: * perimeter! PjM) ymakepaml(SlfS2tHJ>)t Nis 2*(S1+ S2).m.

Notice how the 'with' constraints are incorporated in *makeparalf and that violation of those

causes a warning to the user rather than abortion; the advantages of this choice are illustrated

by the example in figure 3.

Similarly, a goal "?- perimeteri'sq(l))* is transformed to: "?- makesq(ltS), perimeter(S)*. Notice

that in this way all the relations defined on parallebgrams become available for squares via the

second clause for 'makesq'.

4.2. The module system.

The module system described in section 3 has also been implemented in Probg. The

implementation takes the form of a pre-processor that transforms modular Probg programs to

semantically equivalent ordinary Probg programs, wiiile typechecking them at the same time.

(Act&ally the semantics of the module system can be given in terms of this transformation -

see appendix).

In order to achieve modularity each relation is augmented with an extra argument, which

is the module name in which it is defined. So, identical relation names defined in different

modules are naturally distinguishable. Furthermore, in this way polymorphism is also achieved

(free of charge) through Probg's unification algorithm.

As for the extra-Logical predicates assert and retract, it can be easily arranged so that they have a

bcal effect by augmenting their argument with the module name in which they are called This

also provides a clean separation of bgic databases.

Apart from that the module and subtype hierarchies are maintained in the Probg database as

well as FT (used for typechecking purposes - see 2.2).

As for query evaluation, every query passes through a pre-processor. which typechecks it

and augments it with the appropriate module name before submitting it to the standard Probg

interpreter. In order to decide on the appropriate module name for a query we have to empby

the concept of the current module. Every single query is evaluated in the environment of the

current module. By default the current module is the module that was last compiled. This can be

overwritten by the user by issuing a module-navigation command, using the syntax: "?- ->

Module?, which makes Module the current module. Additionally, one can issue a module-specific

query using the syntax: "?- Query in Module*. Such a query makes Module the current module

temporarily (so that evaluation of Query takes place in its environment), but after the query is

evaluated, whichever module was current before the query becomes again the current module.

Notice that since most of the expensive computation takes place at compile-time and the

resulting programs are just ordinary Probg programs, there is no significant overhead in the

execution speed of modular Probg programs.

5. DISCUSSION

It was taken as a starting point that even though PROLOG does not fulfill the bgic pro-

gramming ideals, it can still be competitively used for laî ge scale software production provided

it is enhanced with mechanisms that reinforce modularity and data abstraction. A proposal was

then outlined for such an enhancement which has also been implemented in PROLOG and

whose advantages, it is believed, outweigh the overhead in computational efficiency.

The language EQLOG has already offered a similar and. in a sense, richer modular

environment based on many-sorted bgic with equality, which supports Horn bgic and func-

tional programming. However, the use of equality and term-rewriting is a major source of

inefficiency, wiiile the mixture of both functional and relational styles, although it offers more

expressive power, can be very confusing for the user.

Himiko. being confined to Horn bgic only, seems to be cbser to this proposal It does

not have a rigid type system and so lacks all the features and advantages summed up bebw. It

also albws more than one type to be defined in one module, a possibility excluded in this sys-

tem so as to impose mflTjmxim modularity.

There have been some attempts to introduce a form of modularity with abstraction over

predicates by resorting to & higher-order bgic - [Miller 1986. Nait 1986]. Although such

approaches are of theoretical interest they are far from providing a practical language.

The recent proposal to embed PROLOG in the module system developed for ML [Sanella

& Wallen 1987] is >et another promising approach to modularity and abstraction. In this signa-

tures are separate from code, which allows more freedom but requires a considerable amount of

extra syntax and consequently more expensive book-keeping. Although it ignores the issue of

types, Nvhich could be easily added to i t it offers abstraction over both predicates and functions,

whereas this system seems to offer abstraction only over functions. However, this is easily

compensated in practice by the ability for separate compilation. Thus, when we want to pass a

different program for a predicate P defined in module Ml and used in module M2t we can sim-

ply recompile module Ml with the new program for Pt which will overwrite the previous one.

Thus, we can simulate abstraction over predicates at a meta-leveL Of course, if we also change

the type of P we would also recompile M2 to make sure that the new type is still compatible.

Finally, it should be said that, although the terminology was borrowed from the algebraic

specifications school, OOP terminology could have equally well been used. Simply rename

modules to classes, instances of modules to objects, the subtype relationship to inheritance, and

query evaluation to message passing. Bearing this correspondence in mind. Zaniolo's proposal, a

rather partial solution, is fully superseded by this sjstem, which also supports multiple inheri-

tance. Certainly, a more careful comparison is needed between this approach, or more generally

the algebraic approach to abstract data types, and object-oriented programming.

However, although the principal concepts introduced are not new. they have been realised

by putting together semantic features in a novel and simple way - using a minimal syntax.

Furthermore, it is believed that this way is in accordance with the logic programming spirit

In particular, the following constitute novelties:

a) the rich polymorphic type system whose main distinguishing characteristics are i) the use of

explicit patterns, which together with the predicate constraints, achieve great expressive power

without resorting to the use of equationally defined functions - which, apart from confusion and

inefficiency, introduce the usual confluence problems, ii) the possibility of a user-definable

subtype relation between different types, which extends to support multiple inheritance.

b) the 'privacy of type patterns to their defining modules and the use of predicate type con-

structors - which can be defined automatically - for accessing them from other modules, which

ensures data representation independence.

Even though this proposal was specifically tuned to PROLOG, it is hoped that the ideas

presented here will find their way into an enhanced bgic programming language that will be of

practical use for serious software production.

5. ACKNOWLEDGEMENTS

I am grateful to Dr. Matthew Hennessy, Rudi Lutz and Tom Khabaza for many useful

suggestions and to the State Scholarships Foundation of Greece for their financial support

& REFERENCES

[I] Berztiss. A. & S. Thatte. Specification and Implementation of Abstract Data Types.

Advances in Computers, Vol.22, pp.295-353. 1983,

[2] Clark. K. & S. Tarnlund. A first order theory of data and programs. Information Processing

(IFIP) 77. North-Holland, pp.939-944. 1977.

[3] Clocksin. W.F. & C.S. Mellish. Programming in Prolog. Springer-Verlag. 1981.

[4] Cardelli L. & P. Wegner, On understanding Types. Data Abstraction and Polymorphism.

Computing Surveys, Vol.17, No A, December 1985. ACM. pp.471-522. 1986.

[5] Dayantis George. Logic program derivation for a class of first-order bgic relations.

Research paper CSRP No.61. Univ. of Sussex. G.Britain. October 1986. Also (to appear)

in: Proc. 10th IJCAI. 1987.

[6] DomoBd. B. & P. Szeredi. Prolog in practice. Information Processing (IFIP) 'S3. North-

Holland, pp. 627-636. 1983.

[7] Furukav*u K., Nakajima. R. & A. Yonezawa. Modularization and Abstraction in Logic

Programming. ICOT TR-022. 1983.

[8] Goguen, J. & J. Meseguer. Equalities, types and generic modules for bgic programming.

Second International Logic Programming Conference, Uppsala University. S\^eden. July

1984. Also in: de Groot, D. & E. Lindstrom (eds.). Logic Programming: Functions, Rela-

tions and Equations. Prentice-Hall 1086.

[9] Miller, D.A. A theory of modules for logic programming. Proc. 3d IEEE Symposium on

Logic Prvgumrning. pp.448-462. 1986.

[10] Mishra, P. Towards a theory of types in Prolog. Proc. 1st IEEE Symposium on Logic Pro-

gramming. pp.289-298, 1984.

[II] Mycroft. A. & R. O'Keefe. A polymorphic type system for Prolog. D.A.I. Research

paper. No.211. Univ. of Edinburgh. 1983. Also in: Artificial Intelligence, Vol.23, No.3,

pp.295-307. 1984.

-19-

[12] Nait, Abdallah M. Procedures in Horn-clause programming, in: Shapiro. E. (ed.) Proceed-

ings of Third International Conference on Logic Programming, London, July 1986. Lecture

Notes in Computer Science. VoL 225, Springer-Verlag. pp.433-447. 1986.

[13] O'Keefe, R. Tov*ards an algebra for constructing bgic programs. Prvc. 2nd IEEE Sympo-

sium on Logic Programming, pp. 152-160. 1985.

[14] Sannella. D.T. & L.A. Wallen. A calculus for the construction of modular Prolog pro-

grams. (To appear:) Prvc. 4th TREE Symposium on Logic Programming, 1987.

[15] Smolka. G. Order-sorted Horn logic, semantics and deduction. Technical paper. FB Infor-

matik. Kaiserslautem Univ.. W.Germany. 1986.

[16] Walther. C. A many-sorted calculus based on resolution and paramodulation. Prvc. 8th

LICAI. pp.882-891, 1983,

[17] Zaniolo. C. Object-oriented programming in Prolog. Prvc. 1st IEEE Symposium on Logic

Pmgximming. pp.265-270, 1984.

-20-

A P P E N D I X

A) Formal syntax for the type expression sublanguage.

Type > Basicjype I Constructedjype

Basic Jype :» integer I tool I

ConstructedJEype > Tjfunctor ITJunctoKTju^gseq)

TJfunctor > any identifier allowed as a Pro tog predicate name

T_argseq:« T ârg 1Tjrg, T^rgseq

Tjurg > T_yar I Vjyar: Type I Subpattern I T_yar < Type I Type

Tjyar, V_yar > any identifier beginning with a capital letter (Prolog variable)

Subpattern :« ...see definitions below...

B) Formal syntax for type definitions*

Type_definition :- type Type iff Patternjsonstruct

Pattem_£onstruct > Subpattern^onstruct I Subpattern_£onstruct I Pattern^onstruct

Subpattern^^onstruct :«• Subpattem.jdef I Subpattem_def as Subpattern^def^onj

Subpatternjgiefjgonj:- Subpattern^cief I Subpattern^lef and Subpattem_£ef_conj

Subpattern^ îef :- Subpattern I Subpattern "with Literal^eq

Subpattern :« V_yar I V_yar: Type I Vjyar: Tjyar I Vjiinctor I V f̂unctoK Vjrgseq)

VLargseq > Subpattern I Subpattern, Vjtxgseq

Literal_§eq > Literal I Literal, Literal_§eq

Literal > any Pro tog literal

Additionally, all free (without type annotations) value variables (V_yar) in Subpattern

should appear in Type as Vjxtrs. all type variables (Tjxtr) in Subpattern should appear in Type

as Tjtars and all variables (V_v*zr) in UtervL^xq should appear in either Type or the correspond-

ing Sub pattern as Vmyars.

C) Semantics far type definitions.

Below v>« denote with Gtype(V) a type expression that depends on the tuple of variables

V; and similarly for Subpattern and Lttend.jeq expressions.

In general a type definition of the form:

type Gtype(V) iff (PattKV.Z1) with Seql(V.Zl)) I

(Pattn(V.Zn) with Seqn(V.Zn)).

is given the interpretation (in first-order bgic):

X E Gtype(V) < ->]Zj (X - PattjCV.Zj) & Seq^V.Zj) exor

} Z n (X - Patth(V.Zn)&Seqn(V.Zn)

Additionally, for each as declaration of the form: # as Spatt(V.Z) with Sseq(V.Z)' add

another disjunct *}Z (X - SpattCV.Z) & Sseq(V.Z))' in the definiens. And if for all such

declarations Spatt(V,Z) E Sfype(V,Z) then: Gtype(V) < Stype(V,Z).

Additionally, for each type annotation of the form V:T or V<T in Gtype(V), add a con-

junct isojtype(VX) or issubtype(V,T) correspondingly in the definiens. And similarly for each

type annotation V:T in a Subpattern add a conjunct isojtype(V,T) inside the appropriate disjunct

(the one corresponding to the Subpattern).

Where:

isoftype(V.T) < - > V E T or }T1 (V E Tl & issubtype(Tl.T))

issubtype(Tl.T2) < -> Tl < T2 or }T (Tl < T & issubtype(T.T2)) or

}F,V1.V2 (Tl - .. [FtVl] & T2 - .. [FIV2] & aresubtypes(Vl.V2))

aresubtypes([],[]).

aiesubtypes([TlRl].[T2R2]) <-issubtype(Tl.T2) & aresubtypes(Rl.R2)

For convenience in expression \MB have vised the Prolog operator univ (« ..) to decompose the

type expressions into their principal functor and a list of arguments.

D) Formal syntax for a module definition.

Modlxle_£ef:- module Type [using Type_andseq] Pattern_code endmodule.

Patternj?ode :« Pattern I Code ! Pattern Code

Pattern :- pattern Pattemjponstruct [constr Constr_§eq]

Pattemjponstruct > ...(see B)...

Constrjgeq > Constr I Constr I Constr.geq

Constr > Functor/Natural

Code :~ rels Relsjgecl. clauses Clauses

Rekjjecl:- Reljjecl I ReLgecl, Relsjjecl

Reljjecl:« Functor I Functoi(Type_seq)

Type^eq :« Type I Type, Type_seq

Type_£ndseq :- Type I Type and Type jndseq

Clauses > a set of Probg clauses.

Functor:« any identifier altovwed as a Prolog predicate.

E) Semantics of a module definition.

We could choose structures like (oixier-sorted) algebras - with relations instead of arbi-

trary functions - for our semantic domain and thus give algebraic semantics to our modules as

is given for standard-ML modules. Here, however, simpler translation semantics seems to be

more convenient and practical since WJ already possess formal semantics for standard Probg

and we claim to have means for translating modular Probg programs to ordinary Probg ones.

Thus, a more formal exposition of this translation serves as a semantics for modular Probg and

at the same time suggests an implementation.

A structure is a tuple <rnnametmparentstmtypeimprBds>P wiiere mname, mparervts and

mpreds are identical to the corresponding syntactic objects of the language (they denote them-

selves) and mtype is a set of values.

A mo&dejznvirorment is a set of structures.

Our semantic functions then are:

Mod:modulemdef-> modulejenvirvnment-> (structure * code)

Modi : moduLejdef-> modulejenvvvrvnent -> (structure * code) -> (structure * code)

Q : gpal-> structure -> modulejenvirvrtment -> goal

In order to compile a module definition modulejde/in an initial environment e:

1) compute Modfnodule^defje obtaining a structure s and some Prolog code,

2) compile the code in Probg.

Notice that the new environment is: e*« {s} U e.

Accordingly, in order to evaluate a goal g in a specific module structure s and sin e

ment e:

1) compute Q^Jse obtaining a new goal g\

2) evaluate the new goal g' in Probg.

Semantic equations:

Modfcnochile M [using Pm] Restle ~

error i/exists_module(M,e) else

error i/notCaUexist_modules(Pm,e)) else

Modlfcestje (<M.Pm.{}.{}>.{})

Modllpattem Pn [constr Cr] Restle (<M,Pm,{).{}>.{}) -

Modlfcestje (<M,Pm.T,P>.C)

where T is the type(set) defined by Pn as in part B

and P is the set of constructor predicate declarations corresponding to Cr

and C is the set of type-accessing clauses corresponding to Cr

Modlfels Rs • clauses Cls endmoduleje (<M.Pm.T,P>,C) «

error i/someJknown_rel(Rs,P.M.Pm.e) else

error i/not(typecheck(Cls.Pl.T.M.Pm.e)) else

Modlfendmoduleje (<M.Pm,T,Pl>.Cl)

w/ae^Pl- {Rs}UP

and Cl - {modularise(Cls.M.Pm.e)} U C

Modlfcndmodulele (<P.Pm.T.P>,C) - (<P.PmT,P>.C)

Qpoal|<M.Pm,T.P> e - error t/not(typecheck(Goal,P.T,M,Pm,e)) else

modularise(Goal,M,Pm.e)

existsjnoduLe(Mte) is true iff there exists a module named Mine.

atlexistjnodules(Phi,e) is true iff all the modules, v*hose names are given in Pm exist in e.

sormJcrvownj^URstP,MtPrnte) is true iff at least one of the relations type-declared in Rs has

been previously defined in any of the modules that belong to the transitive closure of the

parental relationship.

typecheck is obviously the typechecking predicate.

nu)duhrise{ClsMfPfTite) is a function returning the clauses given as its first argument vath all

their predicates uniquely renamed in a v*ay that identifies them according to utoich module they

are defined in.

