
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

1

Technical Report CMU-CS-84-157

DISTRIBUTED REPRESENTATIONS 1

Geoffrey E. Hinton
Computer Science Department

Carnegie-Mellon University
Pittsburgh PA 15213

October 1984 mmxm mttm* TO
COMPOTER SCIENCE 0£PAii£A!E!*X ifflOBSSBfe

Abstract

Given a ̂ network of simple computing elements and some entities to be represented, the most

straightforward scheme is to use one computing element for each entity. This is called a local representation.

It is easy to understand and easy to implement because the structure of the physical network mirrors the

structure of the knowledge it contains. This report describes a different type of representation that is less

familiar and harder to think about than local representations. Each entity is represented by a pattern of

activity distributed over many computing elements, and each computing element is involved in representing

many different entities. The strength of this more complicated kind of representation does not lie in its

notational convenience or its ease of implementation in a conventional computer, but rather in the efficiency

with which it makes use of the processing abilities of networks of simple, neuron-like computing elements.

Every representational scheme has its good and bad points. Distributed representations are no exception.

Some desirable properties like content-addressable memory and automatic generalization arise very naturally

from the use of patterns of activity as representations. Other properties, like the ability to temporarily store a

large set of arbitrary associations, are much harder to achieve. The best psychological evidence for distributed

representations is the degree to which their strengths and weaknesses match those of the human mind.

^This research was supported by a grant from the System Development Foundation. I thank Jim Anderson, Dave Ackley Dana
Ballard, Francis Crick, Scott Fahlman, Jerry Feldman, Christopher Longuet-Higgins, Don Norman, Terry Sejnowski, and Tim Shallice
for helpful discussions. Jay McClelland and Dave Rumelhart helped me refine and rewrite many of the ideas presented here A
substantially revised version of this report will appear as a chapter by Hinton, McClelland and Rumelhart in Parallel Distributed
Processing: Explorations in the micro-structure of cognition, edited by McClelland and Rumelhart)

3

Section 4 analyses the efficiency of distributed representations. Since each hardware unit is involved in

encoding many different items, the unit has a much less specific "receptive field" than it would if the

representations were strictly local - activity in a single unit reveals far less about which item is currently being

represented. Despite this lack of specificity at the single unit level, we shall sec that distributed

representations arc sometimes far more efficient at encoding items accurately.

Section 5 deals with the association between the form of a word and its meaning. This is a case in which

distributed representations appear to be much less suitable than local ones, because the associations are purely

arbitrary. There arc very few underlying regularities (for mono-morphemic words), and so the ability of

distributed representations to generalize simply causes harmful interference. However, even in this case

distributed representations can be surprisingly efficient and error free.

Section 6 compares distributed and local representations from the standpoint of creating new concepts.

Local representations appear to require a homunculus with a soldering iron, but there are ways of avoiding

this. Local representations also require the system to make a discrete decision about when to create a new

concept. Distributed representations are more flexible, allowing concepts to be formed gradually by weight

modifications that progressively differentiate one old conccpt'into several new ones.

Finally, section 7 discusses a difficult issue which is often avoided by advocates of distributed

representations. Human knowledge is not just a set of items or pairs of items; it is structured. At the very

least, any human-like memory system must be able to represent schematic structures in which particular

constituents are playing particular roles within the whole structure. There is a gulf between this type of

articulated representation and the standard distributed memory scheme in which a subset of the features of an

item can give rise to the remaining features.

Disclaimers

Before examining the detailed arguments in favor of distributed representations, it is important to be clear

about their status within an overall theory of human information processing. It would be wrong to view

distributed representations as an alternative to representational schemes like semantic networks or production

systems that have been found useful in cognitive psychology and artificial intelligence. It is more fruitful to

view them as one way of implementing these more abstract schemes in parallel networks, but with one

proviso: Distributed representations give rise to some powerful and unexpected emergent properties. These

properties can therefore be taken as primitives when working in a more abstract formalism. So if one assumes

that more abstract models are implemented in the brain using distributed representations, it is not

unreasonable to treat abilities like content-addressable memory, automatic generalization, or the selection of

the rule that best fits the current situation as primitive operations, even though there is no easy way to

Introduction
Given a network of simple computing elements and some entities to be represented, the most

straightforward scheme is to use one computing clement for each entity. This is called a local representation.

It is easy to understand and easy to implement because the structure of the physical network mirrors the

structure of the knowlcdsc it contains. The naturalness and simplicity of this relationship between knowledge

and the hardware that implements it have led many people to simply assume that local representations are the

best way to use parallel hardware. There are, of course, a wide variety of more complicated implementations

in which there is no one-to-one correspondence between concepts and hardware units, but these

implementations are only worth considering if they lead to increased efficiency or to interesting emergent

properties that cannot be conveniently achieved using local representations.

This report describes one type of representation that is less familiar and harder to think about than local

representations. Each entity is represented by a pattern of activity distributed over many computing

elements, and each computing element is involved in representing many different entities. The strength of

this more complicated kind of representation does not lie in its notational convenience or its ease of

implementation in a conventional computer, but rather in the efficiency with which it makes use of the

processing abilities of networks of simple, neuron-like computing elements.

Every representational scheme has its good and bad points. Distributed representations are no exception.

Some desirable properties arise very naturally from the use of patterns of activity as representations. Other

properties, like the ability to temporarily store a large set of arbitrary associations, are much harder to achieve.

As we shall see, the best psychological evidence for distributed representations is the degree to which their

strengths and weaknesses match those of the human mind.

Section 1 introduces a way of thinking about memory that is very different from the conventional metaphor

in which a memory is stored at a particular location and is retrieved by accessing the location. The act of

remembering is viewed as a constructive process in which a whole item is created afresh from a fragment,

much as dinosaurs are created in museums. What is stored is the rules of inference that allow this constructive

process to occur. Section 2 shows how this type of memory automatically generalizes newly acquired

knowledge so that it can be applied in other, similar circumstances.

Section 3 presents a way of classifying the various types of distributed memory that have been described in

the literature. The classification is not exhaustive and it does not take into consideration the learning schemes

that are used for storing new memories. However, it does serve to emphasize the main decisions that have to

be made in designing a distributed memory system.

4

implement these operations in conventional computers. Thus, the contribution that an analysis of distributed

representations can make to these highcr-lcvcl formalisms is to legitimize certain powerful primitive

operations which would otherwise appear to be an appeal to magic.

Another common source of confusion is the idea that distributed representations arc somehow in conflict

with the extensive evidence for localization of function in the brain (Luria, 1973). A system that uses

distributed representations still requires many different modules for representing completely different kinds

of thing at the same time. The distributed representations occur within these localized modules. For example,

different modules would be devoted to th ngs as different as mental images and sentence structures, but two

different mental images would correspond to alternative patterns of activity in the same module. The

representations advocated in this report are local at a global scale but global at a local scale.

1 : MEMORY AS INFERENCE

People have a very flexible way of accessing their memories: They can recall items from partial descriptions

of their contents (Norman & Bobrow, 1979). Moreover, they can do this even if some parts of the partial

description arc wrong. Many people, for example, can rapidly retrieve the item that satisfies the following

partial description: It is an actor, it is intelligent, it is a politician. This kind of "content-addressable" memory

is very useful and it is very hard to implement on a conventional computer because computers store each item

at a particular address, and to retrieve an item they must know its address. If all the combinations of

descriptors that will be used for access are free of errors and are known in advance, it is possible to use a

method called "hash coding" that quickly yields the address of an item when given part of its content. In

general, however, content-addressable memory requires a massive search for the item that best fits the partial

description. The central computational problem in memory is how to make this search efficient. When the

cues can contain errors this is very difficult because the failure to fit one of the cues cannot be used as a filter

for quickly eliminating inappropriate answers.

Distributed representations provide an efficient way of using parallel hardware to implement best-fit

searches. The basic idea is fairly simple, though it is quite unlike a conventional computer memory.

Different items correspond to different patterns of activity over the very same group of hardware units. A

partial description activates some of the units, 2and interactions between the units then complete the pattern,

when a partial description is presented it must be turned into a partial activity pattern. This is easy if the partial description is simply
a set of features, but it is much more difficult if the partial description mentions relationships to other objects. If, for example, the system
is asked to retrieve John's father, it must represent John, but if John and his father are represented by mutually exclusive patterns of
activity in the very same group of units, it Is hard to rec how this can be done without preventing the representation of John's father. A
distributed solution to this problem is described in section 7.

5

thus generating the item that best fits the description. A new item is "stored" by modifying the interactions

between the hardware units so as to create a new stable pattern of activity. The main difference from a

conventional computer memory is that patterns which are not active do not exist anywhere. Hicy can be

re-created because the connection strengths between units have been changed appropriately, but each

connection strength is involved in storing many patterns, so it is impossible to point to a particular place

where the memory for a particular item is stored.

One way of thinking about distributed memories is in terms of a very large set of plausible inference rules.

Each active unit represents a "micro-feature" of an item, and the connection stnMgths stand for plausible

inferences between micro-features. Any particular pattern of activity of the units will satisfy some of the

"micro-inferences" and violate others. A stable pattern of activity is one that violates die plausible micro-

inferences less than any of the neighboring patterns. A new stable pattern can be created by changing the

inference rules so that the new pattern violates them less than its neighbors. This view of memory makes it

clear that there is no sharp distinction between genuine memory and plausible reconstruction. A genuine

memory is a pattern that is stable because the inference rules were modified when it occurred before. A

"confabulation" is a pattern that is stable because of the way the inference rules have been modified to store

several different previous patterns, and so far as the subject is concerned, this may be indistinguishable from

the real thing. The blurring of die distinction between veridical recall and confabulation or plausible

reconstruction seems to be characteristic of human memory (Bartlett, 1932; Neisser, 1981).

The reconstructive nature of human memory is surprising only because it conflicts with the standard

metaphors we use. We tend to think that a memory system should work by storing literal copies of items and

then retrieving the stored copy, as in a filing cabinet or a typical computer database. Such systems are not

naturally reconstructive.

If we view memory as a process which constructs a pattern of activity that represents the most plausible item

which is consistent with the given cues, we need some guarantee that it will converge on the representation of

the item that best fits the description, though it might be tolerable to sometimes get a good but not optimal fit.

It is easy to imagine this happening, but it is harder to make it actually work. One recent approach to this

problem is to use statistical mechanics to analyze the behavior of groups of interacting stochastic units

(Hinton, Sejnowski & Ackley, 1984). The analysis guarantees that the better an item fits the description, the

more likely it is to be produced as the solution.

6

2: SIMILARITY AND GENERALIZATION

When a new item is stored, the modifications in the connection strengths must not wipe out existing items.

This can be achieved by modifying a very large number of weights very slightly. If the modifications arc all in

the direction that helps the pattern that is being stored, there will be a conspiracy effect: the total help for the

intended pattern will be the sum of all die small separate modifications. For unrelated patterns, however,

there will be very little transfer of effect because some of the modifications will help and some will hinder.

Instead of all the small modifications conspiring together, they will mainly cancel out. This kind of statistical

reasoning underpins most distributed memory models, but there arc many variations of the basic idea (See

Hinton and Anderson, 1981).

It is possible to prevent interference altogether by using orthogonal patterns of activity for the various items

to be stored. However, this eliminates one of the most interesting properties of distributed representations:

They automatically give rise to generalizations. If the task is simply to remember accurately a set of unrelated

items, the generalization effects are harmful and arc called interference. But generalization is normally a

helpful phenomenon. It allows us to deal effectively with situations that are similar but not identical to

previously experienced situations.

People are good at generalizing newly acquired knowledge. If you learn a new fact about an object, your

expectations about other similar objects tend to change. If, for example, you learn that chimpanzees like

onions you will probably raise your estimate of the probability that gorillas like onions. In a network that uses

distributed representations, this kind of generalization is automatic. rrhc new knowledge about chimpanzees

is incorporated by modifying some of the connection strengths so as to alter the causal effects of the

distributed pattern of activity that represents chimpanzees. 3 The modifications automatically change the

causal effects of all similar activity patterns. So if the representation of gorillas is a similar activity pattern

over the same set of units, its causal effects will be changed in a similar way.

The very simplest distributed scheme would represent the concept of onion and the concept of chimpanzee

by alternative activity patterns over the very same set of units. It would then be hard to represent chimps and

onions at the same time. This problem can be solved by using separate modules for each possible role of an

item within a larger structure. Chimps, for example, are the "agent" of the liking and so a pattern

representing chimps occupies the "agent" module and the pattern representing onions occupies the "patient"

The internal structure of this pattern may also change. There is always a choice between changing the weights on the outgoing
connections and changing the pattern itself so that different outgoing connections become relevant. Changes in the pattern itself alter its
similarity to other patterns and thereby alter how generalization will occur in future. It is generally much harder to figure out how to
change the pattern that represents an item than it is to figure out how to change the outgoing connections so that a particular pattern will
have the desired effects on another part of the network.

7

module (sec figure 1). Kach module can have alternative patterns for all the various items, so this scheme

does not involve local representations of items. What is localized is the role.

If you subsequently learn that gibbons and orangutans do not like onions your estimate of the probability

that gorillas like onions will fall, though it may still remain higher than it was initially. Obviously, the

combination of facts suggests that liking onions is a peculiar quirk of chimpanzees. A system that uses

distributed representations will automatically arrive at tliis conclusion, provided that the alternative patterns

that represent the various apes arc related to one another in a particular way that is somewhat more specific

than just being similar to one another: Thore needs to be a part of each complete pattern that is identical for

all die various apes. In other words, the group of units used for the distributed representations must be

divided into two sub-groups, and all the variotis apes must be represented by the same pattern in the first

sub-group, but by different patterns in the second sub-group. The pattern of activity over the first subgroup

represents the type of the item, and the pattern over the second sub-group represents additional "micro-

features" that discriminate each instance of the type from the other instances.4

When the system learns a new fact about chimpanzees, it usually has no way of knowing whether the fact is

true of all apes or is just a property of chimpanzees. The obvious strategy is dicrcforc to modify the strengths

of the connections emanating from all the active units, so that the new knowledge will be partly a property of

apes in general, and partly a property of whatever features distinguish chimps from other apes. If it is

subsequently learned that other apes do not like onions, modifications will be made in die reverse direction so

d*»at the information about onions is no longer associated with the subpattern that is common to all apes. The

knowledge about onions will then be restricted to the sub-pattern that distinguishes chimps from other apes.

If it had turned out that gibbons and orangutans had also liked onions, the modifications in the weights

emanating from the sub-pattern representing apes would have reinforced one another, and the knowledge

would have become associated with the sub-pattern shared by all apes rather than with the patterns that

distinguish one ape from another.

A very simple version of this theory of generalization has been implemented in a computer simulation

(Hinton, 1981). It works, but as with all simulations, many detailed and arbitrary decisions had to be made to

produce a working system.

There is an obvious generalization of the idea that the representation of an item is composed of two parts,

one tha* represents the type and another that represents the way in which this particular instance differs from

4 Any subset of the micro-features can be conside-od to define a type One subset might be common to all apes, and a different (but
overlapping) subset might be common to all pets. This allows an item to be an instance of many different types simultaneously.

8

RELATIONSHIP

AGENT PATIENT

Figure 1: In this simplified scheme there are two different modules, one of which represents the
agent and the other the patient. To incorporate the fact that chimpanzees like onions, the pattern
for chimpanzees in one module must be associated with the pattern for onions in the other
module. Relationships other than "liking" can be implemented by having a third group of units
whose pattern of activity represents the relationship. This pattern must then "gate" the
interactions between the agent and patient groups. Hinton (1981) describes one way of doing this
gating by using a fourth group of units.

9

others of the same type. Almost all types are themselves instances of more general types, and this can be

implemented by dividing the pattern that represents the type into two sub-patterns, one for the more general

type of which this type is an instance, and the other for die features diat discriminate diis particular type from

others instances of the same general type. Thus die relation between a type and an instance can be

implemented by the relationship between a set of units and a larger set that includes it. Notice that the more

general the type, the smaller the set of units used to encode it. As the number of terms in an intensional

description gets smaller, the corresponding exlensional set gets larger.

In a network that uses local representations, it is less obvious how to do generalization. Given that

chimpanzees like onions, the obvious way of incorporating the new knowledge is by changing the strengths of

connections belonging to the chimpanzee unit. But diis does not automatically change connections that

belong to die gorilla unit. So extra processes must be invoked to implement generalization in a localist

scheme. One commonly used method is to allow activation to spread from a local unit to other units that

represent similar concepts (Quillian, 1968; Collins and Loftus, 1975). Then when one concept unit is

activated, it will partially activate its neighbors and the so any knowledge stored in the connections emanating

from tiiese neighbors will be partially effective. Many variations of this basic idea have been tried (Levin,

1976; McClelland, 1981; Fahlman, 1979) and have been shown to be quite effective.

It is hard to make a clean distinction between systems which use local representations plus spreading

activation and systems which use distributed representations. In both cases die result of activating a concept

is Uiat many different hardware units are active. The main difference is diat in one case there is a particular

individual hardware unit that acts as a "handle" which makes it easy to attach purely conventional properties

like the name of the concept. It is intuitively obvious that it is harder to attach an arbitrary name to a

distributed pattern than it is to attach it to a single unit. As we shall sec in section 5, such intuitions are not to

be trusted.

3: VARIETIES OF DISTRIBUTED MEMORY

Since the 1960's, there have been a large number of computer simulations of distributed memory schemes.

Many different variations of the same basic ideas have been discovered independently. This section attempts

to introduce some order into the profusion of models by classifying them in a binary tree with the most basic

distinctions nearest the root (see figure 2). The true space of models has a much richer structure of similarities

and differences than can be expressed by a tree, but it's a convenient simplification. Many of the distinctions

deal with the nature of the input-output functions used for the individual units. A full discussion of the

various functions will appear in Rumelhart, Hinton and McClelland (in press).

10

Store by incrementing1

a vector that has onry
as many components asA

a single item.

Store by modifying
pairwise interactions

between hardware units.

Willshaw, 1981
Anderson, 19
Murdoch, 1963
Etch. 1962
Holograms

Non-linear decision]
function

Linear decision
function

Anderson, 1977
Kohonen,1977

Iterative
recall process Non-iterative

recall process

Synchronous Asynchronous
iteration

Discrete
activity levels Continuous

activity levels

Continuous^
k activity levels J

Anderson & Mozer, 1961

McClelland, 1962

Discrete
.activity levels J

Hlnton, 1961

Willshaw et. ai. 1969

Stochastic
decision function \

Hopfieid, 1982 HopfieW, 19 ft

Discrete
L activity levels j

Hinton, Seinowskl
& Ackley, 1984

Continuous
activity levels

communicating via
' discrete pulses.

Hopfield, 1984

Figure 2: A classification of some distributed memory models. A few examples of each type of
model are given. .

11

4: COARSE CODING

This section considers the number of units diat arc required to encode features accurately. The central

result is a surprising one. If you want to encode features accurately using as few units as possible, it pays to

use units diat arc very coarsely tuned, so diat each feature activates many different units and each unit is

activated by many different features. A specific feature is tiicn encoded by a pattern of activity in many units

radicr than by a single active unit, so coarse coding is a form of distributed representation.

To keep die mathematics simple, we shall assume that the units have only two values, on and off.5 We shall

also ignore the dynamics of the system because the question of interest, for the time being, is how many units

it takes to encode features with a given accuracy. We start by considering the kind of feature that can be

completely specified by giving a type (e.g. line-segment, corner, dot) and the values of some continuous

parameters diat distinguish it from other features of the same type (e.g. position, orientation, size.) For each

type of feature there is a space of possible instances. Each continuous parameter defines a dimension of the

feature space, and each particular feature corresponds to a point in the space. For features like dots in a

plane, the space of possible features is two-dimensional. For features like stopped, oriented edge-segments in

3-D space, the feature space is six-dimensional. We shall start by considering 2-D feature spaces and then

generalize to higher dimensionalities.

Suppose that we wish to represent the position of a single dot in a plane, and we wish to achieve high

accuracy without using too many units. We define the accuracy of an encoding scheme to be the number of

different encodings that are generated as the dot is moved a standard distance through the space. One good

encoding scheme would be to divide the units into an X group and a Y group, and dedicate each unit to

encoding a particular X or Y interval as shown in figure 3. A given dot would then be encoded by activity in

two units, one from each group, and the accuracy would be proportional to the number of units used.

Unfortunately, if two dots have to be encoded at the same time the method breaks down. The two dots will

activate two units in each group, and diere will be no way of telling, from the active units, whether the dots

were at (xl, yl) and (x2, y2) or at (xl, y2) and (x2, yl). This is called the binding problem. It arises because

the representation does not specify what goes with what.

In a conventional computer it is easy to solve the binding problem. We simply create two records in the

computer memory. Each record contains a pair of coordinates that go together as coordinates of one dot, and

5Similar arguments apply with multi-valued activity levels, but it is important not to allow activity le-cls to have arbitrary precision,
because this makes it possible to represent an infinite amount of information in a single activity level.

12

Y group

O

o 1 o o o o o
X group

Figure 3a: A simple way of using two groups of binary units to encode the position ot a point in a
2-D space. The active units in the X and Y groups represent the x and y coordinates.

Y group

o
I

o
o
1

o
o
o

•

o O 1 o o o 1 o
X group

Figure 3b: When two points must be encoded at the same time, it is impossible to tell which x
coordinate goes with which y coordinate.

13

the binding information is encoded by the fact that the two coordinate values arc sitting in the same record

(which usually means they arc sitting in neighboring memory locations). In'parallel networks, it is much

harder to solve the binding problem. One approach is to set aside, in advance, one unit for each possible

combination of X and Y values. This amounts to covering the plane with a large number of small, non-

overlapping zones, and dedicating a unit to each zone. A dot is dicn represented by activity in a single unit so

diis is a local representation. It is much less efficient than die previous scheme because die accuracy is only

proportional to the square root of die number of units. In general, for a k-dimcnsional feature space, die local

encoding yields an accuracy proportional to the k t h root of die number of units. Achieving high accuracy is

thus very expensive.

The use of one unit for each discriminate feature may be a reasonable encoding if a very large number of

features are presented on each occasion, so that a large fraction of the units are active. However, it is a very

inefficient encoding if only a very small fraction of the possible features are presented at once. The average

amount of information conveyed by the state of a binary unit is 1 bit if the unit is active half the time, and it is

much less if the unit is only rarely active.6 It would therefore be more efficient to use an encoding in which a

larger fraction of the units were active at any moment. This can be done if we abandon the idea diat each

discriminate feature is represented by activity in a single unit

Suppose we divide the space into larger, overlapping zones and assign a unit to each zone. For simplicity, I

shall assume diat the zones arc circular, that their centers have a uniform random distribution throughout the

space, and that all the zones used by a given encoding scheme have the same radius. The question of interest

is how accurately a feature is encoded as a function of the radius of the zones. If we have a given number of

units at our disposal is it better to use large zones so that each feature point falls in many zones, or is it better

to use small zones so that each feature is represented by activity in fewer but more finely tuned units?

The accuracy is proportional to the number of different encodings that are generated as we move a feature

point along a straight line from one side of the space to the otiicr. Every time the line crosses the boundary of

a zone, the encoding of the feature point changes because the activity of the unit corresponding to that zone

changes. So the number of discriminate features along the line is just twice the number of zones that the line

penetrates.7 The line penetrates every zone whose center lies within one radius of the line (see figure 4). This

number is proportional to the radius of the zones, r, and it is also proportional to their number, n. Hence the

amount of information conveyed by a unit that has a probability of p of being on is

-plogp-(\-p)log(\-p)

Problems arise if you enter and leave a zone without crossing other zone borders in between. You revert to the same encoding as
before. This effect is negligible if the zones are dense enough for there to be many zones containing each point in the space.

14

Figure 4: The number of zone boundaries that are cut by the line is proportional to the number of
zone centers within one zone radius of the line.

accuracy, a is related to the number of zones and to their radius as follows:

a a nr

In general, for a k-dimensional space, the number of zones whose centers lie within one radius of a line

through the space is proportional to the volume of a k-dimcnsional hyper-cylinder of radius r. This volume is

equal to the length of the cylinder (which is fixed) times its k-1 dimensional cross-sectional area which is

proportional to r*"1. Hence, the accuracy is given by:

a a nrk~l

So, for example, doubling the radius of the zones increases by a factor of 32 the linear accuracy with which a

six-dimensional feature like a stopped oriented 3-D edge is represented. The intuitive idea that larger zones

lead to sloppier representations is entirely wrong, because distributed representations hold information much

more efficiently than local ones. Even though each active unit is less specific in its meaning, the combination

of active units is far more specific.8 Notice also that with coarse coding the accuracy is proportional to the

number of units, which is much better than being proportional to the k* root of the number.

Units that respond to complex features in retinotopic maps in visual cortex often have fairly large receptive fields. This is often
interpreted as the first step on the way to a translation invariant representation. However, it may be that *he function of the large fields is
not to achieve translation invariance but to pinpoint accurately where the feature is!

15

Limitations on coarse coding
So far, only the advantages of coarse coding have been mentioned, and its problematic aspects have been

ignored. There arc a number of limitations which cause the coarse coding strategy to break down when die

"receptive fields" become too large. One obvious limitation occurs when the fields become comparable in

size to the whole space. This limitation is generally of little interest because other, more severe, problems

arise before the receptive fields become this large.

Coarse coding is only effective when ti^.c features that must be represented arc relatively sparse. If many

feature-points are crowded together, each receptive field will contain many features and the activity pattern in

the coarse coded units will not discriminate between many alternative combinations of feature points. 9 Thus

there is a resolution/accuracy trade-off. Coarse coding can give high accuracy for the parameters of features

provided that features arc widely spaced so that high resolution is not also required. As a rough rule of

thumb, the diameter of the receptive fields should be of the same order as the spacing between

simultaneously present feature-points.1 0

The fact that coarse coding only works if the features are sparse should be unsurprising, given that its

advantage over a local encoding is that it uses die information capacity of die units more efficiently by making

each unit active more often. If the features are so dense diat the units would be active for about half die time

using a local encoding, coarse coding can only make diings worse.

A second major limitation on the use of coarse coding stems from die fact that die representation of a

feature must be used to affect other representations. There is no point using coarse coding if die features have

to be recoded as activity in finely tuned units before they can have the appropriate affects on other

representations. If we assume diat the effect of a distributed representation is the sum of the effects of the

individual active units that constitute the representation, there is a strong limitation on the circumstances

under which coarse coding can be used effectively. Nearby features will be encoded by similar sets of active

units, and so they will inevitably tend to have similar effects. Broadly speaking, coarse coding is only useful if

the required effect of a feature is the average of die required effects of its neighbors. At a fine enough scale

this is nearly always true for spatial tasks. The scale at which it breaks down determines an upper limit on the

size of the receptive fields.

9 l f the units are allowed to have integer activity levels that reflect the number of feature points falling within their fields, a few nearby
points can be tolerated, but not many.

1 0 I t is interesting that many of the geometric visual illusions illustrate interactions between features at a distance much greater than the
jncertainty in the subjects knowledge of the position of a feature. This is just what would be expected if coarse coding is being used to
represent complex features accurately.

16

Another limitation is that whenever coarse coded representations interact, there is a tendency for the

coarseness to increase. To counteract diis tendency, it is probably necessary to have lateral inhibition

operating within each representation. 1 1

Coarse coding and fourier analysis

There is an approximate analogy between coarse coding and fourier analysis. Consider, for example, the

problem of encoding the precise time at which a click occurs using fourier analysis. A single click of noise

contains power at many different frequencies. To encode its precise temporal location it is sufficient to

encode die low frequency information accurately. The high frequencies are only needed for resolving closely

spaced clicks. A standard way to extract the low frequency information is to pass die click dirough a low-pass

filter which blurs it in time and then to sample the blurred click at regular intervals. The use of large

receptive fields in coarse coding is the analog of the blurring process, and the center points of the fields arc

die analog of die sample points. The restriction that the receptive field diameter must be comparable with the

spacing between features is the analog of die sampling theorem which states that the linear separation

between sample points must not exceed half the wavelength of the shortest wavelength components allowed

through the blurring process.

The analogy is not perfect, however, because a fourier encoding is normally used to represent a continuous

distribution rather tiian a number of discrete feature points, and each coefficient in die fourier encoding is a

real-valued number radicr than a set of binary activation levels.

Coarse coding and conventional data-structures

In a conventional computer, any piece of the general purpose memory can be used for any data-structure.

This allows the computer to get by with much less memory than would be required if it had to set aside, in

advance, a special piece of memory for each possible data-structure. The economy is possible because, on any

one occasion, only a very small fraction of all the possible data-structures need to be present, so the very same

piece of memory can be used for different data-structures on different occasions.

In a network in which the knowledge is stored in the connection strengths, it is much harder to make units

stand for different things on different occasions. To be effective as a representation, activity in a unit must

have the right causal effects on other representations, so unless the strengths of its outgoing connections can

be changed rapidly, the "meaning" of a unit cannot easily be changed.

Coarse coding allows the same unit to be used to help represent many different features at different times

without changing the connection strengths. The perimeter of the receptive field is what does the work of

This issue requires further research.

17

carving up the space of possible features into small zones. 1 2 On any one occasion, most of the perimeter of a

given unit will be irrelevant because the other active units will already have located the feature fairly

accurately and so it will be known not to be near most of the perimeter. However, that part of tine perimeter

which intersects the residual region of uncertainty left by the other units will act to increase the accuracy,

because the state of the unit will indicate whether the feature falls inside or outside of this part of the

perimeter (sec figure 5). On different occasions, different parts of the perimeter will be doing the work. This

ability to use the same unit in different ways on different occasions is a small step towards the flexible use of

representational capacity that makes conventional computers so powerful.

Figure 5: If a unit has a receptive field with a large perimeter, it may do different work on
different occasions. The marginal contribution of the unit in pinning down the precise parameters
of a feature point depends on the range of uncertainty left by the other units. Quite different parts
of the perimeter of unit A are relevant on different occasions.

One obvious weakness of coarse coding is that units whose fields have a large overlap tend to have highly

correlated states. This is inefficient. To maximize the accuracy, the individual units should have uncorrected

receptive fields, so that activity in one unit provides no information about activity in other units. This is just

what is achieved by the standard binary representation of continuous quantities. Unfortunately, binary

representations are difficult to use in systems where all the knowledge is in the connections because the

receptive field of the least significant digit is very disconnected, which usually makes it hard to store useful

knowledge in the strengths of the connections emanating from that uni t

^That is why the accuracy is proportional to the magnitude of the perimeter.

18

Generalization to non-continuous spaces

The principle underlying coarse coding can be generalized to non-continuous spaces by thinking of a set of

items as die equivalent of a receptive field. A local representation uses one unit for each possible item. A

distributed representation uses a unit for a set of items, and it implicitly encodes a particular item as the

intersection of die sets that correspond to the active units.

In die domain of spatial features dicrc is generally a very strong regularity: sets of features with similar

parameter values need to have similar effects on other representations. Coarse coding is efficient because it

allows this regularity to be expressed in die connection strengths. In other domains, the regularities are

different, but the efficiency arguments arc the same: It is better to devote a unit to a set of items than to a

single item, provided the set is chosen in such a way that membership of die set implies something about

membership of odier sets. This implication can then be captured as a connection strength.

It is, of course, a very difficult search problem to decide which particular sets of items should correspond to

single units. Ideally, a set should be chosen so diat membership of this set has strong implications for

memberships of other sets diat arc also encoded by individual units. The ability to discover such sets is

crucial if distributed representations arc to be effective, but this report is not concerned with the learning

problem. The interested reader is referred to Hinton, Scjnowski & Ackley (1984) where a mcdiod of finding

good sets is described in detail.

5: IMPLEMENTING AN ARBITRARY MAPPING BETWEEN TWO DOMAINS

This section shows how a distributed representation in one group of units can cause an appropriate

distributed representation in another group of units. We consider die problem of implementing an arbitrary

pairing between representations in the two groups, and we take as an example the association between the

visual form of a word and its meaning. The reason for considering an arbitrary mapping is that this is the case

in which local representations seem most helpful. If distributed representations are better even in this case,

then they are certainly better in cases where there are underlying regularities that can be captured by regular

interactions between units in one group and units in another.

If we restrict ourselves to mono-morphemic words, the mapping from strings of graphemes onto meanings

appears to be arbitrary in the sense that knowing what some strings of graphemes mean docs not help one

predict what a new string means. 1 3 This arbitrariness in the mapping from graphemes to meanings is what

1 3 Evcn for mono-morphemic words there may be particular fragments that have associated meaning. For example, words starting
with MsnM usually mean something unpleasant to do with the lips or nose (sneer, snarl, snigger), and words with long vowels are more
likely to stand for large slow things than words with short vowels (George Lakoff, personal communication). Much of Lewis Carrol's
poetry relics on such effects.

19

gives plausibility to models that have explicit word units. It is obvious that arbitrary mappings can be

implemented if there arc such units. A grapheme string activates exactly one word unit, and this activates

whatever meaning we wish to associate with it (sec figure 6a). The semantics of similar grapheme strings can

then be completely independent because they arc mediated by separate word units. There is none of the

automatic generalization that is characteristic of distributed representations.

It is not at all obvious that arbitrary mappings can be implemented in a system where the intermediate layer

of units encodes the word as a distributed pattern of activity instead of as activity in a single local unit. The

distributed alternative appears to have a serious drawback. The effect of a pattern of activity on other

representations is the combined result of the individual effects of the active units in the pattern. So similar

patterns tend to have similar effects. It appears that we are not free to make a given pattern have whatever

effect we wish on the meaning representations, without thereby altering the effects that other patterns have.

This kind of interaction appears to make it difficult to implement arbitrary mappings from distributed

representations of words onto meaning representations. I shall now show that these intuitions are wrong, and

that distributed representations of words can work perfectly well and may even be more efficient than single

word units.

Figure 6b shows a three-layered system in which grapheme/position units feed into "word-set" units which,

in turn, feed into "semantic" or "sememe" units. For simplicity, we shall assume that each unit is either active

or inactive, and that there is no feedback or cross-talk.1 4. (These assumptions can be relaxed without

substantially affecting the argument). A word-set unit is activated whenever the pattern of the

grapheme/position units codes a word in a particular set The set could be all the four-letter words starting

with "HE", for example, or all the words containing at least two "T M , s . All that is required is that it is possible

to decide whether a word is in the set by applying a simple test to the activated grapheme/position units. So,

for example, the set of all words meaning "nice" is not allowed as a word-set 1 5 Returning to figure 6b, the

question is whether it is possible to implement an arbitrary set of associations between grapheme/position

vectors and sememe vectors when the word-set units are each activated by more than one word. It will be

sufficient to consider just one of the many possible specific models. Let us assume that an active word-set

unit provides positive input to all the sememe units that occur in the meaning of any word in die word-set

Let us also assume that each sememe unit has a variable threshold that is dynamically adjusted to be just

14
Models of this type, and closely related variants, have been analyzed by Willshaw (1981), Dobson (personal communication), and by

David Zipser (Unpublished workshop talk, 1981)
1 5 There is an implicit assumption that word meanings can be represented as sets of sememes. This is a contentious issue. There

appears to be a gulf between the componential view in which a meaning is a set of features and the structuralist view in which the
meaning of a word can only be defined in terms of ; t s relationships to other meanings. Section 7 discusses one way of integrating these
two views by allowing articulated representations to be built out of a number of different sets of active features.

20

Figure 6a: A fragment of a three layer network. The bottom layer contains units that
represent particular graphemes in particular positions within the word. The middle layer
contains units that recognize complete words, and the top layer contains units that
represent semantic features of the meaning of the word. This network uses local
representations of words in the middle layer.

Figure 6b: The top and bottom layers are the same as in figure 6a, but the middle layer
uses a more distributed representation. Each unit in this layer can be activated by the
graphemic representation of any one of a whole set of words. The unit then provides input
to every semantic feature that occurs in the meaning of any of the words that activate it.
Only those word-sets containing the word "cat" are shown in this example. Notice that the
only semantic features which receive input from all these word-sets are the semantic
features of cat

21

slightly less than the number of active word-set units. Only sememe units that are receiving input from every

active word-set unit will dicn become active.

All the sememes of the correct word will be activated, because each of these sememes will occur in the

meaning of one of the words in the active word-sets. However, additional sememes may also be activated

because, just by chance, dicy may receive input from every active word-set unit. For a sememe to receive less

input than its threshold, there must be at least one active word-set that does not contain any word which has

die sememe as part of its meaning. For each active word-set the probability, /, of diis happening is:

/ = (l - p) < * - D

where p is the proportion of words that contain the sememe and w is the number of words in die word-set of

the word-set unit The reason for the term w-1 is that the sememe is already assumed not to be part of the

meaning of the correct word, so there are only w-1 remaining words that could have it in their meaning.

Assume diat when a word is coded at die graphemic level it activates u units at the word-set level. Each

sememe that is not part of the word's meaning has a probability / of failing to receive input from each

word-set unit. The probability, / that all of diesc word-set units will provide input to it is therefore

/ = (l - 0 "

=(l-(l-pp-lty

By inspection, this probability of a "false positive" sememe reduces to zero when w is 1. Table 1 shows the

value of / for various combinations of values of p, w, and w. Notice that if p is very small, / c a n remain

negligible even if w is quite large. This means that distributed representations in which each word-set unit

participates in the representation of many words, do not lead to errors if the semantic features are relatively

sparse in die sense diat each word meaning contains only a small fraction of the total set of sememes. So the

word-set units can be fairly non-specific provided the sememe units are fairly specific (not shared by too

many different word meanings). Some of the entries in the table make it clear that for some values of p, there

can be a negligible chance of error even though the number of word-set units is considerably less than the

number of words (the ratio of words to word-set units is w/u).

The example described above makes many simplifying assumptions. For example, each word-set unit is

22

u w P f u w CL f u w P f
5 5 .2 0.071 5 5 . 1 0.0048 5 5 .01 9.5 x 10~ 8

5 10 .2 0.49 5 10 .1 0.086 5 10 .01 4 .8 x 10" 6

5 20 .2 0.93 5 20 . 1 0.48 5 20 .01 0.00016
5 40 .2 1.0 5 40 .1 0.92 5 40 .01 0.0036
5 80 .2 1.0 5 80 .1 1.0 5 80 .01 0.049

u w P f u w P f u w P f
10 10 .2 0.24 10 10 .1 0.0074 10 10 .01 2.3 x 1 0 ~ n

10 20 .2 0.86 10 20 .1 0.23 10 20 .01 2.5 x 10" 8

10 40 .2 1.0 10 40 .1 0.85 10 40 .01 1.3 x 10" 5

10 80 .2 1.0 10 30 .1 1.0 10 80 .01 '0.00^4
10 160 .2 1.0 10 160 . 1 1.0 10 160 .01 0.10

u w P f u w P f u w P f
40 40 .2 0.99 40 40 . 1 0.52 40 40 .01 2.7 x 10"'°
40 80 .2 1.0 40 80 . 1 0.99 40 80 .01 3.5 x 1 0 " 1 1

40 160 .2 1.0 40 160 . 1 1.0 40 160 .01 0.00012
40 320 .2 1.0 40 320 .1 1.0 40 320 .01 0.19
40 640 .2 1.0 40 640 . 1 1.0 40 640 .01 0.94

u w
100 100
100 200
100 400
100 800

P
.2
.2
.2
.2

f
1.0
1.0
1.0
1.0

u w
100 100
100 200
100 400
100 800

P
,1
,1
.1
1

f
0.99
1.0
1.0
1.0

u w
100 100
100 200
100 400
100 800

P f
.01 9.0 x
.01 4.8 x
,01 0.16
,01 0.97

10
10

-21
-7

Table 1: The probability, f, of a false positive sememe as a function of the number of active
word-set units per word, u, the number of words in each word-set, w, and the probability, p, of a
sememe being part of a word meaning.

assumed to be connected to every relevant sememe unit If any of these connections were missing, we could

not afford to give the sememe units a threshold equal to the number of active word set units. To allow for

missing connections we could lower the threshold, but this would increase the false-positive error rate.

Alternatively, we could make each word-set unit veto the sememes that do not occur in any of its words. This

scheme is far more robust against missing connections, because the absence of one veto can be tolerated if

there are other vetos (Vernon Dobson, personal communication).

There are two more simplifying assumptions both of which lead to an underestimate of the effectiveness of

distributed representations for the arbitrary mapping task. First, the calculations assume that there is no

fine-tuning procedure for incementing some weights and decrementing others to improve performance in

the cases where the most frequent errors occur. Second, the calculations ignore cross-talk among the

sememes. If each word-meaning is a familiar stable pattern of sememes there will be a strong "clean-up"

effect which tends to suppress erroneous sememes as soon as the pattern of activation at the sememe level is

23

sufficiently close to the familiar pattern for a particular word-meaning. Interactions among the sememes also

'provide an explanation for the ability of a single grapheme string (e.g. "bank") to elicit two quite different

meanings. The "bottom-up" effect of the activated word-set units helps both sets of sememes, but as soon as

"top-down" factors give an advantage to one meaning, the sememes in the other meaning will be suppressed

by competitive interactions at the sememe level (Kawamoto and Anderson, 1984).

A simulation
As soon as there is cross-talk among the sememe units and fine tuning of individual weights to avoid

frequent errors, the relatively straight-forward probabilistic analysis given above t teaks down. To give the

cross-talk time to clean up the output, it h necessary to use an iterative procedure instead of the simple

"straight-through" processing in which each layer completely determines die states of all the units in the

subsequent layer in a single, synchronous step. Systems containing cross-talk, feedback, and asynchronous

processing elements are probably more realistic as models of the brain, but they are generally very hard to

analyze. However, there is a special subclass of these more complex systems that behaves in a tractable way

and is capable of interesting kinds of search and learning behavior (Hinton, Sejnowski & Acklcy, 1984). It

uses processing elements that are inherently stochastic. Surprisingly, the use of stochastic elements makes

these networks better at performing searches, better at learning, and easier to analyze.

A simple network of this kind is used to illustrate some of die claims about die ability to "clean up" the

output by using interactions among sememe units, and the ability to avoid errors by fine tuning the

appropriate weights. The network contains 30 grapheme units, 20 word-set units, and 30 sememe units.

There are no direct connections between grapheme and sememe units, but each word-set unit is connected to

all the grapheme and sememe units. The grapheme units are divided into three sets of ten, and each

three-letter word has one active unit in each group of ten (units can only have activity levels of 1 or 0). The

"meaning" of a word is chosen at random by selecting each sememe unit to be active with a probability of 0.2.

The network shown in figure 7 has learned to associated 20 different grapheme strings with their chosen

meanings. Each word-set unit is involved in the representation of many words, and each word involves many

word-set units.

Hinton & Sejnowski (in press) describe the details of the learning procedure which was used to create this

network and the search procedure which was used to settle on a set of active sememes when given the

graphemic input Here we simply summarize the main results of the simulation.

After a long period of learning, the network was able to produce the correct pattern of sememes 99.9% of

the time when given a graphemic input Removal of any one of the word-set units after the learning typically

caused a slight rise in the error rate for several different words rather than the complete loss of one word. In

Figure 7: A compact display that shows all the connection strengths in a three-layer network which
can map 20 different graphemic strings into the corresponding collections of active semantic
features. The top 3 rows of the display arc the semantic units, the middle two rows are the
intermediate units, and the bottom three rows arc the grapheme units. Within each unit, the black
or white blobs show the strengths of its connections to other units. While blobs are positive
connections, black are negative, and the magnitude of a blob represents Uie strength of the

connection. Fhe relative position of a blob within a unit indicates the relative position within the
whole network of the other unit involved in the connection (It is as if each unit contained a little
map of the whole net). All connection strengths are the same in both directions, so every strength
is represented twice in this display. In the position where the connection between a unit and itself
would be displayed, the threshold of the unit is shown (black means a positive threshold)

25

10,000 tests with a missing word-set unit tiicre were 140 errors. Some of dicsc consisted of one or two missing

or extra sememes, but 83 of the errors were exactly die pattern of sememes of some other word. This is a

result of the cooperative interactions among die sememe units. If die input coming from die word-set units is

noisy, die clean up effect may settle on a similar but incorrect meaning.

This effect is reminiscent of a phenomenon called deep dyslexia which occurs with certain kinds of brain

damage in adults. When shown a word and asked to read it, the subject will sometimes say a different word

with a very similar meaning. The incorrect word sometimes has a very different sound and spelling. For

example, when shown the word "PEACH" the subject might say "APRICOT" (See Coltheart & Patterson

(1980) for more information about acquired dyslexia). Semantic errors of this kind seem bizarre because it

seems as if the subject must have accessed die lexical item PEACH in order to make die scmantically related

error, and if he can get to die lexical item why can't he say it? (These subjects may know and be able to say

the words diat they misread). Distributed representations allow us to dispense with the rigid distinction

between accessing a word and not accessing it. In a network that has learned the word "PEACH", the

graphemic representation of "PEACH" will cause approximately the right input to the sememe units, and

interactions at the sememe level can dien cause exactly the pattern of sememes for apricot.

Another psychologically interesting effect occurs when die network relearns after it has been damaged. The

network was damaged by adding noise to every connection diat involved a word-set unit. This reduced the

performance from 99.3% correct to 64.3%. 1 6 The network was then retrained and it exhibited very rapid

relcarning, much faster dian its original rate of learning when its performance was 64.3% correct. This rapid

recovery' was predicted by a geometrical argument which shows that there is something special about a set of

connection strengths that is generated by adding noise to a near-perfect set The resulting set is very different

from other sets of connection strengths that exhibit die same performance, (see Hinton & Sejnowski, in press,

for details).

An even more surprising effect occurs if a few of the words are ommitted from the retraining. The error

rate for these words is substantially reduced as the retraining proceeds, even though the other grapheme-

sememe pairings have no intrinsic relation to them because all the pairings were selected randomly. The

"spontaneous" recovery of words that the network is not shown again is a result of the use of distributed

representations. All the weights are involved in encoding the subset of the words that are shown during

retraining, and so the added noise tends to be removed from every weight. A scheme that used a separate unit

for each word would not behave in this way, so one can view spontaneous recovery of unrehearsed items as a

1 6 T h e error rate was 99.3% rather than 99.9% in this example because
effects had less time to settle on the optimal output

the network was forced to respond faster, so the cooperative

26

qualitative signature of distributed representations.

6: CREATING NEW CONCEPTS

Any plausible scheme for representing knowledge must be capable of learning novel concepts that could

not be anticipated at the time die network was initially wired up. A scheme diat uses local reprcscntadons

must first make a discrete decision about when to form a new concept, and thenm it must find a spare

hardware unit that has suitable connections for implementing the concept involved. Finding such a unit may

be difficult if we assume that, after a period of early development, new knowledge is incorporated by

changing the strengths of die existing connections rather dian by growing new ones. If each unit only has

connections to a small fraction of the others, there will probably not be any units that are connected to just the

right other ones to implement a new concept. For example, in a collection of a million units each connected

at random to ten thousand others, the chance of there being any unit that is connected to a particular set of 6

others is only one in a million.

In an attempt to rescue local representations from this problem, several clever schemes have been proposed

that use two classes of units. The units diat correspond to concepts arc not directly connected to one another.

Instead, the connections are implemented by indirect pathways through several layers of intermediate units

(Fahlman, 1980; Fcldman, 1982). This scheme works because die number of potential pathways through the

intermediate layers far exceeds the total number of physical connections. If there are k layers of units each of

which has a fan-out of n connections to randomly selected units in the following layer, there are n k potential

padiways. There is almost certain to be a pathway connecting any two concept-units, and so the intermediate

units along this pathway can be dedicated to connecting diose two concept-units. However, these schemes

end up having to dedicate several intermediate units to each effective connection, and once the dedication has

occurred, all but one of the actual connections emanating from each intermediate unit are wasted. The use of

several intermediate units to create a single effective connection may be appropriate in switching networks

containing elements that have units with relatively small fan-out but it seems to be an inefficient way of using

the hardware of the brain.

The problems of finding a unit to stand for a new concept and wiring it up appropriately do not arise if we

use distributed representations. All we need to do is modify the interactions between units so as to create a

new stable pattern of activity. If this is done by modifying a large number of connections very slightly, the

creation of a new pattern need not disrupt die existing representations. The difficult problem is to choose an

appropriate pattern for the new concept. The effects of the new representation on representations in other

parts of the system will be determined by the units that are active, and so it is important to use a collection of

active units that have roughly the correct effects. Fine-tuning of the effects of the new pattern can be

27

achieved by slightly altering the effects of the active units it contains, but it would be unwise to choose a

random pattern for a new concept, because major changes would then be needed in die weights, and diis

would disrupt other knowledge. Ideally, the distributed representation that is chosen for a new concept

should be the one that requires the least modification of weights to make the new pattern stable and to make

it have the required effects on other representations.

Naturally, it is not necessary to create a new stable pattern all in one step. It is possible for the pattern to

emerge as a result of modifications on many separate occasions. This alleviates an awkward problem that

a/iscs with local representations: The system must make a discrete all-or-nonc decision about when to create a

new concept. If we view concepts as stable patterns they are much less discrete in character. It is possible, for

example, to differentiate one stable pattern into two closely related but different variants by modifying some

of the weights slightly. Unless we are allowed to clone the hardware units (and all their connections), this

kind of gradual conceptual differentiation is much harder to achieve with local representations.

7: REPRESENTING CONSTITUENT STRUCTURE

Any system which attempts to implement the kinds of conceptual structures that people use has to be

capable of representing two radier different kinds of hierarchy. The first is the "ISA" hierarchy that relates

types to instances of those types. The second is die part/whole hierarchy that relates items to die constituent

items that they are composed of. The most important characteristics of the ISA hierarchy are that known

properties of the types must be "inherited" by the instances, and properties that arc found to apply to all

instances of a type must normally be attributed to the type. In section 2 we saw how the ISA hierarchy can be

implemented by making the distributed representation of an instance include, as a subpart, the distributed

representation for the type. This representational trick automatically yields the most important characteristics

of the ISA hierarchy, but the trick can only be used for one kind of hierarchy. If we use the part/whole

relationship between patterns of activity to represent the type/instance relationship between items, it appears

that we cannot also use it to represent the part/whole relationship between items. We cannot make the

representation of the whole be the sum of the representations of its parts.

The question of how to represent the relationship between an item and the constituent items of which it is

composed has been a major stumbling block for theories diat postulate distributed representations. In the

rival, localist scheme, a whole is a node that is linked by labelled arcs to the nodes for its parts. But the central

tenet of the distributed scheme is that different items correspond to alternative patterns of activity in the same

set of units, so it seems as if a whole and its parts cannot both be represented at the same time.

I can only see one way out of this dilemma. It relies on the fact that wholes are not simply the sums of their

28

parts, l l icy arc composed of parts diat play particular roles within die whole structure. A shape, for example,

is composed of smaller shapes that have a particular size, orientation and position relative to the whole. Each

constituent shape has its own spatial role, and die whole shape is composed of a set of shape/role pairs.
1 7 Similarly, a proposition is composed of objects diat occupy particular semantic roles in the whole

propositional structure. This suggests a way of implementing die relationship between wholes and parts: the

identity of each part should first be combined with its role to produce a single pattern that represents the

combination of the identity and the role, and then the distributed representation for the whole should consist

of the sum of the distributed representations for diesc identity/role combinations (plus some additional

"emergent" features). 1 8 This proposal differs from die simple idea diat die representation of the whole is the

sum of the representations of its parts, because die subpatterns used to represent identity/role combinations

arc quite different from die patterns used to represent the identities alone. They do not, for example, contain

these patterns as parts.

Naturally, there must be an access path between the representation of an item as a whole in its own right

and the representation of that same item playing a particular role within a larger structure. It must be

possible, for example, to generate the identity/role representation from two separate, explicit, distributed

patterns one of which represents the identity and the other of which represents the role. It must also be

possible to go the other way and generate the explicit representations of the identity and role from the single

combined representation of the identity/role combination (See figure 8).

The use of patterns diat represent identity/role combinations allows the part/whole hierarchy to be

represented in the same way as the type/instance hierarchy. A whole is simply a particular instance of a

number of more general types, each of which can be defined as the type that has a particular kind of part

playing a particular role (e.g men with wooden legs).

Sequential symbol processing

If constituent structure is implemented in the way described above, there is a serious issue about how many

structures can be active at any one time. The obvious way to allocate the hardware is to use a group of units

for each possible role within a structure and to make die pattern of activity in diis group represent the identity

of the constituent that is currently playing that role. This implies that only one structure can be represented at

a time, which is clearly a very severe restriction. However, people do seem to suffer from strong constraints

Relationships between parts are mportant as well. One advantage of explicitly representing shape/role pairs is that it allows
different pairs to support each other. One can view the various different locations within an object as slots and the shapes of parts of an
object as the fillers of these slots. Knowledge of a whole shape can then be implemented by positive interactions between the various
slot-fillers.

See Hinton, 1981 for a simulation that uses this representational technique.
18

29

IDENTITY

AGENT PATIENT LOCATION

Figure 8: A sketch of the apparatus that might be necessary for combining separate representations
of an identity and a role into a single pattern. Only one identity and only one role can be explicidy
represented at a time because the identity and role groups can each only have one pattern of
activity at a time. However, the various role groups allow many identity/role combinations to be
encoded simultaneously. The small triangular symbols represent the ability of the pattern of
activity in the group that explictly represents a role to determine which one of the many role
groups is currently interacting with the identity group. This allows the identity occupying a
particular role to be "read out" as well as allowing the reverse operation of combining an identity
and a role.

30

on the number of structures of the same general type that they can process at once. To a first approximation,

people are sequential symbol processors (Newell, 1980). The scqucntiality that they exhibit at this high level

of description is initially surprising given the massively parallel architecture of the brain, but it becomes much

easier to understand if we abandon our localist predelictions in favor of the distributed alternative which uses

the parallelism to give each active representation a very rich internal structure that allows the right kinds of

generalization and content-addressability.

One central tenet of the sequential symbol processing approach (Newell, 1980) is the ability to focus on any

part of a structure and to expand that into a whole that is just as rich in content as the original whole of which

it was a part. The recursive ability to expand parts of a structure for indefinitely many levels, and the inverse

ability to package up whole structures into a reduced form that allows them to be used as constituents of

larger structures is the essence of symbol processing. It allows a system to build structures out of things that

refer to other whole structures without requiring that these other structures be represented in all their

cumbersome detail.

In conventional computer implementations this ability is achieved by using pointers. These are very

convenient but they depend on the use of addresses. In a parallel network, we need something that is

functionally equivalent to arbitrary pointers in order to implement symbol processing. This is exacdy what is

provided by subpatterns that stand for identity/role combinations. They allow the full identity of the part to

be accessed from a representation of the whole and a representation of the role that the system wishes to focus

on, and they also allow explicit representations of an identity and a role to be combined into a less

cumbersome representation, so that several identity/role combinations can be represented simultaneously in

order to form the representation of a larger structure.

SUMMARY

Given a parallel network, items can be represented by activity in a single, local unit, or by a pattern of

activity in a large set of units with each unit encoding a "micro-feature" of die item. Distributed

representations are efficient whenever there are underlying regularities which can be captured by interactions

among micro-features. By encoding each piece of knowledge as a large set of interactions it is possible to

achieve useful properties like content-addressable memory and automatic generalization, and new items can

be created without having to create new connections at the hardware level. In the domain of continuously

varying spatial features it is relatively easy to provide a mathematical analysis of the advantages and

drawbacks of using distributed representions.

Distributed representations seem to be unsuitable for implementing purely arbitrary mappings because

31

there is no underlying structure and so generalization only causes unwanted interference. However, even for

diis task, distributed representations can be made fairly efficient and they exhibit some psychologically

interesting effects when damaged.

There are several very hard problems that must be solved before distributed representations can be used

effectively. One is to decide on the pattern of activity diat is to be used for representing an item. The

similarities between the chosen pattern and odier existing patterns will determine die kinds of generalization

and interference that occur. The search for good patterns to use is equivalent to the search for the underlying

regularites of the domain. This learning problem is not addressed here. The interested reader is referred to

Hinton, Sejnowski & Ackley (1984).

Another hard problem is to clarify the relationship between distributed representations and techniques used

in artificial intelligence like schemas, or hierarchical structural descriptions. Existing artificial intelligence

programs have great difficulty in rapidly finding the schema that best fits the current situation. Parallel

networks offer the potential of rapidly applying a lot of knowledge to this best-fit search, but this potential

will only be realized when diere is a good way of implementing schemas in parallel networks.

REFERENCES
Ackley, D. h., Hinton, G. E., Sejnowski, T. J. A learning algorithm foi Boltzmann machines. Cognitive

Science, (in press).

Anderson, J. A. Neural Models with Cognitive Implications. In D. LaBerge & S. J. Samuels, (Eds.)
Basic Processes in Reading Perception and Comprehension. Hillsdale, NJ: Erlbaum, 1975.

Anderson, J. A. & Mozer, M. C. Categorization and selective neurons. In G. E. Hinton &
J. A. Anderson (Eds.) Parallel Models of Associative Memory. Hillsdale, NJ: Erlbaum, 1981.

Anderson, J. A., Silverstein, J. W., Ritz, S. A., & Jones, R. S. Distinctive Features, Categorical
Perception, and Probability Learning: Some Applications of a Neural Model. Psychological
Review, 1S77, 84 413-451.

Bartlett, F. C , Remembering. Cambridge: Cambridge University Press, 1932.

Collins, A. M. & Loftus, E. F. A Spreading-Activation Theory of Semantic Processing. Psychological
Review, 1975, 82,407-425.

Coltheart, M. & Patterson, K. Deep Dyslexia. London: Routledge & Kegan, 1980.

Eich, J. M. A composite holographic associative recall model. Psychological Review, 1982, 89,
627-661.

Fahlman, S. E. NETL: A system for representing and using reai-wofid knowledge. Cambridge, Mass.:
MIT Press, 1979.

Fahlman, S. E. The Hashnet Interconnection Scheme. Technical Report CMU-CS-80-125,
Department of Computer Science, Carnegie-Melion University, Pittsburgh, PA, 1980.

Feldman, J. A. Dynamic connections in neural networks. Biological Cybernetics, 1982, 46, 27-39.

Hinton, G. E. Implementing semantic networks in parallel hardware. In G. E. Hinton & J. A. Anderson
(Eds.) Parallel Models of Associative Memory. Hillsdale, NJ: Erlbaum, 1931.

Hinton, G. E. & Anderson, J. A. Parallel Models of Associative Memory. Hillsdale, NJ: Erlbaum, 1981.

Hinton, G. E., & Sejnowski, T. J. Chapter to appear in: J. L. McClelland & D. E. Rumelhart (Eds.)
Parallel distributed processing: Explorations in the micro-structure of cognition, (in press).

Hinton, G. E., Sejnowski, T. J., & Ackley, D. H. Boltzmann Machines: Constraint satisfaction networks
that learn. Technical Report CMU-CS-84-119, Department of Computer Science, Carnegie-
Mellon University, Pittsburgh PA, 1984.

Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities.
Proceedings of the National Academy of Sciences USA, 1982, 79,2554-2558.

Hopfield, J. J. Neurons with graded response have collective computational properties like those of
two-state neurons. Preprint, 1984

Kawamoto, A. H. & Anderson, J. A. Lexical access using a neural network. In: Proceedings of the

Sixth Annual Conference of the Cognitive Science Society, Boulder CO, June 1984, 204-213.

Kohonen, T. Associative memory: A system-theorectical approach. Berlin: Springer, 1977.

Levin, J. A. Proteus: An activation framework for cognitive process models. Technical Report
ISI/WP-2. California: Information Sciences Institute, 1976.

Luria, A. R. The Working Brain. London: Penguin Books, 1973.

McClelland, J. L. Retrieving General and Specific Information from Stored Knowledge of Specifics.
In: Proceedings of the Third Annual Conference of the Cognitive Science Society, Berkeley,
California, August 1981,170-172.

Murdock, B. B., A Distributed Memory Model for Serial-Order Information. Psychological Review,

1983,90,316-338.

Neisser, U. John Dean's Memory: A case study. Cognition, 1981,9,1-22.

Newell, A. Physical Symbol Systems. Cognitive Science, 1980,4,135-183.

Norman, D. A., & Bobrow D. G. Descriptions: An intermediate stage in memory retrieval. Cognitive

Psychology, 1979,11,107-123.

Quillian, M. R. Semantic memory. In M. Minsky (Ed.) Semantic information processing. Cambridge,

Mass: MIT Press, 1968.

Rumelhart, D. E., Hinton, G. E., & McClelland, J. L. Chapter to appear in: J. L. McClelland &
D. E. Rumelhart (Eds.) Parallel distributed processing: Explorations in the micro-structure of

cognition, (in press).

Willshaw, D. J., Buneman, O. P. & Longuet-Higgins, H. C. Nonholographic associative memory.

Nature, 1969, 222, 960-962.

Willshaw, D. J. Holography, Associative Memory, and Inductive Generalization. In G. E. Hinton &
J. A. Anderson (Eds.) Parallel Models of Associative Memory. Hillsdale, NJ: Erlbaum, 1981.

